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Abstract
Appropriately calibrated human trust is essential for successful Human-Agent collaboration. Probabilistic frameworks using
a partially observable Markov decision process (POMDP) have been previously employed to model the trust dynamics of
human behavior, optimising the outcomes of a task completed with a collaborative recommender system. A POMDP model
utilising signal detection theory to account for latent user trust is presented, with the model working to calibrate user trust via
the implementation of three distinct agent features: disclaimer message, request for additional information, and no additional
feature. A simulation experiment is run to investigate the efficacy of the proposed POMDPmodel compared against a random
feature model and a control model. Evidence demonstrates that the proposed POMDP model can appropriately adapt agent
features in-task based on human trust belief estimates in order to achieve trust calibration. Specifically, task accuracy is
highest with the POMDP model, followed by the control and then the random model. This emphasises the importance of
trust calibration, as agents that lack considered design to implement features in an appropriate way can be more detrimental
to task outcome compared to an agent with no additional features.

Keywords Human-agent collaboration · Recommender system · Trust calibration · Partially observable Markov decision
process · Signal detection theory

1 Introduction

Trust underscores the way users interact and work with
collaborative technologies. For example, in March 2018 a
semi-autonomousTesla vehicle veered into a roadside barrier
and crashed, resulting in the death of the driver. Investiga-
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tion found that the Autopilot function was engaged at the
time of the accident and that both visual and audible safety
warnings were displayed to the driver before the accident
occurred [16]. In this scenario, the driver trusted the collabo-
rative system toomuch—over-relying on the vehicle’s ability
to navigate varied road conditions using the Autopilot sys-
tem. Further, the driver under-relied on the vehicle’s inbuilt
warning system—lacking trust to acknowledge the warning
signals as a legitimate call to action. To avoid events like this,
it is necessary to design for socially intelligent systems that
are able to manage appropriate levels of user trust [46].

Trust calibration is one strategy tomitigate negative events
caused by over-reliance and under-utilisation of technology
[15]. Trust calibration is timely for human-agent interaction
given the adoption of agents within collaborative team envi-
ronments in industries like education [37, 51, 67] healthcare
[20, 24, 39], and defense [59, 60]. Notably, trust calibration
models have been employed in Human-Robot Interaction
(HRI) contexts to improve team performance [14, 15, 59,
60], as well as agent-agent [53] and human-agent interaction
[1, 48].
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The current work contributes to the development of trust
calibration models, with the authors proposing a collabo-
rative system that can a) estimate a specific users level of
trust to it and b) adapt its interface and interaction style to
nudge the users trust towards an optimum level that is both
task and user-specific. In this work, these adaptations are
changes implemented on the agent interface and are referred
to as “features”. The proposed system learns about the users
decision making, behaviours, and perception of the system
over time and adjusts its features accordingly in order to keep
user trust close to the user-specific optimum level. In short,
the system employs a model of trust calibration that utilises a
battery of its own features to influence user trust in real-time,
ensuring optimal performance on a collaborative task.

The proposed trust calibration methodology utilises the
relationship between user perception of a collaborative agent
and their trust to it to improve computational calibration
models. Given its success estimating [53] and calibrating
[15] trust, a computational partially observable markov deci-
sion processes (POMDP) framework is employed to adapt
agent features in-task with the goal of optimising collabora-
tive task outcome. The current work extends upon previously
proposed models of trust calibration [15, 41, 45] by adopt-
ing signal detection theory (SDT) modelling to estimate user
trust in-task in an unobtrusive way [22, 23].

Simulation evidence is provided to support trust cal-
ibration for Human-Agent Collaboration (HAC) with a
collaborative recommender system. Training and test data
for the simulation experiment is modelled off human subject
data from a previously conducted online human experiment
involving a recommender system assisting with a diagnos-
tics task [23]. Results of the simulation experiment suggest
that users collaborating with an agent that had implemented
the proposed trust calibration methodology achieve the high-
est task accuracy overall and that this accuracy level is
significantly higher than accuracy levels resulting from col-
laboration with agents that did not have intelligent feature
adaption.

Taken together, the overall aim of this work is to investi-
gate the mechanisms governing user trust and its relationship
with decision making and collaborative task performance in
the context of trust calibration during HAC. In particular, the
current work aims to provide:

1. Probabilistic dynamicmodellingof human-trust beahviour
in a decision-automation context.

2. Explicit modelling of the coupling between humans and
trust.

3. Analysis of human partner behaviour using SDT mod-
elling with focus on the effect of agent feature inclusion
on user trust in-task.

This paper begins with background literature on trust
calibration models. The human experiment is summarised,
followed by details of simulation parameter estimation using
SDT and the simulation experiment. Results of the simu-
lation experiment are presented and the paper is concluded
with a discussion, including limitations of the current work
and insight for future work.

2 Background

There has been a recent interest in the investigation of trust
calibration for HAC. Research in this area has focused on the
estimation of user trust via observation of user behaviour [18,
36, 43, 61] aswell as utilising estimates of trust to guide agent
behaviour [15, 61, 64]. The end goal of thiswork is to develop
trust-seeking adaptive agents that are able to sense deviations
in user trust and adapt their behaviours in response to improve
task performance [65]—trust calibration in short. It is impor-
tant for trust calibration models to distinguish dynamic trust
from more long-term, stable notions of trust [23]. Dynamic
trust is closely linked to reliance and is based on the cur-
rent situational context. It is impacted by contextual changes
in real-time, such as the implementation of agent features
and the difficulty of a specific stimulus within a task, with
these changes influencing user trust, perception, and decision
making [23].

A Markov decision process (MDP) is a formal, non-
deterministic model for planning subject to stochastic behav-
ior. Under an MDP model, a system chooses to perform an
action under full knowledge of the environment it is operating
in [11]. Tasks can be modelled as an MDP when completed
by a single agent [9]. At each time step, the agent takes an
action to change the state of the overall environment, where
the outcome of the action is a probability distribution over the
system states. The agent then receives an action-dependent
reward. In doing so, the agent’s objective is to maximise
the expected total reward over time, with the outcome of
continued actions leading to the creation of a probability dis-
tribution over the agent states.

However, HAC means there is no longer a single agent
involved with the task. When humans are introduced into
the task, both the human and the agent can take actions to
change the environment. Both the human and the agent must
be considered and, given a model of human behaviour, the
agent needs to plan its own actions accordingly. In HAC,
the agent not only needs to infer a user’s mental state, but it
also needs to make decisions and take actions based on its
inferences [1]. These actions further affect user perception
and trust to the agent, impacting user decision making in-
task, and therefore must be incorporated into the model. A
key challenge here is that user trust is a latent variable—it
is hidden and not directly observable [26, 63]. Notably, the
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cognitive states of a user, like user trust to the agent, can
only be estimated or inferred via behavioural observations
and self-report measures [1]. This lack of direct observability
of user trust creates an issue when considering MDP models
for trust calibration during HAC. Thus, classic MDP models
are limited within this context and instead must be adapted
to account for the covert and dynamic nature of human trust.

2.1 Partially Observable Markov Decision Process

The POMDP framework provides a solution for planning
under uncertainty by incorporating features of a MDP while
accounting for partially observable states over time [1]. In
comparison to a state that is completely hidden, a partially
observable state affords the provision of some information
about the underlying state—though, not enough to guaran-
tee that it will be knownwith certainty. This renders POMDP
models as powerful since they allow an agent to reason about
actions to take in-task in order to gather knowledge that will
be important for decision making later on. In the present
work, the state the agent will need to predict is the current
level of dynamic trust experienced by the human partner.
This prediction allows for trust calibration in order to reach
an optimal level of trust to maximise the outcome of collab-
orative task performance. It is not feasible for human users
to self-report trust at every time step during collaboration.
However, trust can be indirectly measured, with user trust
being previously tied to decisionmaking and reliance [10, 13,
49, 50, 56]. Indirect measures allow for trust to be inferred
through human behaviour, decision making and reliance dur-
ing HAC. This inference allows trust to be considered as
partially observable as opposed to merely a hidden or unob-
servable state [34, 47, 62]. In particular, POMDPs have been
used to estimate trust in agent-agent interactions [53] and to
automatically generate robot explanations to improve team
performance [60] in a HRI context.

2.1.1 POMDP for Trust Calibration

POMDP models for trust calibration have been considered
in previous work by Chen and colleagues [15] who utilise
a POMDP computational model to integrate user trust (as
a latent variable) into robot decision making. Similar to the
model proposed in the current work, their model provided
a principled approach for a robot to infer the trust of a
human teammate through interaction, reasoning about the
effect of its own actions on human trust and selecting actions
to maximise team performance over the long term. Both sim-
ulation and laboratory experiments were run to validate their
trust calibration model. However, Chen and colleagues [15]
focused on robot actions to mediate user trust—with the
robotmanipulating low-risk objects to initially build trust and
intentionally failing in order to modulate user trust to achieve

the best team performance. This behaviour change parallels
the work by Min [41] who developed a POMDP model that
engages specific robot behaviours to leverage human trust—
actively modulating it for seamless HAC. These behaviours
are similar to the adaptive features employed by Okamura
& Yamada [45], highlighting the ability for such in-task
variations to the agent to be employed within a POMDP
framework for trust calibration. The results from the above-
mentioned studies demonstrate that POMDP can be utilised
to calibrate user trust in the context of HAC and that this
can be achieved by changing the behaviour of the collabo-
rative agent. Notably, while previous work in this area has
demonstrated the efficacy of a computational POMDPmodel
for trust calibration, the contributions of the current work is
directed toward trust calibrationwith intuitive, non-obtrusive
variation to the agent interface as well as the extension of this
methodology across different classes of collaborative agent.

Furthermore, previous investigation into trust calibration
using POMDP models have included various approaches to
interpreting trust during collaboration. Prior work has con-
sidered the hidden state to be a combination of trust and
workload [2–5, 38], both of which are considered dichoto-
mously as either “high” or “low”, while the observation is
made using compliance and response time data. Chen et al.
[15] use a similar model to Xu and Dudek [65], modelling
human trust evolution as a linear Gaussian system—relating
human trust causally to robot task performance. In compar-
ison, the present work considers the hidden state as a users
dynamic trust, with this implemented as a set of three dis-
crete levels of trust. Further, rather than using compliance
or performance, the observation of trust is considered as the
parameter c, representing response bias within a SDT model
(see Sect. 5 for further discussion).

Taken together, computational POMDP models close the
loop between a users dynamic trust, that must be assessed in
real-time, and the agents decision making process in order to
maximise outcomesof collaboration [29]. Thismodel reflects
efficient trust calibration: granting an agent the ability to
influence human trust systematically to reduce and increase
trust in states of over-reliance and under-utilisation, respec-
tively.

3 POMDP Framework

A POMDP is an extension of an MDP that partially accounts
for hidden states through observable outcomes that are
related. This can be applied to HAC whereby the latent vari-
able of trust is accounted for via outcomes of user decision
making that are outwardly observable. Formally, a POMDP
is defined by a tuple [55]: (S, A, T , R,�, O, γ ), where:

• S is a finite set of states {s1, . . . , sN }
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• A is a finite set of actions {a1, . . . , aM }
• T is a set of conditional transition probabilities between
states

• R: S × A → R is a reward function
• � is a set of observations {ω1, . . . , ωK }
• O is a set of conditional observation probabilities
• γ ∈ [0,1) is the discount factor

When it is possible to only partially observe the states,
the agent must infer the current state from its immediate
observation ω ∈ � and action a ∈ A, and this information is
represented as a belief b over all the possible states

b = [b(s1), . . . , b(sN )]

where b(si ) is the probability that the agent is in state si and∑N
i=1 b(si ) = 1.
At each time period, the environment is in some unob-

servable state s ∈ S. The agent takes an action a ∈ A, which
causes the environment to transition to state s′ with proba-
bility T (s′ | s, a). At the same time, the agent receives an
observation ω ∈ � which depends on the new state of the
environment s′ as well as the action just taken a, with prob-
ability O(ω | s′, a). Finally, the agent receives a reward r
from the reward function R(s, a) computing the reward for
taking action a in state s. This process repeats over the course
of the collaboration.

3.1 Planning

The goal of POMDP planning is to compute the optimal pol-
icy π∗(b) that can select the optimal action â so the agent can
maximise the expectation of the cumulative reward function
V π (b):

π∗(b) = â = argmax
π

V π (b) (1)

and

V π (b) =
∞∑

t=0

γ t r(bt , at ) (2)

where r(bt , at ) is the expected reward from the POMDP
reward function over the belief state distribution:

r(b, a) =
∑

s∈S
b(s)R(s, a) (3)

Notably, the discount factor γ determines how much
immediate rewards are favoured over more distant rewards,
withγ =0 signifying a policy directed to identifying an action
that will result in the largest expected immediate reward,

while γ → 1 denotes a policy directed towards maximis-
ing the expected sum of future rewards. The value function
V π (b) can be bounded to a fixed horizon H , meaning that
Eq.2 will become:

V π (b) =
H∑

t=0

γ t r(bt , at ) (4)

The optimal value function V ∗ that employs the optimal
policy π∗ can be estimated by using the Bellman optimality
equation [8]:

V ∗(b)

= max
a∈A

[
r(b, a) + γ

∑

ω∈�

Pr(ω | b, a)V ∗(τ (b, a, ω))
]

(5)

where τ(b, a, ω) is the belief update function given the belief
b(s) on current state s, the taken action a and the gathered
observation ω. The belief update function is defined as:

τ(b, a, ω) = b′(s′)
= ηO(ω | s′, a)

∑

s∈S
T (s′ | s, a)b(s) (6)

where η = 1/Pr(ω | b, a) is a normalising constant with

Pr(ω | b, a)

=
∑

s′∈S
O(ω | s′, a)

∑

s∈S
T (s′ | s, a)b(s) (7)

3.2 Priors Estimation

To implement a POMDP model it is necessary to know the
conditional probabilities for T and O . In the current work,
data from a training set of human participants is used to esti-
mate those distributions. Specifically, the occurrences of each
event are counted and normalised to obtain the priors.

Given N states and M actions, matrix Tcounts with dimen-
sions N × N × M is used. Whenever a transition from state
si to state s j after taking action ax occurs, 1 is added to

the corresponding cell T ( j,i,x)
counts at indexes ( j, i, x). Similarly,

given K possible observations, matrix Ocounts with dimen-
sions K × N × M is used. For each observation ωz gathered
by the training subjects after taking action ax and transition-
ing to state s j , 1 is added to the corresponding cell O(z, j,x)

counts
at indexes (z, j, x). The counts of both the matrix Tcounts
and Ocounts are then normalised to represent probability dis-
tributions stored in the frequency matrix T f req and O f req

respectively.
To implement the POMDP model, the reward function R

must also be estimated. This is initially done by modelling a
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conditional probability distribution over the set of the consid-
ered reward values � = {λ1, . . . , λL} when taking an action
a in state s. Similar to the previous estimations, given L possi-
ble reward values,matrix Rcounts with dimensions L×N×M
is used. A count is added every time an observation of reward
λz is received in the training data after taking an action ax in
state si in the corresponding cell R

(z,x,i)
counts at indexes (z, x, i).

The counts of this matrix are then normalised to represent
probability distributions over the considered reward values.
These frequencies are stored in the matrix R f req . The reward
function R(s, a) can then be modelled as a weighted reward
based on the probability of each reward value λ ∈ � to occur
when taking the considered action a in the given state s:

R(s, a) =
∑

λ∈�

R f req(λ, s, a)λ (8)

It is possible that the training data does not cover all the
possible events modelled by the counts matrix. For this rea-
son, it is recommended to initialise each cell of the counts
matrix with the value 1, as per the Lidstone estimate [35].

3.3 Online Learning

Although the priors estimated from training data can be a
good starting point to inform the decision process of the
POMDPmodel, better results in the test stage can be obtained
by adapting those priorswith new information gatheredwhile
performing the task with test subjects.

The rewardλobtained at each step after choosing an action
a can be used to update the reward function R(s, a). In rein-
forcement learning, this objective can be achieved by using
the Q-learning algorithm. In this algorithm the function Q is
considered to calculate the quality of a state-action combi-
nation:

Q : S × A → R

This function can be updated after receiving a reward λt at
time t by using the following equation:

Qnew(st , at )

= Q(st , at ) + α
(
λt + γq max

a
Q(st+1, a) − Q(st , at )

) (9)

where α is the learning rate (0 < α ≤ 1) and γq is a discount
factor for the future reward expected from the new state.

Instead, the reward function R(s, a) is used for the
POMDPmodel considered in the present work, with it being
updated at each step after receiving a reward. Unfortunately,
the state is not directly observable in a POMDP frame-
work. Instead, a probability distribution over states (beliefs)
is utilised. Given an action a and a belief over states b, the
formula in Eq.9 can be adapted to update the expected reward

function R(s, a) for the considered action a and each state
s. This is achieved by computing the reward value for each
state s as a proportion of the received reward λ weighted by
the probability of being in such stats (i.e. b(s)):

Rnew(st , at )

= R(st , at ) + αb(st )
(
λt + γr R

f uture(b′) − R(st , at )
) (10)

with b being the belief at time t , b′ being the new updated
belief at time t + 1 and R f uture(b′) computed as:

R f uture(b′) =
∑

s∈S
b′(s)max

a
R(s, a) (11)

The frequency matrix T f req and O f req used to model
the conditional probability distributions for T and O respec-
tively, can also be updated without directly observing the
state. To update the frequency matrix T f req after choos-
ing an action ax and updating the belief distribution b =
[b(s1), . . . , b(sN )] to the new belief distribution b′ =
[b′(s1), . . . , b′(sN )] the counts of the corresponding count
cells in thematrix Tcounts can be incremented given the result
of the dot product between the two distributions b and b′:

T (∗,∗,x)
counts = T (∗,∗,x)

counts + [b(s1), . . . , b(sN )]
× [b′(s1), . . . , b′(sN )] (12)

where the symbol ∗ denotes every cell of the matrix in that
dimension, and x is the index of the selected action ax . The
counts matrix Tcounts can then be normalised to obtain the
updated frequency matrix T f req that can be used as the con-
ditional probability distribution for T .

Similarly, given the current observation ωz after choosing
the action ax when in the belief b, the counts matrix Ocounts

can be updated with the following formula:

O(z,∗,x)
counts

= O(z,∗,x)
counts + [b(s1), . . . , b(sN )]

(13)

with z and x being the indexes of the gathered observationωz

and selected action ax respectively. Then, the counts matrix
Ocounts can be normalised to obtain the updated frequency
matrix O f req used to model the probability distribution O .

4 Human Experiment Data

Real human data is required for simulation experiments in
order to model, train and assess the proposed computational
models. As such, data from an online human experiment
involving a recommender system assisting with a radiology
diagnostics task [23] was used. The purpose of this section
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is to provide context behind the data used to model, train
and assess the proposed computational model—which is the
primary focus of the current work.

An online experiment was run to investigate whether stim-
ulus difficulty and the implementation of agent features by
a collaborative recommender system interact to influence
user perception, trust and decision making. In this context,
agent featureswere changes to the human-agent interface and
interaction style and included: presentation of a disclaimer
message, a request for more information from the user, and
no additional feature. Signal detection theory was utilised to
interpret decision making, with this applied to assess deci-
sion making on the task, as well as with the collaborative
agent.

4.1 Design

A 3 × 2 simultaneous within-subjects design was imple-
mented as anonline experimental study.Thefirst independent
variable was agent feature with three levels: No Additional
Feature, Disclaimer, and Request for More Information from
user. After a request for more information, the user wasmade
to report the presence of the following features: white spots,
clouding, exposure, clarity, contrast, and other. The provision
of additional information did not influence the final agent
recommendation.

The second independent variable was trial difficulty with
two levels: Easy and Hard. The dependent variable relevant
to the current simulation experiment was decision making on
the agent recommendation, operationalised via user sensitiv-
ity d ′ and bias c which were calculated using a SDT model
applied to the agent (see Sect. 5.1.2 for calculation of SDT
parameters).

4.2 Materials

The collaborative agent was a virtual recommender system
tasked with assisting a human user to correctly classify the
presence or absence of viral pneumonia in a set of X-ray
images. The agent was a Softbank Pepper social robot. It
was initially presented to the human user via an introduction
video whereby the agent interacted using speech and gesture.
Presentation of the agent during the X-ray task was achieved
through static images paired with written text.

4.2.1 Collaborative Agent

A Softbank Pepper robot was used to visually represent the
virtual collaborative agent “Assisto” as seen in Fig. 1. Google
Speech Wavenet-C English (Australian) at 85% original
speaking rate was used for speech generation. Participants
were presented the collaborative agent via a twominute video
where Assisto introduced themselves as an AI agent that

Fig. 1 Still image capture of Softbank Pepper robot “Assissto” during
introduction video

had been specifically designed to help participants complete
the X-ray classification task by providing them with a sys-
tems report containing a recommended decision. This video
depicted the Pepper robot introducing itself using natural lan-
guage, gesture, and animated lights. The tablet on the chest
of the Pepper robot was not utilised for the study.

4.2.2 Agent Features and Recommendation In-Task

The presentation of agent features and recommendations
made to the participant in-task were achieved using static
images of the Pepper robot and text to communicate informa-
tion from the agent to the user. Additionally, the agent feature
images included three separate icons –with each representing
a specific feature condition. Examples of the disclaimer and
more information features are seen in Fig. 2 and an example
of a “Yes” recommendation from the agent is seen in Fig. 3.

4.2.3 X-ray Classification Task

AnX-ray classification task was selected given that SDT can
be applied to diagnostic accuracy [44]. Further, detection of
viral pneumonia within X-ray images can be applied online
as a real world application of a Yes-No task [22]. In psy-
chophysics, a Yes-No task is a signal detection task where
participants undergo a series of trials in which they must
judge the presence or absence of a signal [7] – in this case,
viral pneumonia.

Task Justification
While the real-world task of identifying abnormalities in
X-rays (i.e. radiology diagnostics) is completed by trained
professionals, the X-ray classification task in the present
work was designed specifically to be completed by untrained
participants in an online environment. Online studies can be
limited in their ability to maintain user attention [12]. In an
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Fig. 2 Example of the agent features presented to users: disclaimer
feature (top) and more information feature (bottom)

Fig. 3 Example of a “Yes” recommendation provided to the user

attempt to combat this,X-ray images depicting viral pneumo-
nia were selected as stimuli to be used in an online Yes-No
task in order to heighten the perceived importance of the
study, given the study was run during the COVID-19 pan-
demic. Classification of predefined X-ray stimuli allows for
the selection of the images into separate difficulty conditions
and validation of the task itself (see Data set classification
and Stimuli Selection and Presentation for further details).

Notably, the choice of the task itself is not important for
answering the considered research question under the pro-
posed methodology as long as the following assumptions
apply: (a) the task is a Yes-No task; (b) there are labeled
samples available; and (c) the considered samples can be
classified by a layperson at above a 50% chance rate but
without achieving a ceiling effect. These assumptions have

Fig. 4 Breakdown of stimuli selection

been confirmed for the selected data set [22], providing evi-
dence to assert the validity of this task in the present work.
Data set classification
X-ray images of a pair of lungs with or without viral pneu-
monia were sourced from an Open Source data set [27, 28],
see Fig. 5 for examples. These images were pre-classified as
viral pneumonia present and viral pneumonia absent. How-
ever, these images needed to be further classified by difficulty
level before the appropriate subset could be selected for the
experimental task.

64 X-ray images (32 with viral pneumonia present and 32
with viral pneumonia absent) were presented to 48 partic-
ipants (Male = 30, Female = 17, Non-Binary = 1; Mage

= 39.83, SDage = 13.26) via Amazon Mechanical Turk.
After presentation, participants answered Yes/No to whether
they thought the X-ray image showed signs of viral pneu-
monia. Determining difficulty level of the X-ray images
was achieved using a T-test to compare overall participant
accuracy against chance rate. Images were defined as signifi-
cant correct (p <0.05, positive mean difference), significant
incorrect (p <0.05, negative mean difference), and non-
significant chance (p >0.05).

Thirty-six images were classified as significant correct,
meaning participants were able to correctly identify the
absence or presence of viral pneumonia in each image above
chance level. A further six images were classified as signif-
icant incorrect, meaning participants performed worse than
chance level when classifying the images. Finally, twenty-
two images were classified as non-significant chance, from
which it can be inferred that participants performed at chance
level. This classification of X-ray images allows for control
over task difficulty.

Stimuli Selection and Presentation
Twenty distinct X-ray images were selected for use. This
included ten significant correct images (five with virus
present and five with virus absent) and ten non-significant
chance images (five with virus present and five with virus
absent). These were defined as the Easy and Hard task diffi-
culty conditions, respectively. A summary of this breakdown
is seen in Fig. 4.
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Fig. 5 Example X-ray images. Top image, Virus Present; Bottom
image, Virus Absent

This composition of X-ray stimuli was selected to ensure
that all novice participants, even those unskilled or untrained
in the detection of abnormalities in X-ray images, would be
able to successfully complete the task above chance level.
Each X-ray image was presented for four seconds per trial.
This length of presentation timewas selected in order tomax-
imise the total number of stimuli presented throughout the
task while minimising potential impact to task performance,
based off a recommender study with the same X-ray data set
[22].

Experimental Task & Agent Performance
The twentyX-ray imageswerepresented three times through-
out the experimental task, once for each agent feature
condition, resulting in a total of sixty trials. The order of
the sixty trials was randomised for each participant, in line
with a simultaneous within-subject design [25]. Participants
received no penalty for incorrect responses during the X-ray
classification task and were blind to task difficulty, the out-
come of their decisions, and the true accuracy of the agent.

The agent performed at a 60% accuracy rate. This per-
formance level was selected to prevent ceiling effects that
may have otherwise been experienced with a higher accu-
racy rate [23]. The 60% accuracy rate was pre-generated and
specific to each of the three feature conditions. Prior to exper-
imentation, stimuli across each agent feature condition were
randomly categorised in order to achieve a 60% split (i.e.
the agent performed at 60% for each of the three conditions).

Fig. 6 Order presentation of a single trial

This splitwas predetermined and, therefore, every participant
experienced the same recommendation for each stimuli.

Trial breakdown
The following details a step-by-step breakdown of a single
trial in the X-ray classification task. A visual representation
of this is presented in Fig. 6. For each trial, participants were
prompted with a screen with instructions: Press the button
belowwhen youare ready to view theX-ray. Participantswere
presented with an X-ray image for 4 s and then automatically
displayed a new screen where they answered Yes/No to the
following question: Did the X-ray show signs of Viral Pneu-
monia?

Participants were then presented with one of the three
agent feature conditions. This included a banner with an
image of the collaborative agent and one of the following
three additional messages: No additional feature “A rec-
ommendation decision has been made!”, Disclaimer “This
sample has some qualities that may impact the decision
system.”, or More Information “I require more information
before making a recommendation decision.” The latter was
followed by the instructionPlease select the features of the X-
ray that may have influenced your decision and a list of X-ray
features for participants to select from including: white spots,
clouding, exposure, clarity, contrast, and other. Importantly,
this selection did not influence agent recommendation.

After presentation of the feature screen, participants
clicked through to the final decision screen. Depending on
the recommendation given, the banner on the final decision
screen either displayed “SystemReport: YES-Virus Present”
or “SystemReport: NO-Virus Absent” alongside an image of
the collaborative agent. On the same page, the participants’
initial answer was displayed and participants were asked to
answerYes/No to the samequestion:Did theX-ray show signs
of Viral Pneumonia?
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4.2.4 Trust Questionnaire

The 14-item sub-scale of theTrust Perception Scale-HRI [52]
was used to assess trust once the participant was introduced
to the agent but before starting the X-ray classification task
(Pre-Trust) and after the participant had completed the X-
ray classification task with the agent (Post-Trust). The Pre-
Trust measure is relevant to the current work as it is used for
the estimation of the regression parameters from c to s (see
State transitions conditional probabilities in Sect. 6.2.3 for
details).

4.3 Participants

Amazon Mechanical Turk was used to recruit 153 partici-
pants (Male = 93, Female = 60, Non − Binary = 0; Mage

= 42, SDage = 11.08) from Australia, Canada, the United
Kingdom, and the United States. Participants were informed
the experiment would take 25–30min and were reimbursed
USD$3 for their time. The inclusion criteria required partici-
pants to be proficient in English and at least 18 years old. All
participants provided informed consent in accordance with
human research ethical standards prior to experimentation.

Participants were excluded if it was determined that they
did not complete the X-ray classification task seriously. This
was achieved by considering participant decision making,
whereby a one-tailed z-test with α=0.05 was run to compare
the proportion of dichotomous decision making against a
hypothesis level of 95% [23].

Following these criteria resulted in the data of 35 partici-
pants being removed from analysis under the assumption that
they did not complete the X-ray classification task seriously.
Therefore, final analyses were conducted on sample size N=
118 (Male = 77, Female = 41, Non − Binary = 0; Mage =
41, SDage = 10.86).

4.4 Procedure

Participants first answered demographics questions. Thiswas
followed by information on the X-ray classification task
and three example trials without assistance to ensure under-
standing of the task. Participants then met the collaborative
assistant via the introduction video and answered five mul-
tiple choice attention check questions about the video to
confirm their understanding of the role and ability of the
collaborative agent during the task. Incorrect answers on
the attention check questions resulted in a ten second time
penalty before moving onto the next question.

Participants attempted sixmore example trials, this time—
with the help of the agent, in order the ensure understanding
of the task with the collaborative agent. This was followed
with the Pre-Trust questionnaire. Participants then completed
the X-ray classification task with the collaborative agent, fol-

Fig. 7 Order presentation of the experiment procedure

lowed by the Post-Trust questionnaire. Participants finished
the session with a set of follow up questions regarding par-
ticipant perception of the task and stimuli presented.

4.5 Summary of Key Findings

SDTwas applied to the collected data from the human exper-
iment to interpret human behaviour and trust. Results from
the statistical analyses demonstrated that decision change
occurred more for the hard stimuli, with participants choos-
ing to change their initial decision across all features to follow
the agent recommendation F(1, 117) = 7.03, p =0.009, with
an increase in decision change of 3%, 95% CA [0.01, 0.04]
from the easy stimuli (M = 0.23, SD = 0.18) to the hard
stimuli (M = 0.26, SD = 0.18).

Furthermore, agent features can be utilised to mediate
user decision making and trust in-task, F(2, 234) = 6.03,
p =0.003; with decision change significantly increasing by
3% from Disclaimer (M = 0.23, SD = 0.20) to No Addi-
tional Feature (M = 0.26, SD = 0.21), 95% CI [0.01, 0.06];
p =0.013, as well as significantly increasing by 4% units
from the More Information (M = 0.22, SD = 0.18) to the No
Additional Feature condition (M = 0.26, SD = 0.21), 95%CI
[0.01, 0.07], p =0.001.Though therewas a slight 1%decrease
in decision change from the Disclaimer condition (M = 0.23,
SD = 0.20) to the More Information condition (M = 0.22,
SD = 0.18), this change was not statistically significant 95%
CI [−0.03, 0.03], p = 1.00. This result suggests that the agent
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is able to influence user trust, via decision change, by imple-
menting or removing certain features. Specifically, the agent
in the present work could reduce user trust by implementing
the considered features or conversely, increase user trust by
removing implemented features.

Trust is complicated and distinguishing between distinct
components of trust is not an easy task. Use of SDT applied
to the agent afforded the ability to infer trial-specific notions
of user trust in-task, highlighting the dynamic nature of trust
during HAC. This dynamic trust may be closely linked to
reliance and is impacted by contextual changes in real-time,
such as the implementationof agent features and thedifficulty
of a specific stimulus. These contextual changes are enough
to influence user trust and, as a result, user decision making.
Taken together, in-task trust (τdynamic), is dynamic and based
on the current situational context and thus, is distinct from
long-term, stable notions of trust τstable. It is important that
these two components of trust are considered separately for
implementation within trust calibration models in order to
mediate issues associated extreme levels of trust that might
otherwise result in over-reliance and under-utilisation.

Taken together, the results of the online human study
emphasised the complexity of user trust inHAC, highlighting
the importance of considering the individuals perception of
task context, including task difficulty and agent feature, in the
wider perspective of trust calibration. Specifically, SDTmod-
els should be considered as a tool to detect in-task changes to
task performance and dynamic user trust during HAC tasks
and thus, should be consideredwithin trust calibration frame-
works.

5 Simulation Parameters Using Signal
Detection Theory

SDT can be applied to binary decisionmaking such as yes-no
tasks, as long as participant responses can be compared to the
presence or absence of the target stimulus. Thus, tasks involv-
ing recommender systems can be interpreted using SDT [54,
66].

In a SDT model, the participant’s perception of a stim-
ulus is assumed to be distributed along a psychological
continuum. Decisions are made against a background of
uncertainty, where the participants’ aim is to tease out the
decision signal frombackgroundnoise. Both signal and noise
are represented probabilistically within each participant (see
Fig. 8). The extent to which these two distributions overlap
can be estimated based on the participants’ responses and
whether or not the signal is present. The participant bases
their decision relative to their own internal criterion β, where
a signal will be reported present when the internal signal is
stronger than β and absent when the internal signal is weaker
thanβ [6]. Importantly, for every individual, an optimal oper-

Fig. 8 SDT demonstrating signal and noise distributions as well as
sensitivity d ′, response bias c, and the criterion β

ating point β∗ exists where task performance is maximised
[54].

Sensitivity d ′ measures the distance between the signal
and noise means in standard deviation units [57]. It is inde-
pendent of where β is placed. Thus, d ′ is a measure of
performance that is independent of subject bias [6]. Response
bias is the general tendency to respond yes or no as deter-
mined by the location of the criterion. It is estimated from
the difference between the participant’s β and an unbiased
participants β [6]. Sheridan [54] highlights the link between
the criterion β and the human agent’s level of trust, suggest-
ing that the criterion β indicates how the subject calibrates
trust during interactions with an automated system over a
set of repeated trials. While β has historically been the most
popular measure of response bias [57], c offers an analogue
of β, unaffected by changes in d ′. As such, c is used to assess
response bias. Response bias, c, is negative when the partic-
ipant is more likely to report the signal is present and vice
versa. The absolute value of c provides an indication of the
strength of the subject’s bias.

SDT can be applied to the context of a recommender sys-
tem providing a recommendation on a Yes-No task (in this
case, a radiology diagnostics task) in two distinct ways. First,
the discrimination task can involve the goal of correctly clas-
sifying each X-ray image. In this interpretation, the stimuli
are the X-ray images: signal refers to a stimulus X-ray with
viral pneumonia present and noise refers to a stimulus X-ray
without signs of viral pneumonia. The second application of
SDT is applied by considering the discrimination task as the
detectionof a correct recommendation from the agent.Within
this interpretation, the stimulus is the combination of the per-
ceived X-ray image alongside the recommendation provided
by the agent. Here, the signal is a correct recommendation
from the agent for a particular X-ray image, whereas noise
is considered an incorrect recommendation of the agent for
that particular X-ray image.
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User trust c can be appropriately evaluated using the SDT
model [22]. In particular, the online experiment detailed in
Sect. 4 considered dynamic trust during the discrimination
task as the identification of a correct agent recommendation
given a specific X-ray stimulus. Furthermore, evidence was
provided to demonstrate that the implementation of distinct
agent features during collaboration influenced dynamic trust
during HAC. As such, the SDTmodel implemented through-
out the following computational simulations considers the
discrimination task as the correct classification of the agent
recommendations in combination with the presented X-ray
images.

In a SDT model, each signal and noise stimulus is mod-
elled as an internal response distributed along apsychological
continuum (with psychological continuum being user spe-
cific). This internal response is sampled from two Gaussian
distributions, one for the signal stimuli and the other for noise
stimuli, with both having mean μ = 0 and standard devia-
tion σ = 1. Thus, each stimulus is modelled as an internal
response distributed along a psychological continuumwithin
the range of −∞ and +∞, as depicted in Fig. 9.

Here, signal and noise represent the stimulus psycho-
logical continuumwhichdefines the distributionof signal and
noise stimuli, respectively. Finally, ψ y represents the inter-
nal response elicited by a stimulus y sampled accordingly to
the following equation:

ψ y ∼ N (0, 1)

Where ∼ denotes the probabilistic sampling process and
N denotes a Gaussian distribution. A signal sample placed
further toward the right tail of the Gaussian distribution will,
on average, be easier for participants to correctly detect as a
signal. Conversely, the further to the left tail a signal sample
lies on the Gaussian distribution, the harder it will be for
participants to correctly detect it as a signal. The opposite
is true for the noise stimuli. Specifically, the further a noise
sample lies to the right tail of the Gaussian distribution, the
harder will be for participants to correctly detect it as noise
and the further a noise sample lies on the left tail of the
Gaussian distribution, the easier will be for participants, to
correctly detect it as noise (see Fig. 9 for example).

At this stage, the internal response of an individual par-
ticipant has not been applied. In fact, when modelling the
decision making process of the participant according to the
SDT model, the position of the means for both the noise and
signal Gaussian distributions on the participant’s psycholog-
ical continuum ̂ will be translated along the x-axis relative
to the participants’ sensitivity on the considered task (see
Fig. 9). This is further discussed with reference to parame-
ters from the SDT model in the following section.

5.1 Modelling the Participants’Decision Making

Part of the computational model to execute the simulation
experimentswill require additional simulation of the decision
making process of the participant population that completed
the task in the online human experiment (Sect. 4). The deci-
sion making process of participants was modelled using the
SDT model [57] for the human experiment. The key param-
eters of SDT to determine a decision making outcome are
sensitivity d ′ and bias c of the participant for the consid-
ered task. As previously mentioned, the internal response
generated by the stimulus on the psychological continuum
̂ of each participant is dependent not only on the sampled
position of the stimulus along the psychological continua
signal or noise, but also on participant sensitivity d ′ for
the considered task. When the participant i perceives a given
stimulus ψ y , a mapping function M takes the sampled
internal response for the stimulus ψ y and the participant’s
sensitivity d ′

i to return a new internal response ψ̂
y
i of the

stimulus ψ y , denoting the position of the internal response
for that specific stimulus onto the participant’s i psycholog-
ical continuum ̂i .

For a given stimulus ψ y and participant i , this mapping
function is defined as:

ψ̂
y
i = M(ψ y, d ′

i ) (14)

=
{

ψ y + d ′
i
2 if ψ y sampled from signal

ψ y − d ′
i
2 if ψ y sampled from noise

Therefore, a single stimulus sampled from signal or
noise can manifest in different positions along the psycho-
logical continua of each participant depending on their d ′
(see Fig. 9).

5.1.1 Participants’ Psychological Continua and Their
Parameters

When applying SDT to model participant decision making
for the detection of a correct (signal) or incorrect (noise)
recommendation from a collaborative agent given a specific
stimulus, the psychological continuum ̂ of the SDT model
represents the overall distribution of all possible stimuli that
can be perceived by participants throughout the task. As pre-
viously stated, these stimuli are considered as a combination
of the presented X-ray image and the agent recommendation
provided. There can be infinite X-ray images, with a possible
correct or incorrect recommendation from the agent for each.
As such, there are infinite signal and noise stimuli along this
psychological continuum.

Additionally, the considered human experiment (Sect. 4)
investigated the ability for independent agent features (provi-
sion of a disclaimer, a request for more information, and the
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Fig. 9 A visual representation
of four distinct stimuli is
presented: one easy and one hard
stimuli for both the noise and
signal Gaussian distributions (a.
and b., respectively). These two
distributions are applied to each
a specific participant as a
representation of their internal
response (c.) where the distance
between distributions represents
the specific sensitivity d ′ of each
individual participant given the
applied SDT model

no additional feature) to influence the users’ perception of
trust to the agent. This was assessed through changes to the
SDT parameters d ′ and c. Taken together, each participant
had a distinct SDT model comprised of parameters d ′ and c
for each experimental condition. In other words, the decision
making process for each participant can bemodelled with the
parameters outlined in in Table 1. All the parameters were
estimated from the data gathered during the human experi-
ment. Thus, for each participant i during each experimental
condition x , there is a distinct parameter d ′

i
x leading to the

perception of a distinct internal response as per the set of
parameters �x

i that can be estimated from the data gathered
in each experimental condition of the human experiment.

5.1.2 Calculation of SDT Parameters

SDT parameters d ′ and c are calculated using the following
two equations [57]:

d ′ = �−1(H) − �−1(F)

c = −�−1(H) + �−1(F)

2

Where �−1 represents the manthematical function con-
verting probabilities into z-scores, H is used to indicate the
hit rate (ie. the total number of hits divided by the total num-
ber of signal trials) and F represents the false-alarm rate (i.e.
the total number of false alarmsdivided by the total number of
noise trials). Figure10 outlines each the signal and response
combination required to results in a hit, false alarm, miss,
and correct rejection for the current application of the SDT
model.

Fig. 10 Outcome breakdown of SDT applied to user decision making
with a collaborative agent recommender system

Table 1 The experimental condition refers to a combination of stimulus
difficulty (i.e. e easy and h hard) and agent feature (i.e. d disclaimer, m
more information, and ∅ no additional feature)

Experimental condition Model parameters

Easy-no feature �e∅
i = {d ′e∅

i , ce∅i }
Easy-disclaimer �ed

i = {d ′ed
i , cedi }

Easy-more information �em
i = {d ′em

i , cemi }
Hard-no feature �h∅

i = {d ′h∅
i , ch∅

i }
Hard-disclaimer �hd

i = {d ′hd
i , chdi }

Hard-more information �hm
i = {d ′hm

i , chmi }

5.1.3 Simulating the Decision Making Process

For each experimental condition x and each participant i
there are a set of parameters �x

i defining a psychological
continuum ̂x

i for the participant i under the experimental
condition x . During each task evaluation, a stimulus ψ y can
be sampled from either the signal psychological continuum
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signal or from the noise psychological continuum noise.
As such, the stimulus ψ y is perceived by participant i as ψ̂

y
i

as per the mapping equation (see Eq.15), with the parameter
d ′

i
x corresponding to the current experimental condition x

the participant i is in. Therefore, the decisionmaking process
D can be modelled by using the following formula:

D(ψ y,�x
i ) =

{
signal ifM(ψ y, d ′x

i ) ≥ cxi
noise otherwise

(15)

For this considered model, an evaluation of the stimulus
as signal means that the participant assessed the recommen-
dation of the agent as correct and they accepted it. On the
contrary, an evaluation of the stimulus as noise means that
the participant assessed the recommendation of the agent as
incorrect and they rejected it, thus choosing the alternative
classification for the X-ray image.

5.2 Estimation of Stimuli Samples

As previously stated, there are infinite stimuli that can be
sampled from signal and noise. However, only a subset of
stimuli are able to be sampled from the considered population
when performing an experiment with human participants.
To ensure that the stimuli sampled during the computational
simulations represent a valid subset of stimuli similar to those
presented to participants in the human experiment (presented
in Sect. 4), a region of the psychological continuasignal and
noise must be defined that is reflective of the experimental
task.

Given a set of stimuli Sexp that represent the stimuli (i.e.
X-ray image and given recommendation) used in the human
experiment, the outcomeparameters gathered from the exper-
imental task Eexp given the considered population of human
participants for the control conditions can be defined as:

Eexp(Sexp) = �∅
exp

= {(�e∅
1 ,�h∅

1 ), . . . , (�e∅
n ,�h∅

n )} (16)

With n refers to the number of participants in the exper-
imental study and ∅ represents the control (i.e. no feature)
experimental condition.

Similarly, given a set of simulated stimuli Ssim sampled
from the psychological continua signal and noise, the out-
come parameters gathered from the simulated experimental
task Esim given the simulated population of participants can
be defined as:

Esim(Ssim) = �∅
sim

= {(�̃e∅
1 , �̃h∅

1 ), . . . , (�̃e∅
n , �̃h∅

n )} (17)

The optimal sample of simulated stimuli S∗
sim is one that

can produce a similar set of experimental outcome parame-
ters, namely�∅

sim ≈ �∅
exp. This sample lies within a specific

region of the psychological continua signal and noise.
A grid-search algorithm was implemented to find an

optimal region. This was done by introducing a set of
assumptions and modelling sub-regions of the continua with
appropriate hyper-parameters in order to ensure the similarity
�∅

sim ≈ �∅
exp. The considered assumptions and hyper-

parameters were:

• The optimal regions insignal andnoise are distributed
around their zeros with the range being equally divided
above and below zero, i.e. the optimal regions lies
between − j and + j , with − j < 0 < + j ;

• Within each optimal region [− j,+ j] there is a portion
of that region where “hard” stimuli (i.e. stimuli that are
hard to classify) are sampled from. This hard-region is
defined as a ratio ρ of hard stimuli with range 0 < ρ < 1;

• The optimal regions for bothsignal andnoise are equal
in size, i.e. jsignal = jnoise;

• The ratios for both the optimal regions of signal and
noise are the same, i.e. ρsignal = ρnoise;

Therefore, the hyper-parameters to optimise using a grid-
search algorithm were j and ρ. The following values for j
and ρ were considered for the grid-search algorithm:

j = {0.1, 0.2, . . . , 1}, ρ = {0.1, 0.2, . . . , 0.9}

The values for j were selected considering the assump-
tion that a stimulus above or below 1 standard deviation in
the psychological continua is too far from the mean of the
Gaussian distribution and thus, unlikely to reflect the stimuli
presented during the human experiment (for example, very
noisy X-ray images).

In order to implement the grid-search algorithm, a dis-
tribution of stimuli was sampled for each combination of
hyper-parameters j and ρ. For each iteration of the grid-
search algorithm, labels were assigned to the generated
samples according to the same distribution considered during
the human experimental task described in Sect. 4. Specif-
ically, 50% of the samples were assigned to the label
“pneumonia present” and 50% to the label “no pneumonia
present”. Within each of those two classes, 60% of the sam-
ples were assigned to a correct recommendation (signal) and
40% to an incorrect one (noise). A stimulus ψ y was consid-
ered valid if it was sampled within the considered interval
[− j,+ j] and its difficulty was labelled given the following
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Fig. 11 Sampling regions of stimuli from the signal and noise Gaussian
distributions

rules:

For ψ y ∼ signal

{
hard if ψ y < − j + (2 ∗ j) ∗ ρ

easy otherwise

For ψ y ∼ noise

{
hard if ψ y > j − (2 ∗ j) ∗ ρ

easy otherwise

The grid-search algorithm led to the estimation of the opti-
mal parameters j∗ = 0.4 and ρ∗ = 0.2 (see Sect. 6.1). The
intervals identified from the estimated parameters and appli-
cation of the above rules are visually depicted in Fig. 11.

6 Simulation Experiment

The simulation experiment was run with the simulated par-
ticipants and samples as described in Sects. 5.1 and 5.2
respectively. Simulated participants and samples were simi-
lar to what would be expected in the human experiment (see
Sect. 4). Specifically, for each experimental subject i , task
difficulty level l and experimental condition x , the experi-
mental outcome parameters �

l,x
i were computed using the

formula described in Sect. 5.1.2. These parameters were used
to adapt the decision making process of the participants

throughout the simulations based on the presented agent’s
feature. Importantly, these parameters were unknown by the
agent and the POMDP model.

6.1 Estimation of the Hyper-Parameters j and�

To sample stimuli resembling those presented in the human
experiment, the hyper-parameters j and ρ must be estimated
from a set of simulated experimental subjects modelled on
the human experiment data.

During the simulation, each simulated participant i first
maps the simulated stimuli in their psychological continuum
by using the mapping function M from Eq.15 with their
parameters �e∅

i = {d ′e∅
i , ce∅i }, for easy stimuli, and �h∅

i =
{d ′h∅

i , ch∅
i }, for hard stimuli, computed from the collected

human datawithin the control (no feature) condition by using
the formula provided in Sect. 5.1.2. Their decision making
process is then simulated using Eq.15.

After “perceiving” and “evaluating” each simulated stim-
ulus sample, a set of simulation outcomes (hit, miss, false
alarm, correct reject) is determined for each simulated partic-
ipant, which are then computed into the relevant parameters
d ′ and c as described in Sect. 5.1.2. These simulation out-
comes are used to determine an estimation for the control
(no feature) condition parameters achieved during the sim-

ulation: �̃e∅ = {d̃ ′e∅, c̃e∅} and �̃h∅ = {d̃ ′h∅
, c̃h∅}. The

similarity �∅
sim ≈ �∅

exp of these parameters is then eval-
uated using the loss function L:

L =
n∑

i=1

1

n

√

(d ′e∅
i − d̃ ′e∅

i + d ′h∅
i − d̃ ′h∅

i + ce∅i − c̃e∅i + ch∅
i − c̃h∅

i )2

(18)

The optimal hyper-parameters j∗ and ρ∗ used during the
computational simulations are those that minimise L . In the
present work, the optimal values are j∗ = 0.4 and ρ∗ = 0.2,
leading to the sub-regions depicted in Fig. 11.

6.2 Proposed Computational Models

Three types of models were compared using the compu-
tational simulations: control model, random model, and
POMDP model. Each model represents a function that will
predict the next action of the agent.

6.2.1 Control Model

The control model sees the agent present a consistent inter-
face across all trials. Specifically, the simulated agent does
not provide any additional feature to the simulated partici-
pants.As such, thementalmodel of the simulated participants
is always realised by considering the parameters�e∅ and�h∅
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for the easy and hard stimuli, respectively, as estimated from
the collected human data.

6.2.2 RandomModel

The random model selects the next feature (i.e. no feature,
disclaimer, or more information) randomly from a uniform
distribution. Therefore, the mental model of the simulated
participant depends on the feature and difficulty level of the
presented stimulus as per the parameters � estimated from
the collected human data. This model reflects the human
experiment (see section 4), where participants observed ran-
domised agent features sampled from a uniform distribution.
In the presentwork, the random sequencewas the same for all
participants to better compare the outcome of the simulated
computational models. Since this is a computational simula-
tion experiment, participant fatigue and order effects are not
relevant. As such, there is no requirement to counterbalance
the order of presentation for the simulated stimuli.

6.2.3 POMDPModel

This model makes use of a POMDP framework to determine
the next feature to present to the simulated participants. In this
case, the mental model of the simulated participant depends
on both the presented feature and the difficulty level of the
presented stimulus as per the parameters � estimated from
the collected human data. These parameters are used by the
simulation to determine the final decision of the simulated
participant. However, these parameters (including the diffi-
culty level) are not known by the POMDP models used to
infer the state of each simulated participant.

In the POMDP condition, every simulated participant
starts with the same POMDP model using priors estimated
from a subset of the collected human data as described in
Sect. 3.2. This subset is defined by the training set of the cur-
rent fold and is used to train and test the model during that
iteration (see cross-fold validationmethodology in Sect. 6.2).
However, every POMDPmodel evolves distinctively for each
participant based on their ongoing decision making process
and outcomes and the online learning process described in
Sect. 3.3. The sequence of presented features for each partic-
ipant is then defined by the ongoing training of the POMDP
model, which aims to improve its policy to select the best
feature at each time point for the considered subject.

Implementation of POMDP model
In the present work, the POMDP model is implemented as
follows
States S refers to trust levelwith the considered interval range
[0,1]. In this study were considered three equally sized dis-
crete levels within this range: Low, Moderate, and High.

Actions A refers to the implementation of an agent feature
during collaboration. There are three considered actions as
per the features considered in the human experiment: No
Feature Implemented, Disclaimer Feature Implemented and
Request for More Information Implemented.
Observations � refers to the SDT parameter observation
measured at every time step using the decisions made on
the samples presented during the training batches so far (see
Sect. 5.2 for an explanation of the samples presentation). This
is the measure observed on behalf of user trust. Specifically,
previous work highlights a relationship between user percep-
tion of an agent, decision making, and trust during HAC [17,
21, 22, 30, 31, 58]. SDTparameter c is used as c offers an ana-
logue of β, with β considered in indicator of user trust that
is unaffected by changes in d ′ [54]. The considered inter-
val range of c [−2.32, 2.32] was considered for this study
and divided into five equally sized discrete levels: Very Low,
Low,Moderate, High, Very High. This interval range defines
98% of the probability covered by the Gaussian distribution
along the psychological continuum.
State transitions conditional probabilities T defines the prob-
ability of the next state being s′ given the previous state s
and selected action a. The prior for this transition matrix T
is estimated by using the training human data for each fold
generated by the cross fold validation process (see Sect. 6.3).
Specifically, linear regressions between self reported user
trust and SDT parameter c measured during the control
conditions of human experiment were used to estimate the
parameters to regress an underlying state s from a given
observation of the measured c. The estimated states s and
s′ were then used to model the conditional probability priors
as explained in Sect. 3.2. This regression was used given a
demonstrated linear relationship between user trust and SDT
c [22]. The regression parameters were only computed for
the control conditions “no feature easy” ce∅ and “no feature
hard” ch∅ in order to consider the impact of task difficulty
on user trust. However, for the process of priors estimation,
these regression parameters were considered to predict an
underlying state s from a measure c for all the considered
experimental conditions. Although this choice may lead to
priors unable to accurately predict the underlying state in
each considered condition, those priors are further updated
during the test stage as explained in Sect. 3.3. This estima-
tion is only performed by using the data gathered from the
training population (i.e. 90%) of each fold and it is solely
used to generate a common prior for the matrix T to use as a
starting point for all the simulated test participants.
Observations conditional probabilities O is the probability
matrix for the observations. The prior for this matrix is com-
puted with a process similar to that used to estimate the prior
for the matrix T and described in Sect. 3.2, namely by using
the linear regression parameters mapping values of c to trust
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levels s′. This prior was computed by only using the data
gathered from the training population (i.e. 90%) of each fold.
Reward values � is the set of rewards considered for the
POMDP model. These rewards are calculated by computing
the difference in accuracy �A obtained by comparing the
measured accuracy levelA achieved in the previous training
batch with the measured accuracy level A′ achieved in the
current training batch:

�A = A′ − A (19)

Accuracy is measured as the number of hits and correct
rejections over the total number of presented samples in the
training batch. The reward value is allocated based on the
function R(�A) described below:

R(�A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3 if �A < −0.1

−2 if − 0.1 ≤ �A < −0.05

−1 if − 0.05 ≤ �A < −0.01

0 if − 0.01 ≤ �A < 0.01

+1 if 0.01 ≤ �A < 0.05

+2 if 0.05 ≤ �A < 0.1

+3 if �A ≥ 0.1

(20)

Value function discount factor γ ∈ [0, 1) is the discount
factor for the value function. The present study considers
γ = 0.95 and a horizon H = 1, meaning that the POMDP
model only looks one step ahead from the interaction when
making a prediction.

Online learning discount factor γr ∈ [0, 1] is the discount
factor for the learning process of the reward function. The
present study considers γr = 1.

Learning rate α ∈ (0, 1] is the learning rate for the update
process of the reward function. The present study considers
α = 1.

6.3 Method

A 10-fold cross-validation method was implemented to train
the POMDPmodel and determine the next best agent feature
to display. The application of k-fold cross-validationmethod-
ologies in applied machine learning is commonly used to
compare and select the bestmodel for a given predictivemod-
elling problem as cross-validation methodologies are simple
to understand, easy to implement and result in skill estimates
that generally have a lower bias than other methods [40].
Cross-validation is a technique used to evaluate predictive
models by partitioning the original sample into a training
phase to train the model, and a test phase to evaluate it. In
k-fold cross-validation, the original sample is randomly par-
titioned into k equal size sub-samples. Of the k sub-samples,

a single sub-sample is retained as the validation data for test-
ing the model, with the remaining k−1 sub-samples used as
training data. The cross-validation process is then repeated
k times (i.e. the number of folds), with each of the k sub-
samples used exactly once as the validation data. The results
from the folds can then be averaged (or otherwise combined)
to produce a single estimation. The advantage of this method
is that all observations are used for both training and vali-
dation, and each observation is used for validation exactly
once.

6.3.1 Stimuli Presentation and Learning Process

Throughout the experimental task, the presented simulated
stimuli are divided into training batches and test batches. The
stimuli in the training batches are stimuli for which the label
(i.e. pneumonia or not pneumonia) is known by the agent,
whereas the test batches are stimuli for which the label is
not known by the agent. However, the label is known by
the computational model to compute the final task accuracy
used to run the comparative analyses. The test batches and
training batches each contain 10 stimuli samples and these
are alternated throughout the experimental task. Every epoch
includes a test batch and a training batch, thus each epoch
is composed of a total of 20 stimuli samples. During each
epoch, the same agent feature is presented to the simulated
participants for all the epoch’s stimuli samples. When pre-
sented with the test stimuli from the test batch, the simulated
participant is asked to classify a set of simulated stimuli and
the decisions made on these samples are used to estimate the
participant’s task accuracy for the current epoch.

The learning process occurs after the presentation of stim-
uli in the test batch. The training batch sees the presentation
of stimuli with labels known by the agent implementing the
POMDP model. These stimuli are used to estimate the cur-
rent parameter c of the participant, with c used as an indirect
observation ω of the participants hidden trust state [22]. The
training samples are also used to estimate the participant
accuracy A at time t . This is compared to accuracy A over
the training samples at time t − 1 to determine a reward
for the current time t (see the reward function described
in Sect. 6.2.3). Given the observation ct computed by con-
sidering the participant’s outcomes on the training samples
presented up to time t and the action at−1 at time t − 1, the
belief state and reward function of the participant’s POMDP
model are updated to predict the new action at+1 to present to
the participant during the next epoch (i.e. at time t + 1). The
conditional probabilities T and O are also updated accord-
ingly to the process described in Sect. 3.3.

As mentioned in Sect. 6.2, in the case of the control model
the selected action will always result in the selection of
no additional features; whereas for the random model, the
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selected action will always be randomly selected to be the
same for all the simulated participants.

For each cross-fold validation process a set of stimuli with
known and unknown labels were sampled to generate the set
of training and test batches to present during the consid-
ered epochs. Each simulated participant evaluated the same
set of training and test stimuli throughout the experimental
task with the three considered models (control, random and
POMDP). The test stimuli were sampled according to the
parameters used in the human experimental study. Namely,
the probability of sampling an image with label “pneumonia
present” was 50% and the probability of the agent provid-
ing a correct recommendation for each sampled image was
60%. The training stimuli considered a correct recommen-
dation level from the agent of 50% to prevent biases when
estimating c as an indirect observation ω of the underlying
trust level s. The probability of a hard or easy X-ray sample
in training and test stimuli is indirectly modelled by the esti-
mated ratio parameter ρ∗. For the simulations, a total of 100
epochs were considered. Therefore, a total of 1000 samples
were used for the training batches and 1000 samples for the
test batches.

7 Results

The results from each validation set of the cross fold vali-
dation process were gathered and combined together. Here,
accuracy refers to the ability for participants to correctly clas-
sify the test stimuli into their correct label (i.e. “pneumonia
present” or “no pneumonia present”). Paired-samples t-tests
with Bonferroni adjusted α = 0.025 to control for inflated
Type I error were run for average and cumulative accuracy to
determine whether there were statistically significant mean
differences between the three computational models. Finally,
a one-way repeatedmeasures ANOVAwas run to assess final
task accuracy across all three computationalmodels. Data are
mean ± standard deviation, unless otherwise stated.

7.1 Average Accuracy by Epoch

Average accuracy refers to the accuracy achieved by the
whole participant population for each proposedmodel within
the test batch of each epoch. The average accuracies by epoch
for the three conditions are visually represented in Fig. 12.1

Average accuracy was higher for the POMDP model (0.63
± 0.09) compared to the Control model (0.58 ± 0.09), a
statistically significant difference of 0.05 (97.5% CI [0.04,
0.05]), t(99) = 32.89, p<0.001, d = 3.29—a small effect size.

1 Due to space limitations in the bar chart, the figure displays the results
of every 10 epochs. However, the statistical analyses consider all 100
epochs.

Fig. 12 Average accuracy of each model by epoch, with each col-
umn representing every 10 epochs. Statistics were computed on all 100
epochs

Accuracy was also higher for the POMDPmodel when com-
pared against the Randommodel (0.55± 0.09), a statistically
significant difference of 0.08 (97.5% CI [0.07, 0.09]), t(99)
= 30.56, p <0.001, d = 3.06—a small effect size. Finally,
accuracy was higher for the Control model when compared
against the Random model, a statistically significant differ-
enceof 0.03 (97.5%CI [0.03, 0.04]), t(99)=18.21, p<0.001,
d = 1.82—a small effect size.

7.2 Cumulative Accuracy by epoch

Cumulative accuracy refers to the development of task accu-
racy over each test batch of each epoch for the whole
participant population and thus, represents how task accuracy
evolves for each model over time. At each epoch, the current
cumulative accuracy was computed as the average accuracy
achieved by the participant population when considering the
outcomes over all the presented test stimuli for each model.
Cumulative accuracy was higher for POMDPmodel (0.61±
0.01) compared to Control model (0.57 ± 0.01), a statisti-
cally significant increase of 0.04 (97.5% CI [0.04, 0.04]),
t(99) = 35.15, p <0.001, d = 3.52—a small effect size.
Cumulative accuracy was also higher for the POMDPmodel
when compared against the Random model (0.54 ± 0.01),
a statistically significant increase of 0.07 (97.5% CI [0.07,
0.07]), t(99) = 60.66, p <0.001, d = 6.07—a medium effect
size. Finally, cumulative accuracy was higher for the Con-
trol model compared to the Random model, a statistically
significant increase of 0.03 (97.5% CI [0.03, 0.03]), t(99) =
70.76, p <0.001, d = 7.08—a moderate effect size. These
differences are highlighted in Fig. 13.
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Fig. 13 Cumulative accuracy of each model throughout the simulation
experiment

Fig. 14 Average final task accuracy across all participants for each
computational model is presented, including 95% confidence intervals

7.3 Final Task Accuracy by Participants

Final task accuracy refers to the accuracy achieved by each
participant at epoch 100with eachmodel. This represents the
final accuracy of the participant population at the end of the
simulated HAC task. A one-way repeated measures ANOVA
was conducted to determine whether there were statistically
significant differences in final task accuracy between the
three simulated collaborative system models. The assump-
tion of sphericity was violated, as assessed by Mauchly’s
test of sphericity, χ2(2) = 31.49, p <0.001. Therefore, a
Greenhouse-Geisser correction was applied (ε = 0.808).
The inclusion of the models elicited statistically significant
changes in final task accuracy, F(1.62, 189.06) = 27.81, p
<0.001, partial η2 =.19. Accuracy was lowest for the Ran-
dommodel (M = 0.55, SD = 0.16). Pairing participants with
theControlmodel improved accuracy (M =0.58, SD =0.19).
However, pairing participants with the POMDP model had
the highest accuracy outcome (M = 0.63, SD = 0.17). Means
of the final task accuracy of each model is depicted with
95% confidence intervals in Fig. 14. Post-hoc analysis with

a Bonferroni adjustment confirms the significance of these
differences, whereby final task accuracy improved statisti-
cally significantly from the Random model to the POMDP
model (M = 0.08, 95% CI [0.06, 0.10], p <0.001), the Con-
trol model to the POMDP model (M = 0.05, 95% CI [0.02,
0.08], p =.001), and from the Random model to the Control
model (M = 0.03, 95% CI [0.01, 0.06], p =.015).

8 Discussion

A simulation experiment was run to assess the impact of
implementing three different decisionmakingmodels on task
accuracy during a HAC task. There was a control model
which did not include the implementation of any additional
agent features, a random model which saw the random
presentation of agent features across the simulation, and a
POMDP model which based agent decision making on the
defined POMDP framework outlined in section 6.2.3. The
participants, task, and stimuli were simulated (as detailed
in Sect. 5), with parameters based off the human experi-
ment (see Sect. 4). Evidence demonstrates that the proposed
POMDP model can appropriately adapt agent features in-
task based on human trust belief estimates in order to achieve
trust calibration. Specifically, task accuracy is highest with
the POMDP model, followed by the control and then the
random model. This emphasises the importance of trust cal-
ibration, as agents that lack considered design to implement
features in an appropriateway canbemore detrimental to task
outcome compared to an agent with no additional features.

8.1 POMDPModel is Most Accurate

The underlying result of the simulation experiment suggests
that the POMDP model, which worked to identify the best
agent feature to present to each participant at every time point
during a HAC task, resulted in greater task accuracy overall
when compared against the random and control models. In
particular, this result was seen for the POMDP model across
average accuracy, cumulative accuracy, and final task accu-
racy.

When assessing average and cumulative accuracy, the
POMDP model achieved higher accuracy compared to the
control model and the random model. This is further empha-
sised with the results for final task accuracy, which demon-
strated that the POMDP model had the best performance
overall, followed by the control model and then the ran-
dom model. This provides evidence to suggest that trust
calibration through the implementation of agent features
via a POMDP model leads to improved task performance.
Furthermore, the result highlights the fact that the random,
non-considered implementation of agent features can lead
to worse task outcomes during HAC compared to a control
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model (i.e. an agent that presents no additional features over
the course of collaboration). This underscores the importance
of a considered, user-specific approach when implementing
agent features in attempt to improve the outcome of HAC.
In particular, this was achieved in the present work using a
POMDPmodel incorporatedwith an SDTmodel to infer user
trust in order to select agent features in-task to calibrate user
trust during collaboration.

8.1.1 Trust Calibration Can be Achieved for an Agent with
Intuitive Changes To The Interface

In this work, there is the assumption that there is an optimal
position of the threshold criterion c∗ for each participant that,
when achieved, leads to optimal task accuracy. There is a rela-
tionship between optimal trust level τ ∗ and the parameter c∗.
For every participant, the POMDPmodel presents the feature
that is predicted to result in the best collaborative decision
making between the human and the agent. Notably, themodel
is not directed towards maximising user trust, rather its goal
is to maximise task outcome by identifying an optimal trust
level τ ∗ via a trust calibration process that can implement
an optimal value for the parameter c∗ leading to the high-
est task accuracy for each participant. Thus, every POMDP
model is user-specific, with the POMDP model for each par-
ticipant converging to a unique interface in order to optimise
task outcome for them. This provides evidence to support
the importance of personalisation when designing for col-
laborative agents, a concept generally acknowledged in the
HAC literature [32, 33, 42, 45], reinforcing the considera-
tion of the user as well as the technology and environment
when considering humans and agents working together [19].
Rather than design an interface that works, on average, for a
group of people or specific population, a collaborative agent
should have the capacity to select the most ideal interface for
each individual user. In particular, this interface may con-
tain no additional features, one specific feature, or even a
combination of features integrated together.

8.1.2 Calibrating Dynamic Trust in Task

Trust calibration in the present work is applied to dynamic
trust. In this context, dynamic trust refers to the trust inferred
in-task and is assessed at each time step over the course of the
interaction. This work sought to investigate whether the out-
come of HAC could be improved by discretely influencing
dynamic trust at each of these time steps via the implemen-
tation of agent features determined by the POMDP model.
The outcome of the simulation experiment demonstrate that
this is possible, highlighting the importance of intelligently
implementing agent features to do so. Taken together, regard-
less of the stable, conscious perception of trust an individual
has toward a collaborative agent, it is possible to calibrate

their dynamic trust in-task through the intelligent implemen-
tation of agent features in order to optimise the outcome of
collaboration.

8.2 Application of SDTModel within Trust
Calibration Framework for HAC

The application of SDT modelling within a trust calibration
framework is novel. SDT modelling can be used to deter-
mine participant sensitivity d ′ and bias c (used to infer user
trust) when assessing user decision making with a collabo-
rative recommender system. Further, the application of the
SDTmodel in the present work is also novel. Themodel used
considers the users ability to detect signal and noise, referring
to a correct and incorrect recommendation from the agent,
respectively. This framing differs tomore classic applications
of SDTwhere the signal is often considered as the presence of
a target within a stimulus (i.e. the presence of viral pneumo-
nia within an X-ray image). The POMDPmodel, which used
parameters modelled from SDT applied to detection of cor-
rect/incorrect agent recommendations, resulted in the highest
task accuracy of all considered computational models across
all accuracy measures. As such, the novel use of SDT within
the identified trust calibration framework results in improved
task outcome and should be considered for future work on
trust calibration with collaborative recommender systems.

8.3 Performing this Methodology in a Different
Application Domain

The methodology outlined in the present work has been
designed to be implemented in different application domains.
There are four underlying assumptions that must be met in
order to do so:

i. The HAC taskmust be a binary decisionmaking task (e.g
a Yes-No task).

ii. The data set used must include a portion of samples with
known labels.

iii. A collaborative agent recommender systemmust provide
a recommendation for one of the two presented classes
(a requirement in order for a participant to accept/reject
the recommendation of the agent).

iv. Adaptive features included in the methodology vary the
interaction between collaborative agent and human.

If these four assumptions are met, the following steps can
be followed in order to assess the impact on task accuracy
of including certain adaptive features within a collaborative
recommender system context:
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1. Run a human study with the separate features as con-
ditions that are presented together in random order. See
Sect. 4 for an example.

2. Apply SDTmodelling to the outcome of participant deci-
sion making. Specifically, the SDT model of interest is
the one applied to the participants appraisal of the agent
recommendations. See Sect. 5 for details.

3. Estimate the following parameters for the simulation
experiment: � (Sect. 5.1), POMDP priors (T , O and R,
Sects. 3.2 and 6.2.3), hyper-parameters j and ρ (Sects. 5.2
and 6.1).

4. The POMDP model is applied to the simulation exper-
iment with simulated participants in order to assess the
model’s ability to calibrate user trust over the task. This
is compared against a random and control computational
model.

5. The POMDPmodel performance is evaluated using com-
parative analyses: results in a significantly higher task
accuracy.

i. If thePOMDP leads to a significantly higher task accu-
racy, the features and parameters included within the
model can be considered for implementation in a real
world application in order to assess the efficacy and
generalisability of the model. This trust calibration
assessment is completed with human participants in a
laboratory or “in the wild” using a similar methodol-
ogy (i.e. implementation of training and test batches).

ii. If the POMDP does not lead to a significantly higher
task accuracy, experimenters are encouraged to go
back to the first step to run additional human stud-
ies investigating different agent features.

9 Limitations and FutureWork

The model considered in the present work has been devel-
oped for a recommender system which is a decision domain.
In this context, the agent only makes a recommendation,
with the final action still being taken by the human. With
decision domains, the humans’ interaction with the agent is
characterised by trust and reliance when presented with a
recommendation. However, action domains should be dis-
tinguished from decision domains [4]. In an action domain
context, the agent will be given the opportunity to take
action on a task unless the human collaborator intervenes.
The human collaborator is required to continuously monitor
the agent, with non-action interpreted as reliance and action
resulting in intervention to take over control, with examples
of this including power plant operation, aircraft autopilot,
and self-driving cars. Thus, while the current work provides
evidence for the use of POMDP frameworks for decision

domains in HAC, the evidence provided is limited in its abil-
ity to generalise across all HAC applications.

Additionally, the use of data from the human experiment
detailed inSect. 4 resulted in a limited simulation experiment.
While participant behaviour and stimuli were simulated for
the current work, the specific agent features used in the pre-
vious human experiment were kept consistent. Each feature
had a specific influence on user perception and trust in task,
with this influence dependent on task difficulty. Moving for-
ward, it would be valuable to introduce additional features
with distinct influences on user trust, with both simulated
features and features modelled off real-world data offering
unique insight. In particular, varying the number of included
features with distinct influence, as well as combinations of
included features, and assessing the resulting impact on task
accuracy to determine a ceiling effect for feature inclusion
would be a welcomed contribution to the trust calibration
literature for HAC.

Furthermore, the present work had pre-set parameters for
agent accuracy and proportion of task difficulty, as defined
by the human experiment. Future work will benefit from
re-running the simulation experiment varying agent accu-
racy between 0 and 100% and proportion of task difficulty
between 0 and 1. The outcome of these simulations would
result in an accuracy matrix that would be a beneficial ref-
erence for the implementation of trust calibration within
HAC. Finally, while further simulation studies would help
to improve the current understanding of POMDP models for
trust calibration in HAC, this assessment would benefit from
the addition of supplementary evidence from human studies
conducted both in a laboratory context and in the wild.

10 Conclusion

The results of the presented simulation experiment provide
evidence for the use of a POMDP model for trust calibration
during dyadic HAC between a human and a collaborative
agent recommneder system. The application of SDT mod-
elling in this framework is novel, offering an innovative way
of inferring user trust during HAC to be incorporated in
the POMDP model. Step-by-step instructions are provided
to apply the experimental methodology to different applica-
tion domains, offering a beneficial contribution to industry
regarding the identification and assessment of potential agent
features across a variety of agents and tasks. Taken together,
the outcomes of this research are positive and much needed
additions to the understanding and development of trust cal-
ibration frameworks within HAC contexts.
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