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Abstract

Central to cognitive load theory is the concept of element interactivity, which reflects the

complexity of material. The complexity of linear equations depends on the number of opera-

tional and relational lines and the nature of the operation (balance versus inverse) in the

solution procedure. A relational line refers to the quantitative relation whereby the right-hand

side of the equation equals to its left-hand side. An operational line refers to the application

of an operation and such a procedural step preserves the equality of the linear equation.

The balance method and inverse method differ in the operational line (e.g., + 3 on both sides

vs.– 3 becomes + 3) where the inverse operation imposes half the level of element interac-

tivity as the balance method. Seventy-five students randomly assigned to either the balance

group or inverse group to complete (i) one-step equations (Experiment 1), (ii) two-step equa-

tions (Experiment 2), and (iii) one-step and two-step equations with a focus on equations

with negative pronumerals (Experiment 3). Performance favoured the inverse group when

the gap between the low and high element interactivity equations was substantial enough.

Both groups performed better and invested lower mental effort on the inverse operation than

the balance operation.

Introduction

Researchers have identified the challenge associated with manipulating negative number for

both adult and children [1–3]. Regarding the topic of linear equations, which is the focus of

this study, researchers have identified a cognitive gap in understanding the difference between

a negative number (e.g.,– 7) and a negative pronumeral (e.g.,– 7x), for example:– 7x = 14 [4].

Such difficulty was reflected in student learning experience of linear equations that involve

both negative numbers and negative pronumerals [5–7].

In light of student difficulty in manipulating negative numbers and negative pronumerals,

how can mathematics educators enhance student learning of linear equations that involve a

negative pronumeral? Many mathematics educators have advocated the use of the balance

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265547 March 18, 2022 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ngu BH, Phan HP (2022) Advancing the

study of solving linear equations with negative

pronumerals: A smarter way from a cognitive load

perspective. PLoS ONE 17(3): e0265547. https://

doi.org/10.1371/journal.pone.0265547
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method (Fig 1), which is the popular method for learning to solve linear equations [8]. To the

best of our knowledge, apart from our prior studies [e.g., 9], no published study has recom-

mended alternative methods for learning to solve linear equations–for example, in our case,

the inverse method. The present study intends to continue our research in examining the bal-

ance method and the inverse method for learning to solve linear equations with a particular

focus on linear equations that involve a negative pronumeral. Our main research question

then is: can the inverse method overcome the inherit difficulty of learning to solve linear equa-
tions that involve a negative pronumeral?

Our prior studies have compared the balance method and inverse method for learning to

solve linear equations from the perspective of cognitive load [e.g., 9–11]. The main difference

between the balance method and the inverse method lies in the procedural step (Fig 1, Line 2).

The inverse operation (+ 4 becomes– 4), in this case, imposes lower cognitive load than the

balance operation (– 4 on both sides), given that the interaction of elements occurs on one side

and two sides of the equation, respectively.

In one of our studies [9], we randomly assigned middle school students to the balance method

(n = 36) or the inverse method (n = 35) for learning to solve one-step and two-step linear equa-

tions. They completed a pre-test, an acquisition phase and a post-test. The inverse group outper-

formed the balance group for two-step equations but not one-step equations. In addition, the

inverse group scored higher than the balance group for individual linear equations that had a neg-

ative pronumeral (e.g., 6 –q = 10) rather than a positive pronumeral (e.g., y + 3 = 1). In another

study, using the same experimental design, the inverse group (n = 15) outperformed the balance

group (n = 14) for learning to solve multi-step linear equations (e.g, 5x – 7 = 2x + 11) [10]. More

recently, we examined Australian (n = 38) and Malaysian (n = 38) pre-service teachers’ ability to

solve one-step, two-step and multi-step linear equations [11]. An analysis of the solution strategies

revealed that the Australian and Malaysian pre-service teachers used the balance method (except

one who used the inverse method) and inverse method, respectively. The Malaysian pre-service

teachers outperformed Australian pre-service teachers across one-step, two-step and multi-step

equations. For the concept test, both Australian and Malaysian pre-service teachers performed

better for the inverse operation than the balance operation. Overall, interestingly, the findings of

our prior studies were in favor of the inverse method. We accounted two possible reasons for this

observation, namely: (1) differential complexity of linear equations, and (2) the pedagogical
method used to solve linear equations (balance method vs. inverse method).

The present study, in part, expands on our previous undertakings but differs from previous

studies in a number of ways: (i) performance outcomes included not only procedural knowl-

edge but also conceptual knowledge, (ii) the use of varying solution steps in solving linear

equations with a negative pronumeral (i.e., applied two inverse operations not only sequen-

tially but also concurrently), and (iii) a measure of cognitive load in judging the balance opera-

tion and inverse operation. We will begin with the discussion of cognitive load theory that

underpins the present study.

Cognitive load theory

Cognitive load theory has provided theoretical insights to assist educators to design various

instructions for effective learning [12]. Central to cognitive load theory is the human cognitive

architecture that comprises a long-term memory and a working memory. The long-term

memory stores domain-specific knowledge in the form of schemas [13]. The working memory

is constrained in both capacity and duration. According to Miller [14], it can process about

seven units of information, and Cowan [15] suggested that it can process about four units of

information. Moreover, information will be readily lost from memory if it is not rehearsed
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[16]. However, the restriction of working memory when it deals with unfamiliar information

disappears when it deals with familiar information in the form of schemas that can be retrieved

from the long-term memory. The characteristic of working memory to process a schema as a

single unit of element instead of multiple interactive elements reduces cognitive load. Accord-

ingly, cognitive load researchers seek to design instructions to minimize overloading working

memory in order to facilitate the acquisition of schemas, which will be transferred and stored

in the long-term memory.

Recent development of cognitive load theory revisits the importance of element interactiv-
ity, which acts as an index to indicate the complexity of the unit material [17]. The level of ele-

ment interactivity of a unit material depends on the number of elements, and the extent to

which individual elements interact. Anything that requires learning constitutes an element

(e.g., a symbol, a number, a concept, etc.) [18]. Sweller [17] regards element interactivity as a

common thread that exists across three types of cognitive load:

i. Extraneous cognitive load occurs as a result of suboptimal instructional design. Investing

cognitive resources to process element interactivity that impedes learning constitutes extra-

neous cognitive load.

ii. Intrinsic cognitive load emphasizes the investment of cognitive resources to process element

interactivity, which arises from the inherent complexity of the unit material. The intrinsic

cognitive load depends on both the level of element interactivity of the learning material and

the learner levels of expertise. There is an inverse relationship between intrinsic cognitive

load and learner expertise. Once multiple interactive elements are learnt, they can be

“chunked” into a schema, which reduces intrinsic cognitive load [19]. Accordingly, we can

change intrinsic cognitive load by changing either the level of element interactivity of the

learning material or the learner levels of expertise. In the present study, differential level of

element interactivity of the learning material occurs consequently as a result of the manner in

which the linear equations were presented to students (balance method vs. inverse method).

iii. Germane cognitive load is concerned with the use of cognitive resources to process element

interactivity, which is intrinsic to the learning material. Thus, germane cognitive does not

exert an independent source of cognitive load; rather, it is part of the intrinsic cognitive load.

For example, requiring learners to distinguish a similar solution across variable contexts

increases germane cognitive, which improves learning outcomes [20]. It should be noted

that only more knowledgeable learners would benefit from high variability materials. Having

discussed the three types of cognitive load in terms of element interactivity, we will discuss

element interactivity and understanding in mathematics education in the next section.

Element interactivity and understanding

In mathematics education, learning to recognize individual numbers (e.g., 6) is regarded as a

low element interactivity task because a student can learn how to recognise one number

Fig 1. The balance method and inverse method to solve a one-step equation.

https://doi.org/10.1371/journal.pone.0265547.g001
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independent of another number. In contrast, learning to solve a linear equation such as x–

7 = 10 constitutes a high element interactivity task. The learner not only needs to know indi-

vidual elements (i.e., x,– 7, =, 10), but also the relation between them. He or she needs to know

the meaning of x, the quantitative relation between the right side and left side of the equation,

and the application of an operation such as + 7 on both sides (balance method) to solve the

equation. Simultaneously coordinating the relationship between these multiple interactive ele-

ments in working memory to allow understanding to occur would impose a high cognitive

load. Nevertheless, a mathematics teacher can process multiple interactive elements as a single

element (a schema) with minimum cognitive load owing to his or her expertise in algebra.

In the present study, similar to our prior studies [9], we used the concept of element inter-

activity to explain the complexity of a linear equation (e.g., a linear equation with a negative

pronumeral, 3 – 2x = 10), as well as the complexity of an instructional method (balance

method vs. inverse method) that stems from different ways in presenting the solution proce-

dure of a linear equation. An instructional method that incurs a higher level of element inter-

activity would be less effective owing to the imposition of higher cognitive load and vice versa.

Before we detail the difference between the balance method and the inverse method to facili-

tate learning of linear equations from an element interactivity perspective, we will discuss

prior research on the balance method and the inverse method in relation to linear equations.

Balance method and inverse method of learning

Mathematics educators tend to use a balance scale to illustrate the ‘ = ‘ sign concept [6, 21],

which is central to equation solving. The balance scale is effective in demonstrating the ‘take

away’ of the same quantity (e.g., two marbles) from both sides in order to preserve the equality

of the balance scale. Connecting concrete items (e.g., unit block) in the balance scale and sym-

bolic equations (e.g., x + 7 = 12) enabled learners to develop analogical reasoning between the

balance scale and the concept of equality in equations [22]. However, it is impossible to use the

concept of ‘take away’ to remove a negative number or a negative pronumeral from both sides

of the balance scale [6]. Moreover, Pirie and Martin [23] argued that the balance model itself

creates errors when subtracting a negative number from both sides of the equation. A recent

review by Otten, Van den Heuvel-Panhuizen, and Veldhuis [24] indicated that the balance

model is a rather complex tool, and researchers have not identified the conditions under

which it would work effectively for linear equations.

Despite the issues surrounding the use of the balance scale to scaffold negative numbers

and negative pronumerals, mathematics educators have modelled the balance scale to generate

the balance method for teaching and learning of linear equations (see Fig 1) [8]. For example,

Linchevski and Herscovics [7] demonstrated the decomposition of a larger term (number, pro-

numeral) on one side of the equation, and then the cancellation of identical terms on both

sides of the equation to maintain the equality of the equation. Interestingly, having exposed to

the balance method, two top students generated a short-cut version of the balance method by

using the inverse operation to solve subsequent linear equations. In their study, Andrews and

Sayers [25] reported that a teacher from Finland introduced the concept of equality in the con-

text of linear equations to grade 8 students using the balance model. Subsequently, the teacher

summarized the solution procedure with an emphasis on ‘change side, change sign’, which is a

short-cut version of the balance method.

Mathematics education researchers have criticized the application of the inverse method for

solving linear equations that relies on the concept of ‘change side, change sign’ [26]. This criti-

cism may stem from the fact that many students, in general, fail to articulate and/or under-

stand how the inverse method actually works. For example, consider 3x + 5 = 17; students may
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mechanically pick a term (e.g., + 5) as the first step, and perform “change side, change sign” to

obtain 3x = 17–5. They may fail to conceptualize– 5 as inverse to + 5 when applying the inverse

operation to solve the linear equation. However, a review by Cai, Lew, Morris, Moyer, Ng, and

Schmittau [27] indicates that South Korea, Singapore and China have introduced the inverse
operation in elementary mathematics education. In China, for example, teachers introduce

subtraction as the inverse operation of addition. To guide students to find ‘ ( )’ in 2 + ( ) = 6,

the concept of subtraction is introduced: 6–2 = 4.

Mathematics education researchers have acknowledged the limitation of the balance model

to scaffold the role of the ‘ = ‘ sign when dealing with linear equations that involve a negative

number and a negative pronumeral [3]. Nevertheless, they used the balance method to high-

light the role of the ‘ = ‘ sign when solving linear equations. On the other hand, they tended to

view the inverse method as a means to perform ‘change side, change sign’, which does not ade-

quately address the role of the ‘ = ‘ sign concept [26]. In the present study, we focused on the

characteristics and comparative effectiveness of the balance method and the inverse method to

facilitate learning of linear equations. More specifically, we wished to identify and validate the

operational functioning of the balance method and the inverse method of learning one-step

and two-step equations, which involve varying levels of complexity (e.g., a negative pronum-

eral). Furthermore, as we discuss, cognitive load theory [12] can facilitate understanding in

regard to the effectiveness of a particular instructional approach for learning.

Element interactivity, balance method, and inverse method

One important characteristic that differentiates the balance method and the inverse method of

the procedure in equation solving is the complexity of relational and operational lines [9, 10,

28, 29]. A relational line describes a relation, thereby the left side of the equation equals to its

right side. An operational line, in contrast, requires the use of an operation to change the state

of the equation, and such procedural step preserves the equality of the equation. Fig 1 illus-

trates a one-step equation with a positive pronumeral. As indicated, the balance method and

the inverse method share similar relational lines (Line 1 and Line 3), but they differ in the

operational line (Line 2). The element interactivity associated with the balance method and the

inverse method will be discussed next.

Balance method. Line 1 involves six elements: a pronumeral (y), two numbers (+ 4, 1) and

three concepts. As noted earlier, a concept is considered as an element because it requires learn-

ing [18]. The three concepts are: (i) the ‘ = ‘ sign indicates a relation thereby the right of the

equation equals to its left side, (ii) the number 4 is added to y, and (iii) to solve for y, the learner

performs the same operation on both sides of the equation in order to maintain its equality.

Line 2 involves seven elements: a pronumeral (y), four numbers (4,– 4, 1,– 4) and two concepts.

These two concepts are: (i) cancel + 4 with– 4 on left side, and (ii) perform 1–4 on the right side

in order to preserve the equality of the equation. The interaction between– 4 and the respective

elements occurs on both sides of the equation. Line 3 involves three elements: a pronumeral (y),

one number (– 3) and one concept. This concept involves: once Line 1 and Line 2 has been suc-

cessfully processed, the learner would know that y equals to– 3 is the solution.

Inverse method. The balance method and the inverse method differs in the operational

line (Line 2). The inverse operation conceptualizes, for example, the notion that addition is

inverse to subtraction. A learner would move + 4 from the left side of Line 1 to become– 4 on

right side of Line 2 in order to maintain the equality of the equation. On the right side of the

equation, interaction between elements occurs thereby– 4 interacts with 1.

To enable understanding to occur, the learner needs to simultaneously coordinate multiple

interactive elements within and across one operational and two relational lines for both the
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balance method and the inverse method. Differential level of element interactivity occurs in

the operational line, in this case, favours the inverse method. Specifically, element interactivity

occurs on the right side of the equation for the inverse method (i.e.,– 4 interacts with 1), but

on both sides of the equation for the balance method (i.e., + 4 interacts with– 4 on left side,

and 1 interacts with– 4 on the right side).

Nevertheless, the balance method was not inferior to the inverse method for one-step equa-

tions with a positive pronumeral because the total cognitive load needed to process the level of

element interactivity would have been low, regardless of the balance method or the inverse

method [9]. In contrast, regarding one-step and two-step equations with a negative pronum-

eral (Appendix A in S1 Appendix) that have higher number of operational and relational lines,

we expect differential level of element interactivity would favor the inverse method.

One-step and two-step equations with a negative pronumeral

How we apply the inverse operation influences the level of element interactivity between the

balance method and the inverse method for one-step and two-step equations. Regarding one-

step equations with a negative pronumeral (e.g., 8 –a = 13), for example, we can apply two

inverse operations sequentially or concurrently (Appendix A in S1 Appendix). Here, a learner

can apply two inverse operations sequentially, resulting in two operational and three relational

lines. Thus, from this, any advantage of the inverse method over the balance method may dis-

appear, given that they have similar number of operational and relational lines.

The flexibility of the inverse operation allows the use of two inverse operations concurrently

instead of sequentially. For one-step equation with a negative pronumeral such as 11 –x = 7

(Appendix A in S1 Appendix), applying two inverse operations concurrently (–x becomes + x
and + 7 becomes– 7) in a single operational line resulted in one operational and two relational

lines. Consequently, differential level of element interactivity would favor the inverse method

because it has one less operational line (2 vs. 1) and relational line (3 vs. 2). Moreover, applying

two inverse operations concurrently also allows the learner to operate with a positive pronum-

eral. Therefore, the inverse method is advantageous only when we use two inverse operations

concurrently.

In regard to two-step equations with a negative pronumeral such as 22 – 5p = 2 (Appendix

A in S1 Appendix), applying two inverse operations sequentially results in the inverse method

and the balance method sharing two operational and three relational lines, thus indicating no

differential benefit favoring the inverse method. However, the inverse method is advantageous

over the balance method because of the differential level of element interactivity that exists for

each operational line (e.g.,– 22 + 22 – 5p = 2–22, balance operation vs.– 5p = 2–22, inverse

operation). With respect to each operational line, the ratio of the number of the interactive ele-

ments between the balance operation and the inverse operation is 2:1. Nevertheless, applying

two inverse operations concurrently enables learners to operate with a positive pronumeral

and a positive number instead of a negative pronumeral and a negative number, as in the case

of the balance operation. Therefore, from this explanation, applying two inverse operations

concurrently is likely to help learners better comprehend the solution procedure of two-step

equations with a negative pronumeral.

One may argue that, overall, we could also apply two balance operations concurrently for

each operational line. Nonetheless, applying two balance operations concurrently would incur

twice the level of element interactivity as compared to applying two inverse operations concur-

rently. For example, with regard to 22 – 5p = 2, the two inverse operations involved are: (i) + 2

becomes – 2 and (ii) × (– 5) becomes� 5. Applying these two inverse operations concurrently

to solve for p would entail: 22–2 (left side) and 20� 5 (right side), which involves a total of six
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elements. In contrast, the two balance operations involved are: (i)– 22 on both sides and (ii)�

(– 5) on both sides. Applying these two balance operations concurrently to solve for p would

entail:– 22 + 22, × (– 5)� (– 5) (left side) and 2–22,– 20� (– 5) (right side), which has 12 ele-

ments in total. From this explanation, applying two balance operations concurrently not only

requires learners to manipulate a negative pronumeral and a negative number, but it also

incurs twice the level of element interactivity as compared to the application of two inverse

operations concurrently. Consequently, applying two balance operations concurrently may

overload the limited working memory and, on this basis, reduces effective learning.

Conceptual knowledge and procedural knowledge

As noted previously, mathematics education researchers have argued that the balance method

emphasizes the ‘ = ‘sign concept (e.g., +3 on both sides) [21], whereas the use of ‘change side,

change sign’ within the inverse method lacks a mechanism to address the ‘ = ‘ sign concept

[26]. Presumably, they concluded that the balance method can address the acquisition of both

conceptual and procedural knowledge of linear equations, whereas the inverse method may

only target the acquisition of procedure knowledge.

Research has indicated that both conceptual knowledge and procedural knowledge are essen-

tial components of personal competence in mathematics [30, 31]. Conceptual knowledge

refers to a network of rich knowledge demonstrating the principle that underlines the relation

between mathematical concepts [31]. Procedural knowledge refers to a sequence of steps

involved to solve a problem. Connecting conceptual knowledge and procedural knowledge

would facilitate more efficient application of mathematical procedures [32]. A review by Rit-

tle-Johnson and her colleagues [33], interestingly, indicates a bidirectional relation between

procedural knowledge and conceptual knowledge in mathematics learning. They attested to

the gaining of procedural knowledge, consequently as a result of gaining conceptual knowl-

edge and vice versa. For example, the acquisition of procedural knowledge for solving linear

equations has been shown to enhance an understanding of the ‘ = ‘ sign concept in solving lin-

ear equations [34].

Fig 1 shows the interplay between one operational and two relational lines in the solution

procedure, which in turn highlights the connection between conceptual knowledge and proce-

dural knowledge in solving linear equations. For the balance method, performing– 4 on both

sides of the equation so as to maintain its equality constitutes, in this case, procedural knowl-

edge. For the inverse method, conceptualizing addition as inverse to subtraction, the learner

moves + 4 from one side of the equation to become– 4 on the other side in order to preserve

its equality. Such action constitutes procedural knowledge. The ability to judge the quantitative

relationship thereby the right side of the equation equals to the left side with respect to the rela-

tional line constitutes conceptual knowledge (e.g., x + 3 = 15). Furthermore, if a learner could

judge a pair of equations such as y + 4 = 1 and y + 4–4 = 1–4 or y + 4 = 1 and y = 1–4 as equiva-

lent, this implies that the learner understands the ‘ = ‘ sign concept with respect to the opera-

tional line (i.e., conceptual knowledge). In the present study, we assessed student performance

on both conceptual and procedural knowledge to validate the relative effectiveness of the bal-

ance method and the inverse method to acquire competence for linear equations. In line with

our prior studies [e.g., 10], we used worked examples to facilitate learning to solve linear equa-

tions. We will review the use of worked examples as an instructional tool from a cognitive load

perspective in the next section.

There is a volume of research that has focused on the significance of the worked example
effect, which is one of the cognitive load effects [12, 35–38]. A worked example, in general,

involves a problem and the provision of the solution steps and a final solution. The worked
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example effect occurs when exposure to worked examples enhances learning more than that of

problem-solving without any guidance. Worked examples are particularly beneficial for novice

learners who have limited prior knowledge in the domain of functioning [39]. Research has

indicated the benefit of providing written explanation, which can serve as a prompt to facilitate

learning from worked examples [40]. In relation to research on the worked example effect,

researchers have advocated a sequence of studying a worked example paired with solving a

similar problem [12]. Research has demostrated the worked example effect, for example, in the

domain of algebra (e.g., a + b/c = d, solve for b) [36, 37]. We recently advanced this area of

inquiry by focusing on the effectiveness of worked examples in facilitating learning to solve lin-

ear equations [9, 10, 29, 41] and percentage problems [42–44].

The worked example effect typically manifests in materials that are high rather than low in

element interactivity [12]. In our prior studies, we observed an advantage of the inverse

method over the balance method for linear equations that had high rather than low level of ele-

ment interactivity [9, 10]. In a recent study, Chen, Retnowati, and Kalyuga [45] examined

learner levels of expertise and varying levels of element interactivity associated with the solu-

tion steps of algebra expression problems (e.g., (2x – 5)(x + 1)). The worked example group

outperformed the problem-solving group for the first solution step that had the highest level of

element interactivity, demonstrating the worked example effect for novice learners.

The present study: An experimental approach

Instructional design that considers the merit of cognitive load theory [12] is central to effective

learning. One major issue, which we have studied, emphasizes the imposition of the level of

element interactivity upon a particular instructional design [9, 10]. As noted previously, the

balance method and inverse method differ in the operational line. Differential level of element

interactivity arises from the interaction between elements that occurs on one side of the equa-

tion for the inverse method, but on both sides of the equation for the balance method. As a

result, for each operational line, the ratio of the level of element interactivity between the bal-

ance method and the inverse method is 2:1. Moreover, the number of operational and rela-

tional lines in the solution procedure reflects the complexity of the equations, and therefore

contributes to the level of element interactivity [28].

Advancing our previous research, we propose the undertaking of three comparative experi-

ments that focus on differences pertaining to the balance method and the inverse method of

learning for: (i) one-step equations (Experiment 1), (ii) two-step equations (Experiment 2),

and (iii) one-step and two-step equations with a particular focus on equations with a negative

pronumeral (Experiment 3) (Appendix A in S1 Appendix). The level of element interactivity

depends on both the complexity of linear equations as well as the learner levels of expertise. In

the present study, we examined the variable of the complexity of linear equations, which is

influenced by the intrinsic nature of linear equations (e.g., a negative pronumeral), and the

manner in which the linear equations are presented to learners (balance method vs. inverse

method). Accordingly, we invited students who had no prior knowledge of linear equations to

participate in the study.

Similar to our prior studies [9, 10, 29], we randomly assigned students who had no prior

knowledge of solving linear equations to either the balance group or the inverse group. In

order to investigate the progression of students’ learning of one-step and two-step equations

via a specific method (balance or inverse), we allocated the same balance group (or inverse

group) across the three experiments. We anticipated that students would gradually gain famil-

iarity in using respective methods (i.e., balance or inverse) as they progressed through the

three experiments.
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We used the pre-X-post experimental design (X = intervention) for the three experiments to

determine differences pertaining to the acquisition of conceptual knowledge and procedural

knowledge on learning to solve linear equations. In line with the work of Rittle-Johnson and

Star [46], we assessed procedural knowledge based on students’ accuracy in solving practice

equations and post-test. We assessed conceptual knowledge somewhat differently from John-

son and Star [46], who instructed students to indicate whether the left side of the equation was

equal to its right side (e.g., 2x – 5 + 91–91 = 2x – 5). Instead, we focused on two different tasks.

The first task assessed students’ understanding of the ‘ = ‘ sign concept with respect to the rela-

tional line (e.g., x + 6 = 11). The second task evaluated students’ understanding of the ‘ = ‘ sign

concept with respect to the operational line. Essentially, this requires students to judge whether

a pair of equations are equivalent after an operation has been performed on the equation, irre-

spective of the method used (e.g., x + 4 = 6 and x + 4–4 = 6–4, balance operation; x + 4 = 6 and

x = 6–4, inverse operation). It should be noted that the use of multiple tasks to assess concep-

tual knowledge increases the reliability of assessing the same concept [47]. For example, it is

advisable to use both order-irrelevance and cardinality to assess the key concept of counting.

In our prior work [9], the application of inverse operation only occurred in a sequential

manner for the operational line. In this study, we investigated the application of inverse opera-

tion sequentially (Experiments 1 and 2) as well as concurrently (Experiment 3) for the opera-

tional line (Appendix A in S1 Appendix). Regarding linear equations with a negative

pronumeral (e.g., one-step equations), performing two inverse operations concurrently for the

operational line will incur fewer operational and relational lines than performing two balance

operations sequentially across two operational lines. Therefore, we predicted that the inverse

method would impose lower cognitive load than the balance method due to fewer operational

and relational lines.

Differential level of element interactivity between the balance operation and the inverse

operation is of primary interest in the present study. Therefore, we also measured the mental

effort invested in judging pairs of equations presented in both the balance operation (e.g., x
+ 3 = 9 and x + 3–3 = 9–3) and the inverse operation (e.g., x + 3 = 9 and x = 9–3). Our aim was

to validate the claim in prior studies [e.g., 9] that the inverse operation imposes lower cognitive

load than the balance operation.

Experiment 1: One-step equations

We compared the balance method and the inverse method on learning one-step equations that

have one operational and two relational lines (e.g., n + 4 = 13), and two operational and three

relational lines (e.g., 15 –a = 10). Differential number of operational and relational lines corre-

sponds to differential level of element interactivity (low vs. high). We used a 2 (method: bal-

ance vs. inverse) × 2 (type of equation: low element interactivity vs. high element interactivity)

factorial design to assess the acquisition of procedural knowledge of one-step equations. The

first independent variable (method) was a between-subjects factor, and the second indepen-

dent variable (type of equation) was a within-subjects repeated measures factor. The depen-

dant variables were scores on the practice equations and a post-test.

Assessment of conceptual knowledge was based on students’ understanding of the ‘ = ‘ sign

concept with respect to the relational line and operational line in a concept test. A Chi-square

test was used to assess the acquisition of conceptual knowledge between the balance method

and the inverse method with respect to the relational line. We used 2 (method: balance vs.
inverse) × 2 (concept: balance operation vs. inverse operation) factorial design to assess the

acquisition of conceptual knowledge with respect to the operational line. The first independent

variable (method) was a between-subjects factor, and the second independent variable
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(concept) was a within-subjects repeated measures factor. The dependant variables were scores

on the balance operation and the inverse operation.

We proposed a few research questions to examine the level of element interactivity and

instructional design, particularly for linear equations that have a negative pronumeral. Our

research questions include the following: (i) will both the balance method and the inverse

method perform better on procedural knowledge for low rather than high element interactivity

equations?, (ii) is there a differential performance on procedural knowledge favouring the

inverse method for high element interactivity equations?, and (iii) is there a difference between

the balance method and the inverse method in regard to an understanding of the ‘ = ‘ sign con-

cept with respect to the relational line and the operational line? To answer the three research

questions, we formulated two hypotheses for testing:

Hypothesis 1:

i. The acquisition of procedural knowledge would favour low element interactivity equa-

tions regardless of the balance method or the inverse method.

ii. The acquisition of procedural knowledge on high element interactivity equations would

favour the inverse method.

Hypothesis 2:

i. The level of element interactivity of the relational line is determined by its intrinsic

nature. Hence, the balance method and the inverse method would not expect to exhibit

differential performance on the concept test with respect to the relational line.

ii. The inverse operation imposes half the number of interactive elements as the balance

operation on each operational line. Thus, performance on the concept test with respect

to the operational line would favour the inverse operation, regardless of the balance

method or the inverse method.

Method

Participants. We invited 75 eighth-grade Chinese students (females = 48, males = 27)

whose mean age was 14.12 (SD = 0.16) to participate in the study. We obtained ethics clearance

from the Research Ethics Committee, University of New England (Approval Number: HE13–

262) prior to data collection. Student who consented to participate in the study were from two

classes of a school in an Asian country. They followed the National Curriculum for Mathemat-

ics Education. The medium of instruction for science and mathematics subjects was English

language. The ethnic distribution of the students was Foochow (85%) and Hokkien (15%),

respectively. Students had learned algebra expression problems (e.g., 3a + 9b –a) but they had

not learned how to solve linear equations. We obtained ethics approval prior to data collection.

The experiment was conducted at the beginning of the second school term during which the

topic of linear equations was scheduled for coverage.

Materials. The materials for this experiment were adapted from a previous study [29] and

consisted of the following: (1) an instruction sheet, (2) 12 pairs of acquisition equations

(Appendix B in S1 Appendix), (3) a pre-test and a post-test that shared similar content

(Appendix C in S1 Appendix), and (4) a concept test (Appendix D in S1 Appendix).

Instruction sheet. The instruction sheet presented the definition of an equation, the solution

steps for solving linear equations, the scaffold of the balance operation and the inverse opera-

tion, and four worked examples (Appendix B in S1 Appendix). The balance scale was used to

illustrate the concept of balance operation (Smith et al., 2011). The inverse operation highlights
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the inverse relationship between mathematical operations (e.g., 5 + 2 = 7 is the same as

5 = 7–2). Research has designed prompting in the form of written explanation to foster learn-

ing from worked examples [40]. Accordingly, we provided ‘prompting’ for both the balance

method and the inverse method to emphasize the interplay between procedural knowledge

and conceptual knowledge in solving linear equations. For the balance method, each worked

example was aided by a prompt showing “– 2 on both sides”. For the inverse method, each

worked example was aided not only by a prompt “+ 2 becomes– 2”, but also an arrow to indi-

cate performance of an inverse operation. We postulated that prompting would assist students

to understand the application of mathematical operations in solving linear equations.

Pairs of acquisition equations. The acquisition equations resembled the test equations in the

post-test. Each pair of the acquisition equations (balance or inverse) comprised a worked

example, paired with a practice equation, which shared a similar problem structure [48]. In

line with previous worked examples research, students were instructed to study a worked

example alternated with solving a practice equation [36, 37]. Acquisition of procedural knowl-

edge and conceptual knowledge of linear equations would expect to occur after students had

completed multiple example-equation pairs. Nonetheless, they could also benefit from study-

ing the materials in the instruction sheet. Of those 12 pairs of acquisition equations, eight had

one operational and two relational lines (low element interactivity), and four had two opera-

tional and three relational lines (high element interactivity). Across the multiple pairs of acqui-

sition equations, we graded the practice equations but not the worked examples.

Pre-test and post-test. Both the pre-test and the post-test had similar content (see Appendix

C in S1 Appendix), which consisted of 30 one-step equations [49]. The 30 one-step equations

ranged in complexity (e.g., a + 8 = 17, 1 = 2n, etc.), and of these, 24 had one operational and

two relational lines, and six had two operational and three relational lines. The pre-test was

used as a basis to establish group equivalency prior to intervention.

Concept test. The concept test evaluated students’ understanding of the ‘ = ‘ sign concept in

relation to both relational and operational lines. We assessed their understanding of the role of

‘ = ‘ sign in the relational line, x + 6 = 11. The concept test with respect to the operational line

consisted of eight pairs of equations (e.g., x + 3 = 5 and x + 3–3 = 5–3, balance operation; and

x + 3 = 5 and x = 5–3, inverse operation, Appendix D in S1 Appendix). For an equal distribu-

tion, we allocated four pairs of equations that showed the balance operation, and four pairs of

equations that showed the inverse operation. Students’ task (i.e., balance group or inverse

group) was to judge whether each pair of equations was equivalent.

Procedure. The flow-chart in Fig 2 shows the general procedure across Experiments 1, 2

and 3, which is similar to our previous undertakings [10]. Grouping testing was administrated

to students under supervision. In Experiment 1, seventy-five students were randomly allocated

to the balance group (N = 37 students) or the inverse group (N = 38 students). The instruction

reflected the following:

i. The teacher informed the students that they were going to learn how to solve linear

equations.

ii. The teacher asked the students to complete a series of written tasks, which consisted of a

pre-test (10 min), an acquisition phase (an instruction sheet + acquisition equations) (20

min), a post-test (10 min), and a concept test (5 min).

Students were provided with written instruction and asked to work through the tasks,

individually, for each phase. They were allowed to seek help during the acquisition phase,

but not test phases (pre-test, post-test and concept test). First, all students completed a
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pre-test (5 min). Having collected the pre-test, the teacher then distributed an instruction

sheet (balance or inverse) to each student. Students were told to study the instruction

sheet (5 min). Once the 5 min had expired, the teacher distributed a booklet that com-

prised 12 pairs of acquisition equations (inverse or balance) to each student. Students

were instructed to study a worked example paired with solving a practice equation that

shared a similar problem structure. Students could consult the instruction sheet and seek

help if they could not understand the worked examples. They did not receive assistance

when solving the practice equations. They were asked to review their work if they finished

earlier than the allocated time. During the acquisition phase, the balance group or the

inverse group studied an instruction sheet that displayed four worked examples and com-

pleted 12 pairs of acquisition equations (24 acquisition equations). Once the teacher had

collected the instruction sheet and the acquisition equations, all students undertook a

post-test (10 min). Lastly, upon the completion of the post-test, students then completed a

concept test (5 min).

Fig 2. General procedure across three experiments. Day 1: Experiment 1 (one-step equations). Day 3: Experiment 2

(two-step equations). Day 8: Experiment 3 (one-step and two-step equations). The concept test comprised three

questions (10 min). Applied the inverse operation concurrently.

https://doi.org/10.1371/journal.pone.0265547.g002
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Scoring and coding

For the pre-test, the practice equations and the post-test, we allocated one point for a correct

answer, with or without the inclusion of solution steps. Because we wanted to assess students’

procedural knowledge in solving linear equations, we marked the solution as correct if stu-

dents could perform an operation (balance or inverse) accurately but made computational

errors (e.g.,– 3 + 7 = – 4). However, students would receive a zero point, though, if they made

a procedural mistake in performing an operation. For example, students wrote + 7 on both

sides instead of– 7 on both sides when solving the equation of, say, 7 –n = 0. We used mean

proportion scores owing to the unequal number of the two types of equations across the pre-

test, the practice equations, and the post-test.

The first question in the concept test assessed the ‘ = ‘ sign concept with respect to the rela-

tional line. In their study, Asquith, Stephens, Knuth, and Alibali [50] regarded an answer such

as “the same as” as a reflection of students’ understanding of the ‘ = ‘ sign concept. Accord-

ingly, we assigned one point if students provided an answer such as “equal to, the same as”.

However, students received a zero point if they omitted an answer or that their answer was

obscure. Regarding the second question, we assigned one point if students could accurately

judge a pair of equations as being equivalent. A researcher and a research assistant scored the

pre-test, the practice equations, the post-test, and the concept test. Differences in scores

between them were resolved through discussion. Overall, the inter-scorer agreement was

above .90, indicating that both scorers scored similarity for over 90% of the items across the

practice equations, the post-test, and the concept test. This manner of achieving inter-scorer

reliability was used for all three experiments in the study. The Cronbach’s alpha values for the

pre-test, the practice equation, and the post-test were .87, .79, and .90, respectively, suggesting

that the items within each test have relatively high internal consistency [51].

In relation to data analysis, we conducted a t-test to assess prior knowledge of both methods.

To test hypothesis 1, we performed 2 × (method: balance vs. inverse) × 2 (type of equation: low

element interactivity vs. high element interactivity) ANOVA on practice equations and the post-

test. To test hypothesis 2, we conducted a Chi-square test for the concept test with respect to the

relational line, and we performed 2 × (method: balance vs. inverse) × 2 (concept: balance opera-

tion vs. inverse operation) ANOVA for the concept test with respect to the operational line.

Results and discussion

The means and SDs of the pre-test, the practice equations, the post-test, and the concept test

for one-step equations are shown in Table 1. The means and standard errors of the practice

equations, the post-test, and the concept test are displayed in Fig 3. Students used trial and

error method to solve the pre-test. The two groups did not differ for the pre-test, indicating no

difference between the two groups before the intervention, t(73) = 1.49, SE = 0.05, p = 0.14.

For the practice equations, a significant effect on the type of equation was found, F(1, 73) =

29.63, p< .001, partial η2 = 0.29, indicating that both groups scored a higher mean proportion

on low (0.84 vs. 0.92) rather than high element interactivity equations (0.64 vs. 0.78). The inter-

action between the method × practice equation was not significant, F(1, 73) = 0.86, p = 0.36,

partial η2 = 0.01. However, the method effect was significant, F(1, 73) = 4.81, p = 0.03, partial

η2 = 0.06, indicating that the inverse group outperformed the balance group.

For the post-test, once again, a significant effect on the type of equation was observed, F(1,

73) = 28.30, p< .001, partial η2 = 0.28, indicating that both groups scored a higher mean pro-

portion on low (0.64 vs. 0.59) rather than high element interactivity equations (0.49 vs. 0.48).

Neither the method × type of equation interaction effect, F(1, 73) = 0.57, p = 0.45, partial η2 =

0.01, nor the method effect was significant, F(1, 73) = 0.30, p = 0.59, partial η2 = 0.00.
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Concerning the concept test, the first question assessed an understanding of the ‘ = ‘ sign

concept with respect to the relational line. The balance group and the inverse group scored 57%

and 66%, respectively. A Chi-square test showed no difference between the two groups, χ2 (1,

N = 75) = 0.65, p = 0.42. The second question assessed students’ understanding of the ‘ = ‘ sign

concept with respect to the operational line. A 2 (method) × 2 (concept) ANOVA indicated nei-

ther the method × concept interaction effect, F(1, 73) = 0.10, p = 0.75, η2 = 0.00, nor the method

effect, F(1, 73) = 0.31, p = 0.58, η2 = 0.00. In contrast, a significant concept effect was observed,

F(1, 73) = 24.37, p< .001, η2 = 0.25, indicating that both groups scored a higher mean propor-

tion on the inverse operation (0.92 vs. 091) than the balance operation (0.76 vs. 0.72).

Overall, the results established from Experiment 1 supported most of the proposed hypoth-

eses. As hypothesized, the acquisition of procedural knowledge was more pronounced for the

practice questions and post-test, which involved low element interactivity knowledge (one

operational line and two relational lines), irrespective of the balance group or the inverse

group. The balance group was inferior to the inverse group on practice equations, but not the

post-test. Such results partially support hypothesis 1 (ii). As hypothesized, regarding the

Table 1. Performance outcomes of pre-test. Practice Equations, Post-test, and Concept Test for One-Step and Two-

Step Equations in Experiments 1 and 2.

Balance Method Inverse Method

M (SD) M (SD)
Experiment 1 n = 37 n = 38

One-step equations (proportion)

Pre-test 0.50 (0.21) 0.43 (0.19)

Practice equations

One operational + two relational lines 0.84 (0.24) 0.92 (0.12)�

Two operational + three relational lines 0.64 (0.34) 0.78 (0.25)�

Post-test

One operational + two relational lines 0.64 (0.25) 0.59 (0.24)

Two operational + three relational lines 0.49 (0.26) 0.48 (0.22)

Concept test (proportion)

Balance operation 0.76 (0.26) 0.72 (0.30)

Inverse operation 0.92 (0.18) 0.91 (0.16)

Experiment 2 n = 36 n = 38

Two-step equations (proportion)

Pre-test 0.29 (0.30) 0.32 (0.27)

Practice equations

Two operational + three relational lines 0.82 (0.19) 0.81 (0.12)

Two operational + four relational lines 0.72 (0.28) 0.75 (0.30)

Post-test

Two operational + three relational lines 0.41 (0.28) 0.44 (0.30)

Two operational + four relational lines 0.46 (0.34) 0.46 (0.32)

Concept test (proportion)

Balance operation 0.71 (0.39) 0.61 (0.41)

Inverse operation 0.81 (0.28) 0.85 (0.25)

Note: One-step equations: 12 practice equations, pre-test was identical to post-test (30 equations), balance operation

(4 pairs of equations), and inverse operation (4 pairs of equations). Two-step equations: 10 practice equations, pre-

test was identical to post-test (30 equations), balance operation (3 pairs of equations), and inverse operation (3 pairs

of equations). �P< 0.05.

https://doi.org/10.1371/journal.pone.0265547.t001
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concept test, the inverse group was on par with the balance group with respect to the relational

line, and both groups performed better on the inverse operation than the balance operation

with respect to the operational line.

Experiment 2: Two-step equations

The objective of Experiment 2 was to extend the findings of Experiment 1 by using two-step

equations, which would impose higher element interactivity than one-step equations. The two-

step equations comprised two operational and three relational lines (e.g., 3a + 2 = 8), and two

operational and four relational lines (e.g.,
5það Þ

2
= 4). Thus, the two-step equations exhibited two

levels of element interactivity because of a difference of one relational line. Similar to Experi-

ment 1, we conducted a 2 (method) × 2 (type of equation) and 2 (method) × (concept) factorial

design to assess students’ acquisition of procedural knowledge and conceptual knowledge on

learning two-step equations. We tested two hypotheses that were similar to Experiment 1.

Method

Participants. This experiment was conducted two days after Experiment 1. Students who

were allocated to the balance group in Experiment 1 remained in the balance group (N = 36).

One student in the balance group was absent, resulting in 36 instead of 37 students. Likewise,

students who were allocated to the inverse group in Experiment 1 remained in the inverse

group (N = 38).

Materials and procedure. The procedure was similar to Experiment 1 (Fig 2). There were

four sets of materials: (1) an instruction sheet, (2) 10 pairs of acquisition equations, (3) a pre-

test that shared similar content to a post-test (Appendix C in S1 Appendix), and (4) a concept

test (Appendix D in S1 Appendix). The layout of the instruction sheet was the same as in

Experiment 1 but the content was two-step equations. Regarding the acquisition equations, 8

pairs had two operational and three relational lines (low element interactivity), and two pairs

had two operational and four relational lines (high element interactivity).

The post-test consisted of 30 two-step equations, which ranged in complexity (e.g., 2b – 11 =

– 3, a
3
– 4 = 2, etc.). Of these 30 two-step equations, 25 had two operational and three relational

lines, and five had two operational and four relational lines (Appendix C in S1 Appendix).

Fig 3. For One-step Equations in Experiment 1, the Effects of Method (balance vs. inverse) on: (a) Practice Equations, (b) Post-test, and (c) Concept Test. Error Bars are

Standard Errors.

https://doi.org/10.1371/journal.pone.0265547.g003
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Similar to Experiment 1, the two questions in the concept test assessed students’ under-

standing of the ‘ = ‘ sign concept with respect to the relational and operational lines (Appendix

D in S1 Appendix). Half of the six pairs of equations were presented via the balance operation,

and the other half was presented via the inverse operation.

Scoring and coding

Both scoring and coding were the same as in Experiment 1. The inter-scorer agreement was

above .90 for the pre-test, the practice equations, the post-test and the concept test. The Cron-

bach’s alpha for the practice equations was 0.41 after deleting the 10th item. This rather low

Cronbach’s alpha value may be due to a small number of practice equations coupled with a

range of two-step equations. The pre-test and the post-test had the same Cronbach’s alpha of

.94. The data analysis was similar to Experiment 1.

Results and discussion

Table 1 shows the means and SDs of the pre-test, the practice equations, the post-test, and the

concept test for the two-step equations. Fig 4 shows the means and standard errors of the prac-

tice equations, the post-test, and the concept test. No difference between the two groups was

found for the pre-test, t(72) = 0.00, SE = 0.06, p = 1.00, indicating group equivalence in terms

of students’ ability to solve two-step equations before the intervention. For the practice equa-

tions, a significant effect on the type of equation was obtained, F(1, 72) = 4.66, p = 0.03, partial

η2 = 0.06, suggesting that both groups scored a higher mean proportion on low (0.82 vs. 0.81)

rather than high element interactivity equations (0.72 vs. 0.75). The method × type of equation

interaction was not significant, F(1, 72) = 0.31, p = 0.58, partial η2 = 0.00. Likewise, the method

effect was not significant, F(1, 72) = 0.03, p = 0.86, partial η2 = 0.00. Apart from the method

effect, other results are similar to Experiment 1.

For the post-test, a nonsignficant effect on the type of equation was observed, F(1, 72) =

1.61, p = 0.21, partial η2 = 0.02, nor a significant effect on the interaction between the

method × type of equation, F(1, 72) = 0.42, p = 0.52, partial η2 = 0.01, or the method effect, F
(1, 72) = 0.06, p = 0.81, partial η2 = 0.00. Such results are similar to Experiment 1.

Concerning students’ understanding of the ‘ = ‘ sign concept with respect to the relational

line, the balance group and inverse group scored 67% and 53%, respectively. No difference

Fig 4. For Two-step Equations in Experiment 2, the Effects of Method (balance vs. inverse) on: (a) Practice Equations, (b) Post-test, and (c) Concept Test. Error Bars are

Standard Errors.

https://doi.org/10.1371/journal.pone.0265547.g004
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between the two groups was found, χ2 (1, N = 74) = 1.51, p = 0.22. Regarding students’ under-

standing of the ‘ = ‘ sign with respect to the operational line, a 2 (method) × 2 (concept)

ANOVA revealed neither the method × concept effect, F(1, 72) = 3.10, p = 0.08, partial η2 =

0.04, nor the method effect, F(1, 72) = 0.22, p = 0.64, partial η2 = 0.00, was significant. Such

results are similar to Experiment 1. However, consistent with Experiment 1, a significant con-

cept effect was found, F(1, 72) = 15.13, p< .001, partial η2 = 0.17, indicating that both groups

scored a higher mean proportion on the inverse operation (0.81 vs. 0.85) than the balance

operation (0.71 vs. 0.61).

The pattern of results coincided with some of the results established in Experiment 1. The

acquisition of the procedural knowledge was limited to the practice equations whereby both

groups performed better on the two-step equations, which involved low element interactivity

knowledge. Such results partially support hypothesis 1 (i). As hypothesized, for the concept

test, similar to Experiment 1, both groups did not differ with respect to the relational line and

both groups performed better on the inverse operation than the balance operation with respect

to the operational line.

On the whole, the results do not support the majority of the hypotheses. It is plausible to

suggest that a difference of one extra relational line between the two types of two-step equa-

tions (3 vs. 4) was not substantial enough to result in differential learning outcomes. It appears

that the inverse method was not better than the balance method for two-step equations with a

negative pronumeral–especially when these were presented using two inverse operations

sequentially, which resulted in sharing a similar number of operational and relational lines as

those found in the balance method (Appendix A in S1 Appendix).

Experiment 3: One-step and two-step equations

As shown in Experiment 2, the inverse method was no better than the balance method for learn-

ing two-step equations. Presumably, the gap between the two levels of element interactivity

within the two-step equations was not large enough to result in differential learning outcomes.

To counter this contention, we designed Experiment 3 with a focus on a bigger difference

between the two levels of element interactivity within one-step and two-step equations. So,

overall, Experiment 3 built on the two previous experiments by investigating the effect of the

balance method and the inverse method on one-step and two-step equations that have a positive

pronumeral (e.g., 3x – 7 = 22) and a negative pronumeral (e.g., 8 – 4x = 16). It should be noted

that the point of reference for comparison between the balance method and the inverse method

is still based on the number of operational and relational lines. As noted earlier, similar to nega-

tive number, the concept of negative pronumeral poses great difficulty for students. In particu-

lar, for the balance method, the presence of a negative pronumeral increases the number of

operational and relational lines (e.g., 11– x = 7, Appendix A in S1 Appendix).

In the previous two experiments, the one-step equations or two-step equations with a posi-

tive or a negative pronumeral were mixed in one experiment. In contrast, for this experiment,

we divided one-step and two-step equations into two components: (1) one-step and two-step

equations with a positive pronumeral (low element interactivity), and (2) one-step and two-step

equations with a negative pronumeral (high element interactivity). For the inverse method, we

applied two inverse operations concurrently instead of sequentially as in the case of Experi-

ments 1 and 2, resulting in fewer operational and relational lines (Appendix A in S1 Appendix).

We proposed three hypotheses, two of which (Hypotheses 1 and 2) were similar to Experi-

ment 1. The inverse method imposes half the number of the interactive elements as the balance

method. Thus, the mental effort invested to process the balance operation and the inverse

operation is of particular interest. We postulated that differential mental effort invested to
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process the balance operation and the inverse operation would reflect differential level of ele-

ment interactivity for the balance operation and the inverse operation. We hypothesized the

following:

Hypothesis 3:

i. Regardless of the balance group or the inverse group, students would invest a higher

mental effort in judging the balance operation than the inverse operation.

Method

Participants. This experiment occurred four days after Experiment 2. Participants in this

experiment were the same students in Experiments 1 and 2. Again, the balance group

remained as the balance group, whereas the inverse group remained as the inverse group. On

the day of data collection, two students from each group were absent and three students did

not complete all phases of the experiment (two from the balance group and one from the

inverse group). Consequently, there were 33 students in the balance group and 35 students in

the inverse group in the final analysis.

Materials and procedure. The procedure was similar to Experiment 1 or Experiment 2

(Fig 2). The materials comprised: (1) an instruction sheet, (2) 12 pairs of acquisition equations,

(3) a pre-test that shared similar content to the post-test (Appendix C in S1 Appendix), and (4)

a concept test (Appendix D in S1 Appendix). The layout of the instruction sheet was the same

as in Experiment 1 or Experiment 2 but the content was one-step and two-step equations. The

worked examples of the inverse method illustrated the use of two inverse operations concur-

rently to solve linear equations with a negative pronumeral. The first half of the acquisition

equations involved a positive pronumeral, and the second half involved a negative pronumeral.

There were two types of one-step and two-step equations with a positive pronumeral: (1) one

operational line and two relational lines (e.g., x– 4 = 9), and (2) two operational and three rela-

tional lines (e.g., 2x + 11 = 33). Therefore, there were two levels of element interactivity for

one-step and two-step equations with a positive pronumeral, owing to the presence of varying

number of operational and relational lines.

There were two types of one-step and two-step equations with a negative pronumeral,

whereby the coefficient of the negative pronumeral is either one (e.g., 11 –x = 7) or more than

one (e.g., 5 – 3t = –19). When the coefficient of the negative pronumeral is one (e.g., 11 –

x = 7), the method of learning (balance or inverse) determines the number of the operational

and relational lines. As shown in Appendix A in S1 Appendix, the balance method has more

operational lines (2 vs. 1) and relational lines (3 vs. 2) than the inverse method. This is due to

the flexibility of the inverse operation that allows the application of two inverse operations

concurrently in one operational line. In contrast, though, when the coefficient of the negative

pronumeral is more than one (e.g., 5 – 3t = –19), then the solution procedure of both the bal-

ance and inverse methods would involve two operational and three relational lines, regardless

of whether we apply the inverse operation sequentially or concurrently. Thus, overall, one-step

and two-step equations with a negative pronumeral exhibit differential level of element inter-

activity due to the presence of varying number of operational and relational lines.

Of those 16 one-step and two-step equations in the post-test, nine had a positive pronum-

eral, and seven had a negative pronumeral. The level of element interactivity, and thus, the

number of operational and relational lines involved in the post-test, was similar to the practice

equations.

The concept test comprised three questions. The first two questions were similar to Experi-

ments 1 and 2. The third question comprised two equations such as x– 2 = 10 and 7 –y = –1.
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Each equation was presented in both the balance method and the inverse method in relation

to the operational line (e.g., x– 2 = 10 and x– 2 + 2 = 10 + 2, balance operation; x– 2 = 10,

x = 10 + 2, inverse operation), resulting in a total of four pairs of equations. The main task, in

this case, was for students to: (i) judge whether a pair of equations was equivalent in relation to

the ‘ = ‘ sign concept of the operational line, and (ii) indicate their mental effort invested in

judging the pair of equations on a Likert scale that ranged from extremely low mental effort (1)
to extremely high mental effort (9) [52]. A particular rating (response) of the item would, in this

case, reflect and indicate a student’s level of mental effort that has been invested in judging the

operation (balance or inverse) [53].

The procedure was similar to Experiments 1 and 2 with one minor difference in the concept

test (see Fig 2). Students completed three questions in the concept test which took 10 min.

Scoring and coding

Both scoring and coding were the same as in Experiments 1 and 2. The inter-scorer agreement

was above .90 for the pre-test, the practice equations, the post-test and the concept test. The

Cronbach’s alpha for the pre-test, the practice equations and the post-test were .81, .80, and

.72, respectively. To test the hypotheses 1 and 2, we analysed the data similar to Experiment 1

or Experiment 2. In addition, to test hypothesis 3, we performed a 2 (method) × 2 (concept)

ANOVA on mental effort.

Results and discussion

Table 2 shows the means and SDs of the pre-test, the practice equations, the post-test, and the

concept test, and indication of mental effort for the balance operation and inverse operation.

Fig 5 displays the means and standard errors of the practice equations, the post-test, the con-

cept test, and the mental effort. There was no difference between the two groups for the pre-

test, t(66) = 0.34, SE = 0.06, p = 0.74, indicating group equivalence in solving one-step and

two-step equations before the intervention.

Regarding the practice equations, a significant effect on the type of equation was foound, F
(1, 66) = 7.52, p = 0.01, partial η2 = 0.10, suggesting that both groups scored a higher mean pro-

portion on equations with a positive pronumeral (0.88 vs. 0.94) than equations with a negative

pronumeral (0.77 vs. 0.90). These results are similar to those results obtained in Experiments 1

and 2. The method × practice equation interaction was not significant, F(1, 66) = 1.80,

p = 0.18, partial η2 = 0.03. However, the method effect was significant, F(1, 66) = 4.93, p = 0.03,

partial η2 = 0.07, revealing that the inverse group outperformed the balance group.

Again, for the post-test, a significant effect on type of equation was observed, F(1, 66) =

23.93, p< .001, partial η2 = 0.27, indicating that both groups scored a higher mean proportion

on equations with a positive pronumeral (0.82 vs. 0.77) than equations with a negative pro-

numeral (0.53 vs. 0.68). The method × type of equation interaction was significant, F(1, 66) =

6.65, p = 0.01, partial η2 = 0.09 but not the method effect, F(1, 66) = 1.28, p = 0.26, partial η2 =

0.02. Simple effects tests revealed that the inverse group outperformed the balance group for

equations with a negative pronumeral, F(1, 66) = 4.06, p = 0.05, partial η2 = 0.06 but not equa-

tions with a positive pronumeral, F(1, 66) = 1.31, p = 0.26, partial η2 = 0.02.

For the first question in the concept test, which was related to the role of the ‘ = ‘ sign con-

cept with respect to the relational line of the equation, the balance and inverse groups scored

49% and 57%, respectively. No difference between the two groups was observed, χ2(1, N = 68)

= 0.51, p = 0.48. The results are consistent with those results found in Experiments 1 and 2.

For the second question, which was related to the role of the ‘ = ‘ sign with respect to the

operational line, a 2 (method) × 2 (concept) ANOVA yielded a significant concept effect, F(1,
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66) = 13.35, p< .001, η2 = 0.17, indicating that both groups scored a higher mean proportion

on the inverse concept (0.81 vs. 0.83) than the balance concept (0.76 vs. 0.63). Such results

again are similar to those obtained in Experiments 1 and 2. The method × concept interaction

was significant, F(1, 66) = 4.75, p = 0.03, η2 = 0.07, but not the method effect, F(1, 66) = 1.09,

p = 0.30, η2 = 0.02. Simple effects tests indicated that the two groups neither differed on the

balance operation, F(1, 66) = 3.71, p = 0.06, partial η2 = 0.05, nor on the inverse operation, F(1,

66) = 0.13, p = 0.72, partial η2 = 0.00.

The third question in the concept test required students to judge whether a pair of equa-

tions was equivalent with respect to the ‘ = ‘ sign concept of the operational line, followed by

rating the mental effort invested in judging the pair of equations.

A 2 (method) × 2 (concept) ANOVA on mental effort yielded a significant concept effect, F
(1, 66) = 7.56, p = 0.01, partial η2 = 0.10 indicating that both groups invested lower mental

effort when processing the inverse operation (4.33 vs. 4.47) than the balance operation (4.41 vs.
4.70). The method × concept interaction was nonsignificant, F(1, 66) = 1.91, p = 0.17, partial

η2 = 0.03, nor was the method effect significant, F(1, 66) = 0.22, p = 0.64, partial η2 = 0.00.

In sum, as hypothesized, similar to Experiment 1 and Experiment 2, higher scores on the

practice equations and the post-test corresponded to fewer operational and relational lines

(i.e., equations with a positive pronumeral). In support of hypothesis 1 (ii), the balance group

was inferior to the inverse group not only for the practice questions but also for equations with

a negative pronumeral in the post-test. As hypothesized, the two groups did not differ on the

concept test with respect to the relational line. In line with hypothesis 2 (ii) and hypothesis 3,

both groups performed better on the inverse operation than the balance operation and

Table 2. Performance outcomes of pre-test, practice equations, post-test, concept test and mental effort for equa-

tions with a positive and a negative pronumeral in Experiment 3.

Balance Method

n = 33

Inverse Method

n = 35

M (SD) M (SD)
One-step and two-step equations (proportion)

Pre-test 0.64 (0.22) 0.62 (0.24)

Equation with a positive pronumeral

Practice equations 0.88 (0.23) 0.94 (0.11)�

Post-test 0.82 (0.17) 0.77 (0.17)

Equation with a negative pronumeral

Practice equations 0.77 (0.32) 0.90 (0.12)�

Post-test 0.53 (0.35) 0.68 (0.27)�

Concept test (proportion)

Balance operation 0.76 (0.28) 0.63 (0.27)

Inverse operation 0.81 (0.26) 0.83 (0.20)

Mental effort

Balance operation 4.41 (1.88) 4.70 (1.86)

Inverse operation 4.33 (1.91) 4.47 (1.87)

Note: Equation with a positive pronumeral: one operational + two relational lines and two operational + three

operational lines, practice equations (6 equations), pre-test was identical to post-test (8 equations). Equation with a

negative pronumeral: two operational + three relational lines, practice equations (6 equations), pre-test is identical to

post-test (8 equations). Concept test: Balance operation (5 pairs of equations), and inverse operation (3 pairs of

equations). Mental effort: Balance operation (2 pairs of equations), and inverse operation (2 pairs of equations).

�P< 0.05.

https://doi.org/10.1371/journal.pone.0265547.t002
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invested lower mental effort when judging the inverse operation than the balance operation.

This evidence provides a degree of validation of the differential level of element interactivity in

favour of the inverse operation.

General discussion

The study of appropriate pedagogical methods for effective learning is an important topical

theme in the field of educational psychology. Our conceptualization for investigation, reflected

in three experimental undertakings, emphasized two contrasting pedagogical methods, which

educators use in teaching and learning of linear equations: balance vs. inverse. We applied the

balance method and the inverse method to acquire conceptual knowledge and procedural

knowledge on learning to solve linear equations that varied in levels of element interactivity.

Overall, from the three experiments, evidence ascertained makes empirical and theoretical

contributions, which advance our understanding of the operational nature of different peda-

gogical methods, and the impact of the level of element interactivity upon learning.

Fig 5. For One-step and Two-step Equations with a Positive and a Negative Pronumeral in Experiment 3, the Effects of Method

(balance vs. inverse) on: (a) Practice Equations, (b) Post-test, (c) Concept Test, and (d) Mental Effort. Error Bars are Standard

Errors.

https://doi.org/10.1371/journal.pone.0265547.g005
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Empirical contributions

Results from the first two experiments, in general, indicate that the acquisition of procedural

knowledge favoured one-step and two-step equations involving low rather than high level of

element interactivity, irrespective of whether it was the balance group or the inverse group

(i.e., hypothesis 1 (i)). Differential level of element interactivity within the one-step equations

was reasonably substantial enough to cause the inverse group to gain better understanding of

the procedural knowledge on practice equations than the balance group (i.e., hypothesis 1 (ii)).

The inverse group, in contrast, had no advantage over the balance group in relation to the

learning of two-step equations. It seems that a difference of one extra relational line between

the two types of two-step equations was insufficient to result in differential acquisition of pro-

cedural knowledge.

Experiment 3, expanding on the first two experiments, focused on the learning of one-step

and two-step equations with a positive pronumeral (low element interactivity) and a negative

pronumeral (high element interactivity). Higher performance on equations with a positive

pronumeral was observed for both the balance group and the inverse group (hypothesis 1 (i)).

Because of the greater differential level of element interactivity within one-step and two-step

equations, the inverse group demonstrated better understanding of procedural knowledge

than the balance group, not only for the practice equations but also the equations with a nega-

tive pronumeral in the post-test (hypothesis 1 (ii)).

Concerning the acquisition of conceptual knowledge for linear equations, the results were

consistent across the three experiments. The inverse group was as efficient as the balance

group in interpreting the quantitative relation between the right side of the equation and the

left side with respect to the relational line (hypothesis 2 (i)). Both groups performed better on

the inverse operation, which in this case, imposed lower level of element interactivity than the

balance operation (hypothesis 2 (ii)). We speculate that perhaps, the balance group realized,

for example, the redundancy of the “+3–3” on the left side of the equation and, consequently,

chose to ignore this. In other words, the balance group may interpret, for example, y
+ 3–3 = 10–3 as y = 10–3. More importantly, in Experiment 3, both the balance group and the

inverse group invested lower mental effort when judging the inverse operation, which pro-

vided evidence of the hypothesized differential level element interactivity favouring the inverse

operation (i.e., hypothesis 3).

Theoretical considerations

Different level of element interactivity between the balance method and the inverse method

depends not only on the type of operation (balance vs. inverse) on each operational line but

also the number of operational and relational lines. The inverse operation imposes a lower

level of element interactivity for each operational line, as compared with the balance operation.

Nevertheless, the inverse method did not have any advantage over the balance method unless

the differential level of element interactivity within the linear equations was substantially large

enough. Overall then, the results from our investigation are consistent with previous research,

suggesting that the superiority of one instruction over another instruction is manifested under

the condition in which there is an adequate gap between low and high element interactivity

material [12, 54]. Moreover, our results also pointed to the negative learning effect, conse-

quently as a result of using an instruction (i.e., balance method) that increases the intrinsic

cognitive load of the material.

The flexibility of applying two inverse operations concurrently for linear equations with a

negative pronumeral reduces the number of operational and relational lines and therefore the

level of element interactivity. Moreover, it also eliminates the need for students to operate with
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a negative pronumeral and a negative number. On this basis, we contend that the inverse

method provides students with a means to counter the inherent difficulty of learning to solve

linear equations that involve a negative pronumeral and negative numbers.

The classification of linear equations based on the number of operational and relational

lines would enable mathematics educators to plan the teaching and learning of linear equations

in a hierarchical order of complexity [28]. Consequently, the learning of a more complex equa-

tion (e.g., two-step equation) can be built on the prior knowledge of a simpler equation (one-

step equation), thus reducing the burden on working memory load.

Applied educational practices for consideration

A recent study by Ding [55] reveals that both U.S. and China primary mathematic textbooks

highlight the opportunities to learn inverse operations. For example, primary school students

learn that 4 + 3 = 7 is the same as 3 = 7–4 or 4 = 7–3. Here, the focus is the interplay between

addition (e.g., + 4) as an inverse operation to subtraction (e.g.,– 4) in the context of an equa-

tion. To go a step further, we can ask students to compare 4 + 3 = 7 and x + 2 = 8. If they can

understand 4 + 3 = 7 is the same as 4 = 7–3; then, they may understand x + 2 = 8 is the same as

x = 8–2. As pointed out by Ding [55], without adequate foundation of the inverse operation,

students may not be able to master the topic of differentiation and integration in calculus,

functions and inverse functions in algebra in senior mathematics curriculum.

Our findings indicate that the inverse group was not disadvantaged regarding the acquisi-

tion of conceptual knowledge for linear equations. We noted that the mean proportion scores

of the inverse group on the balance operation across the three experiments were above 50%.

This implies then that more than half of the students in the inverse group could comprehend

the balance operation, despite the fact that they did not have access to it. From this observed

contention, the notion that the inverse method may fall short of addressing the conceptual

knowledge of equation solving is not substantiated. Accordingly, capitalizing the inverse

method for learning of linear equations could potentially help middle school students to make

a smooth transition to senior mathematics in the future.

The transformation of empirical results into educational practice is an important issue for

consideration. For example, a comparison between the balance method and the inverse

method reveals that the inverse method is particularly useful for algebra transformation prob-

lems with a negative variable such as a–x = c, solve for x (Fig 6). Using the inverse method, we

can apply two inverse operations concurrently to solve for x (i.e., a–c = x), resulting in having

one operational line and one relational line in the solution procedure. In contrast, using the

balance method, the solution procedure will involve more operational lines (2 vs. 1) and rela-

tional lines (3 vs. 1) than the inverse method. Obviously, the solution procedure of the balance

Fig 6. The balance method and inverse method to solve an algebra transformation equation.

https://doi.org/10.1371/journal.pone.0265547.g006
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method looks cumbersome and error prone because it involves the manipulation of a negative

variable.

On this basis, what can we conclude from our experimental undertakings? Our findings

reinforce the potential of the inverse method to assist learners, in general. We contend that, in

summary, incorporating the inverse method in mathematics textbooks can benefit student
learning of linear equations, which may involve a negative pronumeral and a negative number.

Caveats and future directions

Asquith, Stephens [50] coded “the same as” to indicate relational understanding of the ‘ = ‘ sign

concept in an equation. However, we coded both “the same as” and “equal to” as correct

answers. We reasoned that students’ understanding of the ‘ = ‘sign concept in terms of quantita-

tive relationship between the right side and left side of the equation includes: (i) the right side is

the same as the left side–“the same as”, and (ii) the right side is equal to the left side–“equal to”.

Nonetheless, Alibali, Knuth [56] coded “it is equal to” as unspecified equal–that is, student

could have interpreted “equal to” as to compute the answer. To ensure that we evaluate students’

relational understanding of the ‘ = ‘ sign concept accurately, additional research could ask stu-

dents to give a reason after they have provided answers such as “the same as” or “equal to”.

We could include other types of two-step equations, which consist of more operational and

relational lines to increase the gap between the low and high element interactivity knowledge

for the two-step equations. For example, in regard to the two-step equation of 2 –n)/3 = 6, the

balance method and the inverse method share the same three operational lines but differ in the

number of relational line (5 vs. 4). Moreover, there is also room to further increase the gap

between the one-step and two-step equations with a positive pronumeral and a negative pro-

numeral by including, for example, (2 –n)/3 = 6. Thus, if time permits, we encourage research-

ers and educators to include a wide range of linear equations with a positive pronumeral and a

negative pronumeral.

In line with cognitive load research [12], the acquisition phase in which students studied an

instruction sheet and completed a set of acquisition equations would expect to facilitate learn-

ing of linear equations. Nevertheless, we could have also invited a teacher to introduce linear

equations using the materials in the instruction sheet, which may further enhance the learning

outcomes across the balance method and the inverse method. For example, differential perfor-

mance outcomes on one-step linear equations (Experiment 1) in favour of the inverse group

may manifest not only for the practice problems but also the post-test. Therefore, it would be

of interest to include a teaching phase in future enquiry.

The main purpose of Experiment 3 was to increase the gap between two types of one-step

and two-step equations (a positive pronumeral vs. a negative pronumeral) in terms of the level

of element interactivity. Differential level of element interactivity favours the inverse method

because of two factors: (1) lower level of element interactivity associated with the inverse oper-

ation, and (2) perform two inverse operations concurrently reduces the number of relational

and operational lines. Moreover, manipulating a positive pronumeral and positive numbers as

a result of performing two concurrent inverse operations may also contribute to greater learn-

ing outcomes of the inverse method. Overall, we argue that an advantage of the inverse method

over the balance method was mainly due to the use of two concurrent inverse operations. Nev-

ertheless, future research could repeat Experiment 3 using the inverse operation sequentially

in order to ascertain the benefit of using two concurrent inverse operations for linear equa-

tions with a negative pronumeral.

Given that the rationale of using the inverse operation sequentially or concurrently is simi-

lar, one may query whether knowing how to use the inverse operation sequentially in
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Experiments 1 and 2 could have also contributed to students’ understanding of using two

inverse operations concurrently in Experiment 3. To address the issue, additional research

could test the effect of learner levels of expertise in relation to sequential use of the inverse

operation upon their understanding of using two inverse operations concurrently for linear

equations.

Owing to the characteristics that underline human cognitive architecture, the complexity of

materials makes little sense without considering learner levels of expertise. In fact, it has been

suggested that the expertise reversal effect [19] is a variant of the element interactivity effect

[18]. The expertise reversal effect occurs when an instruction that is effective for novices

becomes less effective and eventually ineffective when they gain expertise in the domain. This

is because the beneficial information for novices becomes redundant for experts.

Differential level of element interactivity not only arises from varying degrees of complexity

of materials, but also from the changes in learner levels of expertise. For example, experienced

learners who have acquired a lower-level schema for one-step equations (e.g., 2x = 6), the

learning of a higher-level schema of two-step equations (e.g., 5x + 2 = 12) would require the

learning of the first two lines only (i.e., 5x + 2 = 12, 5x = 12–2). This is because the rest of the

solution procedure is similar to the solution procedure of one-step equation, 2x = 6. Therefore,

differential level of element interactivity in terms of the solution procedure of linear equations

exists between novice learners and experienced learners. Research has documented the posi-

tive effect of prior knowledge of Algebra on learning to solve linear equations [57]. Students

who had prior knowledge of Algebra tended to outperform those who did not. Hence, we

could explore the relationships between pedagogical methods (e.g., balance vs. inverse), learner

levels of expertise in linear equations, and the complexity of linear equations in future

research.

Overall, it should be noted that the strength of element interactivity depends not only on

the complexity of materials, but also learner levels of expertise. Currently, we cannot accurately

measure levels of element interactivity. As this stage, we can only estimate levels of element

interactivity given that we can only estimate learner levels of expertise.

Conclusion

In conclusion, the results of the three experiments are promising, suggesting that the inverse

method may serve as an alternative for the solving difficult linear equations that have a nega-

tive pronumeral and negative numbers. Moreover, aside from this testament, the three experi-

mental studies also verify the importance of the concept of element interactivity, which could

operate to discern the complexity of a particular instructional method.
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