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Studying worked examples impose relatively low cognitive load because learners’ attention 
is directed to learn the schema, which is embedded in the worked examples. That schema 
encompasses both conceptual knowledge and procedural knowledge. It is well-
documented that worked examples are effective in facilitating the acquisition of problem-
solving skills. However, the use of worked examples to develop problem-solving expertise 
is less known. Typically, experts demonstrate an efficient way to solve problems that is 
quicker, faster, and having fewer solution steps. We reviewed five studies to validate the 
benefit of worked examples to develop problem-solving expertise for word problems. 
Overall, a diagram portrays the problem structure, coupled with either study worked 
examples or complete multiple example–problem pairs, facilitates the formation of an 
equation to solve words problems efficiently. Hence, an in-depth understanding of 
conceptual knowledge (i.e., problem structure) might contribute to superior performance 
of procedural knowledge manifested in the reduced solution steps.
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INTRODUCTION

Do we  need to teach students how to develop expertise in mathematical problem solving? If 
so, how can mathematics educators accomplish such a goal? To explore how experts solve 
linear equations, Star and Newton (2009) interviewed eight experts in the domain of algebra 
(e.g., mathematics teachers). Regarding a linear equation, such as 7(n + 13) = 42, one expert 
viewed the division by 7 on both sides as the first step would give “a nice, clean answer.” 
Another expert commented on an inefficient way of using distribution to remove the bracket 
as a first step—“Distributing, I  would have had to deal with fractions and finding common 
denominators and things would not have been as nice” (p.  6). The findings indicate that the 
solution produced by experts is typically fewer steps, faster, and quicker.

Within the framework of cognitive load theory, the objective of the present paper was to 
review prior studies (Ngu et  al., 2009, 2014, 2016, 2018; Ngu and Yeung, 2013) to examine 
the impact of worked examples upon the development of problem-solving expertise for word 
problems. More specifically, we  examined students’ solution strategies to determine evidence 
of problem-solving expertise. Across five studies, we  attributed students’ ability to use a single 
equation to solve a category of word problems with fewer solution steps as the demonstration 
of problem-solving expertise. Furthermore, evidence of problem-solving expertise also includes 
an adaption of the solution procedure of similar problems to solve transfer problems that 
differ slightly from similar problems in terms of problem structure. We will begin by discussing 
differential performance between experts and novices in different domains.
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DIFFERENTIAL PERFORMANCE 
BETWEEN EXPERTS AND NOVICES

The seminal work of De Groot (1965) uncovered differential 
knowledge base of chess configurations between expert and 
novice chess players. When presented with a specific chess 
configuration, the expert chess players relied on schemas that 
contained thousands of chess configurations to guide the best 
move. In contrast, novices lacked appropriate schemas related 
to chess configurations to guide the best move. The findings 
suggest that expertise resides in having schemas, which contain 
domain-specific knowledge for a domain (Tricot and 
Sweller, 2014).

According to Chi et  al. (1981), experts categorized physics 
word problems in accord with a specific principle (e.g., 
conservation of energy). Novices, on the other hand, categorized 
physics word problems based on surface features (e.g., inclined 
planes). In mathematics domain, experts were capable of 
categorizing a group of word problems based on the underlying 
principle or shared problem structure (Silver, 1979). Clearly, 
the findings by Chi et  al. (1981) and Silver (1979) suggest 
that the presence of schemas differentiates problem-solvers’ 
levels of knowledge and therefore levels of problem-
solving expertise.

More recent research has shifted emphasis on the acquisition 
of both conceptual and procedural knowledge as evidence of 
mathematical proficiency (Rittle-Johnson et  al., 2001; Baroody 
et  al., 2007). The conceptual knowledge refers to knowledge 
of the underlying principle that connects interrelated 
mathematical concepts for a specific topic, whereas procedural 
knowledge refers to the application of a sequential actions to 
obtain the solution (Rittle-Johnson et  al., 2001). Hiebert and 
Lefevre (1986) suggested that competence in conceptual 
knowledge assists in the execution of procedural knowledge. 
A review by Bethany Rittle-Johnson et  al. (2015) indicated 
bidirectional relationship between conceptual knowledge and 
procedural knowledge. The gaining of conceptual knowledge 
facilitates the gaining of procedural knowledge and vice versa. 
Accordingly, we would expect an expert in mathematics domain 
to possess a schema that would reflect competence in both 
conceptual knowledge and procedural knowledge specific to 
a topic.

Blessing and Anderson (1996) examined how learners skipped 
steps after having acquired algebraic rules to solve problems. 
Apparently, once novice learners became expert learners, they 
could recognize a specific pattern that allowed them to skip 
intermediate steps mentally and create fewer solution steps. 
An advantage of step skipping performance is that it permits 
expert learners to solve problems more easily, quickly and 
efficiently. Likewise, the experts in geometry proof problems 
could infer from the diagram the whole statement schema 
related to a geometrical shape (e.g., congruent triangles-shared 
side; Koedinger and Anderson, 1990). Then, they used a minimal 
number of identical angles and sides to proof that the two 
triangles are congruent. In short, the step skipping performance 
exhibited by experts reflects the presence of a schema pertaining 
to conceptual knowledge and procedural knowledge. Presumably, 

that schema allows the experts to use conceptual knowledge 
to refine the solutions steps, resulting in fewer solution steps.

Mayer (1985) suggested that the presence of schematic 
knowledge is critical to success in solving word problems. 
Drawing on their schematic knowledge, the problem-solvers 
could select values and variable from the problem text, and 
integrate these in an equation for solution. In other words, 
the ability to identify structural elements (values, variable) from 
problem text and express these in an equation reflects the 
availability of a schema for a category of problems. For example, 
one can use a t-test to solve a category of statistic word 
problems that share a similar problem structure (Quilici and 
Mayer, 1996). Indeed, differential ability to construct a 
mathematics-specific equation to solve word problems is a 
critical factor that differentiates successful and unsuccessful 
problem-solvers (Hegarty et  al., 1995). Successful problem-
solvers were more likely than unsuccessful problem-solvers to 
construct a mathematics-specific equation for generating a 
solution. Hence, the ability to match a problem with a known 
solution path, and use a single equation to solve word problems 
is regarded as the demonstration of problem-solving expertise 
(Blessing and Ross, 1996). While past research has identified 
superior performance of successful problem-solvers on word 
problems, addressing the issue of developing problem-solving 
expertise for word problems is less clear.

Research has examined how novices become experts across 
diverse domains (Ericsson, 2006). Apparently, a substantial 
length of 10 years of practice is required to develop expertise 
across a range of domains, such as music, sports, and so on. 
Ericsson (2006) has recommended the use of deliberate practice 
to gain expertise in a domain. Specifically, the deliberate practice 
activities target a learner’s weakness of a particular aspect of 
the subject matter. For example, the deliberate practice activities 
requiring students to calculate the area of geometrical shapes 
(which was identified as a weak area of students) had improved 
their performance on geometry problems (Pachman et  al., 
2013). Apart from the study by Pachman et  al. (2013), there 
is limited research investigating the development of problem-
solving expertise for word problems. We  argue that learning 
with the aid of worked examples can address such an issue. 
Because the use of worked examples to enhance mathematics 
learning is one of the cognitive load effects, we  will discuss 
the theoretical rationale of cognitive load theory and instructional 
design in the next section.

COGNITIVE LOAD THEORY

Cognitive load theory is an instructional theory that has 
influenced the design of instructions across diverse domains 
(Sweller et  al., 2011). The NSW Department of Education has 
advocated teachers to examine evidence-based research generated 
by cognitive load theory (e.g., worked examples) to improve 
instructional practices in different disciplines, and one of which 
is mathematics education (NSW Education: Centre for Education 
Statistics and Evaluation, 2017). This study will review evidence-
based research to support the use of worked examples to 
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enhance problem-solving skills for word problems across 
mathematics and chemistry curriculum.

Cognitive load theory emphasizes the alignment between 
human cognitive architecture and instructional design to facilitate 
learning. The human cognitive architecture has a long-term 
memory that provides a huge storage for knowledge structure 
in the form of schemas. Most of the schemas are obtained 
from the long-term memory of other people. Early work by 
Miller (1956) indicated that it also has a limited working 
memory that can process seven elements at any given time, 
but more recent research indicates that it can process about 
four elements (Cowan, 2001). Furthermore, information readily 
disappears without being rehearsed (Peterson and Peterson, 
1959). Once the information has been processed successfully 
in the working memory, it will be  stored in the long-term 
memory in the form of schemas.

Cognitive load theory distinguishes three types of cognitive 
load (intrinsic, extraneous, germane). The intrinsic cognitive 
load is imposed by the complexity of materials that in turn, 
is governed by the level of element interactivity that a task 
contains. The level of element interactivity is determined by 
the interaction between elements, which must be  processed 
simultaneously to allow understanding to occur. An element 
refers to anything that requires to be  learned (e.g., a number, 
symbol, and a procedure; Chen et  al., 2017). The intrinsic 
cognitive load depends on the complexity of the materials, 
and learners’ expertise level. The intrinsic cognitive load imposed 
on working memory increases as the level of element interactivity 
of the task increases. However, once novices gain expertise, 
they can “chunk” multiple interactive elements into a schema 
and store this in the long-term memory. Because we can process 
the schema retrieved from the long-term memory as a single 
entity in the working memory, it reduces the intrinsic cognitive 
load imposed on the working memory. Hence, the limitation 
of the working memory occurs when processing novel 
information, but not schemas from the long-term memory. 
From the perspective of expertise development, an automated 
schema (Cooper and Sweller, 1987) will free up working memory 
to allow problem-solvers to deal with aspects of the transfer 
problem that are unfamiliar.

The extraneous cognitive load is imposed by inappropriate 
instructional designs that are ineffective for learning. Hence, 
extraneous cognitive load should always be  eliminated by 
instructional designers. For example, in the domain of geometry 
problems, splitting learners’ attention between the diagram and 
the solution steps causes a split-attention effect, imposing 
extraneous cognitive load that impairs learning (Tarmizi and 
Sweller, 1988). We  can eliminate the split-attention effect by 
placing individual solution steps at relevant positions in 
the diagram.

The germane cognitive load is evoked by appropriate 
instructional designs that are effective for learning. More recent 
development of cognitive load theory suggests that germane 
cognitive load does not impose an independent cognitive load. 
Rather, it is part of the intrinsic cognitive load given that a 
learner invests germane cognitive load to understand the intrinsic 
nature of the task (Sweller, 2010). The design of the variability 

practice increases germane cognitive load, but it benefits learning 
(Paas and Van Merriënboer, 1994; Likourezos et  al., 2019). 
For example, under the variability practice condition, learners 
are expected to invest germane cognitive load to identify a 
shared problem structure across a category of problems that 
differs in problem contexts. As will be  discussed later, the 
provision of a diagram that depicts conceptual knowledge 
(problem structure) of percentage problems increases germane 
cognitive load and thus it contributes toward learning (Ngu 
et  al., 2014, 2018).

The three types of cognitive load (intrinsic, extraneous and 
germane) have implication for designing effective instructions. 
To optimize the acquisition of problem-solving skills, we  need 
to minimize extraneous cognitive load, optimize germane 
cognitive load and to ensure that the intrinsic cognitive load 
of the material is appropriate for learners. One such effective 
instructional method is the use of worked examples, which 
has been demonstrated across multiple studies (Sweller 
et  al., 2011).

The Worked Example Effect
One of the most widely researched cognitive load effects is 
the worked example effect. The worked example effect occurs 
when studying worked examples resulted in better learning 
outcomes and imposes lower cognitive load than solving the 
same problems particularly for novices in a domain (Sweller 
et  al., 2011; Renkl, 2014). A worked example provides detailed 
solution steps to solve a problem. The solution steps of a 
worked example encompass a schema required to solve a 
category of problems. Such a schema is regarded as domain-
specific knowledge for a category of problems that share a 
similar problem structure (Tricot and Sweller, 2014).

According to cognitive load theory, studying worked examples 
allow learners to focus on an understanding of the relation 
between problem states and problem-solving operators (e.g., 
algebra rules; Sweller and Cooper, 1985). Accordingly, studying 
worked examples impose low cognitive load and thus facilitates 
schema acquisition. In other words, studying worked examples 
represents an efficient way to overcome the limitation of working 
memory resources. In contrast, problem-solving approach 
imposes extraneous cognitive load because cognitive resources 
are used to search for a solution path, which interferes with 
the acquisition of schema. As highlighted in a review by Gog 
et  al. (2019), practice problem-solving compels learners to 
search for a solution procedure, which not only consumes a 
lot of cognitive resources but also time (McLaren et  al., 2016) 
and thus is not an efficient way to acquire schema. In essence, 
the worked example effect relies on the “borrowing and 
reorganizing principle” of information processing (Sweller, 2010; 
Chen et  al., 2015). It makes senses to borrow the schemas 
from the long-term memory of experts in a domain instead 
of using cognitive resources to search for a solution path as 
in the case of problem-solving approach.

Since the inception of cognitive load theory more than 
three decades ago, empirical studies that support the worked 
example effect across different domains are overwhelming 
(Sweller et al., 2011). Early work on the worked example effect 
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was found in learning algebra transformation problems (Sweller 
and Cooper, 1985). Other studies in relation to the worked 
example effect are found in statistics (Paas, 1992), physics (van 
Gog et  al., 2008), chemistry (Ngu et  al., 2009), and geometry 
(Tarmizi and Sweller, 1988; Bokosmaty et  al., 2015). Recently, 
researchers has extended the worked example effect to learn 
how to write Chinese characters in which each character consists 
of various components (Lu et  al., 2020). Presenting isolated 
component of each Chinese character in a variable format 
was more helpful for novice learners than the blocked format. 
The variable format allows novice learners to practice variable 
components of a Chinese character consecutively instead of a 
uniform component as in the case of a blocked format. In 
light of a volume of worked examples research, one may wonder 
how did researchers implement the worked example effect?

Implementation of Worked Examples
Research has found that students may merely look at worked 
examples rather than paying attention to the worked-out solution 
steps of worked examples (Reed et  al., 1985). Without paying 
attention to the solution steps, it is unlikely that learners can 
abstract a schema that is embedded in worked examples, and 
then use this to solve similar problems. Renkl and his colleagues 
have advocated the incorporation of prompts or self-explanation 
(Renkl, 1999; Schworm and Renkl, 2006) to help learners focus 
on the underlying concepts embedded within worked examples. 
In order to prevent students from studying worked examples 
superficially, Sweller and Cooper (1985) required students to 
study a worked example paired with a problem. They reasoned 
that students would be  more motivated to study a worked 
example, if they knew that they needed to solve a similar 
problem after studying the worked example. This pioneer work 
of studying a worked example paired with a problem becomes 
a blue print for effective implementation of the worked example 
effect (Sweller et  al., 2011). As attested by the findings of 
Trafton and Reiser (1993), requiring learners to study a block 
of six worked examples, followed by solving a block of six 
problems was less effective than “study-one and solve-one” 
strategy. Indeed, more recent research has compared study 
examples only, example-problem pairs, problem–example pairs 
and problem-solving (van Gog et  al., 2011). Unsurprisingly, 
study examples only and complete example–problem pairs were 
better than either problem–example pairs or problem-solving 
only in terms of investing less effort in the acquisition phase 
and achieve better learning outcomes. The authors argued that 
novice learners, in particular, may not be  able to diagnose 
their own errors in the solution. Therefore, problem–example 
pairs condition in which novice learners solved a problem 
paired with a worked example (which can act as feedback) 
may not be  helpful. Of the five studies that we  will discuss, 
one study uses study examples only and the other four studies 
use example–problem pairs. Importantly, across five studies, 
both studying worked examples only and completing example–
problem pairs serves as direct instruction to facilitate the 
development of problem-solving expertise. In relation to word 
problems, it is important to know the types of knowledge 
required to solve word problem and the role of a diagram to 

enhance learning of word problems. We  will discuss both of 
these in the next section.

IMPORTANCE OF A DIAGRAM

According to Mayer (1982), five types of knowledge are needed 
for solving word problems: linguistic, factual, schematic, strategic 
and algorithmic. Knowledge of the linguistic, factual and/or 
numerical components enables problem-solvers to translate and 
understand problem situation. The schematic knowledge enables 
problem-solvers to classify a problem with respect to a category 
of problems and the manner in which the problem can be solved. 
The strategic and algorithmic knowledge enables problem-solvers 
to plan a solution procedure for solving word problems.

Mayer suggested that the greatest hurdle for solving word 
problems is to represent word problems amenable for generating 
solutions. Prior studies have demonstrated the power of a 
diagram to represent word problems by displaying the relationship 
among quantitative values and variable in order to aid in the 
construction of a mathematical relationship for solutions (Mayer 
and Gallini, 1990; Hegarty and Kozhevnikov, 1999; Ng and 
Lee, 2009; Schwonke et  al., 2009; Zahner and Corter, 2010; 
Jitendra et al., 2011). However, the design of a diagram matters. 
As revealed by Hegarty and Kozhevnikov (1999), schematic 
diagrams displaying spatial information that captures the problem 
structure facilitates higher solution success than the 
non-schematic diagrams (pictorial diagrams) that illustrate cover 
stories. In other words, a schematic diagram can assist a learner 
to translate abstract relationships within the problem text and 
make it concrete. Indeed, using a schema-based instruction 
incorporating a diagram, which shows mathematical relationship 
(values and variable) cited in the problem text has improved 
learning of word problems (e.g., Jitendra et al., 2011). Accordingly, 
of the five studies that we  reviewed, four studies incorporate 
diagrams that seek to capture the problem structure of word 
problems. For example, the equation approach in Study 3 and 
Study 4 has a horizontal line in which a shorter length of 
this line represents a fraction of a percentage quantity. 
Furthermore, in our review, three out of the five studies involve 
cross-cultural mathematics education—we will discuss this in 
the next Section.

CROSS-CULTURAL MATHEMATICS 
EDUCATION

Research has indicated that students from different cultural 
backgrounds (China vs. U.S) use different approaches (algebra 
vs. non-algebra) to solve word problems (Cai, 2000). The 
Chinese students tended to use the algebra approach, which 
requires the formulation of an equation, and then solve for 
the unknown variable, x. On the other hand, U.S students 
preferred the use of non-algebra approach, which may rely 
on concrete visual representations (e.g., drawing a picture) to 
solve word problems. Regarding the content knowledge of 
solving linear equations, Ngu and Phan (2020) found that 
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Australian pre-service teachers were inferior to Malaysian 
pre-service teachers. An analysis of primary mathematics 
education curriculum reveals that Asian countries (e.g., China, 
Korea, and Japan) have introduced the topic of linear equations 
in primary mathematics curriculum, but not Western countries 
(Cai et  al., 2005). Hence, an earlier exposure to algebra may 
have helped Asian students to build a stronger algebra foundation 
than their peers in Western countries. In the current review 
of five studies, we  included cross-cultural studies to highlight 
differential performance between Australian students and 
Malaysian students especially in regard to the use of algebra 
in gaining problem-solving expertise for word problems.

TARGET DOMAIN AND RESEARCH 
QUESTIONS

Mathematics is a common thread across science, technology, 
engineering and mathematics (STEM) disciplines (Fitzallen, 
2015). We examined word problems that include within-domain 
word problems in mathematics curriculum as well as between-
domain word problems in STEM curriculum. For Studies 1 
and 2, we  focused on between-domain word problems in a 
chemistry context (Ngu et  al., 2009; Ngu and Yeung, 2013). 
The target domain is the molarity chemistry word problems. 
For Studies 3, 4 and 5, we  focused on within-domain word 
problems in mathematics context—the percentage change word 
problems (Ngu et  al., 2014, 2016, 2018). While each study 
involved a comparison of different instructional approaches, 
we focused on the algebra approach that requires the integration 
of relevant information in an equation to solve a category of 
word problems that shares a similar problem structure. Of the 
five studies, four have diagrams to represent word problems. 
Our main aim was to examine the effect of the algebra approach 
for acquiring problem-solving expertise. Moreover, we included 
participants from either Asia (Studies 1, 2 and 4) or Australia 
(Study 3) or both Asia and Australia (Study 5). The purpose 
was to examine differential development of problem-solving 
expertise for word problems across different cultural settings. 
Specifically, we  addressed two research questions:

 1. Are there a proportion of students who acquire expertise for 
solving word problems after studying worked examples?

 2. Is there differential development of problem-solving expertise 
for word problems between Australian students and Malaysian 
students in regard to the equation approach (algebra approach)?

Study 1
The Study 1 aimed to facilitate students’ learning of molarity 
problems, which is a type of word problems in a chemistry 
context (Ngu et al., 2009). The Study 1 compared three computer-
based formats for learning molarity problems: (a) static-solution 
format, (b) no-solution format, and (c) interactive-solution 
format (Figure  1) The design of the three computer-based 
format was based on the hierarchical network problem 
representation proposed by Nathan et  al. (1992). The strength 

of the network problem representation depends on its ability 
to depict a hierarchical level of concepts (values, variable) and 
their relation without its irrelevant cover story. In essence, it 
allows the learner to visualize how the values, variable and 
their relation can be  integrated in an equation, such as mass/
RFM = MV/1000 for solution. It should be  noted that the 

A

B

C

FIGURE 1 | A worked example of a molarity problem: (A) static-solution 
format, (B) no-solution format, and (C) interactive-solution format. Source: 
Ngu et al. (2009).
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equation, such as mass/RFM = MV/1000, represents the problem 
structure of molarity problems. Thus, the conceptual knowledge 
of molarity problems was scaffolded by a hierarchical level of 
concepts (values, variable) and their relation, whereas its 
procedural knowledge was revealed in the solution steps.

The three computer-based formats differ in the design of 
the solution steps. For the static-solution format, all three 
solution steps are placed at relevant positions in the diagram, 
which eliminates a split-attention effect (Tarmizi and Sweller, 
1988). For the no-solution format, no solution steps are provided. 
The cognitive load involved in deducing the solution steps 
would be  low, given that the diagram explicitly displays the 
problem structure in which the solution steps are embedded. 
For the interactive-solution format, learners can learn from 
the diagram in three ways: (i) click relevant positions and 
have all three solution steps continuously—static-solution format, 
(ii) do not click the diagram—no-solution format, and (iii) 
click a relevant position to view one solution step at a time. 
The availability of different options to explore the diagram 
would expect to impose high cognitive load. Thus, it was 
hypothesized that the static-solution format would be  better 
than the no-solution format, which in turn, would be  better 
than the interactive-solution format.

We implemented a pre-test—intervention—post-test design. 
The pre-test shared identical content as the post-test and it 
provided a baseline score for students. The pre-test (or post-
test) consisted of 5 similar problems and 4 transfer problems. 
The similar problems were isomorphic to the acquisition 
problems because both shared the same solution procedure 
(problem structure), whereas an adaptation of the solution 
procedure was required to solve transfer problems. The means 
for the pre-test ranged from 4 to 9% for the similar problems 
and 0 to 7% for the transfer problems. Forty-two Asian 
students aged about 15 years old from a secondary school 
participated in the study. A chemistry teacher introduced 
pre-requisite knowledge of molarity problems (e.g., molar 
mass and atomic mass) a week prior to the computer session. 
On the day of testing, all students completed a pre-test. Then, 
they were randomly assigned to the interactive-solution format 
(14 students), the static-solution format (14 students) and 
the no-solution format (14 students). Students across the three 
formats completed the computer session (25 min) in a laboratory 
where a computer was assigned to each student. First, they 
studied a brief instruction in regard to the use of the computer 
(e.g., use of icons and menu). Second, they studied an 
instruction sheet which provided the definition of molarity 
and two worked examples showing how to solve molarity 
problems. Third, students across the three formats studied 
(and not solved) eight molarity problems with the aid of a 
computer. According to Paas and Van Merriënboer (1994), 
studying worked examples only may potentially eliminate the 
negative effect caused by students attending to incorrect 
solutions generated, which could interfere with learning. Lastly, 
all students undertook a post-test. Students might learn from 
studying the instruction sheet; however, we  expected the 
dominant learning to occur when they studied multiple worked 
examples with the aid of a computer.

One way ANOVA performed on similar problems revealed 
a significant difference between the three formats, F(2, 
39) = 4.06, p  = 0.03. A follow-up Tukey test indicated that 
the difference was between no-solution format (M  = 0.36, 
SD = 0.41) and interactive-format (M = 0.06, SD = 0.12) where 
p  = 0.025. Again, one way ANOVA performed on transfer 
problems showed a significant difference among the three 
formats, F(2, 39) = 5.48, p  = 0.00. A follow-up Tukey test 
revealed that the difference was between static-solution 
format (M  = 0.43, SD = 0.33) and interactive-solution 
format  (M  = 0.07, SD = 0.15) where p  = 0.006. Overall, the 
results indicated that the no-solution format or static-
solution format outperformed the interactive-solution format 
for molarity problems across the similar problems and 
transfer problems.

We computed the Relative condition efficiency, E P M
=

−
2

 

where E  = efficiency, P  = performance and M  = mental effort 
to examine the efficiency of the three instructional formats. 
The Relative condition efficiency attributes the performance 
outcomes to the cognitive load involved in processing 
instructional materials. One way ANOVA on E values was 
non-significant on similar problems, F(2, 39) = 2.08, p  = 0.14, 
but it was significant on transfer problems at 10% level, F(2, 
39) = 2.64, p  = 0.08, indicating that the no-solution format was 
better than the static-solution format, which in turn was better 
than the interactive-solution format.

On examining students’ solution strategies, students in 
the interactive-solution format did not skip solution steps. 
However, six students (43%) from the static-solution format, 
and 8 students (57%) from the no-solution format skipped 
solution steps 1 and 2. They wrote mass/RFM = MV/1000 
(first step), and substituted values and a variable (M) to 
solve the problem (second step; Table 1). The demonstration 
of a two-step strategy parallels prior studies of expertise 
development in problem-solving, whereby students could 
retrieve a single equation needed to solve molarity problems 
(e.g., Blessing and Ross, 1996). Presumably, the gaining 
of  the conceptual knowledge had led to the execution 
of  procedural knowledge efficiently, resulting in fewer 
solution steps.

Study 2
Once again, the objective of this Study 2 was to facilitate 
students’ learning of molarity chemistry problems (Ngu and 
Yeung, 2013). As indicated in Figure  2, the equation worked 
example consists of three equation steps. The emphasis is placed 
on the construction of an equation for solution (step  3). The 
design of the equation worked example does not represent 
the design of a typical worked example in which all solution 
steps to obtain a solution are provided. Instead, the equation 
worked example only portrays three key equation steps to 
solve molarity problems. It should be  stressed that the three 
solution steps contain both conceptual knowledge and procedure 
knowledge for solving the molarity problems. The equation 
worked example was compared with the text editing condition. 
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The text editing condition requires learners to scrutinize the 
problem text and indicate whether it contains missing, irrelevant 
or relevant information for solution. It places emphasis on 
identifying relevant information for solution; but, it falls short 
of addressing the procedural knowledge of solving the 
molarity problems.

The sample consisted of 22 Asian students aged about 17 years 
old from a secondary school. Students were randomly assigned 
to two groups: (i) text editing, and (ii) equation worked examples 
(Table  1). On Day 1, the chemistry teacher introduced 
pre-requisite knowledge (e.g., atomic mass and molar mass) 
pertaining to molarity problem. On Day 2, we  implemented 
the experimental procedure which consisted of an acquisition 
phase and a test phase. We  did not include a pre-test because 
all test materials and procedures had to align with the school 
curriculum. The post-test was similar to Study 1—it comprised 

5 similar problems and 4 transfer problems. During the learning 
phase (20 min), students studied an instruction sheet and 
completed seven example–problem pairs. The instruction sheet 
provided the definition of molarity and a worked example 
illustrating how to solve a molarity problem. Again, the dominant 
learning would occur during which students completed multiple 
example-problem pairs rather than studying the instruction 
sheet. Each pair consisted of an equation worked example and 
a similar problem (Figure  2).

The equation worked examples group (M  = 0.42, SD = 0.34) 
outperformed the text editing group (M  = 0.16, SD = 0.25) on 
similar problems, t(20) = 2.00, p  = 0.05. A significant difference 
between the equation worked example group (M = 0.45, SD = 0.31) 
and the text editing group (M  = 0.14, SD = 0.26) was observed 
for transfer problems, t(20) = 2.60, p  = 0.02. Thus, the results 
favored the equation worked examples group irrespective of 
similar problems or transfer problems.

Concerning the solution strategy, of those 11 students in 
the text editing group, only one demonstrated a two-step 
strategy (9%) typically shown by expert problem-solvers. 
However, six out of 11 students in the equation worked 
examples group demonstrated a two-step strategy (55%). 
Having acquired the schema for the molarity problem, students 
realized that they can skip intermediate steps 1 and 2. Hence, 
they retrieved the equation that integrated relevant information, 
mass/MM = MV/1000 (first step), and then substituted values 
and a variable to solve for M in step  3 (second step). 
Consistent with prior studies (Koedinger and Anderson, 1990; 

TABLE 1 | The Study, type of word problems, evidence of expertise, percentage of students demonstrated expertise development for similar problems.

Study Word problems Evidence of expertise Instructional approaches

Study 1

Ngu et al., 2009

Molarity chemistry problem:

20 g of sodium sulphate, 
Na2SO4 were dissolved in 
sufficient water to obtain 
500 ml of a solution. Calculate 
the molarity of the solution. 
(Na = 23, S = 32, O = 16).

Step 1: mass/RFM = MV/1000 
(where RFM is the relative 
formula mass).

Step 2: substitute values and a 
variable and solve for M.

Interactive-solution 
format

Static-solution format No-solution format

– 43% 57%

Study 2

Ngu and Yeung, 2013

Same as Study 1. Same as Study 1 except the 
use of “MM” instead of “RFM.” 
The “MM” means molar mass.

Text editing Equation worked examples –
– 55%

Study 3

Ngu et al., 2014

Percentage change problem:

If your father wants to 
increase your weekly 
allowance of $20 by 5%, what 
is your new allowance?

Step 1: $20 + ($20 × 5%)

Step 2: Calculate the new 
allowance.

Unitary approach Pictorial approach Equation approach
– – 82%

Study 4

Ngu et al., 2016

Same as Study 3. (i) same as Study 3

(ii) wrote $20 × 5% and then 
added $20 to ($20 × 5%)

Unitary approach Equation approach

48% for (i)
– 44% for (ii)

Study 5  
Ngu et al., 2018

Challenging percentage-
change problem:

A shirt has been discounted 
60% and now costs $80. 
What did it cost originally?

Step 1: $80 = x – 60% x

Step 2: solve the equation.

Unitary approach Unitary–pictorial approach Equation approach
– – 58%

We only included data that are related to the use of the algebra approach for learning word problems.

FIGURE 2 | An equation worked example. Source: Ngu and Yeung (2013).
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Blessing and Anderson, 1996), such step skipping performance 
to generate a two-step strategy indicates expertise development 
for molarity problems (Table 1). We attribute the development 
of expertise for molarity problems to the design of the 
equation worked examples that imposes low cognitive load. 
It is possible that the acquisition of conceptual knowledge 
of the underlying problem structure (mass/MM = MV/1000) 
facilitates the gaining of procedural knowledge, leading to 
the generation of reduced solution steps.

Study 3
This Study 3 is related to learning how to solve percentage 
change problems, which is a type of word problems in everyday 
situations (Ngu et  al., 2014). Sixty 8th grade Australian students 
(mean age = 14) were randomly assigned to: (i) unitary approach, 
(ii) pictorial approach, and (iii) equation approach (Table  1). 
Consider a percentage change problem used in the study, “If 
your father wants to increase your weekly allowance of $20 by 
5%, what is your new allowance?.” Central to the unitary approach 
is the unit percentage concept. This unitary approach consists 
of three solution steps: (i) 100%+ 5% = 105% (increase by 5%), 
(ii) $20÷100 = $0.2 (calculate 1%), and (iii) $0.2 × 105 = $21 
(calculate 105%). Each solution step cannot be  understood 
independent of other solution steps. The interaction between 
elements within each solution step and across the three steps 
would constitute a high level of element interactivity and thus 
intrinsic cognitive load. Moreover, to calculate the sub-goal of 
the unit percentage (1%), the learner needs to integrate information 
from two separate sources [100% in (i) and $20  in (ii)], which 
will cause a split-attention effect (Lee and Kalyuga, 2011). Thus, 
the combined consequences of high level of element interactivity 
and extraneous cognitive load would render this 
approach ineffective.

The diagram of the pictorial approach aims at depicting 
the proportion concept—the alignment between quantity and 
percentage. A rectangular bar diagram is divided into 10 equal 
chunks and each chunk represents 10%. The alignment between 
quantity ($20) and percentage (100%) not only eliminates a 
split-attention effect (Lee and Kalyuga, 2011) but it also acts 
as a point of reference to calculate a sub-goal (quantity) that 
corresponds to 1, 5, 10%, etc. The learners need to learn the 
solution steps with reference to the diagram. Similar to the 
unitary approach, the learners need to process the interaction 
between multiple elements within each solution step as well 
as between the three solution steps. The germane cognitive 
load is increased to deduce the proportion of 10%:$2 and 
5%:$1, leading to the calculation of new allowance, 105%:$21. 
Nonetheless, the pictorial approach may not be  better than 
the unitary approach. The diagram would impose cognitive 
load when the learner needs to deduce a quantity that corresponds 
to % other than a multiple of 10% (e.g., 17%).

For the equation approach, similar to the schema-based 
instruction proposed by Jitendra et  al. (2011), a diagram 
depicting a horizontal line is used to scaffold conceptual 
knowledge (problem structure) of percentage change problems. 
The germane cognitive load is increased to process the horizontal 
line, which aims at helping learners to translate the problem 

structure that consists of two components: (i) original allowance, 
and (ii) increased amount. In addition, the horizontal line 
also plays a crucial role in mapping the problem structure to 
an equation: New allowance = original allowance + increased 
amount. Within the topic of percentage problems, students 
would have learned percentage quantity prior to learning 
percentage change problems. Therefore, they were expected to 
process the increased amount, such as ($20 × 5%) as a single 
element. Overall, the processing of the equation approach entails 
the manipulation of two elements [$20 and ($20 × 5%)], which 
would impose low cognitive load. In other words, building 
on the prior knowledge of percentage quantity has lowered 
the intrinsic cognitive load of learning the percentage change 
problems. It was hypothesized that the equation approach would 
be  better than the unitary and pictorial approach on learning 
how to solve percentage change problems.

We conducted a pre-test—intervention—post-test design. 
Again, the pre-test which had similar content as the post-test 
served as a baseline to examine subsequent learning gain. The 
post-test consisted of 10 similar problems and 3 transfer 
problems. The means for the pre-test ranged from 7 to 17% 
for the similar problems and 0 to 2% for the transfer problems. 
The learning phase required students to study an instruction 
sheet and complete six example–problem pairs that took 20 min. 
The instruction sheet provided the definition of percentage, 
the review of the percentage quantity and a worked example 
showing how to solve a percentage increased problem. Each 
example–problem pair consisted of a worked example and an 
isomorphic problem (Figure  3). Once again, students might 
benefit from studying the instruction sheet, but learning was 
expected to occur predominately via the completion of multiple 
example–problem pairs.

Students who scored 80% or above in the pre-test and 
those who did not complete all test materials were excluded 
from the final data analysis. One-way ANOVA performed on 
similar problems showed significant difference between the 
three groups, F(2, 52) = 10.88, p  = 0.01. Post-hoc Tukey test 
indicated significant differences between the unitary approach 
(M = 0.57, SD = 0.43) and pictorial approach, (M = 0.29, SD = 0.36) 
where p  = 0.04; and also between the equation approach 
(M = 0.85, SD = 0.25) and pictorial approach, (M = 0.29, SD = 0.36) 

FIGURE 3 | A worked example of the percentage change problem. Source: 
Ngu et al. (2014).
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where p  = 0.01; but non-significant difference between the 
unitary approach (M  = 0.57, SD = 0.43) and equation approach 
(M  = 0.85, SD = 0.25) was found.

Similarly, one-way ANOVA performed on transfer problems 
indicated significant difference between the three groups, F(2, 
52) = 8.83, p  = 0.01. Furthermore, Post-hoc Tukey test revealed 
significant differences between the equation approach (M = 0.58, 
SD = 0.43) and unitary approach (M  = 0.19, SD = 0.36) where 
p = 0.01; and between the equation approach (M = 0.58, SD = 0.43) 
and pictorial approach (M  = 0.11, SD = 0.27) where p  = 0.01. 
Overall, the equation approach was better than the pictorial 
approach for the similar problems, and the other two approaches 
for the transfer problems.

In regard to the solution strategy, of those 17 students who 
received the equation approach, 14 could (82%) integrate relevant 
information in a single equation (first step) and calculate the 
answer (second step; Table  1). Once again, Study 3 shows the 
power of worked examples to assist students to develop expertise 
in which they not only identified the problem structure and 
used an equation to solve the problems, but also exhibited 
step skipping performance which is consistent with prior research 
(Koedinger and Anderson, 1990; Blessing and Anderson, 1996). 
We  attribute the generation of a two-step strategy (Figure  4) 
as a result of the scaffold provided by the diagram that facilitates 
in-depth understanding of conceptual knowledge of the 
percentage change problems, and the solution steps that illustrate 
its procedure knowledge.

Study 4
The target domain for Study 4 was the percentage change 
problems, which are similar to Study 3. Fifty-nine Asian students 
were randomly assigned to either the unitary approach or the 
equation approach. The design of the unitary approach and 
equation approach is the same as in Study 3. The research 
design involved a learning phase and a test phase. Again, 
we  were unable to include a pre-test owing to the need to 
align the testing materials with the school curriculum. 
We  focused on the equation approach (Table  1). The equation 
approach was similar to the equation approach in Study 3.

Data analysis was based on 57 students who completed all 
test materials. The equation group (M  = 0.78, SD = 0.18) 
outperformed the unitary group (M = 0.67, SD = 0.22) on similar 
problems, t(55) = 2.01, p  = 0.05. The equation group (M  = 0.38, 
SD = 0.40) was marginally better than the unitary group (M = 0.22, 
SD = 0.29) for the transfer problems, t(55) = 1.74, p  = 0.09. The 
unitary approach imposed significantly higher mental effort 
than the equation approach, t(55) = 2.76, p  = 0.008, r  = 0.35 

(a medium effect). In addition, using the relative condition 

efficiency, E P M
=

−
2

, the equation approach was significantly 

more efficient than the unitary approach, t(55) = 2.83, p = 0.006, 
r  = 0.36 (a large effect).

On examining students’ solution strategies, 48% wrote a 
single equation, for example, 88 + (80 × 10%) (first step), and 
calculate the answer (second step). In addition, 44% wrote 
percentage quantity, for example, (80 × 10%; first step), and 
then added 80 to (80 × 10%) (second step). Once again, the 
success of the equation approach is clearly seen in students’ 
solution strategies. Hence, an in-depth understanding of the 
conceptual knowledge might contribute to the superior 
performance of procedural knowledge manifested in the reduced 
solution steps. Moreover, the robustness of the equation approach 
was confirmed in Asian context. It should be  noted that 37% 
of Malaysian students in the unitary approach who did not 
have access to the equation approach used a modified version 
of the equation approach (two-step equation approach), such 
as (i) $250 × 12% = $30 (Step  1), and (ii) $250 + $30 = $280 
(Step  2). Indirectly, this implies that Malaysian students may 
have stronger foundation than Australian students in Study 
3  in regard to the use of algebra for solving word problems.

Study 5
This Study 5 documented how to solve challenging percentage-
change problems, which poses a challenge to students because 
the goal is to find the original quantity after a change of its 
original quantity (Parker and Leinhardt, 1995; Ngu et al., 2018). 
An example of a challenging percentage-change problem is 
shown in Figure  4: The sale price of an item including a 10% 
Good and Service Tax (GST) is $264. Find the price of the 
item excluding GST. The Australian sample (55 students, mean 
age = 16), and the Malaysian sample (75 students, mean age = 16) 
participated in the study. Students in each sample were randomly 
assigned to three groups (equation, unitary, unitary–equation 
approaches; Table  1).

As shown in Figure  5 once again, the equation approach 
is accompanied by a horizontal line depicting two components: 
(i) original price, and (ii) increased amount. However, a variable, 
such as x, is used to denote the original price, and the increased 
amount of the original price (x × 10%). Again, the germane 
cognitive load is increased to process the problem structure 
portrayed in the horizontal line, resulting in the generation 
of an equation: Sale price = original price + increased amount. 
Similar to the Study 3 or Study 4, the diagram aimed to 
uncover conceptual knowledge of the challenging percentage-
change problems. The subsequent solution steps involve the 
substitution of values ($264, 10%), a variable (x) to form an 
equation, such as $264 = x x+  ×10%, and solve for x.

The unitary approach shares similar design features as the 
unitary approach in Study 3 or Study 4. The main concept of 
this unitary approach is the unit percentage. The learners are 
required to calculate 1%, and then a multiple of 1% to obtain 
the answer. Basically, it comprises three solution steps: (i) 
100% + 12% = 112% (markup  12%), (ii) $34 ÷112 = $0.3035 
(calculate 1%), and (iii) $0.3035  ×  100 = $30.35 (calculate 100% 

FIGURE 4 | A solution of a percentage increased problem that shows step 
skipping performance.
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which is the original price). Similar to the Study 3 or Study 4, 
the need to integrate information from the first solution step 
(112%) and the second solution step ($34) will cause a split-
attention effect. Thus, the use of working memory to deal with 
the split-attention effect as well as the high element interactivity 
arises from the interaction between multiple elements within 
and across the solution steps would hinder effective learning.

The main difference between the unitary–pictorial approach 
and the unitary approach is that the former has a diagram. 
The germane cognitive load is increased to process the diagram 
which depicts the proportion concept, aligning the quantity 
to its corresponding percentage. In particular, the alignment 
between $34 and 112% not only eliminates a split-attention, 
but also facilitates the calculation of a subgoal (1%). Hence, 
the unitary–pictorial would impose lower cognitive load than 
the unitary approach.

We used a pre-test—intervention—port-test design. The 
pre-test had the same number and type of questions as the 
post-test—it provided the baseline score to examine the impact 
of different instructional approaches upon learning to solve 
challenging percentage-change problems. The means pre-test 
score for Australian students ranged from 0–3%, and Malaysian 
students was 0%.

Again, the learning phase was similar to Study 3. Students 
were given 20 min to study an instruction sheet and complete 
six example–problem pairs. The instruction sheet provided two 
worked examples, one of which was percentage increased 

problem and the other was percentage decreased problem. For 
each example–problem pair, they studied a worked example 
(Figure  5) and solve a similar problem. Once again, the main 
learning was expected to occur when students completed the 
example–problem pairs though they may also benefit from 
studying the instruction sheet.

Students who scored 80% or above in the pre-test were 
excluded from the final data analysis. In relation to the post-
test, Malaysian students (M  = 0.36, SD = 0.23) outperformed 
Austrian students (M = 0.16, SD = 0.27) for the for the equation 
approach in line with the hypothesis, t(37) = 2.52, p  = 0.02. 
The Australian students and Malaysian students did not differ 
on the unitary approach, (Ms  = 0.23 versus 0.30), t(36) = 0.97, 
p  = 0.34, nor on the unitary–pictorial approach, (Ms  = 0.47 
versus 0.40), t(42) = 0.86, p = 0.40. In contrast to the hypothesis, 
Australian students did not outperform Malaysian students for 
the unitary–pictorial approach. Using pairwise comparisons, 
for Australian students, the unitary–pictorial group outperformed 
both the unitary group (p  = 0.02), and the equation group 
(p  = 0.00). In contrast, no differences were observed between 
the three groups for Malaysian students.

We analyzed the number of students who used respective 
solution strategies across the unitary approach, unitary–pictorial 
approach and equation approach for the post-test. A chi-square 
test indicated significant differences favoring Malaysian students 
for the equation approach, χ2(1, N = 39) = 27.57, p < 0.001, the 
unitary approach, χ2(1, N = 38) = 5.43, p = 0.02, and the unitary–
pictorial approach, χ2(1, N = 44) = 6.12, p = 0.01. However, for 
the unitary–pictorial approach, Australian and Malaysian students 
demonstrated step skipping performance in that they generated 
two-step strategy. For example, consider a test item: A shirt 
has been discounted 60% and now costs $80. What did it cost 
originally? By discarding the first step “40% represents $80,” 
students wrote two steps: (i) 80 ÷ 40 = 2, and (ii) 2 × 100 = $200. 
A chi-square test indicated no difference between Australian 
students and Malaysian student on two-step strategy, χ2(1, 
N = 44) = 0.86, p = 0.36.

Regarding the equation approach, importantly, 14 out of 
24 (58%) Malaysian students in the post-test skipped some 
aspects of the solution procedure for the same test item above. 
They integrated relevant information and expressed it in an 
equation: $80 = x – 60%x (first step) and solve for x (second 
step; Figure  6). For Australian students, of those 5 students 
who provided accurate answers, none of them exhibited problem-
solving expertise. In fact, many Australian students struggled 
with algebra (e.g., equation solving skills) and thus did not 
benefit from the equation approach. It is possible that Australian 
students could benefit from an alternative algebra approach 
that splits the solution procedure in two stages. In stage 1, 
the learner calculates % after a discount of 60%, which is 
40%. In stage 2, the learner forms an equation, such as 40% 
x =  $80, solve for x. This alternative approach may be  easier 
because the variable (x) appears only once instead of twice 
($80 = x – 60%x) in the equation (Koedinger et  al., 2008).

Taken together, the results from Study 4 and Study 5 suggests 
that Malaysian students were more competent in using the 
algebra approach for solving word problems. The Australian 

FIGURE 5 | A worked example of a challenging percentage-change 
problem. Source: Ngu et al. (2018).

FIGURE 6 | A solution of a challenging percentage decreased problem that 
shows step skipping performance.
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students were not inferior to Malaysian students in regard to 
the use of non-algebra approach (unitary–pictorial approach) 
for solving word problems. Consistent with the results obtained 
in Study 3 and Study 4, once students had gained expertise, 
they were capable of using a single equation to represent the 
problem structure for subsequent generation of a solution. 
Once again, this illustrates the power of worked examples to 
facilitate the acquisition of domain-specific knowledge related 
to challenging percentage-change problems, leading to the 
generation of reduced solution steps.

DISCUSSION

This paper is primarily concerned with the review of five prior 
studies that documented the power of worked examples to 
help students in developing expertise for word problems across 
Mathematics and Science curriculum. The review has provided 
an answer to the research questions. Across five studies, 
approximately 50% of students who were exposed to the worked 
examples approach has acquired problem-solving expertise for 
word problems. The implementation of studying worked examples 
only (Study 1), and example–problem pairs (Studies 2, 3, 4, 
and 5) imposes relatively low cognitive load, thus facilitating 
the acquisition of problem-solving expertise. As summarized 
in Table  1, across five studies, students could generate an 
equation based on the information provided in the problem 
text (first step), and then solve the problem (second step). 
The demonstration of step skipping performance reflects the 
availability of a schema for a category of word problems, which 
encompasses conceptual knowledge and procedural knowledge. 
It appears that the presence of conceptual knowledge enhances 
the execution of procedural fluency in the form of fewer 
solution steps. In relation to cross-cultural comparison, Malaysian 
students outperformed Australian students for the equation 
approach (algebra approach) but not the unitary–pictorial 
approach (non-algebra approach). Presumably, such phenomenon 
is due to a stronger algebra foundation for Malaysian students.

Theoretical Considerations
Research has indicated the benefit of providing of a diagram 
to enhance learning of word problems in the domain of 
probability (Schwonke et  al., 2009). This is particularly the 
case when learners were informed that the function of a diagram 
aimed at bridging the relation between problem text and the 
equation. Thus, the provision of a diagram across Studies 1, 
3, 4, and 5 that scaffolds the problem structure plays a critical 
role in developing problem-solving expertise. More specifically, 
in Study 1, studying the diagram that displayed a hierarchical 
order of the relation between individual structural elements 
had provided insights into the formation of an equation, leading 
to the generation of a two-step strategy. In Studies 3, 4 and 
5, a horizontal line was divided into two different lengths that 
corresponded to two different quantities (e.g., an increased 
amount as a fraction of the whole amount), thus scaffolding 
the conceptual knowledge of percentage change problems. Such 
a display of visual information assisted students to formulate 

an equation to solve percentage problems efficiently. While 
Study 2 did not have a diagram, an emphasis of having three 
key solution steps that encompass both conceptual knowledge 
and procedural knowledge allowed students to infer that the 
third equation step was a critical step that contained the 
problem structure expressed in an equation for solution. On 
the other hand, without the aid of a diagram to scaffold the 
problem structure (such as the proportion concept in the 
unitary approach) across Study 3–5, learners struggled to acquire 
skills for solving word problems.

Previous research has focused on analogical learning to 
facilitate the acquisition of schema for word problems (Reed, 
1989). It highlights the mapping of concepts between two 
problems that share a similar problem structure. However, it 
falls short of providing instructional support to integrate relevant 
information and express this in an equation. In contrast, a 
worked example accompanied by a diagram is effective, because 
the diagram provides clues to organize problem structure from 
the problem text and express this in an equation. In addition, 
completing multiple example–problem pairs enables students 
to gain familiarity with a category of word problems that shares 
a similar problem structure and thus a similar solution procedure. 
Accordingly, students developed problem–solving expertise for 
word problems as a result of exposing to worked examples.

Practical Implication for Mathematics 
Education
The Australian educators are encouraged to consider the merit 
of cognitive load theory in designing instructions for effective 
learning (NSW Education: Centre for Education Statistics and 
Evaluation, 2017). The current popular mathematics textbooks 
(e.g., Vincent et  al., 2012) do not include the use of worked 
examples especially the implementation of example–problem 
pairs to enhance mathematics learning. Hence, it is timely to 
promote greater use of worked examples to develop problem-
solving expertise especially for word problems that presents a 
challenge to students.

The use of worked examples to facilitate expertise development 
also depends on students’ prior knowledge (Kalyuga et  al., 
2003). For example, students who are weak in basic algebra 
concepts, such as the meaning of variable, factorization, and 
equation solving skills, may not benefit from the equation 
approach for learning challenging percentage problems, let 
alone develop expertise for this type of problems. Thus, it is 
important to strengthen students’ prior knowledge of algebra 
before exposing them to the use of the algebra approach for 
learning word problems. Furthermore, having prior knowledge 
of equivalent fractions (e.g., 1/10 = 10/100) would have facilitated 
the processing of the proportion concept in a diagram (e.g., 
unitary–pictorial approach) with fewer elements (Carlson 
et  al., 2003).

Limitations and Future Directions
This review highlights the importance of using the algebra 
approach (i.e., the equation approach) to facilitate the acquisition 
of problem-solving expertise for word problems. However, 
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there are other instructional approaches which could have 
achieved the same purpose. For example, in Study 5, the 
unitary–pictorial approach had also shown to be  effective for 
challenging percentage-change problems. The diagram in the 
unitary–pictorial approach scaffolded the relation between 
quantity and percentage based on proportional reasoning. 
Consequently, students demonstrated step skipping 
performance, which was reflected in their solution strategies. 
Thus, future review should explore the design of different 
worked example formats that has the potential to facilitate 
the development of problem-solving expertise.

Early work by Cooper and Sweller (1987) indicates the 
importance of an extended practice time to enable students 
to automate the schema to solve not only similar problems 
but also transfer problems that require the adaptation of the 
solution procedure. Students across the five studies demonstrated 
step skipping performance despite a relatively short learning 
phase of about 25 min. Nonetheless, future research should 
provide a longer learning phase to enable students to develop 
not only expertise in solving similar problems, but also skills 
to solve transfer problems. In addition, a longer learning phase 
would also allow more students (e.g., more than 50%) to 
develop expertise for solving word problems.

Across the five case studies, the use of worked examples 
has facilitated the development of problem-solving expertise 
for a category of word problems sharing the same schema. 
Mayer (1982) distinguished standard problems (similar 
problems) and non-standard problems (transfer problems). 
Mayer regarded standard problems as a category of word 
problems that share the same schema. Unlike standard problems, 
non-standard problems do not share the same schema. In 
fact, an adaptation of the solution procedure for solving 
standard problems is required to solve non-standard problems. 
Overall, the strength of worked examples lie in its ability to 
assist learners to develop expertise for solving similar problems 
(standard problems), and to a lesser extent, transfer problems 
(non-standard problems).

Prior studies have uncovered the challenge for problem-
solvers to interpret differences in syntax (word order) within 

specific type of word problems. Clement (1982) found that 
students tended to interpret the syntax of word problems in 
a static rather than relational manner. They tended to produce 
6S =  P for a statement “There are six times as many students 
as professors at this university.” In a related study, successful 
problem-solvers were capable of using relational key words 
(e.g., less) to form an equation accurately, whereas unsuccessful 
problem-solvers interpreted the syntax literally, leading to an 
incorrect equation (Hegarty et  al., 1995). In fact, the main 
issue here is failure for problem-solvers to interpret relational 
variables which stand for variables rather than objects. 
Strengthening learners’ prior knowledge of the concept of 
variable would alleviate learners’ working memory capacities 
for processing numerical and translation dimensions of word 
problems. Additional research is needed to verify this proposition.

CONCLUSION

Drawing on the review of the five studies, the main ideas and 
interpretations presented pointing to the efficacy of studying 
worked examples alone or completing multiple example–problem 
pairs to develop problem-solving expertise for word problems. 
A typical worked example provides a diagram that scaffolds 
conceptual knowledge (problem structure) and procedural 
knowledge (solution steps). There is evidence that an in-depth 
understanding of conceptual knowledge (i.e., problem structure) 
might contribute to superior procedural fluency manifested in 
the reduced solution steps. Thus, we urge mathematics educators 
to consider the incorporation of worked examples in mathematics 
classroom to assist students in gaining problem-solving expertise 
for word problems.
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