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ABSTRACT
The initial acquisition of calcium carbonate polymorphs (aragonite and calcite) at the 

onset of skeletal biomineralization by disparate metazoans across the Ediacaran-Cambrian 
transition is thought to be directly influenced by Earth’s seawater chemistry. It has been 
presumed that animal clades that first acquired mineralized skeletons during the so-called 
“aragonite sea” of the latest Ediacaran and earliest Cambrian (Terreneuvian) possessed 
aragonite or high-Mg calcite skeletons, while clades that arose in the subsequent “calcite 
sea” of Cambrian Series 2 acquired low-Mg calcite skeletons. Here, contrary to previous 
expectations, we document shells of one of the earliest helcionelloid molluscs from the basal 
Cambrian of southwestern Mongolia that are composed entirely of low-Mg calcite and formed 
during the Terreneuvian aragonite sea. The extraordinarily well-preserved Postacanthella 
shells have a simple prismatic microstructure identical to that of their modern low-Mg cal-
cite molluscan relatives. High-resolution scanning electron microscope observations show 
that calcitic crystallites were originally encased within an intra- and interprismatic organic 
matrix scaffold preserved by aggregates of apatite during early diagenesis. This indicates 
that not all molluscan taxa during the early Cambrian produced aragonitic shells, weaken-
ing the direct link between carbonate skeletal mineralogy and ambient seawater chemistry 
during the early evolution of the phylum. Rather, our study suggests that skeletal mineralogy 
in Postacanthella was biologically controlled, possibly exerted by the associated prismatic 
organic matrix. The presence of calcite or aragonite mineralogy in different early Cambrian 
molluscan taxa indicates that the construction of calcium carbonate polymorphs at the time 
when skeletons first emerged may have been species dependent.

INTRODUCTION
Changes in the CaCO3 polymorphs (arago-

nite and high- and low-magnesium calcite) in 
abiotic marine cements, ooids, and hypercalcify-
ing reef builders and sediment producers have 
been suggested to have vacillated throughout 
Earth’s history with the secular variation of sea-
water ion compositions, particularly the magne-
sium/calcium molar ratio (mMg:Ca) (Stanley, 
2006; Ries, 2010). However, the effect of oscil-

lating seawater chemistry on CaCO3 polymorphs 
of metazoan skeletons formed by organically 
mediated biologically controlled mineralization 
(BCM) remains elusive. Porter (2007, 2010) 
proposed that the initial selection of aragonite 
and calcite polymorphism was directly influ-
enced by the chemical condition of oceans at 
the time when skeletal animals first emerged in 
the Cambrian “explosion”. This hypothesis was 
supported by paleontological evidence, given 

that the earliest carbonate small shelly fossils, 
which represent a wide range of Ediacaran and 
earliest Cambrian (Terreneuvian) animal phyla, 
are interpreted to have been originally composed 
exclusively of high-Mg calcite or aragonite, 
formed in a favorable aragonite sea (mMg:Ca 
>2). Low-Mg calcitic skeletons are perceived 
to have appeared slightly later but rapidly rose 
to dominance in the subsequent calcite-sea envi-
ronment (mMg:Ca <2) (Zhuravlev and Wood, 
2008; Maloof et al., 2010; Wood and Zhurav-
lev, 2012; Murdock, 2020). Quantitative obser-
vations of molluscan mineralogy in the early 
Cambrian show a similar trend (Vendrasco et al., 
2016; Li et al., 2017). Geochemical evidence 
(e.g., fluid inclusions, calcium isotope [δ44Ca] 
and strontium [Sr] content data) and statistical 
analyses of skeletal mineralogy suggests that 
the dramatic shift of seawater chemistry from 
the Terreneuvian aragonite sea to the subsequent 
calcite sea occurred around Cambrian Stages 3 
and 4 (Brennan et al., 2004; Wei et al., 2022) 
(Fig. 1A).

However, contrary to previous studies that 
considered that all molluscan taxa produced an 
aragonitic shell in the earliest Cambrian, we con-
firm the existence of low-Mg calcitic mollusc 
shells at the time of the Terreneuvian aragonite 
sea. The extraordinarily well-preserved shell 
organic matrix (SOM) that regulated biomin-
eralization is also discovered among Cambrian 
molluscs for the first time, which permits precise 
reconstruction of the shell microstructure and 
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recognition of its original calcitic constituents 
on different microscopic scales.

MATERIALS
Hundreds of phosphatic internal mold spec-

imens identified as the helcionelloid mollusc 
Postacanthella voronini Zhegallo by Esakova 
and Zhegallo (1996) (Figs. 1B and 1C) were 
recovered from the Cambrian Terreneuvian Bay-
angol Formation at Bayan Gol in the Zavkhan 
Basin, southwestern Mongolia (Topper et al., 
2022). All specimens occur within the Purella 
shelly biozone of the measured BAY2 section 
(46°42’11.0"N, 96°18’44.5"E) in southwestern 
Mongolia, equivalent to the Purella antiqua 
assemblage biozone in Siberia, upper Fortu-
nian, ca. 535 Ma, formed during an aragonite 
sea (Kouchinsky et al., 2017). Helcionelloids 
are widely considered as a stem group of shell-
producing conchiferan molluscs (e.g., Thomas 
et al., 2020), and the simple cap-shaped shells 
of Postacanthella represent one of the earliest 
members of helcionelloids from the basal Cam-
brian (see the Supplemental Material1 for geo-
logical settings and methods).

RESULTS
Our scanning electron microscope (SEM) 

observations show that Postacanthella shells 
were composed entirely of a prismatic micro-

structure and associated SOM was exquisitely 
replicated by aggregates of apatite during early 
diagenesis. The three-dimensional inter- and 
intraprismatic organic framework of Postacan-
thella (Fig. 2D) is closely comparable to that 
of modern Pinctada shells in which encased 
calcitic polycrystallites have been partly dis-
solved during laboratory decalcification but 
acid-resistant SOM is preserved (Fig. 2B). The 
only minor difference is that the interprismatic 
organic envelope surrounding a mineral prism 
in Postacanthella is much smaller in size (rang-
ing 1–10 μm in diameter) (Fig. 2C) relative to 
columnar prisms (megaprisms, >10 μm in diam-
eter) of Pinctada (Fig. 2A).

The interprismatic organic membrane in 
Postacanthella is ∼0.5 μm thick. On the mem-
brane surface, organic growth increments 
(lines) are visible, and numerous longitudinal 
short, straight, and incomplete segments devel-
oped (Figs. 3A and 3D). Many small incipient 
prisms, ∼1 μm in diameter, occur adjacent to 
the thick interprismatic organic membrane of 
large prisms. Small prisms tend to disappear 
toward the internal surface of the shell due to 
crystal growth competition with large prisms 
(Fig. 3 M). Mineral prisms are more or less 
polygonal in cross section, vertical to highly 
reclined, parallel mutually, and tightly adjacent 
to each other (Fig. 3B). Each columnar prism 
consists internally of second-order structural 
subunits, originally encased within a relative 
thin layer of organic sheath and parallel to the 
long axis of the prism (Figs. 3E–3G and 3I–3L). 
Large mineral prisms are separated by sinu-

ous and tortuous intraprismatic organic mem-
branes, reminiscent of the calcitic polycrystal-
line prisms seen in Pinctada (Figs. 3C and 3H). 
Furthermore, well-defined polygonal textures 
are very common on the surface of our speci-
mens (Fig. 3P). The polygons, each ∼10 μm in 
diameter and slightly convex and cell-like, com-
monly exhibit intricate interdigitating margins 
that correspond closely to the short and incom-
plete segments of thick interprismatic organic 
wall of SOM (Figs. 3N and 3O).

DISCUSSION
Microstructure, Mineralogy, and Organic 
Matrix

It has been extensively recognized that 
microstructural details of Cambrian mol-
lusc shells can be preserved on the surface of 
phosphatic internal molds (Runnegar, 1985; 
Vendrasco et al., 2016; Li et al., 2017). Many 
microstructures, such as prismatic and crossed-
lamellar fabrics that are commonly observed in 
modern representatives, have been documented 
from early Cambrian molluscan taxa (Vendrasco 
et al., 2010; Li et al., 2022). However, the self-
assembled SOM, which directs crystal growth, 
polymorphism, crystallography, and orientation, 
has never been documented from the Cambrian, 
most likely because of diagenesis that obscures 
these intricate features. The SOM, incorporated 
within the mineral phase, generally accounts for 
<5% of shell weight and plays a key role in con-
trolling the entire calcification process (Marin 
et al., 2012). But the labile proteinaceous SOM 
easily decomposes and generally disappears 

1Supplemental Material. Geological settings 
and methods. Please visit https://doi .org /10 .1130 /
GEOL.S.21191092 to access the supplemental material, 
and contact editing@geosociety.org with any questions.

Figure 1. Changes in 
metazoan skeletal min-
eralogy in oscillating 
seawater conditions 
across the Ediacaran-
Cambrian transition. (A) 
Animal skeletal miner-
alogy from Wood and 
Zhuravlev (2012) (top); 
mollusc data from Li 
et al. (2017) (middle); and 
constraints on seawater 
chemistry derived from 
Porter (2007) (bottom). 
Boxes denote fluid inclu-
sions in marine evaporite 
deposits; dashed line 
denotes the possible 
turning point of seawater 
chemistry from the Terre-
neuvian aragonite sea to 
subsequent calcite sea. 
E—Ediacaran; Fort—For-
tunian. (B) Specimen NRM 
Mo196849 showing pres-
ervation of phosphatic 
infillings (white arrow), 
prismatic organic matrix 
(yellow arrow), and deli-
cate polygonal textures 
(black arrow) on the sur-

face of the internal molds. (C) Specimen NRM Mo196850 showing overall morphology of Postacanthella voronini.
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during complex diagenetic processes and thus 
is rarely fossilized. Laboratory experimental 
diagenesis has also showed that post-mortem 
diagenetic alterations start immediately after 
burial, with organic degradation within skel-
etons followed by a series of fluid-solid inter-
actions through time (Pederson et al., 2019). 
Direct physical evidence of preserved SOM in 
fossil shells has so far been reported only from 
much younger Mesozoic and Cenozoic deposits 
(Clark, 1999; Myers et al., 2018).

Specimens from southwestern Mongolia 
demonstrate, however, that it is possible for the 
SOM to be preserved in delicately phosphatized 
early Cambrian calcareous shells. Although pris-
tine organic compounds, isotopic signature, and 
encased primary crystallites cannot survive 
after decay and diagenetic overprinting, their 
morphological features, e.g., shape, size, and 
arrangement, can be precisely replicated by 
phosphate and preserved (to microscopic lev-
els) on the surface of phosphatic internal molds. 
The well-preserved SOM documented here indi-

cates that Postacanthella shells had a prismatic 
microstructure.

Prismatic microstructure commonly forms 
the external shell layer and muscle attachment 
layer (myostracum) in molluscs. Previous stud-
ies of Terreneuvian molluscs showed preser-
vation of polygonal textures and fiber and/or 
lath-shaped substructural units on the surface 
of internal molds, which were considered to be 
formed by a spherulitic prismatic microstruc-
ture, made up of aragonite, from the external 
layer of associated shells (Runnegar, 1985; Ven-
drasco et al., 2010). Our study further demon-
strates that these delicate polygons are produced 
by interprismatic organic envelopes of colum-
nar prisms. But differently, in Postacanthella, 
second-order lath-like building blocks coated 
by organic sheaths tend to be parallel to the long 
axes of prisms rather than in a radiating or fan-
like pattern of spherulitic prisms, thus indicating 
a typical simple prismatic microstructure.

In mollusc shells, simple prismatic micro-
structure may be composed of either aragonite 

or calcite in monocrystalline or polycrystalline 
forms (Cuif et al., 2020). Of these, aragonitic 
prisms are commonly characterized by an initial 
central zone with divergent elongated crystal-
lites at the periphery (Dauphin et al., 2020). 
These resemble spherulitic prisms but clearly 
differ from the mutually parallel building blocks 
of calcitic prisms and from the microstructure 
illustrated herein. In addition, in Postacan-
thella, small incipient prisms contain numer-
ous parallel, lath-like crystals of equal size, 
suggesting a monocrystalline structure, while 
large adult prisms are internally separated by 
tortuous and irregular intraprismatic organic 
membranes, indicating a polycrystalline fab-
ric. This likely occurred because of a gradual 
transition from mono- to polycrystalline cal-
citic constituents along the prisms, also seen 
in the calcitic prisms of living molluscs like 
Pinctada (Checa et al., 2016; Dauphin et al., 
2019). Together, these observations strongly 
indicate a primary low-Mg calcitic composi-
tion of Postacanthella shells.

A

B

C

D

Figure 2. Prismatic organic matrix of Terreneuvian Postacanthella and modern Pinctada shells. (A,B) Digital and scanning electron micro-
scope (SEM) observations of partly decalcified Pinctada prisms showing three-dimensional organic matrix framework (specimen NRM 
Mo196851). (C,D) SEM details of interprismatic and intraprismatic organic matrix of a Cambrian Terreneuvian Postacanthella shell (specimen 
NRM Mo196852). PM—prismatic organic membrane.
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Taxon-Specific Response to Ambient 
Seawater Chemistry

Several studies have highlighted the cor-
relation between seawater chemistry and car-
bonate skeletal mineralogy at the time when 
mineralized skeletons were first acquired in 
particular clades (Zhuravlev and Wood, 2008; 
Porter, 2010). It is assumed that during the initial 
acquisition of a mineralized skeleton, seawater 
chemistry plays a defining role in which a cal-
cium carbonate polymorph is produced by that 
particular lineage. After they initially acquire 
the ability to biomineralize, sophisticated BCM 
metazoans—in contrast to simple hypercalci-
fiers and inorganic carbonate deposits—rarely 
switch mineralogy regardless of seawater ion 
perturbations (Porter, 2010). These taxa are able 
to maintain production of particular carbonate 
polymorphs through time because mineralo-
gies are strictly controlled by the SOM within 

the skeletons, not ambient seawater chemistry, 
especially involving different expressions of 
particular SOM genes that underpin the abil-
ity to counteract changing seawater mMg:Ca 
(Janiszewska et al., 2017).

However, the direct correlation of seawater 
chemistry and carbonate skeletal mineralogy 
early in the history of a clade is not ubiquitous 
(Zhang and Shu, 2021). There is evidence that 
micrabaciids, a lineage of aragonitic scleractin-
ian corals, first appeared during the Cretaceous 
calcite sea (Janiszewska et al., 2017). Addition-
ally, laboratory experiments have shown that 
calcitic bivalves can produce aragonite in a sim-
ulated aragonite sea (Checa et al., 2007) and 
that serpulid polychaetes that inhabit environ-
ments below the carbonate compensation depth 
can continue to precipitate calcitic tissues in the 
modern aragonite sea (Kupriyanova et al., 2014). 
Moreover, temperature may also play a signifi-

cant role by influencing physiological activity 
of skeletogenesis, and aragonitic skeletons have 
formed in warm-water environments in calcite 
seas throughout the Phanerozoic (Morse et al., 
1997; Balthasar and Cusack, 2015). These stud-
ies demonstrate that acquisition of biomineral-
ization pathways is vastly more complex than 
the influence of seawater chemistry on aragonite 
and calcite polymorphism.

Molluscs are exceptional among biocalcify-
ing organisms because of their ability to fabri-
cate elaborate biomineralic microstructures and 
for the controls exerted by the SOM over the 
biocalcification processes (Checa, 2018). Dur-
ing the Terreneuvian aragonite sea, molluscs 
preferred to precipitate aragonite as aragonitic 
prismatic, foliated aragonite, and various regu-
lar-irregular fibrous microstructures (Runnegar, 
1985; Vendrasco et al., 2016; Li et al., 2017). In 
contrast, calcitic shells, represented by foliated 

A B C D
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Figure 3. Calcitic simple prismatic microstructure of Postacanthella. (A) Scanning electron microscope (SEM) images of specimen NRM 
Mo196853 showing overall morphology of Postacanthella voronini. (B,E,F) Small prisms with parallel second-order crystal subunits. (C,H) 
Inter- and intraprismatic organic membranes of large mature prisms. (D) Prismatic organic matrix. (G) Two adjacent small prisms and mutually 
parallel second-order structural subunits. (I–L) Small individual prisms with numerous lath-like second-order subunits encased within organic 
sheaths. (M–P) Well-defined polygonal texture formed by interprismatic organic membranes. PM—prismatic organic membrane.
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calcite and calcitic semi-nacre microstructures, 
first emerged in the subsequent calcite sea of 
Cambrian Stage 3 (Vendrasco et al., 2010). But 
contrary to this general correlation between shell 
mineralogy and seawater chemistry in early 
Cambrian molluscs, our current work demon-
strates the rare occurrence of molluscs capable 
of biomineralizing low-Mg calcitic shells in the 
Terreneuvian aragonite sea. The secretion of a 
prismatic microstructure made up of mono- and 
polycrystalline calcite in Postacanthella was 
strictly controlled and selected by the associ-
ated prismatic organic matrix rather than being 
triggered by the aragonitic chemistry of the sur-
rounding seawater.

It is clear that the initial selection of CaCO3 
polymorphs at the onset of skeletal acquisition 
within a clade cannot be readily ascribed to 
the ambient seawater chemistry. The range of 
calcium carbonate polymorphs present in early 
Cambrian molluscs suggests that while the 
mineralogy of BCM skeletons was influenced 
by seawater chemical compositions, the effect 
may have been species dependent, and further 
attention is needed to study the influence of bio-
logical factors that influence the production of 
carbonate mineralogy.
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