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Preface 

This thesis was motivated by two very different sentiments. The first was personal. I sought a task of 

sufficient significance that I might be preoccupied with it for a number of years, and crucially, that 

would keep me from work-based travel while my family was young. I sought flexibility in the 

composition of my day so that I could be present enough to hear tall tales from the school yard, 

learn to cook, and kiss each child at night. The second was strictly commercial – if also altruistic. 

When working in industry, I longed for an informed, rigorous alternative to the narrative that 

permeated the corporate world: that the value of your data was exclusively defined by what you 

could sell it for. I sensed such a superficial philosophy would enslave data producers who could not 

conceive of markets for their biological, social, or corporate data, would enable rogue behaviour by 

those operating analytic systems, and would eventually lead to widespread market failure – 

particularly in knowledge markets. 

My background in aerospace engineering and technology management, as well as my practical 

experience in both blue-chip and startup environments, led me to recognize the potential of 

technology-enabled value creation. With this focus, I sought an understanding of how data-sharing 

platforms could be more than just tools for powering business models, but also instruments for 

empowering communities to make valuable decisions. I hoped that taking a step back from 

corporate life would permit me to orchestrate an environment where I could plunge into what I 

hoped was approachable theory, while being present at the school gate and in the evenings.  

Fortunately, we found quick success. I could see the value of data lay not in its mere existence, but in 

its extensibility, which in turn was enabled by the components of these data platforms. To that end 

our initial goal was to discover, elucidate and chart before progressing to explicate, synthesize and 

apply. Like a pilgrimage, the difficulty lay in the task of extending the ideal into the everyday. 

Plumbing the seminal texts from economics of information to communication theory, platform 

economics to data management, and finding a voice in the emergence of datanomics took much 

longer than anticipated and required a level of analysis that seemed, at least initially, incongruous to 

home life. 

The pandemic was the curse that brought the blessing. Home schooling and no mental space for 

concentration twinned with omnipresent data disclosure, their omniscient behaviour models, and 

policed by omnipotent systems. I had become trapped in the front room of my data sharing 

ecosystem, with only theory to save me.  
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To that end, I hope this thesis is ‘good theory’ (Lewin, 1943) in that it offers an explanation that is 

both rigorous and straightforward, academic and practical, where abstraction is applied only to the 

point where the mechanics become visible. As I penned in a graduate assignment some six months 

before commencing the PhD,  

“With widespread good governance, Instantaneous Big Data [that is, data 

ecosystems] could – theoretically – usher in an era of the responsible, sustainable rise 

of billions of people from disconnection and isolation into a global, interconnected 

assembly of bourgeoisie communities. Without governance, Instantaneous Big Data 

will be the means by which the proletariat will be organised for the greater efficiency 

of a new aristocracy whose nobility is the data they control, and the middle-class will 

be economically harnessed, employed as non-current assets and depreciated 

accordingly.” 

Care for my family and concern for our digital selves motivated this research. I am thankful that the 

path we have begun is fulfilling both mandates.  
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Abstract  

This work centers on the mechanisms by which value is accrued to data, a field that is becoming 

known as datanomics. The research is mobilized from platform economics, the economics of 

information, Big Data, communication theory, the study of data as a production factor and an 

exchangeable service, and the emerging field of information chain failure (a vertical form of market 

failure). This thesis makes the case that the creation of value from data requires a broader 

consideration of activities and resources than has been researched previously. Essentially, value 

creation relies on capitalization of enrichment infrastructure, and recognition of a community of 

internal and external stakeholders who collaborate around the data. At issue is the fundamental 

question of how each stakeholder can operate around data to achieve maximum advantage, and 

how collaboration, not competition, is required to achieve those outcomes.   

The empirical case used is of animal (specifically cattle) breeders who periodically collect 

performance data and then must decide both how much of it to share and how frequently to do so. 

The emergent model characterizes optimal strategies at firm and industry level. This novel approach 

provides guidance for industry and policy action. For industry, it identifies optimal data sharing 

actions and contextual conditions. At the policy level, it identifies and quantifies market failure, and 

the steps necessary to correct it.   

This PhD is presented as a thesis-by-publication. The first two chapters draw from the literatures 

noted above to derive the ingredients required to create value from data, the attributes of the value 

creation process and the mechanics of its operation. The first of these chapters was published in an 

A* agricultural systems journal in 2021. The final three chapters apply this theory at a firm-level, 

across a market, and into a microeconomy, respectively, and have been through the full revision 

process at a management journal (A*), information systems journal (A*) and agricultural technology 

journal (Q1).  

The primary author and student has presented his research at three annual Conferences of the 

Australian Agricultural and Resource Economics Society, the annual conference of the International 

Food and Agribusiness Management Association, and the International Congress on Modelling and 

Simulation. The author won first place in the Economics and Business section of  NE’s 3-Minute 

Thesis competition and has been influential in  NE’s business incubation activities that target 

knowledge management aspects of Agtech adoption. 
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Chapter One: 

Introduction to the Research Project 

   

1. Motivation 

Organizations are awash with data but generally at a loss with how to value it (Grover et al., 2018). A 

recent survey of 36 companies and non-profit organizations across North America and Europe, most 

of whom had turnovers greater than USD1 billion, revealed most had no formal data valuation 

practices and any existing valuation efforts were time-consuming and complex (Short & Todd, 2017). 

 ut of necessity, data management was focused on “storing, protecting, accessing, and analyzing 

[their] massive amounts of data”, all while firm data continued to grow at an average of 40% per 

annum. The 2018 NIST whitepaper on big data reported the growth rate of data generated and 

stored outpaced  oore’s  aw for the growth rate of computation ( hang et al., 2018) and this 

capability gap has continued to broaden since then as organizations shift to real-time analysis of 

data (Stieglitz et al., 2018). These challenges become even more pressing when operational 

requirements are applied to big data (Chiang et al., 2018; Ketter et al., 2015). If ever the practice of 

valuing data like a standard accounting asset1 was tenable, it is quickly becoming operationally and 

technically infeasible (Short & Todd, 2017).  

Organizations require a method to prioritize what data to process and what data to set aside (Grover 

et al., 2018). An understanding of how value is created around data permits an organization to 

allocate scarce resources towards the generation, development, and commercialization of data 

(Fleckenstein et al., 2023) and enables managers to derive strategies that can target specific 

characteristics of the value creation process. Beyond the firm, definition of this process permits 

increases in the efficiency of data markets and new opportunities for cross-market, data-based 

partnerships (Windasari et al., 2021). 

The problem of valuing data is not limited to organizations and markets. Houses, cars, webpages, 

and social connections create ecosystems of value (Hukal et al., 2020) as data is generated and 

shared with external systems (Cichy et al., 2021). Individuals trade access to their raw social, health, 

 

1 Record, categorize, summarize, and report. 



Chapter 1 | Wysel: Data Sharing Ecosystems and the Creation of Value from Data 

Page 4 of 235 

biological or behavioral data to access subsidized services as personal devices: wearables, as one 

example, share biologic data for short-term outcomes such as entertainment or convenience, and 

longer-term benefits like improved health outcomes (Bardhan et al., 2020). Evidently this data 

constitutes a valuable exchange; these data streams offset real-world costs – usually by a 

proprietary value generation process ( angley &  eyshon, 2017). Indeed, data on customer’s 

preferences enables matchmaking platforms (Evans & Schmalensee, 2016) to amass considerable 

economic value even while controlling relatively few assets other than the intermediating processes 

and associated data (Parker, Van Alstyne, & Choudary, 2016). Data ceded by customers enables 

whole ecosystems whose byproduct, and often: goal, is the transformation of data from a ‘raw’ state 

to more valuable insight. Yet, the portions of this value that could be considered consumer surplus, 

producer surplus, or indeed latent economic value retained remain unapproached. 

Further compounding this phenomenon of ‘drowning in data’, some industries have also 

experienced the rapid proliferation of data-producing sensors. This is particularly true in agriculture 

where the rapid adoption of Smart Farming has extended the science of Precision Agriculture by 

flooding the sector with data. Installation of smart machines and connected sensors within and 

between farms have expanded both the scope and scale of data-based interventions available to 

farm management. These devices digitize farms and create new opportunities for agricultural value 

creation through the data-driven “optimization of agricultural production systems, value chains and 

food systems” (Kler x, Ja  u, &  abarthe, 2019, p. 2). Semi-autonomous machinery and the 

incorporation of Internet of Things (IoT) devices across farms produce constantly evolving data flows 

(Friess, 2016) that threaten to overwhelm agribusiness managers. At an infrastructural level, the 

ongoing shift to off-farm, cloud-based processing and decision support tools continually increases 

the demands placed on farm infrastructure as data flows become critical to standard agricultural 

operations. Even established business models are under threat. Data generated from Smart Farming 

permits new operational models as traditional agricultural problems are shared with non-agricultural 

communities in a continual process of open innovation powered by a common belief in the value of 

shared data. Where value creation in agriculture was once inseparable from labor- and capital-

intensive activities, value creation in Smart Farming is now unavoidably data intensive.  

2. The Research Problem 

What scholars, professionals and consumers need is a straightforward, rigorous framework for 

valuing data that is predicated on the fundamental characteristics of data that affect its value. 

Evidently, there exists a method for deriving value from data. However, if the principles surrounding 
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this method were well understood, as scholars, we ought to be able to answer fundamental 

questions about its nature and generic operation. What constituents must be present for data to 

possess value? Which characteristics of data dictate its ordinal value, and by what process is the 

value of data altered? Scholars and professionals ought to be able to identify the generic modes by 

which data may be valued within an organization and across a market. This thesis proposes timely 

responses to each of these questions.  

Additionally, as scholars we require a theory on data management that unites those attributes of 

data that determine value creation, allocation, and capture with the mechanics of creating value 

from data (Grover et al., 2018). This endeavor requires more than simply coalescing different 

approaches to data (Fleckenstein et al., 2023). A generic production process that describes how 

value is created from agricultural data must reconcile theory from across production, innovation, 

and business management literature and integrate that literature within agricultural economics and 

information systems. For instance, under what conditions might a firm rationally refrain from further 

investment in data (for example, Sims (2003), Cichy et al. (2021)) even though increases in data 

notionally accompany increases in productive output (Gawer, 2022)? Or how might the intrinsic 

properties of data – such as excludability and non-rivalry – affect the specification of data as a factor 

of production within a firm (Pentland et al., 2021)? Indeed, treatment of data as an intangible asset 

has precedent (Farboodi et al., 2019) but how might conditional (Clough & Wu, 2022) data network 

effects (Gregory et al., 2021) be leveraged so a firm can both accumulate value from data and 

distribute value among stakeholders (Cusumano et al., 2019; Wolfert et al., 2017)? More broadly, 

such a theory ought to serve as programmatic theory, strengthening connections between deducted 

causalities and the real-world where these relationships may be empirically evaluated (Cronin et al., 

2021). Without a theory that describes the transformation of data into value within a firm, scholars 

retreat to explanations for data-centric phenomena that are suitable for description, but divorced 

from powers of explanation, prediction, or prescription (Makadok et al., 2018). 

The transformation of data into value within a firm represents a growing tension in the field of data 

management as scholarly theory becomes increasingly separated from the experience of 

practitioners (Pentland et al., 2021). Firms such as 23andMe transform data into value as customers 

provide genetic data in return for insight on specific diseases. Their production process ingests data 

and applies proprietary technology to develop data for an agreed payoff. This process is mirrored in 

platform businesses. Uber and LinkedIn transform data into value through a process where 

behavioral data enables insight that is sold in ancillary markets or used by the firm to improve its 

connection of customers. In parallel, scholarly treatment of data as a resource and the management 

of data within a firm continues to advance. The former focuses on managing data with implications 
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for the firm (see for example, Hagiu and Wright (2020)) while the latter improves management of 

the firm with implications for data (for example, Wysel et al. (2021)). However, mirroring the 

experience of scholars, leaders of even large, well-resourced firms struggle to adequately manage 

data, noting the absence of a united framework that articulates the production process that 

surrounds their data and metadata in terms of resource allocation and management interventions 

(Short & Todd, 2017). Both parties need a single, datanomic theory that unites data-based value 

production with the mechanics of data management and inform real-world data valuations 

(Bresciani et al., 2021), data sharing (Darnell et al., 2018), and value allocation-versus-capture 

(Clough & Wu, 2022; Zhang et al., 2020). Without this, the very practical theory of transforming data 

into value becomes like a map uncharted by explorers and unplumbed by cartographers, increasingly 

distant from those whose practice ought to inform it and studies ought to shape it.   

3. The Research Question  

The purpose of this thesis is to propose a unifying theory for the creation of value from data first by 

an individual agent, such as a firm, and second by groups of agents who engage across a market. The 

goal of this thesis is to offer a scholarly and practical explanation for how value is created from data.  

Accordingly, the central research question is: 

What are the components of the economic value of data and  

how do those components work together?  

This research question proposes that there is a value creation process mediated by the assembly and 

management of the components of a system. The research question deliberately targets an 

economic understanding rather than the decision-making mechanics that inform business processes, 

to permit analysis of both the attributes of data and the emergent commercialization models. 

Specifically, this thesis applies this question to the Australian Agricultural Industry. While we 

maintain a recurring focus on livestock breeders, the societies that represent their short- and longer-

term interests, and the markets that service their creation of value from data, we develop models 

that are also applicable more broadly. Notwithstanding this focus, this thesis seeks to answer the 

research question universally seeking to apply the economic explanation at firm level, within a 

marketplace, and across a micro-economy.  

The objectives of this research are to: 

- Identify the component elements of the value creation process that surrounds data and 

specify how those components interact. 
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- Explain the mechanics of the process that brings these components together and the 

economic drivers of this process. 

- Explain how the process works within a firm and across a marketplace. 

- Evaluate what happens to value creation when one component of the process is impaired.  

4. Methodology and Structure of this Thesis  

This thesis uses a combination of theoretical and empirical analysis to explain how the creation of 

value from data is given by the operation of a data sharing platform, and that by managing the 

operation of the platform an agent can manage the value created from data under their control. The 

theoretical analysis synthesizes theory from platform economics (Parker et al., 2017), the economics 

of information (Arrow, 1996), production (Zellweger & Zenger, 2021) and innovation (Gomes et al., 

2018) literature as well agricultural data (Wiseman et al., 2019; Wolfert et al., 2017) and the data-

enabled value management (Jakku et al., 2016; Klerkx et al., 2019) that agricultural data creates.  

The empirical analysis is based on a national survey of livestock breeders conducted by the 

Australian Meat and Livestock Association (MLA) (Banks, 2019) and addresses the data trading 

ecosystem that they create by sharing genetic data with industry analysts such as the Agricultural 

Business Research Institute ( BRI).  hapter 6 deals with the highly sensitive topic of Breed Societies’ 

performance and the pending failure of the genetic market they preside over due to the 

introduction of new value-creating technologies. As breed societies are understandably reluctant to 

share this type of performance data, we engaged an industry expert to generate a representative 

dataset that covers breeder’s costs, and their data-based benefits under both the nominal operating 

conditions and when using the new technology. 

This thesis is presented as a thesis-by-publication. Accordingly, each chapter has been written to 

stand alone as a publishable paper and to build a research project that addresses the stated research 

objectives. Chapter 2 frames the analysis by bringing together the results of Wolfert et al. (2017)’s 

systematic literature review of Big Data in Smart Farming and platform economic literature. The 

latter deals with the composition (Choudary, 2015), operation (Gawer, 2022), and management 

(Hukal et al., 2020; Van Alstyne et al., 2016) of platforms, the socioeconomic constructs that utilize 

data to create value for the agents who participate on them (Langley & Leyshon, 2017). Chapter 2 

presents data sharing platforms as the more generalized version of platform businesses (Täuscher & 

Laudien, 2018) because the former maintains a focus on both data and value created, instead of 

focusing primarily on the resulting value. Chapter 2 initially develops the foundational components – 

or ingredients – of the process of creating value from data before applying this framework to 
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connect decision making with the second-order effects of value creation. The online livestock trading 

platform AuctionsPlus.com.au is used as a sustained exemplar. 

Whereas Chapter 2 approaches the process of creating value from data from two opposite and 

bounding perspectives, Chapter 3 uses seminal work from communication theory (Shannon, 1948) 

and the economics of information (Arrow, 1996) to explain how data sharing platforms operate, and 

therefore, how value is created from data. This manuscript maintains the value equation from 

 hapter 2 and following  rrow’s (1996) exposition of the economics of information, specifies a single 

economic expression for the operation of a data sharing platform. Shannon’s (1948) communication 

theory is used to explain how interactions between the community and system cause a coordinated 

enrichment of data and accretion of value. 

Chapter 4 applies the valuation modes from Chapter 3 to the decision-making framework from 

Chapter 2 to connect firm-level decision making with the first-order effects of creating value from 

data. Specifically, this chapter develops a firm-level, objective function for the production of value 

from data and as s, ‘how much should a firm invest in data?’ and, ‘how often should the firm repeat 

that process?’. Deliberately, other than noting data may be purchased from outside the firm and 

value is created via payoffs received from the market, this paper considers the firm in relative 

isolation from its surrounding environment leaving the complexity associated with the trade of data 

to Chapter 5. 

Chapter 5 applies the data sharing platform model to the results of the MLA survey, to analyze value 

created by the genetic data that breeders share with industry analysts such as the Agricultural 

Business Research Institute (ABRI). This chapter extends the data-based, production process 

developed in Chapter 4 by applying it to evaluate how efficiently breeders and the industry analyst 

trade data to create value. The analysis from Chapter 5 presents a ‘system-of-systems’ application of 

the models developed in Chapters 2 through 4.  

A key tenet of this chapter is that if analysts in a data sharing ecosystem adopt a service-dominant 

logic (Vargo et al., 2008) towards data trading, they can incentivize producers to share data above 

their notional optimum, expanding the Pareto frontier of the ecosystem and inducing a (rational) 

overshare from producers. While this chapter presents an analysis of a specific genetic trading 

market, adoption of a service-dominant view of data trading also reveals Breed Societies to be facing 

a pending technology-enabled market failure in the supply of genetic data. This is the research 

question for Chapter 6.  

Chapter 6 connects technological disruption with market failure for agricultural data markets. 

Theory developed by this thesis shows unilateral value maximization by one party has impaired the 
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value co-creation that characterized the ecosystem. If the Breed Society does not act, breeders will 

digitally over-graze their society’s genetic libraries and, eventually, create a tragedy of their shared 

data commons.  

This thesis deliberately views breed societies and their activities as a data sharing ecosystem that 

comprises a community of value-maximizing members, an analytic system, and data that is jointly 

stewarded by both parties. This perspective is predicated on those attributes of data that distinguish 

it from the normal assets of capital or labor; chiefly, non-rivalry (Jones & Tonetti, 2020), excludability 

(Angelopoulos et al., 2021; Easley et al., 2018; Jakku et al., 2019), and conditional (Clough & Wu, 

2022) data network effects (Gregory et al., 2022; Hagiu & Wright, 2020).  

5. Contribution 

The contribution of the analysis portion of this thesis is threefold. First, an economic valuation model 

is developed that accounts for: intrinsic uncertainty in the relevance of data, the non-rivalrous 

nature of data, uncertainty in expected payoffs, and rivalry of resources consumed in the data’s 

valuation. Second, we extend existing economics of information research (Frankel & Kamenica, 

2019) by establishing uncertainty as the sole intrinsic characteristic of data that alters its value. We 

also define the data enrichment process as the means by which this uncertainty is reduced. Third, 

the data valuation process and data enrichment process are combined to create a framework useful 

for understanding, managing and attributing value between all parties involved in the valuation of 

data. The implications of these findings are an understanding of how data may be valued according 

to one of three modes: the valuation of data as a resource, as an economic good, and as a currency.2 

This theory is then applied at a firm level, within a marketplace, and across a micro-economy. The 

paper that comprises Chapter 4 is the first time a production function has been mobilized to 

describe the creation of value from data within a firm. Significantly, this theory encompasses a very 

general set of use cases, and yet can easily be applied to answer very specific questions such as, 

‘how much should I invest in data?’ or ‘how often ought I repeat that process?’. To the best of our 

knowledge, the proposed theory is the first time such an expansive definition of data as a production 

factor is brought together with the very practical exercise of creating value from data within a firm. 

 

2 We do acknowledge that a resource and currency are strictly just different projections of an economic good. 
Nevertheless, the distinction has been adopted as each projection reveals different aspects of the value of 
data, and how this value may be appropriated in different contexts. 
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Abstract3 

Across agriculture, data is produced, enriched, and consumed through the centuries-old practices of 

producing food and fiber. The adoption of Smart Farming and its connected services and techniques 

accelerates agriculture’s dependence on data, yet the process of creating value from data is not well 

understood. 

What assets and management decisions comprise the process of creating value from data? What are 

the properties of this process, and where should resources be invested to increase the value created 

from agricultural data? 

We extend platform economics theory with the results from a recent systematic literature review of 

Big Data in Smart Farming to show the creation of value from data occurs in Data Sharing Platforms. 

Data sharing platforms are systems that connect the layers of the ‘platform stac ’ with pertinent 

management tasks to create value from data. We illustrate this arrangement as a sectioned, three-

circle Venn Diagram and evaluate the efficacy of common data management techniques in the 

creation of value from data. This paper concludes that value is created from data only when each of 

the components of data sharing platforms are present and that the operation of a data sharing 

platform describes the process that takes data as an input and produces value as an output. Further 

conclusions relate to commercial and institutional aspects of the creation of value from Smart 

Farming data. 

The proposed model is useful for evaluating production processes that create value from data.  This 

paper details several avenues for extension. Productive models of systems that rely on data as a core 

asset may now be assembled. Policies that trade off technical characteristics of data with social 

impacts of data may now be approached. Questions surrounding data ownership may be considered 

with greater clarity. 

 

3 This abstract was originally prepared as a structured abstract per publishing requirements of the journal. 
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Graphical Abstract 

 

1. Introduction 

Agriculture 4.0 has signaled a proliferation of connected sensors across farms and throughout value 

chains whose streams of data offer the alure of value to those who possess the requisite skills or 

acumen. Staple farm equipment such as rain gauges and soil moisture probes are transformed into 

Internet of Things (IoT) devices that document the farming system in constant and ever-changing 

data flows (Friess, 2016). Meanwhile, traditional farm machinery such as tractors or livestock 

weighing stations are connected to non-agricultural products like smartphone apps to leverage on- 

and off-farm data (Barrett, 2021). These devices digitize farms and create new opportunities for 

agricultural value creation through the data-driven “optimization of agricultural production systems, 

value chains and food systems” (Kler x, Ja  u, &  abarthe, 2019, p. 2). In turn, data-based 

opportunities present farms with operational models that are radically different from previous 

generations. Farming machinery is subsumed into the sharing-economy (Daum et al., 2021; 

Venkataraman, 2016), robotic workforces operate alongside human laborers (Christiaensen, 

Rutledge, & Taylor, 2021) and provide insurance against labor shortages (Barrett, 2021), while a 

single farm’s access to finance can be hedged against whole-of-chain performance (AgriDigital, 2021; 

Jakku et al., 2019). In each case, a common belief in the value of agricultural data connects 

traditional agricultural problems with solutions from – often – non-agricultural communities. Where 

value creation in agriculture was once inseparable from labor- and capital-intensive activities, value 

creation in Smart Farming is now unavoidably, data intensive. 
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The data produced by Smart Farming intertwines agriculture and business in new ways. Where 

Smart Farming is the application of information technology to optimize the farming system and 

agribusiness, the science of making value-adding decisions regarding the agricultural assets in that 

system, agricultural datanomics can be considered as the interdisciplinary study focused on the 

treatment of data as a valuable resource created by, and for agriculture. Accordingly, agricultural 

datanomics includes consideration of the sources of value creation (Kieti, Waema, Ndemo, 

Omwansa, & Baumüller, 2021) through to market design (Agyekumhene, De Vries, Paassen, Schut, & 

MacNaghten, 2020) where stakeholders act as both producers and consumers of the value produced 

by Smart Farming data. Transparency is vital for embryonic digital markets (Jakku et al., 2019) as 

buyers and sellers often collaborate around data-products to extend value created by their exchange 

(Faulkner, Cebul, & McHenry, 2014). Stakeholders multi-home (Rochet & Tirole, 2003) with digital 

goods (Barrett, 2021) as their products or services participate in multiple markets simultaneously. 

This creates highly fragmented markets as ad hoc, agricultural platforms (Klerkx et al., 2019), whose 

primary advantage is access to crowd-sourced resources (Parker, Van Alstyne, & Choudary, 2016), 

compete with the ‘pipeline’ businesses ( houdary, 2015) that traditionally dominated agriculture. 

There is widespread agreement in the centrality of digitization in agriculture’s future (Jakku et al., 

2019; Klerkx et al., 2019), and considerable research into the science of managing the value 

produced by those processes (Birner, Daum, & Pray, 2021; Wiseman, Sanderson, Zhang, & Jakku, 

2019) but the issue of how value is created from Smart Farming data is only beginning to be 

addressed (Darnell et al., 2018; Rojo-Gimeno et al., 2019; Wiseman & Sanderson, 2019). This study 

requires consideration of both technical and economic properties of data (Birner et al., 2021; A. 

Fleming, Jakku, Lim-Camacho, Taylor, & Thorburn, 2018; Nikander, Manninen, & Laajalahti, 2020), in 

conjunction with agribusiness assets and associated management responses (Chen, Mao, & Liu, 

2014; Wolfert, Ge, Verdouw, & Bogaardt, 2017). In this context, this paper aims to address two of 

the fundamental questions for scholars of agricultural datanomics:  

(i) what assets and managerial tasks are required to support the creation of value from 

Smart Farming data, and  

(ii) what properties must the process of creating value from Smart Farming data possess?  

We approach both questions in parallel, initially collating extant academic literature to establish a 

framework of seven components required to create value from Smart Farming data before 

examining how their arrangement dictates that value creation process. 

Value created from data, 𝕍, may be understood as the difference between the benefits enabled by 

the data, 𝔹, less the costs incurred to realize those benefits, ℂ, or, 𝕍 = 𝔹 − ℂ. This approach is 

widely adopted (Chesbrough, 2003) and is well-established in agriculture. Value created from 
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cropping or livestock production is the difference between the sum of market and non-market 

benefits less the associated costs of bringing those goods to market. Benefits enabled through the 

adoption of new technology or management techniques increase the value of the underlying 

agricultural assets through more effective observations, measurements or analysis. Likewise, a 

reduction in the costs of optimizing the farming system through the application of Smart Farming 

increases the value of farming operations by improving access to, and application of, data across the 

farm. Investment in key assets or accompanying management tasks increases value created from 

Smart Farming data as benefits are increased, or the cost of achieving those benefits is reduced.  

Data produced by Smart Farming is the core resource that enables value, is often the good 

exchanged, and even the currency that finances interactions throughout agricultural value webs 

(Darnell et al., 2018). While agricultural data is at least an asset and “must be managed li e any 

other [asset]” (Wiseman & Sanderson, 2019, p. 3) unli e other classes of assets, data possesses near-

infinite economies of scale (Arrow, 1996). However, this property of data does not confer 

corresponding economies to the resulting value.  dditional factors such as sta eholder’s decision 

rules, social intentions, and the technology used to transform data into information, all set bounds 

on the value created from Smart Farming data (Rojo-Gimeno et al., 2019). Value that is created from 

Smart Farming data is contingent on adoption and utilization of that data by a heterogeneous 

community of stakeholders who assemble according to a congruous goal (Wysel, 2019). Bearing 

some resemblance to integrated value systems (Papazoglou, Ribbers, & Tsalgatidou, 2000), 

stakeholders voluntarily exchange data with one another provided their individual benefits exceed 

both their search costs and transaction costs (Kieti et al., 2021). In this way, the farming system acts 

as a platform upon which a community meets to exchange data.  However, sta eholder’s 

participation in data sharing platforms is more than transactional (Agyekumhene et al., 2020). Value 

can be created from Smart Farming data as stakeholders collaborate around data (Birner et al., 

2021), conduct arbitrage with data (Jensen, 2007), or compete for data (Jakku et al., 2019). 

Additionally, the data and value created on a data sharing platform can be treated as a private good 

(Wiseman et al., 2019), a club good (A. Fleming et al., 2018), or a public good (Sanderson, Reeson, & 

Box, 2017).  

Therefore, the creation of value from Smart Farming data requires more than individuals or 

agricultural collectives investing in digital assets or technology management. An understanding of 

both the complimentary assets that must exist beside data and the management tasks required to 

develop these assets is an important first step in investigating the process of creating value from 

Smart Farming data. The remainder of this paper is organized as follows: Section 2 establishes and 

situates this work among the current state-of-art academic and management literature on the 
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creation of value from data and the results from Wolfert et al. (2017)’s recent systematic literature 

review on Big Data in Smart Farming. Section 3 presents an intuitive framework placing each of the 

seven components required to create value from Smart Farming data. Section 4 examines the 

interplay between each component and assembles a model that describes their effect on value 

creation. Section 5 discusses the implications of the model for scholars and practitioners as they 

analyze and manage value created from Smart Farming data. Section 6 concludes with several 

avenues for extension. 

2. Literature: Platforms, Data Sharing, and Mobilizing Value from Data 

Platform business models describe organizations that broker valuable connections between typically 

external stakeholders (P. C. Evans & Gawer, 2016). In their simplest form, businesses that operate a 

platform business model, or more simply platforms, utilize data to create value for the participant 

sta eholders that assemble ‘on’ the platform. In platforms, managers use proprietary business 

processes to mobilize sta eholder’s latent physical or labor assets according to some shared goal. 

Varying from value chain models, the community of transient stakeholders volunteer their private 

assets in exchange for a portion of the value created (Parker, Van Alstyne, & Jiang, 2017). In this 

manner, the platform provides a price structure designed to overcome a market failure through the 

formation and governance of a multi-sided marketplace (Rochet & Tirole, 2003). The platform 

distributes costs across its membership base and internalizes benefits to groups of stakeholders that 

would otherwise be lost as externalities (Baker et al., 2021). This allocation of the benefits and the 

distribution of costs occurs as stakeholders interact with one another across the platform. These 

activities generate additional, behavioral data which enables platforms to refine their service and 

remain relevant to the community’s evolving priorities and sensitivities (Turland & Slade, 2020). The 

resulting arrangement of assets is commonly  nown as a ‘platform stac ’ ( houdary, 2015) and is 

well developed in both the academic and management literature (D. S. Evans, 2009; Gawer & 

Cusumano, 2014; Parker et al., 2016; Van Alstyne, Parker, & Choudary, 2016). As illustrated in Figure 

2-1, the platform stack consists of the three different types of assets common to all socio-economic 

platforms: first, a “networ  or community layer, comprised of the participants and their 

relationships” ( houdary, 2015, p. 61); second, an infrastructure layer that “encapsulates the tools, 

services, and rules” (ibid), and third, a data layer that “allows the platform to match supply with 

demand” ( houdary, 2015, p. 62).  ue to the active nature of management within the infrastructure 

layer, we adopt the noun the system to refer to the entire enterprise of management working 

alongside the technical and business infrastructure. In commercial platforms such as the online 
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As this paper develops, the operation of a data sharing platform describes a process that takes data 

as one of a number of inputs and produces value as an output. In this context, stakeholders in a data 

sharing platform act like individual firms in supply chains for whom collective benefit must be 

achieved, not by managing individual functions but by adopting an integrated approach to their 

separate activities (Lambert & Cooper, 2000). However, unlike a supply chain where volume is 

primarily driven by pricing levels, management of value created across a data sharing platform 

requires consideration of a multi-sided price structure (Rochet & Tirole, 2003) as stakeholders 

depend on same- and cross-sided network effects for the platform to create value. This is typically 

reflected in micro-economies that form around Smart Farming data as positive externalities 

generated by one part of the community are internalized to others through the use and exchange of 

data (Wysel, Baker, & Conway, 2019). This creation of value from data and accompanying assets is 

enabled by the system through its organization of the community’s interactions and development of 

the data into information.  

Wolfert et al. (2017) expand on these management tasks required to create value from Smart 

Farming data in their analysis of both the academic and grey Smart Farming literature. Their 

conceptual framework proposes how Big Data may be managed to connect industry drivers to 

emergent challenges, and specifically, the interventions or management tasks required to create 

value from Smart Farming data.  bstracting Wolfert et al.’s ‘Big  ata  pplication System’ (2017, pp. 

71, Figure 1) enables connection of their data application layers with each of the platform stack 

layers presented above. In accordance with Wolfert et al. (2017)’s framewor , each management 

component presents the managerial variables that indicate the extent the platform’s assets are 

developed across the data sharing platform. Figure 2-2 below, presents this abstraction and 

illustrates the core responsibilities agribusiness managers must administer when attempting to 

create value from Smart Farming data. These activities may be summarized as: Community 

Organization, Value Allocation, and Data Development. Figure 2-2 also accords with prior empirical 

work on digital service platforms by Kieti et al. (2021).  

The data development task consists of farm processes, farm management and the underlying data 

chain (Wolfert et al., 2017) and can be broken down into four phases: data generation, data 

acquisition, data storage, and data analysis (Chen et al., 2014). While business processes vary 

considerably between different types of agricultural production, all processes share the common 

outcome of generating data. Once generated, data is acquired through a range of human-based and 

digital sensors that capture and format specific observations into storable data points. Prior to 

storage, raw data is categorized to support subsequent reporting and data analysis. This additional 
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from data by another group of stakeholders – even to the point where prospective stakeholders are 

enticed to begin participating in the community. This additional activity encourages even greater 

participation from the first group and, with it, value created from data which compounds the 

increase in the second group. This phenomenon describes demand-side economies of scale, as 

distinct from supply-side economies of scale which characterizes the industrial and precision 

revolutions in farming.5 When considered within a data sharing platform, the increase of data 

produced by Smart Farming does more than offer more efficient methods of operating. 

Sta eholders’ self-organization and value co-creation create new networks where stakeholders who 

perform better, attract better performing stakeholders. This upwards cycle of value creation is 

enabled by the system through its allocation of value, and the development of data and organization 

of stakeholders across the data sharing platform.  

In summary, the extant platform economics literature emphasizes the primacy of a community of 

stakeholders and a faciliatory system as complimentary assets for the creation of value from data. 

However, platform economics alone does not address how each of these assets ought to work 

together to create this value. Similarly, the existing grey and academic literature into Smart Farming 

describes the responsibilities management must consider when creating value from data but omits 

sufficient treatment of the underlying asset base. Therefore, the remainder of this paper aims to 

address this gap by joining the complementary assets required to create value from the Smart 

Farming data with the responsibilities management must fulfil to realize that value.  

3. The Data Sharing Platform Framework: Assets, Management Tasks, 

and Created Value 

 ombining the ‘platform stac ’ from Figure 2-1 with the interventions required to manage Smart 

Farming data from Figure 2-2 and valuable interactions as the nexus of value creation in socio-

economic platforms, the components required to create value from Smart Farming data may be 

depicted as shown in Figure 2-3. Data sharing platforms consist of three assets together with three 

management tasks that span each pair of assets to enable valuable interactions across the platform. 

The three core assets data sharing platforms rely on are: a community of stakeholders, a faciliatory 

system, and data on and for that community. Bridging each pair of assets, the interventions 

proposed in Wolfert et al. (2017)’s review describe three distinct management tas s whose common 

 

5 Larger, supply-side economies of scale improve profits through a reduction in unit-cost, whereas larger 
demand-side economies of scale create positive, closed-loop feedback in a market. See Shapiro and Varian 
(1998) for a full development of demand-side economies of scale in digital networks. 
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AuctionsPlus to create more value from their data through more rigorous – and ostensibly more 

beneficial – searches. Participation in the AuctionsPlus data sharing platform also permits 

stakeholders to create value from data at a lower cost than if they attempted to create value from 

that same livestock data independent of the platform. Where the value created from data is the 

difference between the benefit derived from the data and the cost to achieve that output, the value 

created by each stakeholder, 𝕍𝐶𝑖
, can be expressed as the difference between the benefit each 

stakeholder accrues, 𝔹𝐶𝑖
, and the cost each incurs, ℂ𝐶𝑖

, 

𝕍𝐶𝑖
= 𝔹𝐶𝑖

− ℂ𝐶𝑖
.  

When taken in aggregate, 

𝕍𝐶 = ∑ 𝔹𝐶𝑖

𝑛

𝑖

− ∑ ℂ𝐶𝑖

𝑛

𝑖

  

where each 𝑖th stakeholder participates in a community of total size, 𝑛, until their benefit of 

participation ceases to exceed the associated marginal cost. Therefore, ceteris paribus, the value 

created from data continues to increase while 𝑛 increases. 

3.2. The Asset Layer: An Enabling System  

In a data sharing platform, the system presides over the data and must continually develop the data 

towards the loci of goals specified by the community. Observation of valuable interactions between 

stakeholders in the community becomes an important metric in determining system efficacy (Parker 

et al., 2016).  However, the system must do more than just deliver valuable interactions to 

stakeholders and minimize their short-term search costs. Stakeholders reduce uncertainty in data as 

they generate, search, select and process data. Also, the system must balance investments in 

interrogating this activity-data with the timely delivery of potentially valuable data to stakeholders. 

For example, one stakeholder who carefully considers a multitude of sale lots on AuctionsPlus and 

selects one lot from an ostensibly, homogenous list strips away more uncertainty for the whole 

platform than if they had selected the first lot presented. In the former case, greater uncertainty was 

removed from the assembled data at a higher personal and system cost. However, by the same 

means evaluating and discarding more data points produces greater potential benefit for both the 

stakeholder and community. Therefore, a system seeking to create the most value from platform 

data may divert stakeholders away from the lowest cost set of interactions and along a path of 

interactions that produces the most benefit to the rest of the community. It follows the system must 

balance the marginal costs accrued by each stakeholder on the platform with the marginal benefit 

each stakeholder expects to receive from the data.  
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In this way, the system may choose to create value from data by conferring benefits to stakeholders 

at a lower cost or by deepening users’ enrolment in “a participatory economic culture” ( angley & 

Leyshon, 2017, p. 14). While stakeholders use the data to make valuable interactions, the system 

may use the same data as an additional means of extracting value through the capitalization of the 

community’s preferences. Where 𝕍𝑆 is the value created by the system from data and 𝕍 is the total 

value created from data, we can write: 

𝕍𝐶 =  𝕍 − 𝕍𝑆.  

However, this simultaneous extraction of benefit need not be competitive. To the extent the system 

can design interactions across the platform to yield value to the community and gather additional 

insight, both groups benefit. However, past the point of Pareto optimality, additional benefit 

extracted by the system will be borne as a cost by the community where the limit to the system’s 

‘over extraction’ of value is the consumer surplus each sta eholder derives from the data.  bove this 

level, stakeholders will simply cease participating and quit the platform. Until that point, whether 

through greater development of data, or more effective organization of the community, the system 

takes investment by some means and ceteris paribus, the value of the data continues to increase 

while stakeholders in the community continue to realize the benefits from the data provided by the 

system.  

3.3. The Asset Layer: Data on and for the Community 

Data is the core asset that permits and facilitates the creation of value on data sharing platforms. 

Data acts as a resource when it enables a non-data outcome, such as livestock exchanged on 

AuctionsPlus or fields that are variably fertilized with data from Smart Harvesters. Data acts as an 

economic good when developed data is the outcome desired, such as clearance prices on 

AuctionsPlus or news articles in a Facebook farming community. Finally, data is valued as a currency 

when it acts as a store of value or facilitates an exchange of value between stakeholders or other 

parties. In this final case, data is neither the immediate outcome nor the sta eholder’s goal per se. 

Data is valued as a currency by farmers who, for example, collect data for university research 

programs to benefit from government grants, or by agronomists who maintain membership in data 

aggregation clubs to access new clients. 

Value is also created from data when the data sharing platform exchanges data with an external 

data marketplace (Jones & Tonetti, 2020). This valuation in exchange can be positive, where data is 

exchanged for benefit to the platform, 𝔹𝐷, or negative, where data is purchased at cost from 

outside the data sharing platform, ℂ𝐷. In the former case, data that has been acquired and 
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developed by the combined actions of the system and community of stakeholders may be realized 

as a benefit and supplements the creation of value by the platform. The latter case may arise if the 

purchase of data constitutes a smaller cost to the platform than internal development of the same 

data.  

Therefore, while ceteris paribus, an increase in the amount of data corresponds to an increase in 

value, this is contingent on the evolving data set not degrading in certainty and remaining aligned 

with the needs of the community.6 

3.4. The Management Layer: Data Development 

We now turn to consider the second layer of Figure 2-3: the management layer. Taken collectively, 

the three management tasks reflect the central management challenge of platform managers: how 

to build a community of stakeholders that share similar goals regarding data such that they remain 

engaged in the value creation process of the platform and satisfied with the ensuring creation of 

value.  

The management task of developing data sits on a continuum. If data is developed towards too fine 

a collection of goals, it will cease to become valuable to a sufficiently large set of stakeholders who 

share similar but now incongruous goals. Similarly, data left under-developed will not sufficiently 

reduce a sta eholder’s own data development costs causing sta eholders to decide that the benefit 

no longer outweighed the costs and that the rational action would be to cease participating in the 

community. 

Data sharing platforms must generate, acquire, and store data to support the creation of value 

(Chen et al., 2014), but the creation of value from data must progress beyond those mechanics. Data 

must also be developed to support the needs of each stakeholder. Stakeholders use data developed 

by the system to lower their personal cost of accessing the same outcomes, or to achieve greater 

outcomes for the same cost (Jones & Tonetti, 2020). Extending the earlier example of a stakeholder 

who has signed in to AuctionsPlus, the system assumes an interest in purchasing livestock from a 

nearby location and at a near future time such as the next lot sales. The stakeholder confirms or 

corrects this assumption with their selection of fields on the AuctionsPlus website. This correction 

signal – of the form used in communication theory (Shannon, 1948) – permits an update to the data 

 

6 A brief note on the impact the conceptualization of data sharing platforms have on both blockchains – that 
ostensibly do away with a centralized system – and Big Data – that is defined as too big for consideration by a 
community of stakeholders – has been included in Section 5.4. 
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offered to that specific stakeholder and, in aggregate, enables changes to the processes used to 

deliver data to all stakeholders. This improvement in network performance is the data-driven means 

by which one agent’s value creation process is spilled-over to others in the community.  

Data development can also happen across markets. In platforms that preside over multi-sided 

markets such as AuctionsPlus, stakeholders quickly begin considering data other stakeholders have 

provided to the system. Here the system prompts stakeholders to arrange their own data to 

maximize their – and other’s – direct benefit. ‘Suggested prices’, ‘suggested  eywords’ or ‘minimum 

recommended fields’ are examples of nudges delivered by the system to help the community create 

value from data. As developed in Section 4, this direct and indirect data development is the 

transformative step that permits demand-side economies of scale in the creation of value from data. 

Finally, while we leave the extension to others, the collaborative development of data by 

stakeholders who voluntarily share and develop data for their own, private benefit remains a core 

component required to assemble a production function around data.  

3.5. The Management Layer: Community Organization  

If the goals of the community of stakeholders are too diverse, delivery of the desired data will be too 

costly, and stakeholders will drift away. Conversely, if the goals of the community are too 

concentrated, signals arising from the successful interactions around data will fail to attract 

sufficient prospective stakeholders. 

In a manner following Lancaster (1966), demand for data will vary between stakeholders as each 

maintains a different agenda for the data and therefore derives a different utility. One stakeholder 

may visit AuctionsPlus with the explicit intention of finding and purchasing Angus heifers, while 

another stakeholder may visit the same site only to compare prices. The former stakeholder may 

expect a sufficiently large utility from the data to evaluate several lots worth of livestock before 

bidding on a sale. Conversely, the second stakeholder may be unwilling to pay attention to more 

than one lot. While both sta eholders share the goal of obtaining ‘data on heifers’, their utility of 

that data varies and, with it, their willingness to pay the cost of developing that data. The literature 

into Rational Inattention (e.g. Sims (2003)) explains the indirect costs each stakeholder bears as they 

consider additional data. Practically, at a certain point it becomes rational for each stakeholder to 

withhold attention from additional data even if that data could have further improved their utility. 

While others have investigated the causes of these indirect costs (Caplin & Dean, 2015; Gentzkow & 

Kamenica, 2014), the consequence to the creation of value from data is that stakeholders will vary 

their efforts to maximize their personal value. The variance in the value created by each stakeholder 
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from the nominal value created by the community also permits calculation of the correlation of the 

community. This introduces a novel analytical approach where the value creation process becomes 

partially inverted. Where previously, data was developed to maximize the value created for 

stakeholders, new stakeholders may now be developed to maximize the value imputed to data. This 

analysis would rely on development of the production function discussed earlier, and we leave this 

as a novel extension of this work. 

The performance of the network of stakeholders is also driven by the governance framework and 

the value creating mechanism adopted by the data sharing platform (Wolfert et al., 2017). Help 

Wanted listings for seasonal labor are posted in data sharing platforms that have formed for the 

specific purpose of sharing data outside the platform.  ata  ept ‘on-platform’ enables fewer 

benefits than data shared ‘off-platform’.  onversely, accounting data shared beyond the accountant 

and business owner without both party’s prior agreement, would constitute a breach of governance 

and likely diminish value created. Data sharing platforms that form around data gathered from 

Smart Harvesters, for example, are more complex; the manufacturer sees a potential for value 

creation through the wide-spread sharing of operational data, while the farmer prefers the data to 

be kept private (Faulkner et al., 2014). In all cases, consideration of the impact of changes to the 

network of stakeholders is vital for the sustained creation of value from data. Section 4 extends this 

relationship by formally relating management decisions to the productive power of the platform’s 

assets.  

3.6. The Management Layer: Value Allocation 

Stakeholders participate in data sharing platforms to create value from data. This value creation 

requires sufficient investment by a system to permit the effective development of data that accords 

with sta eholders’ goals. The system observes the activities of stakeholders as they search for, 

consider, and validate data each deems relevant. When stakeholders negotiate terms of exchange 

on a data sharing platform, such as AuctionsPlus, the system observes the full path taken by both 

sides of the market on all successful, and unsuccessful, exchanges. Accordingly, the system builds a 

more complete understanding of the community’s preferences than any combination of 

stakeholders, past or present. When coupled with appropriate technology, this understanding 

enables the creation of value from data in a way the community of stakeholders could not otherwise 

achieve. This difference in value creation mechanisms describes two markets: an internal value 

creation market between the community and system, and an external market characterized by 

sta eholders’ various alternatives. 
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The system can use this understanding to conduct arbitrage between these two markets (Jones & 

Tonetti, 2020) up to the point of Pareto optimality. Systems must appropriate some value to sustain 

operations, but stakeholders will prefer platforms with the lowest tax on their value creation. Under-

extraction of value by a system leaves it with too few resources to gather and enroll users. However, 

over-extraction of value from data diminishes the benefit that holds stakeholders to the platform. 

Therefore, up to a Pareto efficient allocation of value, stakeholders and the system collaborate to 

create value from data. 

3.7. The Output Layer: The Creation of Value as an Output of Data Sharing Platforms 

Valuable interactions are the center of the sectioned Venn Diagram and the third layer of the data 

sharing platform in Figure 2-3. Production of valuable interactions requires mobilization of platform 

assets by the relevant management decisions as stakeholders are brought together according to the 

goals of the data sharing platform. As seen graphically in Figure 2-3, each management task must 

account for the nature of the assets that it spans, in order to support the creation of value from 

Smart Farming data. As the system develops data to support the goals of the community, 

stakeholders are enabled to interact, collaborating around, competing for, and using or exchanging 

data in a broader process of value creation. The design of this micro-economy determines the 

relative allocation of value between stakeholders, and between the community and system. Section 

4 develops and then incorporates these relationships into a model that describes the process of 

creating value from data, culminating in a single, objective function that relates value created to 

each of the constituent components. 

4. Operationalizing the Data Sharing Platform Model  

In order to apply the proposed framework in Figure 2-3, we must first examine the value-creation 

properties of each of the seven components in data sharing platforms and how each component 

interacts. As introduced in Section 3.5, we can summarize the benefits the community receives as a 

function of the extent to which data enables stakeholders to achieve their goals. That is, the 

parameter 𝜌 describes the organisation of the community, and 𝜇 the relative allocation of benefits 

and costs between the community and system. We can write,   

𝔹𝐶𝑖
(𝜌𝑖, 𝜇𝑖).  

Likewise, the benefit captured by the system, 𝔹𝑆, will remain a function of the extent that it confers 

positive externalities on the community together with the additional uncertainty it strips from the 

data. Importantly, while the community maintains a crucial role in this data development process, 
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the goals possessed by the community of stakeholders will often relate to, but differ from, the goals 

of the system. In terms of the management layer, the benefit captured by the system is a function of 

the share of value retained (or allocated to itself), 𝜇, and the value created from the development of 

the data, 𝜀. From Section 3.3, each of these variables is driven by the interactions, 𝑘, the system has 

with stakeholders. Each of the stakeholders interact with the system and through it, the rest of the 

community until they either achieve their goal or give up. At either point, each stakeholder ceases 

participating on the platform. Therefore, the total number of interactions served by the system is 

the product of the number of stakeholders in the community, 𝑛 ∈ 𝑁, and the maximum interactions 

of each of those stakeholders, 𝐾.7 Therefore, we can express the benefit captured by the system as,  

𝔹𝑆𝑘
(𝜀𝑘 , 𝜇𝑘)  

where  𝑘 ≤ 𝐾𝑁. Finally, the benefit accrued by the data, 𝔹𝐷, is a function of the extent the data 

enables value for the stakeholders, 𝜌, and the relative development, 𝜀, it has received. Where there 

are 𝑗, data points, we can write, 

𝔹𝐷𝑗
(𝜌𝑗, 𝜀𝑗)   

Therefore, summing the benefits accrued to each asset on a data sharing platform we can express 

the benefit created from data as, 

𝔹 =  𝔹𝐶 + 𝔹𝐷 + 𝔹𝑆 

=  ∑ 𝔹𝐶𝑖
(𝜌𝑖, 𝜇𝑖)

𝑁

𝑖=1

+ ∑ 𝔹𝐷𝑗
(𝜌𝑗 , 𝜀𝑗)

𝐽

𝑗=1

+ ∑ 𝔹𝑆𝑘
(𝜀𝑘 , 𝜇𝑘)

𝑁𝐾

𝑘=1

 
 

where 𝑗 ≤ 𝐽 ∈ ℕ. When the size of the community, number of observations and interactions all 

become large, we can approximate this discrete case with the continuous, 

𝔹 =  ∫ 𝔹𝐶𝑖
(𝜌𝑖, 𝜇𝑖). 𝑑𝑖

𝑁

1

+ ∫ 𝔹𝐷𝑗
(𝜌𝑗, 𝜀𝑗). 𝑑𝑗

𝐽

1

+ ∫ 𝔹𝑆𝑘
(𝜀𝑘, 𝜇𝑘). 𝑑𝑘

𝑁𝐾

1

 (2-1) 

As introduced in Section 3.2, interactions between the system and stakeholders are the primary 

means by which data is developed across data sharing platforms. Therefore, while Equation (2-1) 

contains the general statement of benefits delivered across a data sharing platform, we can make 

several simplifying assumptions that more clearly illustrate the centrality of interactions between 

the system and stakeholders as the driving force for creating value from data. 

 

7 We can algebraically deal with a variance in the number of times stakeholders interact with the system by 
either setting 𝐾 as the global average or by setting the content of any sta eholder’s surplus interactions to 
zero. 
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Initially, if the significant portion of the benefit arising from the development of data comes from 

data provided by stakeholders during their normal activities on the platform, then 𝑗 ≅ 𝑘. The 

conditions required for this simplification are that data is acquired by the platform primarily through 

the system’s interactions with sta eholders as described in Section 3.4, and that the level of 

development of data acquired at each interaction may be considered constant. Further, in platforms 

where each sta eholder’s interactions with the system are characterized by a series of repeated, 

ostensibly equivalent interactions such as sale lots viewed, transactions processed, or messages in 

forums, then each sta eholder’s interactions can be treated as economically equivalent to separate 

interactions by different stakeholders. With these simplifying assumptions, Equation (2-1) can be 

rewritten with interactions as the primary independent variable, 

𝔹 =  ∫ 𝔹𝐶𝑘
(𝜌𝑘, 𝜇𝑘). 𝑑𝑘

𝑁𝐾

1

+ ∫ 𝔹𝐷𝑘
(𝜌𝑘, 𝜀𝑘). 𝑑𝑘

𝑁𝐾

1

+ ∫ 𝔹𝑆𝑘
(𝜀𝑘 , 𝜇𝑘). 𝑑𝑘

𝑁𝐾

1

  

The nature of costs incurred while creating value from data within a data sharing platform proceeds 

similarly. Costs incurred mirror the earlier functions as management tasks drive value creation from 

the underlying assets. Summing the costs of each asset class we have, 

ℂ =  ℂ𝐶 + ℂ𝐷 + ℂ𝑆 

=  ∑ ℂ𝐶𝑖
(𝜌𝑖, 𝜇𝑖)

𝑁

1

+ ∑ ℂ𝐷𝑗
(𝜌𝑗 , 𝜀𝑗)

𝐽

1

+ ∑ ℂ𝑆𝑘
(𝜀𝑘, 𝜇𝑘)

𝑁𝐾

1

 
 

Now if the platform implements a structural, systematic response to achieving a specific level of 

community organization, then the cost of achieving that organization may be borne by the whole 

platform and may be written as a price function, 𝑃𝜌𝜌. Likewise, if the data acquired is a standard 

level of ‘rawness’ and the demands of the sta eholders require it to be developed to a common 

level, then the cost of data development can also be considered as a price function, 𝑃𝜀𝜀. Finally, if 

allocation of value is constant across the community, then it will impose a constant cost rate during 

operation of the data sharing platform, 𝑃𝜇𝜇. We can therefore express total costs as the sum of asset 

costs plus price functions, 

ℂ =  ∑ ℂ𝐶𝑖

𝑁

1

+ ∑ ℂ𝐷𝑗

𝐽

1

+ ∑ ℂ𝑆𝑘
+ 

𝑁𝐾

1

𝑃𝜌𝜌 + 𝑃𝜀𝜀 + 𝑃𝜇𝜇    

We now have a cost function where the first three terms constitute the cost of amassing platform 

assets while the subsequent three terms constitute the costs of managing those assets. Extending 

the simplifying assumptions above, if the cost each stakeholder incurs while creating value from data 

approaches a constant, then the cost to the platform of acquiring each dataset also remains 
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constant. This is the case when datasets are contributed by stakeholders at each interaction. 

Therefore, where the cost to the system of each interaction also remains constant – such as serving 

a webpage, or computing weed growth from paddock imagery – we can further simplify total costs 

to, 

ℂ =  N𝑐ℂ𝐶𝑖
+ 𝐽𝑑ℂ𝐷𝑗

+ 𝐾𝑠ℂ𝑆𝑘
+ 𝑃𝜌𝜌 + 𝑃𝜀𝜀 + 𝑃𝜇𝜇    

The cost incurred by stakeholders as they create value from data, ℂ𝐶𝑖
, consists of signal costs, time 

costs and the unit cost of evaluating each dataset. Signal costs, such as membership or commission 

fees, are often associated with specific events or actions conducted by a stakeholder. Where signal 

costs are small compared to usage costs, sta eholders’ costs become approximately proportional to 

the number of their interactions with the system. Likewise, where data is provided to the platform 

through a series of ostensibly equivalent interactions by stakeholders, then the cost of data 

acquisition, ℂ𝐷, also becomes a function of the number of interactions that occur across the 

platform. Finally, if the cost to the system of developing each of these datasets, ℂ𝑆, approaches a 

constant, then it too may be represented as a function of interactions. Therefore, platform costs 

may be expressed as the sum of the cost of amassing the assets and the cost of maintaining those 

assets at their current levels, 

ℂ =  𝐾(ℂ𝐶𝑘
+ ℂ𝐷𝑘

+ ℂ𝑆𝑘
) + 𝑃𝜌𝜌 + 𝑃𝜀𝜀 + 𝑃𝜇𝜇    

Uniting benefits and costs into a single objective equation yields the value created from data across 

a data sharing platform as a function of the number of interactions across the platform, 

𝕍 =  𝔹 − ℂ 

=  ∫ [𝔹𝐶𝑘
(𝜌𝑘, 𝜇𝑘) + 𝔹𝐷𝑘

(𝜌𝑘, 𝜀𝑘) + 𝔹𝑆𝑘
(𝜀𝑘, 𝜇𝑘)]. 𝑑𝑘

𝐾

0

− { k[ℂ𝐶𝑘
+ ℂ𝐷𝑘

+ ℂ𝑆𝑘
] + [𝑃𝜌𝜌 + 𝑃𝜀𝜀 + 𝑃𝜇𝜇]  } 

(2-2) 

This equation accords with the standard business practice for measuring the creation of value where 

profit equals net revenue less the sum of variable and fixed costs. While variable costs scale with 

respect to output, fixed costs remain a function of the effort required to maintain current 

operations. We see this same relationship in Equation (2-2): the value created by data is equal to 

benefits from the current period less the sum of the costs that scale with interactions and the cost of 

maintaining current operations. We turn now to consider the implications of managing the process 

this model describes.  
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5. Implications for Managing the Value Created from Data in Smart 

Farming  

The creation of value from data produced by Smart Farming occurs in data sharing platforms as 

stakeholders in a community are brought together by a faciliatory system. As interactions are the 

base activity from which all platforms create value, the creation of value from data is typically 

evaluated per interaction. Taking the partial derivative of Equation (2-2) with respect to interactions 

across the platform, 𝑘, we have,  

∂𝕍

𝜕𝑘
=  { 𝔹𝐶𝑘

(𝜌𝑘, 𝜇𝑘) + 𝔹𝐷𝑘
(𝜌𝑘, 𝜀𝑘) + 𝔹𝑆𝑘

(𝜀𝑘, 𝜇𝑘) } − { ℂ𝐶𝑘
+ ℂ𝐷𝑘

+ ℂ𝑆𝑘
 }. (2-3) 

This represents the net value created by data for each interaction: the sum of benefits realized by 

the community and the system and achieved from the data, less the cost of achieving those benefits. 

This relationship of net value generated per interaction could also be considered the gross profit 

achieved by the data sharing platform from data across each interaction (Wysel, 2021). In this 

context, while the gross margin rate – benefits divided by costs - exceeds 1, the data sharing 

platform continues to produce value from data with every interaction. Recalling the operational 

simplifications made in Section 4, above, if interactions on the data sharing platform are the primary 

means of data acquisition and all stakeholders in the community expect and receive the same 

treatment, then the cost rate of the platform’s assets may be considered a constant. This is evident 

in Equation (2-3), above. Therefore, where the marginal utility of data is concave to the origin such 

as when the rate of change of assets is small,8 setting 
∂𝕍

𝜕𝑘
 to zero reveals maximisation of value from 

the objective equation will occur where the marginal benefit realised from data equals the cost rate 

of the platform’s assets. This has several important implications in the practical pursuit of managing 

data produced by Smart Farming. 

If managers of Smart Farming data choose to focus on partnerships that unlock more efficient 

methods for managing on-farm systems and value chain data then, from Equation (2-2), this will 

have the effect of reducing the fixed costs incurred in the production of value from data. These are 

often among the first strategies explored by technology managers as they attempt to come to grips 

with their information systems and the requirements the management of data places on their 

business. Examples of these strategies include adopting cheaper technology contracts, adopting a 

 

8 Selecting the community as an archetype asset: in the case where the size of community was growing rapidly 
with respect to interactions, then network effects such as cross-market and same-sided externalities would 
dominate and could reasonably produce utility curves for stakeholders whose second derivatives was positive 
– in the case of new, complimentary stakeholders – or negative – where new stakeholders compete for value 
or displace one another. 
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‘hands-off’ approach to sta eholder management, or reducing general managerial overheads9 which 

are analyzed in Table 2-1. While these are useful strategies in the formative stages of value creation, 

the reduction in the fixed costs of value created from data only increases value extracted from data 

under the current production regime. These strategies do not directly affect the number of 

interactions and the data sharing platform will continue to find value creation profitable. 

Table 2-1. Example strategies for creating value from data. 

Alternatively, managers of Smart Farming data could choose to focus efforts on reducing the 

variable cost of value creation. Reduction in the cost each stakeholder experiences as they 

participate in the data sharing platform, such as a reduction in search cost, or a reduction in the cost 

to the system for providing that data, both increase value created from data by increasing the 

number of potentially valuable interactions across the platform. These strategies aim to reduce the 

rate of increase in total costs and, therefore, to increase the number of interactions the data sharing 

platform will continue to profitably create value. 

Finally, managers of Smart Farming data could focus on improvements to marginal outputs. That is, 

the benefit enabled by the data sharing platform at each interaction. Increasing the marginal benefit 

created by data from each interaction has the effect of both improving the current value of 

 

9 Each of these examples reduce the price of data development, community organization or the allocation of 
value, respectively. 

Strategy Example Actions Desired  
Direct Impact 

Potential (Negative) 
Indirect Impacts 

Level 1: 
More Efficient  
value creation 

- Reduce ICT cost e.g., ‘pursue 
cloud adoption strategy’ 

Reduction in cost of 
building assets  

- Locked into vendor’s 
products, reduce 𝜀  

- ‘Hands-off’ approach to 
stakeholder management 

- More dispersed community, 
reduce 𝜌 

- Lower management overhead - Reduction in system benefit, 
reduce 𝜇 

    
Level 2: 
More Sustainable  
value creation 

- Make it easier for stakeholders 
to use platform 

Reduction in cost of 
managing value creation  

- Split the community, reduce 
𝜌 

- More powerful algorithms - Data becomes too focused, 
reduce 𝜌 

- Better quality ICT contracts - 𝔹𝐷 increased but 𝜌 
reduced, or lower 𝜀 and 
lower 𝔹𝐶  

    
Level 3: 
More Effective  
value creation 

- More beneficial data for the 
community 

Increase total benefit per 

interaction, 
∂𝔹

𝜕𝑘
 

- Increase 𝑃𝜀, reduce 𝑘 

- Increase benefit acquired by 
system 

- Beyond Pareto-optimal 
position, reduce 𝜇 

- Secondary value chains for 
platform data 

- Split community, reduce 𝜌 
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production and increasing the number of potentially valuable interactions stakeholders may have on 

the platform. As Equation (2-3) illustrates, each set of benefits are a function of the three, core 

managerial responsibilities introduced by Wolfert et al. (2017). 

5.1. Value Creation from Data Development 

The impact of data development, 𝜀, on the value created by data during each interaction can be 

determined by taking the partial derivative of Equation (2-3) with respect to 𝜀.  

∂2𝕍

𝜕𝑘𝜕𝜀
 =   { 

∂𝔹𝐷

𝜕𝜀
+

∂𝔹𝑆

𝜕𝜀
 }  + { 

∂𝜌

𝜕𝜀
(
∂𝔹𝐶

𝜕𝜌
+

∂𝔹𝐷

𝜕𝜌
) +

∂𝜇

𝜕𝜀
(
∂𝔹𝐶

𝜕𝜇
+

∂𝔹𝑆

𝜕𝜇
) } (2-4) 

    

(Refer to the Appendix for derivation). 

Recalling the multi-layered, arrangement of assets and managerial functions from Figure 2-3, the 

two operators in the first pair of braces are the direct impact the pursuit of data development has on 

the two underlying assets. Here, the two direct consequences may be understood as ‘what change 

does the pursuit of the development of data bring about in the benefit realized from the outward 

exchange of data, and the benefit realized by the system?’ Equation (2-4) also illustrates the 

interdependence of the different managerial responsibilities. In this case, the ongoing pursuit of the 

development of data indirectly impacts assets via any correlation with community organization, 𝜌, 

and the allocation of value, 𝜇, across the platform. This is given by the two coefficients in the second 

pair of braces. Comparison of the contents of each pair of parentheses with Figure 2-3 reveals each 

of these indirect impacts also drive changes in their underlying assets.  

We now have the explanation for our earlier observation: if data is developed towards too fine a 

locus of goals, it will cease to become valuable for a sufficiently large set of stakeholders with 

congruous goals. In terms of Equation (2-4), while ongoing development of data may be justified in 

terms of improving 𝔹𝐷 and 𝔹𝑆, if it serves to divide the community or adversely affect allocation of 

value across the platform, that is, 
∂𝜌

𝜕𝐸
,
∂𝜇

𝜕𝜀
< 0, then these efforts could diminish rather than increase 

value created from data. From Equation (2-4), this outcome would be expected if the dominant 

portion of the value created from data was generated as benefits enjoyed by the community; that is, 

𝔹𝐶 ≫ 𝔹𝑆, 𝔹𝐷. Indeed, this hypothetical loss in value through an over-development of data was the 

consequence in the earlier, fictitious example where AuctionsPlus could have acted as if all 

stakeholders were only interested in steers and counted all data not pertaining to steers as 

irrelevant.  

DIRECT IMPACT INDIRECT IMPACT 
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Irrespective of potential indirect impacts, data sharing platforms must achieve some development of 

data to support the creation of value. As each stakeholder only participates until their marginal 

utility equals zero, that is while 𝔹𝐶𝑖
≥ ℂ𝐶𝑖

, the data sharing platform must develop the data 

sufficiently to reduce each sta eholder’s cost of creating value from data to remain beneath their 

expected benefit. This dynamic is also present at the platform level where, from Equation (2-3), 

benefits must continue to outweigh costs for ongoing value creation.  

5.2. Value Creation from Community Organization 

Value creation from a focus on community organization proceeds in a similar manner to data 

development in the previous section.10 A focus on improving network performance or the goals that 

characterize stakeholders, directly improves the benefits realizable from data or achieved by the 

community but also carries the indirect impacts characterized previously.  

To continue the prior example, suppose AuctionsPlus presumed all stakeholders participated solely 

to purchase livestoc .  pplying Wolfert et al. (2017)’s framewor  of managerial responsibilities to 

increase value created by data, the data sharing platform could make investments in network 

performance that targeted their closely organized community. One such development may be 

investment in a new data development process that improved the specificity of sta eholders’ search 

results where a sta eholder’s search may formerly have produced a prioritized list of hundreds of 

results, it now produces a definitive list of, say, ten results. The community would exhibit a high 

correlation if this increase in development efficacy resulted in an increase of benefits to 

stakeholders or captured within the data. Recalling stakeholders participate in a data sharing 

platform only while 𝔹𝐶𝑖
≥ ℂ𝐶𝑖

, AuctionsPlus might test for this increase in benefits by testing 

sta eholder’s willingness to accept additional platform-based costs. In the absence of competition, 

the system may be able to appropriate some or all of these benefits by increasing direct or indirect 

costs to those stakeholders. The inclusion of advertisements and the sale of anonymized activity 

data are two techniques commonly adopted by commercial platforms as they seek to capture value 

created across the platform. However, suppose a second scenario where the community was not 

participating to purchase livestock but simply to compare prices between livestock. An increase in 

the specificity of search would only partially support their goal. They would have fewer results to 

compare, and while they could make some comparisons more efficiently, they would evaluate less 

 

10 For readability, Equation (2-4) has not been adapted and reinserted for Section 5.2 and 5.3. Examination of 
Figure 2-3 in the context of the relevant sub-heading and relationships in Equation (2-4) reveals the same 
principles of direct- and indirect-impacts of data management strategies. 
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data. Their utility may have increased, but their preparedness to accept costs could also have 

decreased. In this case, the correlation of the community with the system’s development of data 

would have been lower than in the first scenario but still, conceivably, positive. Finally, suppose a 

third scenario, where the community was only interested in the search terms that returned the most 

results. The increased specificity would then work against the goals of the community as the 

correlation of the community with the efforts of management would be negative. In this third 

scenario, if tolls levied on the benefit derived by stakeholders as they traded livestock was the 

dominant source of revenue, investments in community organization, such as acquiring like-minded 

stakeholders, would improve both the value created from data and revenue more than investments 

in data development. 

5.3. Value Creation from Value Allocation 

Finally, we consider the creation of value from data through a focus on the allocation of value across 

the data sharing platform. From Figure 2-2, the allocation of value stems from investment in 

technology and organizing stakeholders. Stakeholders participate in data sharing platforms precisely 

because even unwitting collaboration reduces the personal cost of achieving the benefits desired 

from the data. AuctionsPlus unites buyers and sellers around data pertaining to livestock for sale. 

Farming groups on Facebook bring stakeholders with similar data-related goals together to swap 

knowledge or services. In both cases, the search cost for finding and acting on relevant data is 

reduced by the data sharing platform. In this manner, the system permits capitalization of a 

sta eholder’s otherwise marginal, data development costs. To the extent data desired by 

stakeholders can be anticipated, the system may seek to minimize the cost of provision of that data: 

both ℂ𝐶𝑘
 and ℂ𝑆. However, while this shared reduction in cost increases potential value to both 

parties, as in the previous example, the system may also appropriate some or all of that benefit. 

Thus, this improvement in technology permits a shift in the allocation of value to the system through 

an increase in 𝔹𝑆.  

This process is well developed in Club theory, where benefits may be extracted from stakeholders as 

either anonymous or non-anonymous tolls (Sandler & Tschirhart, 1997). In the former, all 

stakeholders pay tolls for access to the system that enriches data to a common level. Data sharing 

platforms such as paid subscription investment forums or commercial farmers markets are examples 

of this approach. In the case of non-anonymous tolls, fees are levied on stakeholders based on their 

activity or identity. A sta eholder’s consumption of advertisements on farming newspapers, or 

transaction fees on exchange platforms are examples of this approach.  
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5.4. Value Creation from Blockchains and Big Data 

The proposed framework and resulting model are also useful for understanding how value may be 

created from Big Data produced by Smart Farming and agricultural blockchains. The former is 

defined by an exclusive reliance on a system (Wolfert et al., 2017), while the latter is heralded for its 

ostensible independence from a system (Leng, Bi, Jing, Fu, & Van Nieuwenhuyse, 2018). 

Reliance by blockchains on a growing ledger of transactions is designed to replace the trust 

mechanism conferred by a third party’s endorsement of each dataset. The premise of the growing 

ledge of transactions is the creation of a dispersed system that validates current data through 

practically indelible links to past data-related activities. Each element in a blockchain contains 

references to past states that have each been affected by the process the datasets have passed 

through. In this way the raw data of an embryonic dataset is developed according to the goals of the 

community. The distributed nature of the ledger gives the data development process the veracity it 

requires to validate the data it produces. These processes resemble the system as defined, as they 

are specified by the community, defined by the conditions for valuable data, and are configured to 

separate valid data from invalid data. Indeed, scarcity and with it, value is defined as data that 

possesses those characteristics that confer veracity on each dataset.  

Conversely, Big Data is defined as being too big for consideration by a community of stakeholders 

(Wolfert et al., 2017). Big data possesses such an overwhelming degree of variety, velocity, and 

volume that human stakeholders alone cannot value it (NIST Big Data Public Working Group, 2015). 

However, while the system acts as the sole creator of value in Big Data sharing platforms, the 

algorithms, networks, and processes employed are initially determined by stakeholders in their 

choice of training datasets and causalities. Therefore, the proposed framework with its separation of 

individual classes of assets, resulting management tasks and singular goal of enabling valuable 

interactions, enables a novel approach to assessing how value may be created from both agricultural 

blockchains and Big Data produced by Smart Farming. 

6. Conclusions and Extensions 

The rapid growth in the role of data produced by Smart Farming has centralized the tas  of ‘creating 

value from data’ in agriculture. There are both complimentary assets and specific managerial 

decisions that must be accounted for in this process. Key decisions must be made by management 

regarding investment in assets or expenditure of effort on managing those assets if the value 

created from Smart Farming data is to remain efficient. Even those firms that are aware of some 
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elements of the proposed framework can benefit from the systems-based model and consequential 

trade-offs.  

This paper proposes that creation of value from agricultural data must extend beyond just managing 

data and account for the community of stakeholders and a faciliatory, data-management system. 

Creation of value from data also requires consideration of how these assets interact; specifically, 

effort must be invested into the development of data, organization of the community, and allocation 

of value across the data sharing platform. This framework provides an economic explanation for the 

tension found in value allocation across data sharing platforms (Agyekumhene et al., 2020; Jakku et 

al., 2019) and also broadens the theoretical explanation for the sensitivity of platforms to the 

maintenance of congruous goals among stakeholders such as observed by Fleming et al. (2018). 

Trade-offs between the effort invested in building and managing those assets involve both first- and 

second-order considerations as interventions across the platform produce both direct and indirect 

impacts on the productive power of the assets. 

The contributions of this paper are three-fold. First, we extend platform economics and Smart 

Farming data management theory to provide a data sharing platform framework that explains the 

assets and tasks required to create value from agricultural data. This framework proposes a change 

to the widely adopted view of a ‘platform stac ’ which consists of “three distinct, operational 

‘layers’” ( angley &  eyshon, 2017, p. 17) and illustrates how these components are more 

appropriately represented as three interconnected asset classes existing on the same layer. Our 

framewor  also unifies the ‘layered’ view with previous wor  by Bonche  and  houdary (2013) in 

their preliminary work on successful platform strategies. We also model the operation of data 

sharing platforms by describing a process that takes data as one of three core asset classes and with 

appropriate management effort creates value from data. Extending Wolfert et al. (2017)’s review we 

show this management effort must be focused on (i) the development of data from its raw state to a 

condition that is useful for stakeholders, (ii) the organization of the community so their needs 

correlate with the data, and (iii) the allocation of value both between stakeholders in the 

community, and between the community and system. Collectively, these activities comprise the 

middle, managerial layer, and when applied to the underlying asset layer, create value from data as 

graphically represented in Figure 2-3. 

Secondly, the proposed model informs the current literature regarding data ownership. Current 

academic opinion ranges from data as an asset that can be owned like any other asset (Jones & 

Tonetti, 2020) through to data as a medium where ownership is primarily concerned with the 

interventions brought to bear on the data (A. Fleming et al., 2018). This paper adopts a middle 

ground, proposing that data may be fungible and offered in exchange like a traditional asset but may 
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also consist solely of common observations that only gain value through proprietary development. 

Like others (Turland & Slade, 2020; Wiseman et al., 2019), we note the function of a data sharing 

platform is typically to provide economic access to – or exclusion from – data. Noting this confers 

data with the properties of a type of club good (E. Fleming, Griffith, Mounter, & Baker, 2018; Wysel, 

2019), we propose a more nuance view of data ownership should be adopted by scholars and 

management. If data ownership was couched in terms of access rights and right to appropriate the 

value created (see for instance, Birner et al. (2021)) then many of the apparent discrepancies are 

reduced to issues regarding application. Data sharing platforms offer a practical framework that aids 

this approach by identifying each component involved in the value creation process. 

Our final contribution to theory is more practical. The data sharing platform model permits analysis 

of existing data management efforts. We qualitatively characterize the benefits and costs associated 

with the development, maintenance and management of the assets and discuss how both variable 

and fixed costs can be balanced by benefits accrued by data. We use this model to assess existing 

strategies commonly adopted within Smart Farming data management, and to discuss policy 

implications in the efficient management of Smart Farming data. Finally, we apply this model to 

evaluate first, second, and third-level strategies frequently adopted by data managers in their 

pursuit for the efficient creation of value from data. We also propose the context each of these 

strategies might be best suited to. 

As noted throughout, this paper introduces key theories that deserve separate, considered 

attention. First, the production process that governs the conversion of data to value is introduced 

but not explored fully. While we describe the properties this process must possess to effectively 

create value from data, the specification of that process in this paper would greatly complicate the 

current analysis. Additional research into production processes that create value from data would 

permit answers to persistent, real-world questions li e ‘how much – otherwise private – data should 

a farmer share with off-farm firms?’ or ‘what happens to value creation in the presence of an 

independent, profit-maximizing system?’ 

Secondly, demand-side economies of scale are well-established in information and platform 

economics literature and explain why platforms can become such dominant forces in their 

respective industries. We illustrate that these forces serve to unite stakeholders on a data sharing 

platform, but we only touch on how these forces result in greater value from data. We argue that 

consideration of demand-side economies of scale in the context of club goods will further elucidate 

the intrinsic similarities in data valuation and in data sharing platforms. Finally, the construct and 

operation of data sharing platforms sheds new light on research into management of both Big Data 

and Blockchain datasets.  Both are quickly gaining prominence in Smart Farming and cutting-edge 
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agribusiness, and we have only introduced the way in which data sharing platforms reinterpret both 

conceptualizations. 

The promise of the value created from data produced by Smart Farming is alluring but like any 

agricultural resource, keen management of its interaction with complimentary assets is vital if 

stakeholders are to enjoy the benefits. Embodied in a field of agricultural datanomics, an 

interdisciplinary agenda of targeted research and effective Smart Farming management techniques 

is required to improve the efficacy and efficiency of agriculture’s efforts to create value from data. 
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Appendix. Derivations 

Equation (2-3) gives the net value created across the data sharing platform for each interaction. Our 

goal is to find the effect that each of Wolfert et al. (2017)’s managerial functions has on this ‘per 
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interaction’ value creation.  onsidering the effect of data development, first we find the partial 

derivative of Equation (2-3) with respect to 𝜀,  

∂2𝕍

𝜕𝑘𝜕𝜀
=  

∂

𝜕𝜀
{ 𝔹𝐶𝑘

(𝜌𝑘, 𝜇𝑘) + 𝔹𝐷𝑘
(𝜌𝑘, 𝜀𝑘) + 𝔹𝑆𝑘

(𝜀𝑘 , 𝜇𝑘) } − 
∂

𝜕𝜀
{ ℂ𝐶𝑘

+ ℂ𝐷𝑘
+ ℂ𝑆𝑘

 }.  

Now, functions in the second pair of braces are constant w.r.t 𝜀 and disappear. By the chain rule we 

have, 

∂2𝕍

𝜕𝑘𝜕𝜀
 =   (

∂𝔹𝐶

𝜕𝜌

∂𝜌

𝜕𝜀
+

∂𝔹𝐶

𝜕𝜇

∂𝜇

𝜕𝜀
) + (

∂𝔹𝐷

𝜕𝜌

∂𝜌

𝜕𝜀
+ 

∂𝔹𝐷

𝜕𝜀
 
𝜕𝜀

𝜕𝜀
) + (

∂𝔹𝑆

𝜕𝜀

𝜕𝜀

𝜕𝜀
+

∂𝔹𝑆

𝜕𝜇

∂𝜇

𝜕𝜀
)  

which may be re-arranged to Equation (2-4).  

The impact of community organization, 𝜌, and value allocation, 𝜇, on the value created by the data 

sharing platform at each interaction proceed by the same method. 
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Abstract 

While the world drowns in data, the valuation process that surrounds data remains a poorly 

understood phenomenon. Existing models conflate the value of data with what can be, or has been 

done with the data, or have pre-supposed the relevance of data. We propose a framework useful for 

assessing the data valuation process independent of its context or surrounding business model. This 

framework accounts for both uncertainty in relevance and utility of data. By reversing the direction 

of Shannon’s communication system, we demonstrate how the coupling of uncertainty with the 

value of information originates as an intrinsic characteristic of data. This process is applied to explain 

how data creates value as a resource, as a good, and as a currency. Contemporary examples are 

used throughout to illustrate both the theory and implications of these three constructs. 

Management and maximization of the value of data is discussed. An agenda for future research is 

presented. 

1. Introduction and Review of Literature 

The world is awash with data but generally at a loss with how to value it (Grover, Chiang, Liang, & 

Zhang, 2018; Gupta, Kannan, & Sanyal, 2018). A recent survey of 36 companies and non-profit 

organizations across North America and Europe, many with turnovers greater than USD1 billion, 

revealed most had no formal data valuation practices but any existing valuation efforts were time-

consuming and complex and that data management was focused on “storing, protecting, accessing, 

and analyzing massive amounts of data” (Short & Todd, 2017, p. 17).  ompounding the problem, the 

growth rate of data generated and stored now outpaces  oore’s  aw for the growth rate of 

computation (Chang & Boyd, 2018). Where the chief task of information systems was once to amass 

information against predominately defined questions, systems are increasingly required to acquire, 

process and report on data that exhibits both uncertain relevance and utility. Indeed, these complex 

datasets often produce greater operational uncertainty before yielding solutions and insights 

(Chiang, Grover, Liang, & Zhang, 2018; Ketter, Peters, Collins, & Gupta, 2015). If ever the practice of 

valuing data like a standard accounting asset11 was tenable, it is quickly becoming both operationally 

and technically infeasible.  

Clearly data has value. Data is the chief asset for intermediary businesses, as the exchangeable good 

in both ad hoc and well-established marketplaces, and as a currency used by individuals and firms to 

offset real-world costs. However, a rigorous, extensible framework that explains how data amasses 

 

11 That is, the ex-post process of record, categorize, summarize, report. 
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value is required to explain these phenomena in terms of the central variable of interest: data. In 

this paper, we propose a generic framework for valuing data that is independent of an operational 

setting or business context. This framework permits the extension, and more granular application of 

extant research. For instance, the value of the internal and external ecosystems of firms (G. Parker, 

Van Alstyne, & Jiang, 2017) might now be measured by the relative value of data contained within 

each system. The impact of signals produced by a platform (Hukal, Henfridsson, Shaikh, & Parker, 

forthcoming) could be observed as a change in the data, the fundamental resource which is 

controlled by the platform. Finally, the marginal change in privacy risk to consumers (Adjerid, Peer, 

& Acquisti, 2018) might now be measured directly when a firm begins collection of new forms of 

data. 

The popular approach for valuing data is to adapt market valuations of comparative datasets. These 

events may be acquisitions or sales of data assets, mergers and acquisitions, insurance valuations or 

bankruptcy filings. While market valuations provide an important, external reference point for the 

value of a dataset, they naturally reflect the composite value of business operations with their 

controlled assets such as data. Without an underlying framework for value appropriation that 

permits assessment of the data independent of the surrounding processes, this approach will 

continue to produce comparisons that are subjective and contentious.12  

The problem of valuing data is not limited to companies and markets. Individual consumers trade 

access to their raw social, health, biological or behavioral data for subsidized services. Data ceded by 

customers enables whole ecosystems whose byproduct and sometimes goal, is the transformation 

of data from a ‘raw’ state to a state of greater value. Yet, what portion of this value could be 

considered consumer surplus, producer surplus, or is retained as latent value within the data, 

remains unapproached. 

While there is evidently a method for deriving value from data, the generic model remains poorly 

understood. As scholars, we ought to be able to answer fundamental questions about the nature 

and composition of the data valuation process. What constituents must be present for data to 

possess value? What characteristics of data dictate its ordinal value, and by what process is the value 

of data altered? Finally, what are the generic modes and their properties by which data may be 

 

12  onsider  icrosoft’s purchase of  in edIn ( icrosoft, 2016) and  oody’s response (2016) with discussion by 
Short and Todd (2017). Additionally see Damodaran (2014b) and Gurley (2014) disputing and later partially 
resolving (Damodaran, 2014a) the value of Uber, with discussion by G. G. Parker, Van Alstyne, and Choudary 
(2016). 
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valued? This paper proposes timely responses to each of these questions and proposes a rigorous 

but extensible framework for understanding the value of data.  

We approach this framewor  by first compiling an economic model that describes an agent’s 

valuation of data. We then broaden this model to define the accompanying transformation process 

that happens within the data when an agent seeks its enrichment. Finally, the model and process are 

combined to demonstrate how data may be valued as a resource, as a good, and as a currency. 

Throughout, value is understood as the difference between benefits accrued and costs incurred and 

can be amassed by an individual or community. Valuation is a process where uncertainty regarding 

an object’s worth is recursively reduced until the marginal utility of further evaluation is no longer 

positive. Club theory (for example, Sandler & Tschirhart, 1997) provides the overarching framework 

in which individual self-seeking agents form communities and collaborate to maximize their personal 

payoffs, even in the presence of rivalry and potential exclusion. Clubs offer members benefits not 

available outside the club and may extract tolls from their members based on their activity or 

identity. Therefore, agents will naturally gravitate toward communities offering data valuation 

services that either lower their marginal cost of valuing data or increase their potential benefit from 

valued data. In both cases, the result is an increase in value to the agent from their data.13 

While a more extensive review of the economic treatment of data is included in Appendix A, the first 

step in developing a valuation framework for data is to establish an economic model that permits 

the benefits and costs of valuing data to be observed. To this end, we extend economics of 

information (Arrow, 1985, 1996) and rational inattention (Sims, 2003) literature to establish a model 

that describes a generic data valuation process. Based on agents as the core unit, this model 

describes the accumulation of costs and realization of benefits as agents seek value from 

transformed data. Access to a community that shares a congruous, data-related goal permits 

participation in processes that reduce uncertainty from data. The first result of this paper is to 

extend  rrow’s treatment of information to a model that accounts for intrinsically uncertain data 

where agents work within a community to resolve relevance as well as maximize the utility of data. 

In line with extant platform economics literature (D. S. Evans, 2003; D. S. Evans & Schmalensee, 

2016; P. C. Evans & Gawer, 2016; G. G. Parker & Van Alstyne, 2002; Rochet & Tirole, 2003), we refer 

 

13 Consistent with standard economic treatment, agents are treated as individual decision-making entities. 
These entities are commonly thought of as individual persons in a marketplace. However, consolidated 
decision-making bodies such as firms, and synthesized decision-making bodies such as nodes in a network also 
function as agents. Such a treatment permits the framework developed in this paper to remain widely 
extensible, even to hybrid systems – such as smart prosthetics – whose activities effect a change in the 
provision or value of data. 
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to the community’s organized, data-related efforts as a system. The system represents the joint 

efforts of all agents – both past and present – as they value data. We refer to the system, the 

community of agents, and the data, as a data sharing platform. The mechanism that describes the 

interaction of agents with the data sharing platform is central to an understanding of the way the 

value of data is altered. This mechanism is reflexive as while seeking value from data, agents also 

accrue value to the data. Reversing the direction of Shannon’s (1948) communication system 

permits examination of the change in the characteristics of data that affect value. Agents act as 

Shannon’s external observer14 and interact with the system as they reduce uncertainty from data. 

The efficacy of each interaction is described by an enrichment efficiency, the central variable that 

governs the rate of change in value at each exchange. The second result of this paper is that the 

valuation of data, no matter how noisy, may now be explained. Our third result is to show that the 

reduction of the intrinsic uncertainty in data is the sole necessary and sufficient condition for the 

accretion of value to that data. This result illustrates that the coupling of uncertainty and the benefit 

of information derived by Frankel and Kamenica (2019) exists even while the relevance of data 

remains undefined. Importantly, the relative reduction in the uncertainty in data serves as a 

rationale for apportioning value between parties in data sharing platforms. This informs the 

‘property rights’ models currently being considered (Jones & Tonetti, 2018) and permits industry 

bodies to design incentives for data sharing into value chains (Fleming, Griffith, Mounter, & Baker, 

2018). 

Finally, the combined data valuation model and data enrichment process describes the generic 

modes by which the value of data may be managed. Data may be valued as a resource, as a good, 

and as a currency.15 Drawing on contemporary examples, we apply the data valuation framework to 

explain how a community of agents and system seek value from, and attribute value to, data.  

The analytical arc of this paper centers on an idealized scenario of agents in an ad hoc community. 

We posit three simplifying assumptions which are relaxed in turn permitting the introduction of 

greater sophistication in the data valuation framework. Crucially, the conditions that describe each 

mode are properties of the data valuation process and not a broader business model or 

organizational framework. Effective business models may now be understood in terms of which data 

valuation mode they employ, rather than contrariwise.  

 

14 See Figure 8 – Schematic diagram of a correction system, Shannon (1948) 

15 The authors acknowledge that a resource and currency are simply different projections of an economic 
good. Nevertheless, the distinction has been adopted as each projection reveals different insights into how the 
value of data may be managed. 
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The resulting data valuation framework explains the shared reliance and rivalry often observed 

between agents and providers in commercial data sharing platforms. The deliberately 

straightforward final equation permits observation of value creation and exchange through data by a 

community of agents and the system that facilitates their efforts. Indeed, the final data valuation 

framework may be expressed simply as the piecewise difference between the benefits and costs 

experienced by each constituent in a data sharing platform.  

The proposed valuation model, enrichment process and framework permit both granular and high-

level examination and management of the value of data. This understanding is useful for data-driven 

businesses, large corporate information systems, or in personal interactions with popular 

ecommerce or social media platforms. The mechanism by which ostensibly trivial data may be 

valued against fiat currency can now be understood, while questions li e, ‘how ought I value my 

data?’ may now be approached by scholar and practitioner alike. Future work includes the 

mathematical adaptation of this framework to accommodate fully dynamic data streams. We 

conclude with discussion and implications for both scholars and professionals. 

2. The Data Valuation Model 

2.1. Set-up: Data and the Generic Valuation Process 

The goal, or “desideratum” (Fran el & Kamenica, 2019, p. 3650), of an agent is the primary 

determinant of an object’s value. The goal sets the direction of value and directs all activities that 

encompass the ensuing valuation process. A goal of maximizing personal utility leads consumers to 

value the characteristics of goods while a goal of realizing valuable exchanges directs agents to 

participate in single- or multi-sided markets. A goal is a form of hypothetical imperative whose origin 

is subjective but remains testable and, therefore, universal and rational across its specified scope.16 

Valuation becomes the process of taking an ex-ante goal and assembling relevant observations to 

evaluate the worth of an object against that goal. Observations are collected and refined to facilitate 

a testing process that reduces uncertainty regarding the performance of the object. This testing 

process is recursive as responses to historic observations affect management of current 

observations. In this manner, reduction in uncertainty surrounding the object will continue until 

performance is validated, or the process is abandoned as economically non-viable. This generic 

valuation process is illustrated in Figure 3-1.  

 

16 See Kant (1870). Grundlegung zur metaphysik der sitten. Vol. 28: L. Heimann. 
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where, 𝔹𝐶  is the benefit to the community resulting from valuation of the data and, ℂ𝐶  is the cost to 

the community resulting from valuation of the data. 

2.2. The Model: The Economic Valuation of Data 

Before relaxation of any supplementary assumptions, an important corollary of the data valuation 

process is worth developing. The realization of benefits by agents and concession of costs is not, in 

general, a binary exchange occurring at an instant of time. Intuitively, mid-way through the data 

valuation process agents will have incurred some costs and have accumulated some form of 

benefit.17 Mirroring the valuation process described above, we may say access by agents to a 

likeminded community indicates their adoption of a congruous goal, their participation in that 

community represents their efforts to reduce uncertainty surrounding that goal, and their validation 

as the culmination of the valuation process. Therefore, expanding the right-hand side of Equation 

(3-2) we have, 

𝔹𝐶 =  𝔹𝐶𝑎𝑐𝑐𝑒𝑠𝑠
+ 𝔹𝐶𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛

+ 𝔹𝐶𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
 (3-3) 

ℂ𝐶 =  ℂ𝐶𝑎𝑐𝑐𝑒𝑠𝑠
+ ℂ𝐶𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛

+ ℂ𝐶𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
 (3-4) 

where the value of data to the community of agents is the difference between the sum of the 

benefits arising from that data less the sum of the associated costs. 

Proposition 1: Agents maintain membership in a data valuation community to access value from 

that data not attainable elsewhere. 

Here access is an instantaneous change in status occurring when an agent joins the community. The 

benefit to an agent arising from access to a data valuation community, 𝔹𝐶𝑎𝑐𝑐𝑒𝑠𝑠
, takes the form of a 

probability that the data desired by the agent is accessible by the data sharing community. To 

facilitate subsequent treatment, let the data desired by the agent be the set, 𝑥, and the data 

presided over by the community be the set, 𝑦. Accordingly, where both 𝑥 and 𝑦 are random 

variables, there also exists a specific probability, 𝑝, that 𝑥 ⊂ 𝑦. Following Arrow (1996), the agent 

has a choice of at least two actions: to join the community or not, denoted by 𝑎, from a given 

opportunity set, 𝐴. Therefore, in the absence of further information about the community or data, 

the payoff18 to the agent of accessing the community is a function, 

 

17 The instantaneous realization of value remains a valid corner case of the general, continual case and is 
contained in the subsequent derivation. 

18 This payoff, and those that follow in Section 2, should be interpreted as von Neumann-Morgenstern utilities 
and not as monetary outcomes. 
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𝑤(𝑎, 𝑝(𝑥 ⊂ 𝑦))  

Now, suppose the community can produce some random variable, 𝑆, that reveals to the agent the 

probability that 𝑥 ⊂ 𝑦. We refer to 𝑆 as a signal, of the type used in communication theory 

(Shannon, 1948). Now, the community can produce a particular 𝑠 ∈ 𝑆 with a goal to influence 

prospective agents’ choice of actions (Hu al et al., forthcoming) but creation of this signal bears a 

cost to the community (Gentzkow & Kamenica, 2014). Meanwhile, choice of this signal bears a cost 

to the prospective agent (Sims, 2003), as does the action of responding to the signal by joining the 

community. The cost of access to the community, ℂ𝐶𝑎𝑐𝑐𝑒𝑠𝑠
, is therefore a function of the agent’s 

action, 𝑎, itself a function of the signal chosen, such that 𝑎(𝑠). However, there is also no guarantee 

that access to 𝑥 will result in a positive payoff for the agent implying that the agent must also 

account the probability, 𝑞, that 𝑥 will produce a positive payoff. Therefore, as production and 

exchange of the signal is costly for both parties, notwithstanding signaling game strategies, the 

signal produced by the community becomes a function of 𝑝 and 𝑞,  

𝑆 = 𝑓(𝑝, 𝑞) (3-5) 

and a prospective agent will choose a signal and action that maximizes the expectation, 𝐸𝑞, of the 

payoff given the signal for the associated cost. In symbols, 

𝕍𝐶𝑎𝑐𝑐𝑒𝑠𝑠
= 𝔹𝐶𝑎𝑐𝑐𝑒𝑠𝑠

− ℂ𝐶𝑎𝑐𝑐𝑒𝑠𝑠
 

=  𝐸𝑞[𝑤(𝑎, 𝑝(𝑥 ⊂ 𝑦), 𝑠)] − ℂ𝐶(𝑎(𝑠)) 

 

(3-6) 

Extending this analysis, participation proceeds likewise but incorporates the recursive nature of the 

data valuation process and therefore includes a dynamic variable for both the realization of benefits 

and allocation of costs. If �́� is the data already found to be relevant, then the benefit of participation 

in the data valuation community, 𝔹𝐶𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛
 comprises the utility of the datasets already 

considered and the expected payoff that the remainder of desired data, 𝑥 − �́�, exists in the data yet 

to be considered, �́�.  Similarly, cost of participation in the community, ℂ𝐶𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛
 will be a 

function of the quantity of datasets considered and will carry an opportunity cost for attentive 

participation. Therefore, noting 𝑞 ∈ 𝑄 and 𝑝 ∈ 𝑃, where 𝑀𝑗 is the 𝑗th dataset valued to a maximum, 

𝑚 datasets, an agent will seek to maximize, 

𝕍𝐶𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛
= 𝔹𝐶𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛

− ℂ𝐶𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛
 

= 𝐸𝑄[𝑤(𝑎, 𝑃((𝑥 − �́�) ⊂ �́�), 𝑠)] + 𝑢𝑄({𝑀𝑗})  − ∑ ℂ𝐶(𝑀𝑗)
𝑚

𝑗=1
− ℂ𝐶(𝑣(𝑡)) 

 

(3-7) 

Equation  (3-7) specifies the marginal utility of all datasets considered and is of the usual concave 

form as the entire dataset remains of potential value. However as set forth by Sims (2003), data 
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cannot be considered with impunity as it remains rational to withhold attention from some data as 

any attention incurs a non-trivial cost. Therefore, even if the present datasets offer no utility the cost 

of attentive participation, ℂ𝐶(𝑣(𝑡)), and the cumulative cost of evaluating datasets remain 

significant19 and monotonically increasing as the most recent dataset always requires 

consideration.20 

Finally, each agent validates relevant data against their goal. Like access, validation is taken as an 

instantaneous change in status signaling that participation has ceased and satisfaction regarding the 

considered data has occurred. Validation of considered datasets confers a benefit to the agent 

proportional to the utility of the data evaluated and produces a signal, �́�, to the community that, 

𝐸𝑄[�́�] > 0.  

Production of this signal carries a cost to the agent and is useful to the community as it validates the 

process to both participating and prospective agents. Therefore, during validation agents will seek to 

maximize, 

𝕍𝐶𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
= 𝔹𝐶𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

− ℂ𝐶𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
 

= 𝑢𝑄(�́�)  − ℂ𝐶(�́�) 

 

(3-8) 

Finally, while unnecessary for our current proof but useful for subsequent discussion we can 

formally recognize the signal to a prospective agent, 𝑠, is at least partially derived from signals 

produced by satisfied agents, �́�, by noting 𝑠 ∈ 𝑆(�́�) and therefore extending (3-5) we may write, 

𝑆 = 𝑓(𝑝, 𝑞, �́�) (3-9) 

Combining Equations  (3-6) – (3-9) into (3-3) and (3-4) while noting both x and y are corner cases of �́� 

and �́� respectively, the benefit and cost of valuing data to the 𝑖th agent becomes,  

𝔹𝐶𝑖
=  𝐸𝑄[𝑤(𝑎, 𝑃((𝑥 − �́�) ⊂ �́�), 𝑆)]  + 𝑢𝑄({𝑀𝑗}) (3-10) 

ℂ𝐶𝑖
=  ℂ𝐶(𝑎(𝑠), 𝑣(𝑡), �́�)  + ∑ ℂ𝐶(𝑀𝑗)

𝑚

𝑗=1
 (3-11) 

and therefore, in a community of 𝑛 agents,   

 

19 These cost functions have been variously specified elsewhere (Caplin & Dean, 2015; Sims, 2003). Our 
purpose is to capture the nature of these costs; specification of their function remains important, 
complimentary work. 

20 There is also an additional, small storage cost each agent must bear which is also expressed as an argument 
within the probability function, 𝑃(�́� ⊂ �́�). 
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𝕍 =  ∑(𝔹𝐶𝑖
− ℂ𝐶𝑖

)

𝑛

𝑖=1

 (3-12) 

Substituting (3-10) and (3-11) into (3-12) gives us an idealized equation for the non-market value of 

data to a community of agents where 𝑛 ≥ 1.  

Therefore, membership in a data valuation community increases an agent’s expected payoff from 

the data, permits greater utilization of that data, reduces the direct or indirect cost of acquiring the 

utility, or reduces the marginal cost of valuing the data. In all cases, the value of data to an agent – 

the resulting benefits less costs – is increased precisely because of an agent’s membership in a data 

valuation community. 

2.3. The System and the Data Sharing Platform 

As noted in the Introduction, in line with extant platform economics literature, we define the 

community’s organized, data-related efforts as a system. The system is a “set of assets organized in a 

common structure” (Gawer &  usumano, 2014, p. 2) and includes both the infrastructure required 

to process data (Choudary, 2014) and the ongoing operations required to circulate value (G. Parker 

et al., 2017; Van Alstyne, Parker, & Choudary, 2016) among the community (Langley & Leyshon, 

2017). Agents interact with the system, providing data to, and for, the system which processes the 

data for agents in the community.  

Collectively, the community of agents and system may be considered a data sharing platform. Data 

sharing platforms are a generalization of Rochet and Tirole’s (2003) socio-economic platforms that 

exist in multi-sided markets.21 We may therefore define,  

A data sharing platform is a community of agents, data on and for those agents, and 

a system that utilizes the data to enable the community to make more valuable 

decisions.  

At this stage in our treatment of the valuation of data, the system exists solely to discharge the 

community’s data-related efforts and agenda. Nevertheless, separation of communal data-related 

efforts from individual agent’s efforts permits capitalization of system expenses and the 

appropriation of proportional data-related costs rather than the aggregation of an individual’s 

marginal costs. Therefore, the system incurs a cost, denoted ℂ𝑆, as it identifies noise and reduces 

uncertainty surrounding the community’s data. ℂ𝐶𝑖
 remains the sum of each 𝑖th agent’s individual 

 

21 That is, data sharing platforms support, but are not defined by, multi-sidedness within the community. 
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costs as they evaluate the performance of data towards their own goal. In other words, ℂ𝑆 creates 

scarcity in data while ℂ𝐶  executes its valuation. 

We now turn to examine the economic characteristics of data that affect its value and the activities 

required to mobilize this value. 

3. The Data Enrichment Process 

3.1. The Entropy of Raw Data 

Equation (3-12) reveals the value of data acquired and evaluated by a community for validation 

against a congruous goal. Substantiating our previous assumption, data is a non-rivalrous resource 

(Jones & Tonetti, 2018) that is optionally excludable (Easley, Huang, Yang, & Zhong, 2018) and can 

therefore be treated like an imperfect public good (Fleming et al., 2018). Therefore, the value of a 

non-rivalrous good such as data can be summed vertically as one agent’s consumption does not 

impinge another’s consumption of the same good. Ceteris paribus, 𝑛 agents deriving the same 

benefit from a single observation and incurring identical costs produce the same value as one agent 

valuing an observation 𝑛 times. We see this reflected in Equations (3-10) and (3-11), above, and will 

return to treat this formally. Therefore, we can also say while repeat valuations by one agent will 

undoubtedly exhibit different technical characteristics to single valuations by multiple agents, they 

can be treated as economic equivalents at least to the extent enforced by the supplementary 

assumptions A1-A3.  

In the preceding analysis we presumed that the desired data, 𝑥, was freely available to the 

community, that is 𝑥 ⊂ 𝑦, and the marginal cost was focused on identification, rather than 

extraction, of 𝑥 from 𝑦. While possible, this is certainly not a typical occurrence for desired data. 

 ata that is of interest typically requires extraction from host or ‘raw’ data where data must be 

separated from noise and inherent uncertainty. Relaxing the first supplementary assumption 𝐴1: 

The data contains only observations which are necessary and sufficient for achieving the data-related 

goal the data available to the community is no longer equivalent to the data required by the 

community.22 Effort must be invested into the available data to enable agents to test their shared 

goal and access benefits. 

 

22 A very large portion of the theory developed in this article relies on the relaxation of only A1. Assumptions 
A2 and A3 serve to broaden the application of this theory. Readers scanning the paper and finding the 
treatment of A2 and A3 near the end of the paper need not despair. 
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Proposition 2: The valuation of data is given by the reversal of Shannon’s communication process as 

agents systematically separate irrelevant data from relevant data within a data sharing platform. 

Shannon (1948) pioneered the academic treatment of relative information levels across multiple 

stations in both ‘noiseless’ and ‘noisy’ communication channels. In the original direction, Shannon’s 

process models noise accretion around a central message with the consequential growth in 

uncertainty. When reversed, the adapted process permits modelling of the transformation of raw 

data by the recursive separation of noise and reduction in uncertainty. ‘Shannon Entropy’, 

henceforth referred to simply as entropy, 𝐻, may be measured per symbol or per second, and can 

be understood as the sum of the weighted probabilities that a dataset consists of relevant 

observations. Datasets and observations can be discrete or continuous and be of any length. 

Entropy describes the probability of relevant observations;23 the value of these relevant 

observations is determined by each agent’s goal and given by Equations (3-10) and (3-11), above. 

Agents may choose observations each with �̂� possibilities such that the probability of the 𝑖t̂h 

observation containing an observation relevant to a specific goal is: 

𝑝𝑖 =  
�̂�𝑖

∑ �̂��̂��̂�
  

and following Shannon’s (1948,  ppendix 2) derivation, the entropy per dataset is: 

𝐻 =  −𝐾 ∑ 𝑝�̂� log 𝑝�̂�

𝑖 ̂

  

where 𝐾 is a positive scalar to account for chosen units and the base of the logarithm is the number 

of ‘observation-storing’ states each data-point could contain.24 

While this representation implies the nature of the random variable is discrete, rather than 

continuous, as observations can be discrete or continuous and be of any length the process of 

 

23 As entropy quantifies the inherent uncertainty in the data it also reflects the carrying capacity of relevant 
observations within the data. While greater entropy in a dataset permits a larger number of potentially 
relevant observations, this increase in capacity comes at the expense of certainty regarding those 
observations. Some observations will remain superfluous and be discarded as noise; which observations are 
relevant is the cause of uncertainty in the data. To this end, structural restrictions can be applied to the data to 
limit the impact of noise or uncertainty by proportionally reducing the entropic capacity of data. For example, 
in a dataset of strings comprising alphanumeric characters, any non-alphanumeric characters could be 
automatically identified and discarded as noise. However, by the same logic the potential capacity of the 
strings has also been reduced as intentional, non-alphanumeric characters and would require transcoding 
before transmission or storage. 

24 For example, a binary process would be represented in base-2.  
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developing data can be approached in the same manner. To simplify subsequent treatment the data 

development process will henceforth be treated as continuous. 

In the absence of noise, entropy of the desired data, 𝐻(𝑥) remains equal to the entropy of the 

available data, 𝐻(𝑦).25 This is our original data valuation scenario with all assumptions standing: all 

data required to evaluate the goals of agents has been supplied; no data was superfluous. Notice the 

process is isotropic: the entropy of the desired data, 𝐻(𝑥), equals the entropy of available data, 

𝐻(𝑦). More formally we may define an isotropic valuation process as,  

𝐻(𝑦) =  𝐻(𝑥). 26  

Relaxing supplementary assumption 𝐴1 permits the valuation process to become non-isotropic; 

noise has increased uncertainty in the data causing the entropy of the available data to exceed the 

entropy of the desired data:  

𝐻(𝑦)  >  𝐻(𝑥).  

𝐻(𝑦) now has entropy surplus to requirements and requires correction to restore it to 𝐻(𝑥). This 

correction confers benefits to, and extracts costs from, agents and, from Proposition 1, is the reason 

agents maintain membership in a data valuation community. This correction comprises two tasks: 

the reduction in uncertainty and the rejection of noise. Uncertainty, 𝐻𝑦(𝑥), is the conditional 

entropy of the relevant data with knowledge of the data that is available; noise, 𝐻𝑥(𝑦), is the 

conditional entropy of the available data knowing what is relevant. 

Before progressing, we also need a means of describing partially corrected data midway through the 

data valuation process. Recalling �́� as the data considered and relevant and �́� as the data not yet 

considered, from Appendix B we can expand Shannon’s boundary states and write,  

𝐻(�́�) + 𝐻(�́�) + 𝐻�́�(𝑦) + 𝐻�́�(𝑥) (3-13) 

Here 𝐻(�́�) is the entropy of the data considered and relevant; 𝐻(�́�) the entropy of available data 

not yet considered; 𝐻�́�(𝑦) the entropy of available data knowing the data considered and relevant; 

and 𝐻�́�(𝑥) the entropy of relevant data with knowledge of the data not yet considered.  

 

25 For historical consistency, the notation 𝐻(𝑥) refers to the entropy of the random variable 𝑥 and not 𝑥 as an 
argument of 𝐻. 

26 Intuitively, like the equivalent thermodynamic process and as Proposition 3 will subsequently develop, an 
isotropic valuation process can only exist as a theoretical construct or within appropriate confines. A 
hypothetical, serendipitous discovery of available data that perfectly matched data desired would still involve 
an entropic change – although perhaps if only considered from a broader perspective.  
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3.2. The Enrichment of Data and Reversal of Shannon’s Communication System 

As definers of the goal, the community also serves as arbiters of value. From Proposition 1, the 

expected benefit arising from participation must be greater than or equal to the associated cost 

before agents will participate in the valuation process. This presents agents with a problem: each 

agent desires immediately realizable benefit from the data but only has access to available data; that 

is, noisy data of potential, but uncertain, relevance and utility. Notwithstanding pre-curation by the 

system,27 this noise and uncertainty is distributed throughout the available data; it follows, each 

dataset considered by an agent could reasonably contain some relevance to the agent’s goals but 

also require further refinement. Therefore, in evaluating data, agents must determine relevance in 

each dataset through the identification of noise and a corresponding reduction in uncertainty. This 

evaluation enables a ‘correction signal’ which the system may use to improve the relevance of 

subsequent datasets.  

Therefore, as illustrated in Figure 3-3, the process of enriching data proceeds as follows: upon 

accessing a community an agent considers a dataset, 𝑀1. This agent identifies relevant and 

irrelevant data, and produces a correction signal, 𝑆1. The system now has knowledge of both the 

dataset considered and the corresponding correction signal and will begin pre-emptively identifying 

noise and relevant data. The system produces a new dataset, 𝑀2, that accords with the agent’s 

previous correction signal, which the agent evaluates before providing a second correction signal, 

𝑆2. This process continues as the uncertainty of both data considered, 𝐻�́�(𝑥), and unconsidered, 

𝐻(�́�), is reduced by the system. In this way, the enrichment of data creates personal benefit for 

each agent and positive externalities for all other agents in the community. 

We can therefore model a community of 𝑛 agents, where the 𝑖th agent values datasets, 𝑀𝑗, a total 

of 𝑚 times and 𝑖 ∈  {1, 2, … , 𝑛}, 𝑗 ∈  {1, 2, … , 𝑚}. Datasets and correction signals have entropies of 

𝐻(𝑀𝑗) and 𝐻(𝑆𝑗), respectively. The 𝑖th agent signals satisfaction with the 𝑀𝑖,1, 𝑀𝑖,2, … , 𝑀𝑖,𝑚 

datasets provided by returning a correction signal, 𝑆𝑚, of zero entropy and not requesting another 

𝑀𝑗. Each condition is important: the existence of 𝐻(𝑆𝑗) indicates the agent has not simply 

withdrawn from the valuation process. 𝐻(𝑆𝑗) = 0 indicates no further corrections are desired. The 

absence of a request for another 𝑀𝑗 indicates the agent has not simply chosen to re-evaluate a 

 

27 Practically, the goal around which the community forms also serves as the distinction between valuable data 
and noise. Therefore, external rationale could be applied to segregate potentially valuable data from data of 
improbable value without direct input from agents. Additionally, structural restrictions inherent in the data 
also offer the basis for the autonomous identification of noise and reduction in uncertainty. This initial 
curation also permits the system’s organization of datasets to maximize initial and ongoing value to agents. 
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previously supplied dataset. Valuation of the object against an ex ante goal has occurred with this 

𝑖th agent validating 𝑀𝑖,𝑚 datasets which constitute the joint entropy, 𝐻(𝑀𝑖,1, 𝑀𝑖,2, … , 𝑀𝑖,𝑚). 

Through this valuation, the agent has also provided correction signals 𝑆𝑖,1, 𝑆𝑖,2, … , 𝑆𝑖,𝑚,  and 

permitted definition of their validated exit entropy 𝐻(𝑥𝑖) = 𝐻(𝑀𝑖,1, 𝑀𝑖,2, … , 𝑀𝑖,𝑚). 

Figure 3-3. Data enrichment process – styled to reflect Shannon’s diagram of a correction system (1948, p. 22).  

 n illustrative example may be an agent’s progression through a popular web-based, flight booking 

system. The agent’s arrival signals a goal relating to data on flights and the system responds with an 

initial dataset 𝑀𝑖,1 consisting of destinations, dates, etc… with some pre-enrichment based on the 

current date and the agent’s location.28 Here the system has automatically separated potentially 

valuable data from data of improbable value – such as content pertaining to other languages or 

historic dates. This agent responds with a preference for a destination and dates, 𝑆𝑖,1, which the 

system processes before presenting data, 𝑀𝑖,2, to the agent; presumably a selection of flights that 

accord with 𝑆𝑖,1. The agent’s next response might be selection of a flight with certain characteristics 

which constitutes the correction signal, 𝑆𝑖,2. The system processes this selection, and the process 

continues. As earlier, validation occurs when the agent signals satisfaction with all datasets offered 

and returns a correction signal with zero entropy, notionally by confirming purchase of tickets for a 

specific flight.  

If the agent has multiple, complimentary goals this data valuation process may be repeated several 

times within the same data sharing platform. This will naturally cause an accrual of value to the data 

and modifying the probability distribution function, 𝑝, contained within 𝔹𝐶  as the agent’s 

 

28 The collection of all agents’ 𝑀1’s would yield 𝐻(𝑀𝑛,1). 
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expectation of finding valuable data within the data sharing platform changes. Meanwhile, the 

system may attempt to incorporate correction signals from previous valuations to accelerate the 

reduction of 𝐻�́�(𝑥) for this agent – and others – in the community.   

As an aside, the exit entropy of the correction signals, 𝐻(𝑆𝑖,1, 𝑆𝑖,2, … , 𝑆𝑖,𝑚), will be maximized only 

when each correction signal is statistically independent; that is, there is no way of deducing 𝑆𝑖,𝑗  from 

knowledge of previous messages or correction signals. In such a case, the resulting set of correction 

signals, {𝑆𝑖,1, 𝑆𝑖,2, … , 𝑆𝑖,𝑚}, forms a  ar ov chain where an agent’s response to each message, 𝑀𝑖,𝑗, 

defines the exclusive circuit a system must take to proceed from 𝑆𝑖,𝑗−1 to 𝑆𝑖,𝑗. This is the case where 

the agents’ correction signals will be of the highest potential benefit to the system. 

3.3. The Necessity of Uncertainty in the Accretion of Value 

We have now established the community and system as necessary components of a data valuation 

framework, with noise and uncertainty as a property and characteristic of data respectively. 

However, we must also explain how the data enrichment process produces an accretion of value in 

the dataset. Following Frankel and Kamenica (2019) in their treatment of information, this causality 

is central to an economic understanding of the value of data and therefore the value generation 

process that surrounds data. 

Proposition 3: The reduction of uncertainty in data, Hy(x), is necessary and sufficient for the 

accretion of economic value to data. The reduction of the entropy of remaining data, and the 

stepwise increase in the collective entropy of noise and relevant data may be sufficient – but are not 

necessary – for the accretion of economic value to data.29 

From Equations (3-10) and (3-11), while an agent’s expected benefits are contingent on the 

probability remaining data contains data that will prove relevant, given by 𝑃, extant value is 

determined by data either already considered or currently under consideration. Therefore, the 

reduction of entropy of remaining data – such as might occur if a portion of the remaining data was 

lost – may reduce an agent’s prospective costs but it would not necessarily affect the value of data. 

It follows that while a reduction in entropy of remaining data may be sufficient for accretion of 

value, it is not necessary. 

 

29 For expositional clarity, we substantiate the sole necessity of the reduction in uncertainty here, and its 
sufficiency for the accretion of value subsequently. 
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Likewise, the increase of collective entropy of noise and relevant data may be sufficient but is not 

necessary for the accretion of value in data. Normative frameworks permit the system to increase 

the efficiency of messages to agents so agents can reach satiation with lower costs. This increase in 

efficiency increases the value of data even while the collective and individual entropies of noise and 

relevant data remained unchanged. However, while the increase of the collective entropy of noise 

and relevant data causes an accretion of value in data, pursuit of these characteristics alone also 

curtails the potential value of data. For example, suppose the online flight booking system 

independently determined the desired flight details of all agents in the community. The system 

could then present all agents with datasets according to their desired flights, causing the full set of 

{𝑀𝑖,𝑚} to constitute 𝐻(𝑥𝑖) and simultaneously setting all data not contained within 𝐻(𝑥) as noise. 

Uncertainty of unconsidered data would be set to zero even without its evaluation. Value for the 

community would be at a maximum as every 𝑀𝑗 would increase each agent’s personal utility at a 

minimum cost. However, access to the data sharing platform has become benefitless for prospective 

agents desiring even a closely related but unanticipated goal. Such a community’s signal, 𝑆, will not 

convince prospective agents that the value of accessing the data is positive. Restated in terms of 

Equation  (3-6), prospective agents will consider, 

𝐸𝑞[𝑤(𝑎, 𝑝(𝑥 ⊂ 𝑦), 𝑠)] ≯ ℂ𝐶(𝑎(𝑠))  

and will not join the community. Therefore, the condition of certainty imposed on the system 

constrained the potential increase in the value of the data. Accordingly, pursuit of an increase in the 

entropies of noise and relevant data alone remain generally sufficient but not necessary for an 

accretion of value to data. 

However, if sufficient uncertainty was retained in the dataset to enquire if 𝐻(𝑥) satisfied each agent, 

then at the cost of the consideration of an additional message and production of an additional 

correction signal, more agents would be permitted to reveal their otherwise private goals and be 

matched with data otherwise discarded as noise.  n agent’s pursuit of maximization of 𝑢𝑄({𝑀𝑗}) 

and minimisation of ∑ ℂ𝐶(𝑀𝑗)𝑚
𝑗=1  from Equations (3-10) and (3-11), respectively, may occur at both 

large and small exit entropies. One agent may desire the purchase of tickets for a specific flight 

setting 𝐻(𝑥𝑖) → 0, while another may simply desire information regarding their closest airport, 

permitting 𝐻(𝑥𝑖) to remain large. In all cases, uncertainty, 𝐻𝑦(𝑥), remains instrumental in 

permitting the revelation of private goals while the recursive reduction in uncertainty permits agents 

to achieve their goals. 

The maximization of the overall value of a dataset requires a tension in costs and benefits. While 

uncertainty permits an expansion in the size of the community of agents, the reduction of that 
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uncertainty bears a material cost to both the system and community. From Equation  (3-7), agents 

experience the cost of participating as direct unit costs of evaluating datasets, 𝑀𝑗, and indirect time 

costs. Likewise, the system bears the cost of processing correction signals and producing additional 

datasets for evaluation by the community. However, these interactions also convey benefit to each 

party. Agents reveal their otherwise private goals to the system by issuing a series of correction 

signals, 𝐻(𝑆𝑗), to datasets. At each interaction, the system responds with an enriched dataset for 

the agent’s valuation. Therefore, both parties possess incentives to maximize their own utility and 

minimize personal cost at each interaction. For agents, this takes the form of maximizing the 

reduction of personal uncertainty, 𝐻�́�(𝑥𝑖), and to signal satiation, �́�, once uncertainty has been 

sufficiently reduced to permit validation of datasets, {𝑀𝑗}, against their goal. The system seeks 

specification of each agent’s validated dataset, 𝐻(𝑥𝑖), to increase the rate at which uncertainty may 

be reduced from all available data. The ensuing process causes an accrual of value to the data as the 

probability that available data is valuable, 𝑝, and that the data will produce a valuable payoff, 𝑞, are 

both increased. Together with satiation, �́�, 𝑝 and 𝑞 improve the quality of the signal, 𝑆, which 

prospective agents evaluate prior to accessing the data sharing platform. The value of the data as 

improved as a direct result of agents interacting with a system to value the data. 

We can also measure this rate change of value to data. The data valuation process now necessarily 

includes the reduction in uncertainty and consequential increase in both benefit and cost of the data 

valued as a function of the number of interactions between the system and each agent in the 

community. Here, each 𝑖th agent’s 𝑗th iteration creates one interaction, 𝑘(𝑖, 𝑗), where, 1 ≤ 𝑘 ≤ 𝑚𝑛. 

Therefore, the effect of successive interactions, 𝑘, between the community and system may be 

expressed as a function of the interactions between each party,  

∆𝕍

∆𝐻𝑦(𝑥)
 (𝑘) (3-14) 

We now have uncertainty, the chief characteristic of data that permits change in the value of data, 

united with the interactions, the driver of the process by which this characteristic may be altered. 

Uncertainty in data is altered by interactions between a system and community of agents with a 

consequential change in the value of data.  

The last piece in this explanation of how to value data is the formal definition of the mechanism that 

governs this process of accumulation of value in data. 
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3.4. Enrichment and the Specification of Value Accretion 

We have previously used the term enrichment to convey a form of mechanistic change in the 

intrinsic characteristics of data; we may now define it formally. The enrichment of data is the 

systematic reduction of the uncertainty in data; enrichment arises from the coordinated efforts of a 

system and community of agents and permits the valuation of data against the community’s 

established goals.  

Enrichment is, therefore, the mechanism that governs the process depicted in Figure 3-3 and occurs 

as messages and signals are processed by the system and the community of agents. Each interaction 

offers both parties the potential to further reduce uncertainty as they identify valuable data from 

available data.  

Proposition 4: The change of the value of data per interaction is a product of the associated 

enrichment process and the effect uncertainty has on the value of that data. 

Let us consider an ideal scenario: every agent rationally considers each dataset offered and provides 

only statistically independent correction signals which the system perfectly processes to achieve a 

maximal reduction in overall uncertainty. Likewise, the system only produces datasets for agents’ 

consideration that fully accord with each agent’s earlier correction signals; each agent perfectly 

processes every dataset, unequivocally identifying noise while fully realizing the utility of their 

burgeoning, valuable data.  

In such an ideal scenario any interaction by any agent at any iteration would provide a maximum 

correction of overall uncertainty. Here is the explanation for what we first postulated: that, subject 

to economic inefficiencies brought about by technical differences, repeat valuations by one agent 

may be considered as economically equivalent to single valuations by multiple agents. In such a case, 

formalizing our definition of enrichment above, we may express enrichment, 𝔼, as a function of the 

interactions, 𝑘(𝑖, 𝑗), between the system and community, 

𝔼(𝑘) = −
Δ𝐻𝑦(𝑥)

Δ𝑘
 (3-15) 

The specification of a dynamic efficiency variable, 𝜂𝑖,𝑗, on each interaction permits examination of a 

non-ideal scenario. Therefore, the reduction in uncertainty is equal to the discounted joint entropy 

of either datasets offered, or correction signals returned. For the system, we may write the 

reduction in uncertainty as,  

− Δ𝐻𝑦(𝑥) = 𝐻(𝑆𝑖,1, 𝑆𝑖,2, … , 𝑆𝑖,𝑗) 𝜂𝑆𝑖,𝑗
 (3-16) 

or as a function of 𝑘, where 1 ≤ 𝑘 ≤ 𝑚𝑛, 
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− 𝛥𝐻𝑦(𝑥) = 𝐻(𝑆1, 𝑆2, … , 𝑆𝑘) 𝜂𝑆𝑘
 (3-17) 

Analogously, for the 𝑖th agent valuing datasets to reduce their personal uncertainty, 𝐻�́�(𝑥𝑖), we may 

write, 

− Δ𝐻𝑦(𝑥𝑖) = 𝐻(𝑀𝑖,1, 𝑀𝑖,2, … , 𝑀𝑖,𝑗) 𝜂𝐶𝑖,𝑗
 (3-18) 

Therefore, reconnecting Equations (3-17) and (3-18) with Shannon’s original framewor  of a 

correction system, the process of enrichment describes the recovery of the original message using 

the correction signals supplied by each agent. Provisioning for the relaxation of A2 and A3, the 

system in the data sharing platform will incorporate the unique distribution functions created by 

agent’s unique correction signals, 𝐻(𝑆𝑗), such that it will attempt to optimize the enrichment 

function, 

𝑓 (𝑀𝑖,𝑗; 𝐻𝑥(𝑦)) ∶  𝑌 →  𝑋 

That is, the system provides datasets in the presence of noise attempting to map the data available 

to the data desired by each agent. 

We now have the change in one party’s uncertainty expressed as a weighted, joint-entropy of the 

datasets provided by the other party. The system is beholden to the relative performance of the 

community of agents for the valuation of data and contrariwise. Using the chain rule to adapt 

Equation (3-15) and rearranging for the rate of change of the value of data per interaction, we have, 

𝜕𝕍

𝜕𝑘
= − 𝔼.

𝜕𝕍

𝜕𝐻𝑦(𝑥)
 (3-19) 

where both parameters on the right-hand side are also functions of interactions, 𝑘.  

Equation (3-19) provides an expression for the valuation of data in terms of uncertainty, enrichment 

and interactions, where uncertainty is the sole necessary and sufficient characteristic that permits a 

change in the value of data; enrichment is the mechanism that affects change in that characteristic; 

and interactions are the composite variable that advances that process. 

Before examining the application of this Proposition, it is prudent to note the marginal value of data 

with respect to uncertainty, 
𝜕𝕍

𝜕𝐻𝑦(𝑥)
, must be contained within the first quadrant for sustained 

interactions by both the community and system. Therefore, as enrichment is only defined within the 

first quadrant, the marginal value of data per interaction must likewise remain both in the first 

quadrant and non-negative for all 𝑘(𝑖, 𝑗) provided both the system and agents maintain the freedom 

to unilaterally cease participation in the data valuation process. As developed in the results section 
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of this paper, when freedom to cease the valuation process is lost – or ceded – the value of data 

becomes an endogenous variable permitting value extraction from one or other of the parties. 

This analysis of marginal value becomes crucial when assessing the generic modes – and their 

properties – by which data may be valued. We begin with an examination of the value of data when 

agents’ preferences converge on, and are united around, a common data-related goal.  

4. The Valuation of Data as a Resource 

4.1. Data as a Resource: the Value of Enriched Data as a Means to an End 

Data is valued as a resource when an agent specifies a goal, reduces the uncertainty in data and 

validates the performance of that enriched data against the goal. Enriched data is not the agent’s 

goal per se, rather enriched data is a resource that enables determination of the goal. For example, 

agents purchasing tickets through an online flight booking system, mining cryptocurrencies, or using 

an internet search engine to find a specific news article each value data as a resource. Here, the 

endpoint of the valuation is defined; the communal enrichment of data is the means of achieving 

that endpoint. 

The valuation of data as a resource resembles the valuation process as currently framed. The central 

task for the system is an optimization problem of connecting individual agents with valuable 

datasets while retaining sufficient adaptability to grow a community whose size maintains 

acceptable average costs. Characterizing this problem is the task to which we now turn. 

From Proposition 3, we have the reduction of the uncertainty in data towards a goal as the sole 

necessary and sufficient property that enables accretion of value in that data. At this stage, all 

agents share a common, data-related goal and may freely distribute value among the community. 

Such a homogeneous community of agents offers complimentary correction signals, 𝐻(𝑆𝑗), and 

commence and cease valuation at the same levels of uncertainty, 𝐻𝑦(𝑥). Such a data sharing 

platform resembles a McGuire (1974) club as agents consume club goods, 𝑀𝑗, to cover the collective 

cost of the system and are drawn from a homogeneous population whose preferences and 

endowments are likewise homogeneous. The system functions to allocate club goods to all agents 

who exhibit the same utilization rate and data sharing platforms which can be replicated to meet the 

needs of the economy.30 Crowding remains present, as scarcity of resources exists even in 

 

30 See Club Theory: Thirty Years Later (Sandler & Tschirhart, 1997) for a development and contextualization of 
McGuire clubs within club theory. 



Chapter 3 | Wysel, Baker, Billingsley: How to Value Data: Uniting Economic and  
Information Theory to Create a Value Framework for Data. 

Page 76 of 235 

communities of 𝑛 = 1 as the system incurs costs to produce club goods while agents incur costs 

based on the data valued, ℂ𝐶(𝑀𝑗) and time taken, 𝑣(𝑡). While agents suffer from crowding, they 

also benefit from the active participation of other agents. Fleming et al. make provision for such a 

club, denoting partially rivalrous but excludable goods as “impure club goods” (Fleming et al., 2018, 

p. 169). Finally, when facilitating the valuation of data as a resource, data sharing platforms are also 

the natural extension of a data sharing club introduced by Easley et al. (2018) where the club of 

participating merchants is extended beyond two firms and a shared vendor to a scenario of open 

communication where any agent’s contribution carries a personal cost but facilitates both a personal 

benefit and benefit to the network.31  

From Proposition 1, an agent’s rationale for participation in a data valuation community is to access 

the enrichment mechanism provided by the community. Adapting Equations (3-15), (3-16) and 

(3-18) gives enrichment for both the system and 𝑖th agent, 

𝔼𝑆 =
𝜕

𝜕𝑘
(𝐻(𝑆1, 𝑆2, … , 𝑆𝑘) 𝜂𝑆𝑘

) (3-20) 

𝔼𝐶𝑖
=

𝜕

𝜕𝑗
(𝐻(𝑀𝑖,1, 𝑀𝑖,2, … , 𝑀𝑖,𝑗) 𝜂𝐶𝑖,𝑗

) (3-21) 

As agents evaluate datasets, 𝑀𝑖,𝑗, and provide correction signals, 𝑆𝑘, the system may first define and 

then iteratively improve its enrichment efficiency, 𝜂𝑆𝑘
 with receipt of each successive correction 

signal. As agents value data toward a congruous goal, the exit entropy of their validated datasets 

remains a subset of the exit entropies previously defined. Each additional agent’s correction signals 

will have a correspondingly smaller impact on the joint-entropy of all extant correction signals, 

𝐻(𝑆1, 𝑆2, … , 𝑆𝑘), diminishing the marginal value of further interactions to the system. Heuristically 

optimum enrichment paths will appear as probability density functions form across specific 

sequences of datasets, 𝑀𝑖,1, 𝑀𝑖,2, … , 𝑀𝑖,𝑚. A system tasked with maximizing the value of contained 

data will ‘lead’ agents towards these sequences to reduce the cost of valuing data to both parties. 

Suggested travel destinations, personalized search results and proactive supply of trending news 

articles32 are all examples of a system responding in such a manner.  

 

31 An interesting extension of the present model would be the formal integration of these two theories in the 
treatment of the incentives behind the provision of the correction signal to a community versus the value each 
agent is able to appropriate from the community. 

32 Indeed, ‘trending’ moni ers are simply the application of the same systematic response to valuing data 
applied across volatile goals.  
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As a final observation, while the ostensible goal may be to reduce all uncertainty, ongoing 

enrichment where 
𝜕𝕍

𝜕𝑘
= 0 only inflates an agent’s marginal costs with direct or in-direct cost of 

participation in the data sharing platform. Equation  (3-7) reflects the same practical limit. This 

transfer of cost from the system to individual agents has important implications for the treatment of 

both raw data and the enrichment process pursued particularly as it relates to the maximization of 

value to the community. We turn to these implications now. 

5. The Valuation of Data as a Good 

5.1. Data as a Good: the Value of Enriched Data as an End in Itself 

 ata is valued as an economic good when the agent’s goal is enriched data. Following Lancaster 

(1966), agents seek utility arising from enriched data which possesses certain, desirable 

characteristics. This combination of characteristics changes as the data is enriched within a data 

sharing platform. Accordingly, in communities of 𝑛 > 1 goals must be at least partially correlated as 

resources are shared in pursuit of the level of enrichment each agent’s goal requires.  gents 

checking an online flight booking system for flight times, ticket prices or airports serviced – but not 

necessarily purchase tickets – value data as an economic good. Likewise, agents monitoring the 

prices of cryptocurrencies, or using an internet search engine to find information about recent 

events also value data as an economic good.  

 gents join and depart data sharing platforms according to that platform’s ability to enrich data with 

desirable characteristics. For instance, characteristics possessed by data enriched to point 𝐵 in 

Figures 3-4(a-c), above, may enable a set of activities for one agent that constitutes an immediately 

realizable benefit but to another agent requires further enrichment. The community is now 

heterogeneous and we may relax supplementary assumption A2: The agents’ preferences converge 

on, and are united around, a common data-related goal. Each agent’s personal goal governs their 

entrance to and exit from each data sharing platform. 

The data valuation process progresses as before. The system offers datasets that accord with 

correction signals provided by agents. However, agents now access, participate, and validate data to 

varying degrees as each seeks a maximization of personal value against personal goals. Indeed, we 

can now say with greater clarity, ad hoc data sharing platforms permit access to latent economic 

value because collaboration permits a reduction in the marginal costs of attaining benefits that 

would otherwise prove economically non-viable. However, the heterogeneity of the community 

comes at the expense of the system’s enrichment efficiency.  s Zhang, Ba er, and Griffith (2019) 
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efficiencies, 𝜂𝐶𝑖,𝑗
. By Equation (3-22), the value of data has increased. Appendix C contains a brief, 

worked example. 

If agents’ access and participation enable an increase in the value of data, a lack of enrichment 

caused by non-participation or withdrawal of members will curtail value unless this behavior can be 

managed by the data sharing platform.  

5.3. Diverging Agents’ Goals and the Valuation of Data as a Good: Continuous Case 

Value maximizing agents will exit the data sharing platform once satiation occurs. However, value 

maximizing behavior will also motivate an agent to withhold participation while the positive 

externalities of interactions by others accumulate.36 This free-riding problem exists for data sharing 

platforms because while only participating agents contribute correction signals, every agent stands 

to benefit from all previous interactions – even from agents who have long-since exited the 

community.37  

This mobility of enriched data leaves data sharing platforms exposed to a Pareto-suboptimal 

outcome and presents important implications for the design and management of data sharing 

platforms that support agents’ voluntary valuation of data as a good. Indeed, where agent benefit is 

principally realized at satiation, such as mining cryptocurrencies, inefficient system enrichment 

caused by self-serving agents may make attainment of community goals economically non-viable.  

An obvious response to this problem to adjust, 𝑠, the signal supplied to prospective – and 

participating – agents depending on their current relationship to the community. To motivate 

participation, information regarding cost could be initially kept vague and only allowed to solidify 

once agent’s expected benefits exceed remaining costs. While this approach has been suggested by 

Ely and Szydlowski (2020), agents must remain satisfied with the quality of the signal to remain 

participants in the community.  

Universities adopt a different approach in their management of the value of data as a good by 

regulating the enrichment path agents must pursue to possess a completion signal. Matriculation is 

a signal of the type, �́�, and validates completeness of the data enriched, enforcing – at least to some 

extent – full participation by agents. Students, as agents in university and class communities, 

 

36 While our present focus remains examination of the effect of this behavior on the value of data, we note 
Easley et al. (2018) provide a useful introduction to the conditions agents require for voluntary participation. 

37 In this way, while agents may quit the data valuation community – and may even successfully delete all data 
the data sharing platform maintains on them – they may not be truly ‘forgotten’. Their participation has 
enabled enrichment by the system and enduring value for the platform. 
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maintain additional data valuation communities, even of size 𝑛 = 1, to enrich data towards both 

transient and persistent goals. These communities – and their associated data sharing platforms – 

persist only while they offer the most efficient means of valuing data toward an agent’s goal. Tacit 

and codified data is transferred in to, and out of, each platform as necessary while the value of the 

platform is determined by the net change in its constituent elements as given by Equation (3-22). 

Like matriculation, grades are signals of the type, 𝑆, validating the data exchanged, the enrichment 

process, and the university as the necessary facilitator.  

However, students may value a university’s data with the sole goal of possessing the matriculation 

signal. Where membership in a community is valued over the associated data, the value of data has 

become at least partially endogenous. This is the final mode we examine. 

6. The Valuation of Data as a Currency 

6.1. Data as a Currency: the Endogeneity of the Value of Data 

Data is valued as a currency when it acts as a store of value or facilitates the exchange of value 

between agents or other parties. This storage and exchange of value may occur in either the short-

term or long-term permitting the value of data to be treated as either a current, or non-current, 

asset. In both cases, the endogeneity of the value of data is required to permit the ongoing 

investment of costs that exceed benefits into the data sharing platform.  

Thus far, central to the data valuation process has been the appropriation of all benefits by agents 

directly through 𝔹𝐶𝑖
 or indirectly through 𝔹𝐷. However, where agents elect not to extract benefits 

from the data sharing platform, preferring active participation in the enrichment process, by 

Proposition 2 value continues to accumulate within the platform. We may now relax the final 

supplementary assumption A3: The community directs the valuation process and participates in the 

distribution of the resulting value. Under-extraction of benefit produces latent value within the data 

sharing platform and permits a subsequent over-extraction of benefit to either the original, or 

another, party.  

Applying the data valuation framework, we will first consider the means by which this endogenous 

value is created before considering its nature. 

6.2. The Temporary Under-Extraction of Value from Data 

Temporary under-extraction of benefit was the deliberate strategy adopted by Early Adopters in the 

earlier valuation of data as a good. Early Adopters chose to defer validation of data and extraction of 
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benefits while they reduced uncertainty in available data and assembled their enrichment process. 

To the extent Early Adopters had reduced uncertainty in the data across 𝐴𝐴′ the value in the data 

had accrued according to the integral of (3-19) with respect to 𝑘. Subject to market conditions, this 

latent value may have been realized in exchange or use. In exchange, the benefit extracted by Early 

Adopters at point 𝐴′ would have equaled the cost imputed by the Majority, 

𝔹𝐷𝐸𝑎𝑟𝑙𝑦 𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠
=  ℂ𝐷𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦

  

Alternatively, the enriched data and system of enrichment may have been valued in use where Early 

Adopters extracted 𝔹𝐷
𝐴′  over the remaining enrichment process as non-anonymous tolls38. The limit 

of the value carrying capacity of data between a system and agent is the benefit the agent ascribes 

to the reduction in uncertainty of the resulting information (Frankel & Kamenica, 2019), discounted 

by the uncertainty of relevance of the data to the agent’s goal.   system that could resolve the 

relevance of data for an agent could increase the non-anonymous tolls levied on the agent beyond 

the value of data and unilaterally, appropriate benefit from the enrichment process.39 

More generally, all agents must be prepared to temporarily suspend the validation of data because, 

by Equation  (3-6), the benefit all agents attach to access is predicated on expected payoffs. Even 

after participation begins both �́� and 𝑢𝑞({𝑀𝑗}) remain small while agents offset ongoing costs 

against expected payoffs until the utility of datasets considered becomes significant.  

6.3. The Sustained Under-Extraction of Value from Data 

An under-extraction – or concession – of benefits also occurs when agents prefer active participation 

in the community over satiation of shared goals. This is the case where the value an agent holds in 

the community supersedes their valuation of enriched data. Such an agent remains less sensitive to 

the personal utility of data considered and more sensitive to the valuation process that permits 

involvement in the community. Rational agents must continue to seek a maximization of the value of 

participation but with a preparedness for their costs to accrue even while extant benefits do not 

cover these costs. 

In contrast to the temporary under-extraction of value, above, where both �́� and 𝑢𝑄({𝑀𝑗}) started 

small and grew together, if the former grows without significant change to the latter then the 

 

38 As Sandler and Tschirhart (1997) explain, non-anonymous tolls are a form of rent clubs may apply 
differentially to members based on their activity or identity. They contrast anonymous tolls which are levied to 
all (or none) of the club at a common level. 

39 Indeed, flight booking websites have been accused of precisely this rent-seeking behavior (Shen, 2017). 
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expected payoff must remain a significant component in an agent’s accounting of value. Ta en to 

the limit, as costs continue to grow as a function of time and number of datasets valued, the 

expected payoff must become an increasingly dominant component of an agent’s perception of 

benefit. In terms of Equation (3-10) and (3-11):  

𝐸𝑄[𝑤(𝑎, 𝑃((𝑥 − �́�) ⊂ �́�), 𝑆)]  ≥  ℂ𝐶(𝑎(𝑠), 𝑣(𝑡), �́�)  +  ∑ ℂ𝐶(𝑀𝑗)
𝑚

𝑗=1
 ≥  𝑢𝑄({𝑀𝑗})  

 n agent’s expected payoff is a composite function driven by 𝑄, 𝑃 and 𝑆. If utility from valued data 

does not materialize, these probabilities may avoid collapse if an agent believes their apparent 

progress through all data, 𝑦 − �́�, remains small compared to their potential progress and resulting 

payoff. In such a case, where agents remain convinced the initial signal they accepted is a subset of 

the desirable signals produced by others in the community they may be persuaded to accept a data 

valuation model where their expected payoff continues to justify the ongoing cost of enriching data 

in perpetuity.  

6.4. The Over-Extraction of Value from Data 

Finally, where the community is prepared to under-extract benefits from the valuation of data the 

system may also seek appropriation of benefits from data. Even where agents do not cede 

distribution of benefits, adversarial systems could leverage enhanced enrichment processes to 

reduce the uncertainty regarding the relevance of data to agents and compete with them for value.  

It is important to differentiate how this case differs from one group of agents seeking value from 

other agents. Initially, the system differs from a group of agents because the system, uniquely, 

intermediates valuable exchanges with, and often between, agents. Moreover, the system has 

observed the collective interactions of all agents – past and present – and observed each agent’s 

attempts to maximize their own private value. In that sense, the system not only controls one half of 

the means of value production but may also amass a more complete knowledge over the activities of 

agents than any subset of agents, past or present. To the extent this knowledge is reinvested, agents 

experience this advantage as a disparity between the system enrichment efficiency, 𝜂𝑆𝑘
, and their 

personal enrichment efficiencies, 𝜂𝐶𝑖,𝑗
. It is precisely these characteristics of a data sharing platform 

that are captured in the collective signal, 𝑆, from which agents expect particular enrichment 

efficiencies and which permit the endogeneity of value. Therefore, the system may freely 

appropriate value from the community to the extent the community prefers one specific data 

sharing platform over any other.  
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as each party attempts to reduce uncertainty in the data in accordance with their goal. This series of 

interactions is defined as the data enrichment process and, when combined with the data valuation 

model, explains how data may be valued as a resource, an economic good or currency. As a 

resource, data permits the generation of value through the systematic reduction of uncertainty 

surrounding a goal. As an economic good, data possesses common production paths with other 

data-goods but retains an infinite capacity for the variance of desirable characteristics – limited only 

by the enrichment efficiencies and goals of parties. Finally, as a currency, variously enriched data 

enables storage and communication of value to all parties within a data sharing platform, provided 

the value of data has become at least partially endogenous. 

7.2. Open Questions 

If the value of data accumulates within data sharing platforms, why do some even well-resourced 

businesses appear to ‘drown in data’ while others appear to thrive in deriving value from data? 

Clearly there are both specific and general issues to address. We have established that pursuit of the 

valuation of data as a currency reveals the endogeneity of value as a necessary condition for the 

storage, communication, or appropriation of value from data. Therefore, the management challenge 

becomes designing the transmission of the value of data through an organization, rather than 

merely managing the flow of data. This is consistent with, although more specific than, Short and 

Todd (2017)’s findings. However, the endogeneity of the value of data within a firm has an important 

consequence. A firm that embodies a corporate data sharing platform must account for multiple 

value channels: by Proposition 3 value is created within the firm as uncertainty is stripped from data 

in processes that encompass and extend beyond existing production paths. Underlining G. Parker et 

al. (2017)’s findings, data-centric value accretion channels become an even more fundamental 

requirement than pursuit of emerging business models. For professionals in data driven firms, an 

examination of data-centric value production becomes more central than questions regarding 

commercialization of firm data. Such an understanding must also inform modeling and design of 

information systems. When data provided to the system is leveraged as a parallel currency, these 

systems may be mobilized to encircle stakeholders, simultaneously satisfying their goals, and 

enabling enrichment of meta-data to other valuable ends. This provides an alternate, data-centric 

foundation for the analysis of match-making platforms: intermediary platforms capitalize the 

variously enriched data of their communities such that the utility of the data sharing platform 

remains positive for all parties. 

This intertwining of data-based enrichment paths with novel technology capable of dramatically 

altering the costs of acquiring and managing data also helps explain the pre-eminence of so-called 
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data-centric businesses. Their proprietary enrichment of data, provided by agents who can discern 

no benefit from the data in its raw form, provisions immanent systems who facilitate scarcity in a 

mar etplace that values access to this community’s enriched data. This transformation of data 

becomes central to the privacy debate: agents must determine the net present value of 

relinquishing data to a platform in exchange for access to the associated, and often short term, 

benefits. 

If the ordinal value of data may now be understood, should we expect the apparent discrepancy in 

the cardinal value of data to persist? Indeed, from Proposition 3, if value accrues with the reduction 

of uncertainty from data, and the entropy of data can be measured, ought not the cardinal value of 

data be quantified as a matter of first importance? Proposition 1 and 2 note the functional primacy 

of a congruous goal: a goal defines the ad hoc community and scopes the conditions for value while 

Proposition 4 sets the accumulation of value as a dependent variable driven by each data sharing 

platform’s internal enrichment process. Hence, data sharing platforms better resemble individual 

sovereigns than merchants in a marketplace united by fiat money. It follows, the congruity of the 

goal used to enrich data sets the extrinsic exchange rate of otherwise similar datasets. In other 

words, the more data is enriched towards a goal, the less the transfer of value away from parties 

who possess that goal can be taken for granted. Therefore, effective data marketplaces require 

ontologies of enrichment goals before quantification of value can occur. 

While this framework offers an initial explanation for the relatively lack of mobility of enriched data 

through value chains observed by Zhang et al. (2019), more work is needed to characterize 

transmission of data across markets. The grounding of additional characteristics attached to data, 

such as properties rights (Jones & Tonetti, 2018), against each agent’s marginal effect on the value of 

data is an important first step. Likewise, consideration of the market conditions required for sharing 

of data, such as Easley et al. (2018)’s game theoretic model, may now include a more granular 

examination of the nature of data potentially exchanged.  

For professionals, we conjecture that there will be increasing tensions between data providers – 

often agents in data valuing communities – and the data sharing platforms that encompass them. 

The emergence of new commercialization models that support the exchange of value between fiat 

money and enriched data within data sharing platforms will continue to promulgate rapid societal 

and economic change. Historically, the viable collection of data has proven a formidable bottleneck, 

but the interconnection of Internet of Things devices and the voluntary digitization of individual’s 

analogue activities such as social networks and health has all but removed that barrier. As both 

enriched data and the ensuing enrichment systems serve as organizational assets, we expect the 

apoptosis of data sharing platforms will be marked with liquidation, or worse the public 
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abandonment of sensitive data assets. This wholesale release of data will further strain the trust 

data providers place in data sharing platforms as data collected for one goal will become divorced 

from its initial terms and remain available for additional, even once incongruous, goals. As data 

sharing marketplaces continue to mature secondary data markets will emerge, as will derivative data 

characteristics such as, with some irony, proof of veracity. Self-affirming datasets such as those 

supported by blockchain will abound. Indeed, it seems fitting to end with the prescient remarks of 

Nobel  aureate Kenneth  rrow (1996, p. 127), “I would surmise that we are just beginning to face 

the contradictions between the systems of private property and of information acquisition and 

dissemination.” 
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Appendix A. Review of Economic Literature 

This work relates to understanding the value of data as distinct from the value of information. Data 

differs from information to the extent that the purpose of data has not been – and may never be – 

confirmed. Accordingly, as set forth by Shannon (1948), uncertainty moves from being a question of 

utility to one of a fundamental characteristic of data. Nonetheless, until recently economic 

treatment of data has been coincidental with the study of the economics of information.  

 ccordingly, Stigler (1961) assumed the goal, or “desideratum” (Fran el & Kamenica, 2019, p. 3650), 

of each agent, themselves buyers in a marketplace, correlated with the information provided by 

sellers.40 The value of information as a resource could then be observed as the effect of buyers’ 

informed decisions on market prices. Arrow broadens (1985) and then extends (1996) this 

understanding by drawing on communication theory to establish the valuation of information as a 

choice variable. Agents observe signals pertaining to the nature of some information and optionally 

select a quantity of that information in an attempt to maximize their payoffs. The implicit assertion: 

choice of the signal reveals an agent’s goal for the data. The first result of this paper is to extend 

 rrow’s treatment of information to a model that accounts for intrinsically uncertain data where 

agents must resolve relevance as well as maximize utility. 

Frankel and Kamenica (2019) formalize the relationship between uncertainty and information by 

quantifying their coupling, thereby establishing uncertainty as the chief antithesis of the benefit of 

information. While this paper takes a substantially different approach to theirs, it broadens the 

significance of their result by demonstrating the origins of this coupling are set when the relevance 

of that information is still unknown. We show information of uncertain relevance, or more 

succinctly: data, gains value as agents systematically separate irrelevant data, or noise, from relevant 

data in a process that resembles a reversal of Shannon’s (1948) communication system. Execution of 

the data valuation process confers benefits to, and extracts costs from, agents. Following rational 

 

40 Stigler acknowledges, but does not develop, the case of an oversupply of information (1961, p. 22); that is, 
the supply of data to buyers whose goal does not accord with all supplied ‘information’. 
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inattention literature,41 we invo e Shannon’s appropriation of entropy as a useful measure of 

uncertainty in data but return to categories that mirror Shannon’s: available data, uncertainty, 

relevant data and noise. The economic valuation process of data, no matter how noisy, may now be 

approached. This is the second result of this paper. 

The economics of data has also been approached directly through examination of the value of data 

as a currency. As a currency, data permits the storage or transmission of value according to market 

conditions and the private goals of agents. Easley et al. (2018) offer a game theoretic framework 

that permits ordinal value questions to be addressed; their framework permits description of 

conditions where rational agents would voluntarily participate in data sharing practices. While 

insightful, this approach still attributes the value of data to its extrinsic utility. Jones and Tonetti 

(2018) propose the attribution of property rights to data as a partial solution. Property rights provide 

a rationale for the provision of rent, but efficient distribution of value relies on a mechanism for 

determining the relative value imputed to the data by each party (Zhang et al., 2019). Our third 

result is to show that the reduction of the intrinsic uncertainty in data is the sole necessary and 

sufficient condition for the accretion of value. This result illustrates that the coupling of uncertainty 

and information derived by Frankel and Kamenica (2019) exists as an independent characteristic of 

data. Importantly, the reduction in the uncertainty in data can therefore also be used as a rationale 

for apportioning value between parties. 

Finally, as Jones and Tonetti (2018) develop, data is nonrival and therefore cannot be treated like an 

ordinary economic good. Data collected for one purpose, may be simultaneously used for other 

purposes. Intuitively, this permits multiple paths of attributing benefits to the data as firms can both 

use and sell data, giving value in both use and exchange to the data. However, the pursuit of both 

outcomes consumes limited resources. Implicitly, access to data remains the central property that 

governs value flow, but access alone does not confer benefits as data must be developed – or 

enriched – to create scarcity or realize some external benefit. It follows, this consumption of 

resources in the development of data is rational where that investment enables benefits of a greater 

magnitude to be extracted. Where value is understood as the difference between benefits accrued 

and costs incurred, our final result is the definition of the relationship between the change in value 

of data with respect to the activities of agents, the rate of enrichment of the data, and the relative 

effect of uncertainty on the value of data. 

 

41 See Sims (2003). 
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Therefore, with reference to extant Information Systems and Economics literature the contribution 

of this paper is threefold. First, an economic valuation model is developed that accounts for: intrinsic 

uncertainty in the relevance of data; the non-rivalrous nature of data; uncertainty in expected 

payoffs; and rivalry of resources consumed in the data’s valuation. Second, we establish uncertainty 

as the sole intrinsic characteristic that alters the economic value of data. We also define the data 

enrichment process as the means this uncertainty is reduced. The development of this theory 

borrows heavily on communication theory and becomes the method by which data is valued. Third, 

the data valuation process and data enrichment process are combined to create a framework useful 

for understanding, managing and attributing value between all parties involved in the valuation of 

data. Our results are that data may be valued according to one of three modes: the valuation of data 

as a resource, as an economic good, and as a currency.  

Appendix B. Mid-process Entropic State 

From Shannon, Equations (B1) and  (B2) reflect the boundary conditions immediately before, and 

following completion of, the data valuation process. 𝐻(𝑥, 𝑦) is the joint entropy of both the relevant 

data and available data, and equal to the sum of the input entropies: raw data and uncertainty, and 

the sum of the output entropies: relevant data and noise.  

𝐻(𝑥, 𝑦)  =  𝐻(𝑦) + 𝐻𝑦(𝑥) 

=  𝐻(𝑥) + 𝐻𝑥(𝑦) 

(B1) 

(B2) 

Collectively, the sum of entropy prior to commencement of the data valuation process is equal to 

the sum of entropy following the theoretical completion of the same.  

Prior to commencement of the data valuation process we have both raw, available data and 

uncertainty regarding that data. From Equation (B1) the sum of the entropy of available data and 

uncertainty equals the joint entropy of relevant data and available data. At this stage, relevant data 

and noise have not yet been defined, except that the sum of their entropies also equals the joint 

entropy of relevant data and available data, 𝐻(𝑥, 𝑦), and the initial entropies.  

As no data has yet been selected, considered or evaluated, the probability of possessing an 

observation relevant to an agent’s goal is zero, that is,  

 𝑝0 = 0. 

Likewise, �́� is an empty set and �́� = 𝑦. Therefore, 

 𝐻(�́�) = 0 
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𝐻(�́�) = 𝐻(𝑦) 

𝐻�́�(𝑥) = 𝐻𝑦(𝑥) 

which sets Expression (3-13) equal to the right-hand side of Equation (B1) at the point immediately 

before commencement of the data valuation process. 

Similarly at the completion of the data valuation process all available data will have been considered 

and marked as either relevant data or as noise.42 As unconsidered data diminishes, �́� → 0, the 

probably of finding relevant but unconsidered observations must also diminish causing 𝐻(�́�) → 0. 

Likewise, �́� → 𝑥 as the potential for finding additional, relevant observations has also diminished. 

Therefore, 

 𝐻(�́�) → 𝐻(𝑥)  

𝐻�́�(𝑦) → 𝐻𝑥(𝑦). 

 dapting Shannon’s statement of conditional entropy (1948, p. 13), we may write the conditional 

entropy of 𝑥 given �́� as, 

 𝐻�́�(𝑥) = − ∑ 𝑝(𝑖̂, 𝑗̂) log 𝑝�̂�(𝑗̂)

�̂�,�̂�

 

where 𝑖 ̂and 𝑗̂  are the probably of �́� and 𝑥 occurring, respectively, and 𝑝(𝑖̂, 𝑗̂) is the probability of 

both events happening simultaneously. As the data valuation process approaches completion, 

𝑝(𝑖̂) → 0 and, therefore, 𝑝(𝑖,̂ 𝑗̂) → 0, causing 𝐻�́�(𝑥) → 0. Therefore, Expression (3-13) approaches 

the right-hand side of Equation  (B2) as the data valuation process approaches completion.  

Appendix C. Valuation of Data as an Economic Good: Example 

This symbiotic improvement in the data enrichment process and resulting increase in the value of 

data depicted in 5.2 is more familiar than we might realize. Suppose after considering a specific 

flight’s details, 𝐻(𝑀𝑗), a significant number of agents issue correction signals indicating a preference 

for an earlier dataset, 𝐻(𝑀𝑗−𝑎). 43 Following the second valuation by the agents of the earlier 

 

42 This end state of full segregation of relevant data and noise is possible but it will not, in general, eventuate 
as agents cease valuing data once satiation occurs – irrespective of the current states of remaining data and 
uncertainty. 

43 For narrative simplicity we persist with the flight booking example, however in website management this 
simple action of ‘requesting an earlier dataset’ is  nown as a bounce and gives rise to the fundamental 
webpage metric: bounce rate, the proportion of viewers who, upon viewing a webpage almost immediately 
request a page previously viewed. This interaction is so common that web browsers – and many peripherals – 
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dataset, the system observes that many agents change their earlier correction signal from 𝐻(𝑆𝑗−𝑎) 

to 𝐻(𝑆∗
𝑗−𝑎). The updated correction signal prompts the system to produce a revised dataset 

𝐻(𝑀∗
𝑗−𝑎+1) containing different flight details. Consequently, the specific probability 𝑝, that the 

original datasets, 𝐻(𝑀𝑗−𝑎+1, 𝑀𝑗−𝑎+2, … , 𝑀𝑗) constitute valuable data is reduced. Likewise, the 

probability 𝑞, that the original datasets will produce a valuable payoff is also reduced. As each 

interaction bears a cost to both agent and system, the system could reasonably manage a bias for 

delivering the preferred 𝐻(𝑀∗
𝑗−𝑎+1) to new agents irrespective of their 𝑆𝑗−𝑎 correction signal in an 

attempt to maximize value across the data sharing platform. 

 

 

 

 

  

 

have dedicated Back buttons. Moreover, if the system does not automatically adjust users away from 
undesirable webpages, then users – even as communities of 𝑛 = 1 – learn to adapt correction signals to suit. 
For example, by writing: “Manchester, NH” rather than just “Manchester”. 
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Abstract 

Data is increasingly the most valuable asset firms manage, yet both scholars and practitioners want 

for a generic production process that maps, in plain terms, how firms create value from that data. 

Without this framework, practitioners remain unable to calculate efficiencies or benchmark 

processes and scholars remain unable either to organize the rapidly expanding corpus of 

phenomena-centric data management theory, or to engage practitioners with grounded predictions, 

derivative causalities, or even idealized scenarios. This paper first presents, and then formally 

models, a data-based production process that connects the effect of management decisions with the 

parallel payoffs that data enables across a firm. The process is developed as an extensible 

framework that incorporates the non-rivalry, excludability, and conditional network effects exhibited 

by data as well as the fixed and variable costs incurred by the firm. We illustrate how one decision to 

invest in data enables the firm to simultaneously sell their data, use it to improve other products and 

services, and incorporate it as data-enabled learning. The model is applied to management of 

internal ‘data projects’ and externally connected, data-based business models. We show how to 

calculate an over- or under-investment in data and identify conditions where constantly updating 

insight creates sub-optimum profits. Data as a scarce resource is discussed and an alternate 

framework for data-enabled learning is presented. The proposed theory also acts to frame the 

broader management challenge of value creation versus capture between data trading platforms 

and their participants. 
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1. Introduction 

The operation of any modern, competitive firm involves the production of value from data. The 

generalized process occurs in both tech and non-tech businesses (Kaiser et al., 2021; Rahmati et al., 

2020), and in both large and small firms (Liu et al., 2020; Short & Todd, 2017) and incorporates the 

enrichment of data by a firm towards a valuable goal (Golman et al., 2022). For instance, sales data, 

once analyzed, improves inventory management, refines product mixes, and facilitates data-enabled 

learning (Hagiu & Wright, 2020a). The collection of customer’s behavioral data enables platforms to 

refine pricing structures, and refining profits for both themselves, and their producers (Bhargava et 

al., 2022). Once enriched into insight45, data can also be traded directly using data-based business 

models (Hartmann et al., 2016) that rely on the firm’s ability to simultaneously sell insight, use 

insight to improve other products or services, and reinvest insight into the operations that power 

their data-based, production process.  

If data was a ‘normal’ production factor li e labor or capital, then firms would need to choose which 

payoff to pursue and optimize inputs and management decisions accordingly. Afterall, a baker 

cannot ice two cakes at once, nor can she eat a cake after selling it. However, data is non-rivalrous 

(Jones & Tonetti, 2020) and exhibits near-infinite economies of scale (Arrow, 1996). This permits 

firms to simultaneously sell insight even while they use the same insight to both improve ancillary 

products and increase the value of operations. Firms such as 23andMe ingest customer’s genetic 

data into proprietary technologies to produce reports on disease susceptibility which are sold back 

to customers. In parallel, once aggregated this insight also fuels research efforts within and beyond 

the firm (Hayden, 2017). Firms that operate platform business models, such as LinkedIn and Uber, 

enrich behavioral data for insight into customer preferences that is traded to advertisers or 

intermediaries in ancillary markets, used to improve existing services, and reinvested to refine their 

platforms (Parker & Van Alstyne, 2018).  

However, while data may be non-rivalrous the resources required to invest in, and manage, data 

remain rivalrous. The growing centralization of data as a firm asset requires managers to justify 

investments in data management to increasing levels of sophistication (Pentland et al., 2021). Data-

related expenses like storage, categorization, and analysis need to be justified against associated 

returns while investments into data such as acquisition, extraction or generation of data need to be 

considered against the future revenue streams they will support. Even where data-based 

 

45 We adopt the noun insight rather than information throughout to avoid confusion caused by the conflation 
of the terms data and information in popular media. Insight is data that has been processed by a system, such 
as a firm, towards a valuable goal. 
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investments stay within practical limits, firm-level policies often mandate minimum rates of return 

for projects and increase the pressure on managers to evaluate data projects in a similar manner to 

non-data projects within the firm. Likewise, as data-based production processes often operate 

alongside other non-data processes, the investments they require must be justified against the 

opportunity cost of providing those resources elsewhere within the firm. More broadly, the interfirm 

assessment of data and trade of data-based production processes requires benchmarking data-

based operations using either common metrics or standardized approaches to data valuation 

(Fleckenstein et al., 2023). 

Yet, leaders of even large well-resourced firms struggle to adequately manage the production of 

value from data within their operations. They note that while their data managers “were highly 

effective in storing and protecting data, they alone cannot make the key decisions that transform 

data into business value” (Short & Todd, 2017, p. 18). This inability to manage the data-based 

production process stems from the lack of a framework that articulates it in the simple terms of 

resource allocation, productive outputs, and management interventions (Pentland et al., 2021). 

Without a framework, the day-to-day decision making required by a data-based production system 

becomes confused (Chiang et al., 2018) and leaves practitioners with the all-too-common feeling of 

‘drowning in data’ as they feel unable to prioritize investments and remain tied to the maintenance 

of existing data management efforts rather than empowered to adapt to new demands (Short & 

Todd, 2017). On the one hand, the firm-level process of producing value from data is evidently 

effective, but on the other hand, the multiplicity of ostensibly non-rivalrous payoffs that data 

enables leaves managers and scholars without a grounded framework from which standard metrics 

or operating strategies could be derived.  

The incorporation of data as a valuable resource within a firm has received some scholarly attention. 

The academic treatment of data as a resource and the management of data within a firm give 

managers operational considerations for the treatment of data – particularly across markets (Easley 

et al., 2018) – and the implications of these considerations on the operation of the business (Wysel 

et al., 2021). The former focuses on managing data with implications for the firm (see for example, 

Hagiu and Wright (2020a)) while the latter on management of the firm with implications for data (for 

example, Gregory et al. (2021)). However, neither offers practitioners an extensible framework that 

connects decisions such as, ‘how much – or how often – should I invest in data?’ to immediate 

payoffs or longer-term value creation. While the phenomenon of transforming data into value across 

a business certainly exists, standard resource management and production process theories stop 

short of explaining the exercise as an end-to-end process. Data managers are left standing in the 
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proprietary technology to aggregate, analyze or synthesize new types of data which augments 

existing products or enables the creation of new products. Data analysts (e.g. 23andMe), data 

traders (Spotify), search engines (Google Search, Bing) and social media platforms (Instagram) each 

operate in this manner. Alternatively, firms that operate non-data related business models, such as 

retailers (Walmart) or service providers (The Hilton Group), collect data to enable both data, and 

non-data returns (Bardhan et al., 2020). In this case, insight derived from a firm’s operational data 

supports the ongoing improvement of non-digital products as well as the improvement of operations 

that deliver those products.   hotel chain’s personalized mar eting of services, or the analysis of 

complementary products conducted by retailers are examples of this interpretation of a data-based 

production process. In each case, managers must decide what portion of available resources to 

invest in data and how frequently to update their analysis to reflect newly generated data.  

Incorporating this first decision, we analyze the proportion, 𝜎, of existing operating capital a firm 

decides to invest in data. A decision to invest in data enables the generation, extraction, capture, 

synthesis, or purchase of data.46 Only generated data can be developed by the firm into insight. 

Insight can be sold, used to improve other products, and captured within the firm’s operations. 

While each of these payoffs represent potentially valuable returns on the firm’s initial investment, 

this investment also carries an opportunity cost. If a firm invests 𝜎 in generating data, it only has 

(1 − 𝜎) to allocate to other projects as investment in generating data represent reductions in 

available resources for other projects across the firm. However, data that was not generated is left 

‘latent’ in operations and reduces the potential insight a firm might have generated from an 

increased investment. 

We also address the second decision regarding the frequency of generating new insight. The 

generation of new data and with it, new insight, permits new insight to be sold, applied, or 

incorporated within the firm. Specifically, we ask the question, when is it profit maximizing for a firm 

to constantly analyze and respond to data?  ften a firm’s operations may produce near continuous 

streams of data, but managers must still determine the frequency with which to incorporate updates 

or to apply insight within ancillary products. While a continuous release of up-to-the-minute insight 

may hold popular appeal, as noted in the opening discussion, this imposes significant costs on the 

production process and might reasonably even reduce potential value creation captured by the firm. 

To frame this decision, we define the time between consecutive releases of insight as an interval of 

 

46 Throughout this paper we refer to a firm that ‘generates data’, however our treatment proceeds unchanged 
if the firm purchases data from an external party/ies, extracts data from assets it controls, or expends 
resources to synthesizes data that has been amassed from other operations.  
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length 𝑡, where 𝑡 ≥ 0, to accommodate analysis of the continuous and episodic scenarios. Note that 

𝑡 = ∞ indicates a firm has decided to cease operation of its data-based production system. 

The purpose of this paper is to first propose, and second to model, a framework that describes how 

firms produce value from data via internal and external payoffs that can operate in the absence of 

any apparent rivalry. Stated in terms of the popular metaphor, the proposed framework illustrates 

how data permits firms to have their cake, sell it, and eat it too, while the model explains how to 

optimize this ubiquitous recipe. Taken together, the data-based production process is a generic, 

readily adaptable model that incorporates the non-rivalry, excludability, and conditional network 

effects exhibited by data and offers practitioners and scholars insight into existing and 

complimentary value creation efforts. 

To the best of our knowledge, this is the first paper that adds a production function to a model that 

describes the creation of value from data within a firm. We first introduce data as a factor of 

production before developing each of the generic steps from Figure 4-1 to describe the actions a 

firm ta es in its production of value from data. Specifically, we examine the firm’s generation of 

data, the decisions surrounding the development of that data, and the parallel production of value 

from data both internally and externally. Combining these steps, we chart the progression of data 

from an input to an output across a firm. The framework incorporates the non-rivalry of data 

through the parallel realization of normally exclusive payoffs. The firm may simultaneously trade 

insight in the market, apply insight to improve its own products or services, and reinvest insight by 

capturing the value insight unlocks via data-enabled learning. The excludability of data is 

incorporated through the requirement that until the firm invests in data, the data remains outside 

the firm’s production process and beyond its control.  ll capitalized costs are reflected in this initial 

investment, while in-period, data-related expenses are introduced in Section 4. Finally, conditional 

data network effects affect value created from data once correlation between payoffs is introduced 

in Section 5. In this way, the framework serves as a quick-reference map for those looking to 

uncover additional value-creating paths and as a basis for the formal model.  

Attaching parameters to the framework, we formally model the process a firm undertakes in the 

production of value from data as both an isolated data-project and as an ongoing production process 

nested within broader operations. We model the effect on firm profit of the firm’s two central data-

based, decisions: “how much should be invested in data?”, and “how often should the production 

process be repeated?”.  ccordingly, the proposed model addresses three  ey data management 

challenges: 

i) the evaluation of data-based projects against other firm-level projects, 
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ii) the assessment of the firm-level, data-based production process, and  

iii) the optimization of firm-level investment strategies surrounding existing data-based 

production processes.  

The model is run over two stages to capture the effects of data-enabled innovation both within the 

firm and from the mar et. We demonstrate how data projects may be evaluated against the firm’s 

internal cost of capital using the standard methods of net present value (NPV) and the internal rate 

of return (IRR). This permits practitioners to baseline data projects against other, even non-data, 

projects within – and beyond – their firm. We show it is possible for firms to over-invest in data and 

generate conditions where constantly updating insight with the most recent data creates sub-

optimum profits. Given the centrality of data-enabled learning to value creation within firms, we 

conclude the paper with an interpretation of data-enabled learning from the perspective enabled by 

the proposed framework. Specifically, we propose new methods for modeling value created across 

the firm by data-enabled learning and the compounding effect of the increased learning on the data-

derived payoffs.  

Table 4-1. Generic data-related payoffs for various business models 

Example Firm Generic business model  Primary Data-related 
Payoff 

Secondary Data-related 
Payoff 

Hotel Chain 
e.g. Hilton Worldwide 

Delivery of non-digital  
service 

Use insight to improve 
service 

Value captured as data-
enabled learning 

Retailer 
e.g. Walmart Inc. 

Delivery of non-digital 
product 

Use insight to improve 
products 

Value captured as data-
enabled learning 

Professional Service 
Agency 
e.g. Marsh 

External delivery of 
service 

Trade on data-derived 
insight  

Use insight to improve 
services 

Multisided Platform  
e.g. LinkedIn, Uber 

Service provision; data 
generation and analysis 

Captured as data-
enabled learning, Use 
insight 

Trade (access to) insight into 
user behavior  

Data analyst  
e.g. 23andMe 

Analytics-as-a-service Trade insight derived 
from customer-supplied 
data 

Value captured as data-
enabled learning and used 
to power external research 

Data trader  
e.g. Spotify 

Supplier of curated data  Use insight to improve 
service 

Value captured as data-
enabled learning 

Search engine 
e.g. Google Search, 
Bing 

Data collector and 
aggregator; supplier of 
curated data 

Trade (access to) insight; 
use insight to improve 
service 

Value captured as data-
enabled learning 

Social Media 
Platform 
e.g. Instagram 

Data knowledge 
discovery 

Trade (access to) insight 
into user behavior 

Use insight to improve 
service; value captured as 
data-enabled learning 



Chapter 4 | Wysel, Baker: Profiting from data. How data enables firms to have their cake, sell it, and eat it too. 

Page 108 of 235 

2. Data as a Factor of Production 

The treatment of data as a firm-level factor of production builds on the foundations of datanomics, 

production and innovation literature as well as those of economics and information systems. Data is 

“one of the fundamental determinants of production” ( rrow, 1996, p. 127) and passes easily into, 

and out of, the firm as it undergoes a transformational change in both form and value (Frankel & 

Kamenica, 2019). This process of production takes both capitalized and in-period investments to 

enable the valuation of data as a resource (Stieglitz et al., 2018), good (Schatz & Bashroush, 2016), or 

even currency (Morozov, 2016). Accordingly, while data often resembles other assets, such as capital 

or labor, it exhibits unique properties that affect its treatment as a production factor (Pentland et al., 

2021) and within a production process (Arrow, 1996). 

Data is excludable (Easley et al., 2018), non-rivalrous (Jones & Tonetti, 2020), and displays 

conditional (Clough & Wu, 2022; Hagiu & Wright, 2020a) data network effects (Gregory et al., 2021). 

Study of data as a digital asset drives research in specific disciplines (Cennamo et al., 2020), 

applications (Wolfert et al., 2017) and phenomena (Günther et al., 2017; Hinz et al., 2020). 

Accordingly, the science of creating value from data may serve as a programmatic (Lakatos, 1968; 

Wagner & Berger, 1985) theory within management science to the extent it orients and supports the 

reconciliation of extant unit theory pertaining to the management of data as a firm asset (Cronin et 

al., 2021). However, as programmatic management theory, a production process that describes the 

creation of value from data ought to also support the fine-grained, applied science of managing the 

resource ( rend, 2022) from an input to a firm’s operations in its transformation to an – ideally – 

more-valuable output.  

2.1. Data and Value 

Establishing the terms of that transformation, the value a firm creates from data is taken as the 

difference between market payoffs received for the management of data and the costs incurred to 

achieve those payoffs. This treatment has precedent within management literature (Chesbrough, 

2003; Günther et al., 2017) and accords with common experience. Insight from customers’ 

behavioral or social networks, data typically requires an initial investment by the firm but also 

enables increases in short- (Loveman, 2003) and long-term value (Hagiu & Wright, 2020a; Sharapov 

& MacAulay, 2022) as the data is sold, utilized, or reinvested. Value created from the management 

of data within a firm is a function of both assets controlled and decisions made by management 

regarding those assets (Horling & Kulick, 2009). Accordingly, this treatment applies to both internal 

(pipeline (Choudary, 2014)) and external (platform) value creation. Whether by uniting a community 
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of sta eholders as ‘users’ or engaging with them across a mar et, both approaches to production 

utilize an enabling system to transform data on, from, or for that community into value (Wysel et al., 

2021). In this arrangement, the system utilizes data to both enable and incentivize stakeholders to 

ma e valuable interactions (Evans & Schmalensee, 2016) either within or ‘on’ the host firm.  cting 

as the enabling system, the firm directs the production process surrounding data, determines an 

effective structure for commercializing that data (Hartmann et al., 2016), and attempts to broker a 

sustainable distribution of value between the firm and stakeholders (Gregory et al., 2022).  

The utilization of data as a factor of production carries both a capitalizable cost and an in-period 

expense to the firm. Operational value diverted to the former permits assembly of assets from which 

future revenue will be derived, while operational value diverted to the latter diminishes in-period 

profits. For instance, the excludable nature of data requires a firm to input data into a production 

process typically through extraction, generation, synthesis, or purchase47 (Hartmann et al., 2016). As 

such, resources spent on generating data represent the accretion of a digital asset from which future 

value will be derived. Notably, latent, or unextracted, data can confer value to a firm where it 

becomes intertwined with the surrounding assets (Gregory et al., 2021; Short & Todd, 2017) such as 

operations (Short & Todd, 2017) or a community of external stakeholders (Adner & Kapoor, 2010). 

Either way, following an investment in data, additional, in-period, expenditure is made on data by 

management decisions (Zellweger & Zenger, 2021), technology such as Artificial Intelligence 

(Gregory et al., 2021), or organizational responses such as firm-wide innovation (Gomes et al., 2018). 

In all cases, the commercial allocation of resources to data enrichment is predicated on the 

expectation of the short- or long-term output of value that exceeds the input cost. 

2.2. Enriching Data 

In its full abstraction, operation of this production process begins to resemble a loosely organized, 

data sharing ecosystem. From Figure 4-1, this process proceeds as follows: a firm makes investments 

that subsume data into operations which, following a series of interventions, enable a payoff in the 

market. Accordingly, where prior approaches have modelled the process as a series of ostensibly 

homogenous interactions involving data (Wysel et al., 2021), we adopt the opposite perspective and 

investigate the interactions that comprise the process. That is, rather than investigating how 

creating value from data affects the firm – as a collection of assets, management decisions and 

 

47 Throughout this paper we refer to a firm that ‘generates data’, however our treatment proceeds unchanged 
if the firm purchases data from an external party/ies, acquires data from assets it controls, or expends 
resources to assemble data that has been amassed from other operations.  
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organizational responses – we investigate how operation of the firm affects the creation of value 

from data. To that end, we model a firm that takes data as an input and develops that data into 

insight across a small number of discrete, operating periods. This insight creates value internally as 

innovation, and externally in both use and exchange through the market.  

The process of development we employ is similar to the model adopted by Parker and Van Alstyne 

(2018) when describing the extension of intellectual property by developers across a microeconomy. 

Varying from their approach, we model production decisions within a firm where value is shared 

(Gregory et al., 2022) and recursively invested (Arthur, 2009). Insight captured by the firm improves 

the value of operations (Sharapov & MacAulay, 2022) which compound the effect of subsequent 

data operations. This causes the future value of data to increase as data enables the firm to learn 

from past insight and improves the efficacy of future investments. Additionally, while resources 

applied to develop data exhibit diminishing returns as in Tirole (1988), the value of outputs 

compound as each iteration builds on prior insight retained. Like Prüfer and Schottmüller (2021), we 

model a dynamic feedbac  loop where the strategic significance of a firm’s initial investment 

compounds, causing equivalent improvements in efficacy with diminishing relative costs. The data-

based production process causes the value of digital assets to become intertwined with 

technologies, management intervention (Agrawal et al., 2018), and organizational models (Langley & 

Leyshon, 2017) as the firm strives to improve the utility of insight for its target market.  

2.3. Insight is Enriched Data 

Insight is data that has undergone the removal of uncertainty (Frankel & Kamenica, 2019) that 

surrounds it with reference to a predefined goal (Wysel, 2023) in a process akin to enrichment of 

minerals from ore. The process is executed by a facilitating system and for a surrounding community 

(Wysel et al., 2021). Insight retains data’s properties of non-rivalry, excludability, and conditional 

data network effects. Therefore, insight also supports multiple, simultaneous valuations by the firm. 

Firms may simultaneously realize payoffs from the exchange and use of insight, as might occur when 

an advertising firm sells a benchmarking report to one client, uses the insight to substantiate 

consulting services to another, all while applying the insight to improve its own operations.  

 While these value streams may be complementary, the transformation of data into value-in-

exchange and value-in-use represent different activities (Vargo et al., 2008) and warrant distinct 

treatment by the firm. Initially, we model these payoffs as strictly additive where the firm competes 

neither with itself nor with its stakeholders. We subsequently relax this assumption when examining 

the effect of interactions between data markets in Section 5.  
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into data reduces the firm’s wor ing capital to a residual, 𝑍, such that 𝑍 = 𝑉 − 𝑋. Here 𝑍 represents 

the opportunity cost of generating data from its operations. Initially 𝑋 includes all data management 

costs and the firm receives face value for 𝑍; that is, the payoff for not generating data from 

operations, 𝑊𝑟, remains equal to the residual. Explicating the boundary conditions, when 𝜎 = 0, 

𝑋 = 0 and 𝑉 = 𝑍 = 𝑊𝑟; that is, the firm chooses not to invest anything in data. Alternatively, when 

𝜎 = 1, the firm invests all available capital into generating data and 𝑋 = 𝑉 and 𝑍 = 𝑊𝑟 = 0. This 

initial decision is represented in Figure 4-2(a).  

The generated data serves as an input to a management activity designed to increase the value of 

data to the firm. This digital production process may be modeled as a single-input, Cobb-Douglas 

production function (Müller et al., 2018) where data is enriched into insight through the application 

of proprietary technologies. The transformation is illustrated in Figure 4-2(b) and takes the form 𝑌 =

𝑘(𝑋)𝛼. As in other digital production processes (Tirole, 1988), 𝑘 represents real output per unit 

input that stem from the strategic adoption of new technologies and 𝛼 ∈ (0,1) represents the 

diminishing effects of the technology used to enrich data into insight.  

As introduced in Section 2, the non-rivalrous property of data enables the firm to generate value 

from insight across multiple channels simultaneously. Therefore, within restrictions imposed by the 

market, the firm can realize payoffs from insight in exchange and in use simultaneously. Insight 

valued in exchange follows a goods-dominant logic (Vargo et al., 2008) and provides the firm a direct 

valuation of enriched data from which it receives a payoff, 𝑝. Examples of the sale of insight include 

the sale of targeted advertising space on social media feeds or genomic sequences to research 

partners (Stoeklé et al., 2016).  

As illustrated in Figure 4-3(a), the firm is able to simultaneously employ insight using a service-

dominant logic by co-creating value with market participants (Vargo et al., 2008). This valuation in 

use occurs where the firm uses enriched data to improve a product or service. In this case, the firm 

receives an indirect valuation as each unit of insight confers a change in value, 𝑣, in another product. 

However, this marginal impact of insight on the product is transitory as the market anticipates the 

release of new insight by the firm next time it generates and enriches new data. Release of new 

insight immediately depreciates old insight, effectively bundling old insight into the outgoing 

product (Varian, 2018). This implies the maximum the market will be willing to pay is the difference 
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enabled learning. We return to the implications of different learning rates when discussing the 

practical implications of the proposed framework in Section 5. 

There are two corollaries of the proposed data-driven production process that are worth explicating. 

As data is enriched by current technology, subject to the specification of the coefficient in Equation 

(4-1), the value of insight must increase with each successive iteration of the process. The immediate 

implication is that a firm’s decision to generate new data must immediately depreciate the value of 

old insight. This confirms the earlier observation that neither the firm nor the market would choose 

to use old insight once newer insight was available. Second, data that is generated but not enriched 

amounts to a cost incurred by the firm for zero potential payoff. Therefore, the firm would attempt 

to enrich all data generated before restarting the production process and generating more data. 

Proposition 4-1: The non-rivalry, excludability and conditional network effects of data are 

necessary for a firm to simultaneously create value from the exchange, use and reinvestment of 

enriched data. 

A firm creates value from data through a production process where data is first generated, then 

enriched into insight, before being valued by the market and reintegrated into operations. From 

Section 2, the excludable nature of data implies that data remains separate from a firm’s operations 

until resources are expended to generate it. These resources constitute a capitalizable cost for the 

firm and impute an initial value to the data. Ongoing data management expenses are separate to 

this investment as they diminish in-period returns. The non-rivalrous nature of data permits 

enriched data to be simultaneously sold, used, and reintegrated into operations without congestion, 

while the conditional data network effects exhibited by data enable insight to drive an instantaneous 

increase in value in current operations and also contribute to possible correlations between payoffs 

received by the firm. Therefore, subject to the nature of these conditional data network effects, the 

specific attributes of data noted in Proposition 4-1 enable a firm to operate a data-based production 
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4. Results for Data Projects, Data-based Production Processes, and 

Optimal Investment into Data 

4.1. The Evaluation of Data Projects 

A project is characterized by an upfront investment that creates an episodic revenue stream. 

Common examples of data projects include the deployment of an analytics package or 

commissioning the mining of sales data for operational insight. Specification of data projects in this 

manner would also encapsulate activities like launching a digital currency through an initial coin 

offering (ICO) (Cennamo et al., 2020) or investigating data governance models that promote 

adoption of IoT infrastructure (Koohang et al., 2022). In each case, the central question for project 

managers is, can the planned investment in data generate sufficient value from each stage’s data-

related payoffs across the length of the project? Typically, evaluation of these projects is couched in 

terms of either an acceptable IRR or positive NPV. As before, the key intra-firm drivers in this 

production process are the efficacy of the technology used in preparing, analyzing, and reporting the 

generated data, 𝛼, and the utilization of the insight within the firm, 𝑘. 

Proposition 4-2: The present value of a data project is more sensitive to the firm’s utilization of 

insight, 𝑘, than to the efficacy of the enrichment technology employed, 𝛼.  

Following the schedule of value flows in Figure 4-6, if the firm makes an initial investment, 𝑥1, and 

chooses never to pursue a data project which required a larger investment than the profit currently 

received (that is, all value flows that follow the initial investment stay net positive) then the standard 

equation for NPV can be adapted to include the schedule of value flows from Figure 4-6 and written, 

𝑁𝑃𝑉 = ∑
𝜋𝑖 − 𝑥𝑖+1

(1 + 𝐼𝑅𝑅)𝑖

𝑇

𝑖=1
− 𝑥1. (4-3) 

  very practical decision faced by data managers is whether to increase the firm’s responsiveness to 

data or to improve the quality of the data asset itself (see, for instance, Hagiu and Wright (2020b)). 

Strategic decisions of this type occur when managers choose between investments in firm-level 

data-based decision making or upgrading a key data management system. The immediate 

implication of Proposition 4-2 is that a firm seeking to increase the present value of a data project 

ought to focus more on increasing the utilization of insight within the firm rather than on improving 

the technology responsible for enriching the data. This result extends prior frameworks that reflect 

the importance of both utilization of insight and data development (for example, Wolfert et al. 

(2017); Wysel et al. (2021)) by prioritizing the former over the latter.  



Chapter 4 | Wysel, Baker: Profiting from data. How data enables firms to have their cake, sell it, and eat it too. 

Page 119 of 235 

The reason for this prioritization, and proof for Proposition 4-2, is that the future value of the 

utilization of insight compounds with every subsequent stage added to the data project. This causes 

the productive disparity between the two strategies to increase as the number of iterations 

increases within the data project. Recall that increases in the utilization of insight exhibits positive 

returns for all payoffs, while increases in the enrichment technology employed faces diminishing 

returns. As data projects account for all investments and expenses as in-period reductions in usable 

value, and these expenses effectively overlap profit from the previous stage, the future value of any 

given stage is reduced by the total expenditure committed for managing data in the following stage. 

Therefore, a production strategy that induces a constant growth rate between inputs and outputs, 

such as increasing utilization of insight, will create higher future value than a strategy with a 

diminishing effect, such as increasing enrichment technology. 

We can broaden the usefulness of the model to include evaluation of the internal rate of return 

(IRR). For ease of exposition, let us adapt the previous example. Suppose a firm is considering a data 

project that involves a two-stage, recursive investment in generating data from existing operations. 

The firm anticipates insight will attract a payoff in two disparate markets via direct exchange – or 

sale – of insight, and the application – or use – of insight on existing services. Setting NPV to zero and 

re-arranging for IRR permits benchmarking this potential data project against capital requirements 

within the firm.52 

𝐼𝑅𝑅 =
𝜋1 − (𝑥2 + 2𝑥1)

2𝑥1
+

√𝜋1
2 − 2𝜋1𝑥2 + 4𝜋2𝑥1 + 𝑥2

2

2𝑥1
 (4-4) 

The appeal of adopting this approach for evaluating data projects is that data-related payoffs, 

investments, and expenses involved in data management are incorporated into a single calculation. 

Moreover, Equation (4-3) can be quickly adapted into other models as positive and negative 

cashflows are reconciled at future values, before being discounted to present values alongside the 

investment into data for the following stage. 

Practically, data managers can use this expression of data-related projects to compare the IRR of 

prospective data projects against the firm’s weighted average cost of capital (W   ) or other 

internal metric for projects. This approach permits data projects to be evaluated according to their 

 

52 While our two-stage example permitted a simple algebraic derivation of the IRR based on the quadratic 
equation, analysis of data projects with more than two stages could be quickly determined by solving Equation 
(4-3) for IRR numerically. 
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relative returns and more broadly, facilitates their ready comparison against other – even non-data – 

projects within the firm. 

4.2. The Assessment of Production Processes that Transform Data into Value 

A firm creates value from data through a production process where data is first generated, then 

enriched into insight, and sold, used, and reinvested into operations. Our model shows how a 

capitalized cost, which reduces operational value, produces three external payoffs and the accrual of 

value within the firm. Where the capital cost dominates in-period expenses such as the cost of 

enriching data, calculation of gross profit offers a straightforward approximation of the value 

produced by the firm from data-based operations.  

Gross Profit. Gross profit sets the costs of generating data against the sum of the data-enabled 

payoffs. Examples of this scenario include operation of point-of-sale systems, corporate software, or 

enterprise resource planning (ERP) systems where costs are set by the number of transactions or per 

endpoint – such as per seat, or per device – and not for the extent of analysis the system is required 

to perform.  

In preparation for the calculation of gross profit we start by aligning the payoffs with investments by 

discounting payoffs to the beginning of each stage using the form, 𝛿𝜋. Second stage investments and 

payoffs can also be aligned with first stage payments with additional discounting of the same form: 

𝛿𝑥2 and 𝛿(𝛿𝜋2) respectively. Therefore, the single-stage profit a firm creates through the operation 

of a data-based, production process as given by Equation (4-2) can be expanded to two stages and 

written,  

𝜋 = δ(𝜋1 + 𝛿𝜋2) 

= 𝑝𝛿(𝑦1 + 𝛿𝑦2) + 𝑣(1 − 𝛿)𝛿(𝑦1 + 𝛿𝑦2) + 𝛿(1 − 𝜎)(𝑉1 + 𝛿𝑉2). 

 

(4-5) 

Equation (4-5) says the gross profits a firm receives from data-based operations are the present 

value of the sum of payoffs received from the sale of insight, the use of insight and the 

commercialization of improved operations. In primitives, and noting the initial value of operations 

𝑉1 ≡ 𝑉, Equation (4-5) may be expressed, 

𝜋 = (𝑝 + 𝑣(1 − 𝛿))𝛿(𝑘(𝜎𝑉)𝛼 + 𝛿𝑘(𝜎(𝑉 + 𝑘(𝜎𝑉)𝛼))
𝛼

) + (1 − 𝜎)𝛿(𝑉 + 𝛿(𝑉 + 𝑘(𝜎𝑉)𝛼)). (4-6) 

Proposition 1 says capturing data-enabled learning is paramount for a firm that transforms data into 

value. While payoffs remain independent the non-rivalrous nature of data permits value created 

from insight to be captured internally even while the firm creates value from insight externally. 

Insight improves operations, compounding the effect of a firm’s subsequent investments into data. 
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Better quality data results in further-improved insight which extends the value of each payoff and 

with it, the firm’s data-related profit. Therefore, the more a firm incorporates data-enabled learning 

into the production process that surrounds data, the greater its resulting profit. Indeed, this finding 

highlights the strategic importance of data-enabled learning in the ongoing operation of a firm that 

operates with data. Finally, while the present model is restricted to two stages, it illuminates how a 

firm could prioritize either short- or long-term returns from their data production process. We leave 

the extension of this management tension for others to develop.  

Net Profit. Where in-period expenses such as the cost of enriching data are also significant, Equation 

(4-5) may be expanded to both variable, and fixed, process-based costs. Fixed costs F are incurred 

where a firm pays licensing or access fees for the data, while variable costs occur where raw data 

requires cleaning, mining or if the ongoing production of insight required the firm to first train and 

then maintain algorithms. Following Parker and Van Alstyne (2018), we take variable costs as an 

inefficiency in the production process which suppresses the output of the enrichment process 

employed by the firm. Practically, variable data management costs increase with increasing 

production of insight but diminish with improvements in a firm’s enrichment technology. Therefore, 

where enrichment was of the form 𝑌 = 𝑘(𝑋)𝛼, variable data management costs take the form 𝑌
1

𝛼. 

Notice as the firm’s enrichment technology improves (increasing 𝛼), the firm’s variable data 

management costs diminish. This also accords with recent results from management literature 

(Agrawal et al., 2018).  

Continuing with earlier treatment, expenses - like investments – occur at the beginning of each 

stage. Expanding Equation (4-5) to include these in-period expenses lin s a firm’s short- and long-

term data-related costs with the value the firm has created from data across two stages of 

investment. Therefore, single-stage, net profit may be written, 

𝜋𝑛𝑒𝑡 = (𝑝 + 𝑣(1 − 𝛿))𝛿𝑦 − 𝑐𝑦1/𝛼 − 𝐹 + 𝛿(1 − 𝜎)𝑉. (4-7) 

Substitution into Equation (4-5) gives the firm’s net profit from the production of value from data 

across two stages, 

𝜋𝑛𝑒𝑡 = (𝑝 + 𝑣(1 − 𝛿))𝛿𝑦1 − 𝑐𝑦1
1/𝛼

− 𝐹 

+ (𝑝 + 𝑣(1 − 𝛿))𝛿2𝑦2 − 𝑐𝛿𝑦2
1/𝛼

− 𝛿𝐹 

+ 𝛿(1 − 𝜎)(𝑉1 + 𝛿𝑉2). 

(4-8) 

Equation (4-8) permits assessment of a firm’s payoffs from data against the investments and 

expenses required to achieve those payoffs. Once characterized, Equation (4-8) permits a firm to 

balance various management strategies with payoffs from different markets and the value created 
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i) The presence of data network effects alone does not justify an increase in investment in 

data.  

ii) Strong market valuation of insight, that is 𝑊𝑠, 𝑊𝑢 ≫ 𝑉, can lead to 𝜎∗ > 1, indicating a 

profit maximising firm ought to seek subsidization of their own data-related operations.  

Proof: See the appendix. 

Equation (4-9) states: the firm’s optimum level of investment into data is equal to the sum of the 

direct and indirect market payoffs from insight, the time-adjusted, marginal payoff from latent data 

and operations, and the product of the firm’s enrichment technology with the second-stage, 

profitability ratio of the project and marginal investment in data. These are exclusive of enrichment 

costs and are all discounted by the firm’s enrichment technology.  ore approachably, Equation (4-9) 

may be approximated as in Figure 4-7.  

Here, factoring includes the enrichment technology employed by the firm, and just as firm-wide 

operations benefit from data-enabled learning, so these data network effects impact each side of 

the expression, above. This creates two important considerations for a firm that operates a 

production process for data.  

First, the presence of data network effects alone does not justify an increase in investment in data. 

Data network effects enable the near-instantaneous and beneficial transfer of value across an 

organization for capture or appropriation across a firm and its stakeholders – indeed, that is one of 

their key criteria (Gregory et al., 2021). Because value is created from data by the firm when it 

realizes a payoff from a data derivative in the market, investment in data principally for the creation 

of data network effects must also be accompanied by a strategy to realize that potential value. In 

terms posited by the model, these strategies would need to be predicated on the expectation of a 

long-term growth in the exchange- or use-value of insight in the market, or the expectation a firm 

will reduce its investment in data in subsequent stages.53 Outside of these strategies, if a firm’s sole 

strategic objective was the accumulation of data network effects, the optimum investment in data 

 

53 While these expectations may be well-founded, they represent significant adjustments to the present 
model, and we leave them for others to pursue. 

                   
         

         

               

         

                  
                  

          

                
     

   

Figure 4-7.  pproximated expression for a firm’s optimum investment level into data 
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would be achieved when investment equals the present value of the increase in latent data and 

operations less enrichment costs. 

Second, strong market valuations for insight may lead to an optimum investment that exceeds 

current optional value. So, investing all available operational value into data management, that is 

𝜎 = 1, still amounts to an under-investment in data. In such a scenario, a profit maximizing firm 

could rationally seek external investment to increase the potential value of data generated to 

maximize the short- and long-term value generated from their data. This result offers a data-centric, 

theoretical explanation for the disconcertingly (Damodaran, 2014b) high valuations Uber received 

during early funding rounds. In this case, investors believed the firm’s ability to match riders with 

drivers – their ability to use firm-level insight – would cause a structural change in the market that 

justified significant expansion in the operating value of the firm (Damodaran, 2014a; Gurley, 2014). 

This revaluation enabled Uber to expand operations (Libert et al., 2014) and, with it, increase data 

collection and subsequent investment into data (Marr, 2015).  

Optimal Investment Rate. We can now address the second question regarding the frequency of 

investment. We start by considering the optimal discount rate, 𝛿∗, and proceed to the optimal stage 

length, 𝑡∗. 

Proposition 4-4a: There is an optimum discount rate, 𝛿∗ ∈ (0,1] that maximizes net profit, 𝜋𝑛𝑒𝑡
∗ .  

𝛿∗ =
[𝑤𝑠2 + �̅�𝑢2 + 𝑧2] ∓ √[𝑤𝑠2 + �̅�𝑢2 + 𝑧2]2 − 3�̅�𝑢2 [𝑤𝑠1 + �̅�𝑢1 + 𝑧1 − 𝑐𝑦2

1 𝛼⁄
]

3�̅�𝑢2
 

(4-10) 

where �̅�𝑢 = 𝑣𝑦𝑖, is the idealized payoff of insight valued in use.54 

The main result is that it is never profit maximizing for a firm to permanently cease enriching 

data. 

Where the effective interest rate of insight remains the same irrespective of how value is created 

from data within the firm, the stage length becomes isomorphic to the discount rate. Therefore, a 

firm may maximize profit produced from data for any given level of investment by adopting the 

optimum stage length, or the release schedule for newly generated insight. 

 

54 Mathematically, this is equivalent to zero residual value discarded at the completion of each stage, setting 
𝛿𝑣 = 0. 
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Proposition 4b: Where the effective interest rate of insight remains constant across the firm, there 

is a finite and unique stage length, 𝑡∗, that maximizes net profit, 𝜋𝑛𝑒𝑡
∗ .  

𝑡∗ =
1

𝑟
[𝑙𝑛 (

3�̅�𝑢2

𝑤𝑠2 + �̅�𝑢2 + 𝑧2
)

− 𝑙𝑛 (1 − √1 + 3�̅�𝑢2 [𝑤𝑠1 + �̅�𝑢1 + 𝑧1 − 𝑐𝑦2
1 𝛼⁄

] /[𝑤𝑠2 + �̅�𝑢2 + 𝑧2]2)]. 

(4-11) 

The key result is that it is not profit maximizing for a firm to continually release insight unless, 

�̅�𝑢 < 2(𝑤𝑠2 + 𝑧2) − (𝑤𝑠1 + 𝑧1 − 𝑐𝑦2
1 𝛼⁄

). (4-12) 

Proof: See the appendix.  

Proposition 4-4b says a firm may maximize profit produced from data for any given level of 

investment by adopting the optimum stage length, or time between release of insight. However, the 

results of Proposition 4-4b address our earlier specific question regarding the conditions when it is 

profit maximizing for a firm to constantly analyze and release insight. Provided the threshold given in 

Expression (4-12) is maintained, the profit maximizing firm would constantly release new insight. 

Where the inequality is maintained, 𝑡∗ < 0 implying a sub-zero optimum stage length. In this 

scenario the firm would seek to generate and release insight as quickly as possible. Any delay 

represents lost profit. Conversely, above this threshold the firm would choose to stagger the release 

of insight into the market at some 𝑡 > 0. Note that in both cases, the firm captures insight internally 

as data-enabled learning as soon as the insight becomes available and therefore continues to expand 

the value of its operations while maintaining an optimum data-derived profit. 

Joining Proposition 4-3 with Proposition 4-4 we can now say, there exists a single, optimum 

investment strategy for a firm operating a data-based production process. This strategy is a function 

of capabilities within the firm and market forces external to the firm. This data management strategy 

maximizes the output of the firm’s data-based production process and is achieved when the firm 

adopts the optimum investment level, 𝜎∗, and the optimum time between release of new insight, 𝑡∗.  

Practically, once a firm determines the optimum investment rate for its data production process, the 

firm must also consider the implications of maintaining that optimality even as operating conditions 

change. From Proposition 4-3 and 4, reaction to changes in a mar et’s willingness to pay for insight 

will extend beyond adjustments to investment rates and also induce changes to the proportion of 

value created from data directly and indirectly. For instance, where a firm chooses to shorten stage 
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lengths in pursuit of optimum profit the proportion of revenue from the exchange of insight will 

increase. Noting the firm’s data-enabled payoffs may be interpreted as a portfolio of investments, 

our theory illustrates that changes in a firm’s external environment will induce changes to the 

composition of a firm’s data portfolio.  

The practical implications of Proposition 4-4 are that a firm’s pursuit of optimum conditions will also 

change the proportions of value created from data directly and indirectly. Payoff from insight traded 

by the firm is independent of stage length while the payoff from the application of insight grows in 

logarithmic proportion to stage length. Therefore, where a firm chooses to increase the release rate 

for insight, that is shorten stage lengths, it will see the proportion of value created from data-as-a-

product also increase. This has precedent within literature (Parker & Van Alstyne, 2018) and accords 

with common experience: a firm responding to a reduction in time to commercialize an intangible 

good, like a competitive advantage or intellectual property, would rationally choose direct sales 

rather than time-based partnerships such as licensing agreements.  

Our resolution of Proposition 4 is also useful for data management within organizations – even 

where management decisions occur remotely from market-based payoffs. Extrinsic constraints such 

as operating budgets or market cycles may constrain optimization of the production process from 

reaching some part of the solution space described by 𝜋(𝑋, 𝑡). In this case, operating budgets 

function as a form of prior approval for an acceptable investment rate and therefore also function as 

a practical connection between level of investment and stage length. Noting a firm’s budget or sales 

cycle may be expressed as a multiple of stage lengths,55 an operating budget becomes a threshold 

that defines a locus of achievable value from data. Therefore, while the notional task might be to 

determine an optimum investment regime, extant constraints from changing markets, project 

budgets or operating cycles will impose boundaries on a firm’s achievable payoffs from data. We 

leave the full development of these data management tensions for others to explore. 

5. Discussion 

In this paper, we present a readily adaptable framework that describes the production process used 

to create value from data within a firm. The resulting data-based production process explains how 

firms produce value from data via internal and external payoffs that can operate in the absence of 

any apparent rivalry. We formally model this production process and express the effect of 

management decisions on both immediate, and long-term, value created. Our model also permits 

 

55 Multiples less than 1 reflect stage lengths that are shorter than budget cycles. 
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treatment of the fixed and variable costs that may be incurred while managing data. The proposed 

production process permits assessment of data management strategies and enables firms to finally 

approach the question, ‘how much is my data worth?’.  We apply the model to evaluate data 

projects using conventional project assessment tools such as IRR and NPV. Finally, our model permits 

assessment of optimal investment levels and rates for a characterized production process and 

frames the impact of dynamic markets and operating budgets on the pursuit of these optimums. 

Both scholars and practitioners can now conduct paper-based assessments of firm-level, data-based 

production processes, investigate the effect of alternative data management strategies, and baseline 

existing data operations against either industry, or business-model exemplars.  

5.1. Data as a Scarce Resource 

Our model recognizes the creation of value from data may be incorporated into the process of 

managing scarce resources. Initially we dealt with scarce financial resources by optimizing the firm’s 

profit function against the proportion of firm value diverted to data management. Data may now be 

situated among the other ‘normal’ firm assets of capital and labor and be treated in li e manner. 

This also permits scholars to incorporate existing techniques and build industry-specific tools that 

help practitioners quic ly answer, ‘how much should my firm invest into data?’.  

Time-based scarcity also impacts commercialization strategies. The high decay rate of ‘old data’ has 

important theoretical precedent (Shapiro & Varian, 1998) and arises from the observation that as 

soon as a firm releases a new stage of insight, the market value for old insight decays sharply. This 

decay rate implies a significant difference in the value of insight offered as either a product or a 

service. As a product, insight is valued in exchange and receives a point-price in the market. As a 

service, the market values insight in use forcing the firm to balance access to immediate returns 

against the need to improve the service. Longer stage lengths permit the firm to capture greater 

proportions of the value created from the mar et’s use of insight, but at the cost of larger delays in 

generating new data from operations.  

As our model incorporates time-based changes to the value of data for a variety of different types of 

payoffs, emerging theories on data valuation may be expanded to consider data-enabled learning 

models that extend payoffs beyond their initial timeframes. Theoretical data sharing models can also 

be examined considering private incentives and externalities, and current discussions on 

mobilization of data in light of value creation-versus-capture can also be oriented.  
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5.2. Data-Enabled Learning and Data Network Effects 

Data-enabled learning is a self-reinforcing cycle (Hagiu & Wright, 2020a) where firms learn from 

operational data (Farboodi et al., 2019) to deliver and rapidly refine their services or products 

(Prüfer & Schottmüller, 2021). The theory proposed in this paper permits the current data-enabled 

learning and (conditional) data network effect theories to be oriented such that they may be 

strengthened theoretically and refined empirically. To support the ensuing discussion, we propose 

the following three tenets as a summary of data-enabled learning. First, data-enabled learning 

creates value from data for the simultaneous benefit of both users – that is agents who use the 

firm’s services or products – and the firm. Second, demand- or supply-side factors can cause the 

payoffs a firm receives for data-enabled insight to become correlated. Third, the application of 

insight generated by data occurs rapidly enough that data contributors can also be benefactors of 

that insight (Gregory et al., 2022) and delays in that application materially affect ongoing 

contribution.  

The first tenet deals with non-rivalrous value capture. In the absence of dynamic market responses 

and before introducing additional competition or friction, the firm shares surplus with consumers 

but retains all benefits from reinvested insight. Reinvested insight improves the value of operations 

which the firm commercializes through 𝑤𝑟2, the second-stage payoff from latent data and 

operations. Meanwhile, users benefit from the exchange and application of insight across both 

stages. Therefore, the firm’s decision to enrich data enables the non-rivalrous capture of value by 

the firm and by users. Note that total value realized across the ecosystem is the sum of both parties’ 

gains and is given by Equation (4-2). Extending the model to this first tenet sets out a decision 

framework for organizations that are interested in maximizing total productive output from data but 

are broadly indifferent to the allocation of that output. Community libraries or national laboratories 

are examples of this arrangement as their charter includes enrichment of data to produce public 

goods. In this context, a data manager could use the proposed theory to balance the effect of 

community-wide initiatives, such as adjusted budget cycles, against targeted investments, such as 

improvements to specific data-enabled learning programs. 

The second tenet describes the forces that govern correlation of payoffs from data-enabled learning. 

Thus far, we have modelled the independent case – that is, a correlation of zero – where the 

reinvestment of value or realization of a payoff happens in isolation from any other value creation 

activity. Introducing dependent coefficients to Equation (4-2) permits assembly of data-based 

production process with correlated payoffs, 

𝜋 = 𝑎𝑊𝑠 + 𝑏𝑊𝑢 + 𝑐𝑊𝑟  
(4-13) 
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=  𝑎𝑝𝛿𝑘(𝑋)𝛼 + 𝑏𝑣(1 − 𝛿)𝛿𝑘(𝑋)𝛼 + 𝑐𝑍  

where 𝑎, 𝑏, 𝑐 ∈ ℝ. Here, a demand-side correlation could resemble 𝑎 = 𝑓(𝑣) while a supply-side 

correlation could take the form of 𝑘 = 𝑓(𝑝, 𝑣). Markets that exhibit same-sided or cross-market 

network effects induce a positive correlation in value created from data (Parker et al., 2016) while 

tensions in value captured from data such as competition between users or the firm (Cusumano et 

al., 2019) represent a negative correlation amongst value outputs.56 An example of the latter is 

managed by the genetic mapping firm 23andme as insight sold to scientific collaborators promotes 

data network effects (Stoeklé et al., 2016) but also diminishes the value of its products to consumers 

(Hayden, 2017). The proposed theory provides a framework that permits characterization of that 

correlation beyond demand-side optimization by incorporating the multi-stage contribution of 

collaborators on the firm’s data-enabled learning. For example, in the case of 23andme, 

collaborators’ multi-stage contribution to data-enabled learning could be set against an anticipated 

reduction in the exchange price of insight. 

The third tenet of data-enabled learning addresses the scenario where the recursive process of 

enriching data and reinvesting insight occurs over a sufficiently short stage length so that users 

benefit from one another’s data contributions (see for example, Gregory et al. (2022)). These 

interactions often occur in firms that operate a data-based production process as part of a platform 

ecosystem (Gawer, 2022). Platforms rely on a positive correlation between insight-based payoffs, as 

consumption of insight generates more data suitable for generation and re-enrichment by the firm. 

In platform economic terms: insight creates data network effects through the creation of new data 

and same- or cross-side increases in demand for insight.  in edIn’s  remium subscription model is 

one such example. LinkedIn Premium offers users enhanced insight ostensibly in aid of a freemium 

platform business model.57 The sale of insight to Premium users amounts to differentiated product 

that includes enhanced direct messaging and disaggregated profile and behavioral data from other 

users.58 However, this enables Premium users to generate additional data while they use this 

enhanced product. Increased utility from Premium users drives data network effects within LinkedIn, 

increasing the current and future value of insight across the platform for all users (Niemand et al., 

2015). Same- and cross-sided network effects also drive these data network effects and induce 

 

56 We also note forwards or backwards intergenerational (pan-stage) diffusion of data-enabled value exists (for 
example, Hann et al. (2016)) and could be accommodated with a more sophisticated adaptation of the model.  

57 A freemium, platform business model is where levies generated from one part of one side of the market 
underwrite free services given to other parts of the mar et such that all benefit more than any user’s cost of 
participation. 

58 Refer to https://premium.linkedin.com/ for additional information. 
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positive correlation between payoffs. The sale of insight is also increased by this market multiplier 

while the effect of reinvested insight is increased by the increasing scope and number of interactions 

(Parker et al., 2017). While this heavily correlated application of data-enabled learning warrants a 

more sophisticated treatment of reinvested insight than the one posited here, we offer initial 

discussions in the appendix illustrating how the product of the number of interactions of one class of 

users can act as a scalar for the firm’s rate of data-enabled learning.  

6. Conclusion 

The production of value from data permits firms to simultaneously sell their data, use it to improve 

other products and services, and incorporate it as data-enabled learning. One decision to invest in 

data enables multiple, ostensibly non-rivalrous payoffs. The production of value from data enables 

firms to have their cake, sell it, and eat it too. 

This paper connects the two management decisions of ‘how much should I invest in data?’ and ‘how 

often should I generate new insight?’ to the value a firm creates from data. The process that charts 

the transformation of data from a factor of production to a valuable output within a firm is defined 

as a data-based production process. This process incorporates the non-rivalry, excludability, and 

conditional network effects exhibited by data through the presence of parallel payoffs, the need to 

invest in data before subsumption by the firm, and the potential of near-instantaneous transmission 

of value from data through the firm. The application of this model permits firms to assess the profit 

derived from data against fixed and variable inputs, evaluate data projects alongside non-data 

projects, and to optimize investments into data-based production processes for both pipeline and 

platform business models.  

The proposed model permits the practice of data management to be aligned with broader 

optimization models such as those that treat data network effects and inform value creation vs. 

value capture by competing firms or stakeholders. More immediately, firms can now baseline data-

based production processes against a generic form. This permits the evaluation of the efficacy, 

efficiency, and composition of value created from data against the output of traditional production 

processes that incorporate labor and capital. Indeed, in a world where the labor of bakers and their 

availability of cakes is sadly rivalrous, our hope is that scholars and practitioners may at least have a 

clearer understanding of the means by which data enables firms to have their cake, sell it, and eat it 

too. 
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Appendix 

This paper presents a theory for a generic production process used by firms to transform data into 

value. It presents a formal model of that process which is used to assess the efficacy of the 

production process, evaluate data projects within a firm, and optimize a firm’s data management 

decisions. Our goal was to map the production process clearly so any novel insights might remain as 

assessable – and above all, useful – to as broad a range of readers as possible. Following is a brief 

redevelopment of the model proposed in the main paper to support extension or adaption by the 

reader. 

Modeling the Data-based Production Process within a Firm 

Recall the model charts the production process over two, sequential stages of each length. The firm 

faces two decisions: what proportion of value is to be invested, 𝜎 ∈ [0,1], and the release schedule 

for insight, or stage-length, 𝑡 ∈ (0, ∞). The firm makes a single decision regarding each variable so 

neither is changed once the model commences. Profit, 𝜋, is the sum of market payoffs and is 

realized at the end of each stage. All expenses occur at the start of each stage. To align value flows, 

profit is discounted to present values using a standard discount function, 𝛿, which can be formally 

connected to stage-length and the effective interest rate of insight, 𝑟 ∈ (0,1), by noting 𝛿 = 𝑒−𝑟𝑡. 

The second stage may be aligned with the first stage using the same method. All other variables are 

summarized in Table 4-3, above. 

Results for Data Projects, Data-based Production Processes, and Optimal Investment into 

Data  

Internal Rate of Return. Equation (4-6) summarizes the output from the creation of value from data 

within a firm. Noting that all investments that are subsequent to the firm’s initial investment in data 

are taken as in-period expenses we can start with the generic expression for NPV: 
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𝑁𝑃𝑉 = ∑
(𝑁𝑒𝑡 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤)𝑖

(1 + 𝐼𝑅𝑅)𝑖

𝑇

𝑖=1
  

and substitute in the schedule of payments depicted in Figure 4-6 to give, 

𝑁𝑃𝑉 = −𝑥1 +
𝑤𝑠1 + 𝑤𝑢1 + 𝑤𝑟1 − 𝑥2

(1 + 𝐼𝑅𝑅)
+

𝑤𝑠2 + 𝑤𝑢2 + 𝑤𝑟2

(1 + 𝐼𝑅𝑅)2
.  

As noted above, investments from the next stage overlap with returns from the current stage, with 

only 𝑥1 sitting without overlapping returns. Rearranging above, gives Equation (4-3). 

The IRR that balances this 2-stage project may be determined by setting 𝑁𝑃𝑉 = 0 and raising the 

previous equation throughout by (1 + 𝐼𝑅𝑅)2 to give, 

0 = −𝑥1(1 + 𝐼𝑅𝑅)2 + (𝑤𝑠1 + 𝑤𝑢1 + 𝑤𝑟1 − 𝑥2)(1 + 𝐼𝑅𝑅) + (𝑤𝑠2 + 𝑤𝑢2 + 𝑤𝑟2).  

In the specific case where the firm operates over two stages, this equation may be solved using the 

quadratic formula, as in Equation (4-4). However, in general solving Equation (4-3) numerically will 

be easier and certainly faster. 

Gross Profit. Recalling the necessity to discount future value flows to present values, Equation (4-5) 

may be developed,  

𝜋 = δ(𝜋1 + 𝛿𝜋2) 

= 𝛿(𝑤𝑠1 + 𝛿𝑤𝑠2) + 𝛿(𝑤𝑢1 + 𝛿𝑤𝑢2) + 𝛿(𝑤𝑟1 + 𝛿𝑤𝑟2) 

= 𝑝𝛿(𝑦1 + 𝛿𝑦2) + 𝑣(1 − 𝛿)𝛿(𝑦1 + 𝛿𝑦2) + 𝛿(1 − 𝜎)(𝑉1 + 𝛿𝑉2), 

(A4-1) 

where 𝑤𝑠, 𝑤𝑢, and 𝑤𝑟 are the payoffs the firm receives from the exchange of insight, the use of 

insight and data retained in operations, respectively. This may be read as the profit a firm receives 

from data is the present value of the sum of the payoff received from the sale of insight, the payoff 

from the use of insight and the payoff from commercialization of operations that house latent data. 

Noting the initial value of operations 𝑉1 ≡ 𝑉, this can also be expressed in primitives as in Equation 

(4-6). 

Net Profit. We can expand our treatment of profit to include both fixed, 𝐹, and variable costs, 𝑐𝑦
1/𝛼

. 

As previously noted, we take variable costs of enriching data to be in the form 𝑌1 𝛼⁄  to reflect that 

increases in enrichment technology (that is, increasing 𝛼) cause increases in both efficacy and 

efficiency of data development. Therefore, single-stage, net profit can be written, 

𝜋 = 𝑝𝛿𝑦 + 𝑣(1 − 𝛿)𝛿𝑦 − 𝑐𝑦1 𝛼⁄
− 𝐹 + 𝛿(1 − 𝜎)𝑉 

= (𝑝 + 𝑣(1 − 𝛿))𝛿𝑦 − 𝑐𝑦1 𝛼⁄
− 𝐹 + 𝛿(1 − 𝜎)𝑉. 
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Expanding Equation (4-5) to include these in-period expenses lin s a firm’s short- and long-term 

data-related costs with the payoffs a firm receives from data. The full net profit from the production 

of value from data across two stages within a firm can therefore be written, 

 

𝜋𝑁𝐸𝑇 = (𝑝 + 𝑣(1 − 𝛿))𝛿𝑦1 − 𝑐𝑦1
1/𝛼

− 𝐹 

+ (𝑝 + 𝑣(1 − 𝛿))𝛿2𝑦2 − 𝑐𝛿𝑦2
1/𝛼

− 𝛿𝐹 

+ 𝛿(1 − 𝜎)(𝑉1 + 𝛿𝑉2). 

 

 

 

Optimizing Investment Level. For any given stage length, the optimum investment into data, 𝑋∗ ≜

𝑋(𝜎∗) is obtained when 
𝜕𝜋𝑛𝑒𝑡

𝜕𝜎
= 0.  

To ease the following manipulation, Equation (4-7) may be written as,  

𝜋𝑛𝑒𝑡 = 𝑊𝑠 + 𝑊𝑢 + 𝑊𝑟 − 𝑉𝐶 − 𝐹  

which can be differentiated once with respect to 𝜎 and set to 0. Initially,  

𝜕𝜋𝑛𝑒𝑡

𝜕𝜎
=

𝜕𝑊𝑠

𝜕𝜎
+

𝜕𝑊𝑢

𝜕𝜎
+

𝜕𝑊𝑟

𝜕𝜎
−

𝜕𝑉𝐶

𝜕𝜎
−

𝜕𝐹

𝜕𝜎
= 0  

which once the requisite components within Equation (4-7) are substituted expands to,   

0 =
𝜕

𝜕𝜎
(𝑝𝛿(𝑦1 + 𝛿𝑦2)) +

𝜕

𝜕𝜎
(𝑣𝛿(1 − 𝛿)(𝑦1 + 𝛿𝑦2)) +

𝜕

𝜕𝜎
(𝛿(1 − 𝜎)(𝑉 + 𝛿(𝑉 + 𝑦1)))

−
𝜕

𝜕𝜎
(𝑐 (𝑦1

1/𝛼
+ 𝛿𝑦2

1/𝛼
)) −

𝜕

𝜕𝜎
(𝐹(1 + 𝛿)). 

 

While the differentiating process is laborious it is nonetheless procedural. Multiplying throughout by 

𝜎 greatly simplifies the subsequent expression. Grouping like terms yields, 

0 = (𝛼𝑊𝑠 + 𝛿𝑝𝛼2
𝑦2

𝑥2
𝜎𝑦1) + (𝛼𝑊𝑢 + 𝛿𝑣(1 − 𝛿)𝛼2

𝑦2

𝑥2
𝜎𝑦1)

+ (−𝜎𝑉 − 𝛿𝜎(𝑉 + 𝑦1) + 𝛿(1 − 𝜎)𝛼𝑦1)

− (𝑐𝑦1
1/𝛼

+ 𝛿 (𝑐𝑦2
1/𝛼

+ 𝛼𝑐𝑘1 𝛼⁄ 𝜎𝑦1)). 

 

Noting, 𝜎𝑉 + 𝛿𝜎(𝑉 + 𝑦1), correspond to the amount invested into data by the firm across two 

stages and can be written as 𝑋, we can separate those terms and take them to the LHS. With 𝑋 on 

the left, and collecting 𝛼 on the right we can write, 
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𝑋 =  𝛼 [𝑊𝑠 + 𝑊𝑢 + 𝛿(𝑧2 − 𝑧1) + 𝛼 (𝛿𝑤𝑠2 + 𝛿𝑤𝑢2 − 𝑐𝑦2
1 𝛼⁄

) (𝑥2 − 𝑥1) 𝑥2⁄

−
𝑐

𝛼𝛿
(𝑦1

1 𝛼⁄
+ 𝛿𝑦2

1 𝛼⁄
)]. 

 

Finally, noting that (𝛿𝑤𝑠2 + 𝛿𝑤𝑢2 − 𝑐𝑦2
1 𝛼⁄

) 𝑥2⁄  represents the second stage profitability ratio of the 

process, we can define that as 𝛽 and further simplify to Equation (4-9). The results for Proposition 

4-3 follow quickly. If the firm invests in data solely for data network effects, then operational value is 

diverted, 𝜎 > 0, but 𝑊𝑠 = 𝑊𝑢 = 0 implying either 𝑘 = 0 – which is unli ely given the firm’s strategy 

– or 𝑝 = 𝑣 = 0. In this case, the output of the production process is entirely reinvested. This reduces 

Equation (4-8) to a function of the marginal increase in payoff from latent data and operations, and 

enrichment costs (if any). Naturally, the firm may also be operating beyond the scope of the model 

and expecting an eventual growth in 𝑝 or 𝑣, or to reduce 𝜎 in subsequent stages.  

It is possible – and in some markets even probable – that 𝜎 ∈ [0,1] will not balance Equation (4-9). 

In this scenario, 𝑊𝑠, 𝑊𝑢 ≫ 𝑉, can lead to 𝜎∗ > 1, indicating a profit maximising firm ought to seek 

subsidization of their own data-related operations. This has mathematical precedent within the 

management literature (Parker & Van Alstyne, 2018) and accords with common experience as 

discussed in the body of the paper. 

 

Optimizing Investment Rate. Equation (4-8) can be rearranged into powers of 𝛿 and differentiated 

with respect to 𝛿. As the goal is to find the value of 𝛿 that maximizes 𝜋, the first-order differential is 

set to zero. 

𝜕𝜋𝑛𝑒𝑡

𝜕𝛿
=

𝜕

𝜕𝛿
{[−𝑐𝑦1

1 𝛼⁄
− 𝐹] + [(𝑝 + 𝑣)𝑦1 + (1 − 𝜎)𝑉 − 𝑐𝑦2

1 𝛼⁄
− 𝐹] 𝛿

+ [(𝑝 + 𝑣)𝑦2 + (1 − 𝜎)(𝑉 + 𝑦1)]𝛿2 + [−𝑣𝑦2]𝛿3}   = 0. 

 

Completing the derivative and simplifying yields,  

[𝑤𝑠1 + �̅�𝑢1 + 𝑧1 − 𝑐𝑦2
1 𝛼⁄

] + 2𝛿[𝑤𝑠2 + �̅�𝑢2 + 𝑧2] − 3𝛿2[�̅�𝑢2] = 0  

where �̅�𝑢 = 𝑣𝑦𝑖, is the idealized payoff of insight valued in use. This can be solved numerically or 

with the quadratic equation. Choosing the latter gives Equation (4-10). 

Proposition 4-4 claims the ideal time between investments is finite, that is, it is never profit 

maximizing for a firm to cease all generation and enrichment of data. That requires 𝛿∗ > 0. Noting 

the above first-order equation is a continuous, negative quadratic and will therefore have two 
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solutions separated by a single maximum, we can show at least one solution is positive by proving 

0 < 𝛿𝑚𝑎𝑥𝑖𝑚𝑎
∗ < 𝛿∗.  

𝛿𝑚𝑎𝑥𝑖𝑚𝑎
∗  may be determined by setting 

𝜕2𝜋𝑛𝑒𝑡

𝜕𝛿2 = 0 and solving for 𝛿. Differentiating once more w.r.t 

𝛿 yields the same result. 

𝛿𝑚𝑎𝑥𝑖𝑚𝑎
∗ =

(𝑝 + 𝑣)𝑦2 + (1 − 𝜎)(𝑉 + 𝑦1)

3𝑣𝑦2
.  

Therefore, if 𝑉, 𝑣, 𝑘 > 0 and 𝜎 ∈ (0,1) then 𝛿𝑚𝑎𝑥𝑖𝑚𝑎
∗ > 0 and therefore 𝛿∗ > 0. This establishes that 

a profit maximizing firm would not choose 𝑡 = ∞. 

The opposite edge case occurs at 𝛿∗ = 1 and corresponds to 𝑡∗ = 0, indicating the continuous 

generation and enrichment of data. Note that 𝛿∗ > 1 indicates 𝑡∗ < 0 which a firm would 

implement by adopting 𝑡 = 0 as the closest possible solution. To determine the conditions at this 

edge case, we substitute 𝑡 = 0 into the first-order equation to find the solutions.  

Incorporating the inequality makes the boundary conditions easier to track. Therefore, letting 𝛿∗ ≥

1 and multiplying throughout gives, 

2𝑤𝑠2 − �̅�𝑢2 + 2𝑧2 < 𝑤𝑠1 + �̅�𝑢1 + 𝑧1 − 𝑐𝑦2
1 𝛼⁄

.  

Collecting terms, and noting that at the edge case,  𝛿 = 1 and therefore W̅𝑢 = �̅�𝑢1 + �̅�𝑢2 we can 

write,  

�̅�𝑢 < 2(𝑤𝑠2 + 𝑧2) − (𝑤𝑠1 + 𝑧1 − 𝑐𝑦2
1 𝛼⁄

). (A4-2) 

which states that the firm ought to adopt an episodic release schedule for insight unless the 

inequality is satisfied. 

Finally, recalling that 𝛿 = 𝑒−𝑟𝑡, and therefore 𝑡 = −
1

𝑟
ln(𝛿) the optimum time between investments 

in data, 𝑡∗, may be derived by rearranging Equation (4-10) for 𝑡, 

𝑡∗ =
1

𝑟
[𝑙𝑛 (

3�̅�𝑢2

𝑤𝑠2 + �̅�𝑢2 + 𝑧2
)

− 𝑙𝑛 (1 − √1 + 3�̅�𝑢2 [𝑤𝑠1 + �̅�𝑢1 + 𝑧1 − 𝑐𝑦2
1 𝛼⁄

] /[𝑤𝑠2 + �̅�𝑢2 + 𝑧2]2)]. 

(A4-3) 
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Use of the Data-based Production Process to Design Empirical tests for Data-Enabled 

Learning and Data Network Effects 

The primary goal of the paper is to posit the general production process that describes the 

transformation of data into value. Accordingly, the paper develops and discusses the case where 

value production remains uncorralled; that is, where the realization of payoffs and the reinvestment 

of value happen in isolation from any other value creation activity undertaken by the firm. However, 

the proposed theory may be easily adapted to support both positive and negative correlation in 

value creation, such as a corporate environment where a decision to sell insight (say) reduces the 

value of using the insight. 

Introducing dependent coefficients into Equation (4-2) permits assembly of data-based production 

process with correlated payoffs as in Equation (4-13). As noted above, a demand-side correlation 

could resemble 𝑎 = 𝑓(𝑣) while a supply-side correlation could take the form of 𝑘 = 𝑓(𝑝, 𝑣). For the 

specific example of 23andme discussed in the body of the paper, the proposed theory would permit 

creation of a 'learning threshold’ where organizational learning would be first characterized, such as, 

𝑉 = 𝑉𝑜𝑙𝑑 + 𝛾𝑌 where 𝛾 ∈ ℝ, and set against anticipated reductions in the market price of insight, 𝑝, 

so that the proposed data strategy might satisfy the firm’s IRR.   
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Abstract 

This paper relates exchange value with non-rivalry and conditional data network effects. Widespread 

treatment of data like an ordinary, private good creates problems for participants in data trading 

markets as they give data away to create and capture value. However, the attributes of data call for 

a different approach that resembles service-dominant logic rather than goods-dominant logic. 

Without this, both agents and the surrounding ecosystem needlessly lose value.  

This paper examines an existing data sharing ecosystem that trades genetic data and comprises a 

data producer, data analyst and an open market. We formally model the effect that supply level and 

supply frequency have on value created from shared data by agents on both sides of the exchange 

as they pursue either short- or long-term growth strategies.  

We demonstrate that a service-dominant view of data enables an expanded Pareto frontier as 

agents invert the value creation process by sharing value to create data. Additional applications of 

the model include comments on interactions with ‘generative  I’, vertical integration in data supply 

chains, reverse subsidies, and quantitative data governance thresholds.  
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or individuals – as data-producers and data-analysts into a system of value co-creation (Wysel et al., 

2021) that circulates data within – and outside of – a data sharing ecosystem. We summarize this 

data-based, value circulation in Figure 5-1. 

However, while data is excludable like a private good, unlike a private good it is also non-rivalrous 

(Jones & Tonetti, 2020) and displays conditional data network effects (Clough & Wu, 2022; Gregory 

et al., 2021). These attributes change the ‘normal’ rules of exchange-based, value creation and 

capture (Pentland et al., 2021). First, the non-rivalry of data means that use by one agent does not 

impede use by any other agent (Jones & Tonetti, 2020). For instance, an analyst can repackage and 

sell insight even after returning it to a client with neither agent’s use inducing congestion around the 

shared data. However, this lack of congestion also means shared data, once disclosed, cannot be 

easily recalled (Shin et al., 2022). This shifts the locus of exchange-based, value creation away from 

individuals and into the surrounding ecosystem (Cichy et al., 2021) as the externalities produced by 

the exchange circulate within the ecosystem conferring indirect value back to agents (Gregory et al., 

2021). For instance, sharing a popular story on social media propagates engagement across users 

whose response produces additional data which the analytic system uses to expand the engaged 

userbase, who create yet more data in an expanding cycle of data supply and value creation. These 

externalities extend beyond the boundaries of the original exchange as agents appropriate value 

created from the use of other’s shared data. Resembling a service-dominant logic (Vargo & Lusch, 

2008), this process enables mutual exposure to arm’s length value creation, fueling both privacy 

concerns (Saura et al., 2021) and opportunities for value co-creation (Hukal et al., 2020). This 

arrangement places agents in the middle of a co-opetive relationship (Nalebuff & Brandenburger, 

1997) where the value each creates from data is connected to the data-based decisions of the other.  

This uncertainty in data-based value capture (Clough & Wu, 2022) is reflected in data markets 

(Wagner et al., 2021) whose nominal function ought to be the support of these value-creating 

exchanges. On the one hand, data markets enable new value streams that turn everyday activities 

into potentially profitable enterprises (Koohang et al., 2022). On the other hand, data markets 

exhibit significant information asymmetry as agents either unwittingly share data (Shin et al., 2022) 

or share data not realizing the value their data unlocks for others (Cichy et al., 2021). This creates 

markets that are characterized by data arbitrage (Angelopoulos et al., 2021), data vacuums (Holder, 

2019), and questionable data equity (Jagadish et al., 2022) as data enables the co-creation of value 

but confusion regarding the mechanics of value creation inhibits its capture (Wagner et al., 2021). 

Agents on both sides of the ecosystem struggle to understand the benefits and risks of their data 

sharing practices (Windasari et al., 2021), forge enduring programs of co-innovation (Saura et al., 

2021), or build reputations as trusted partners (Kotlarsky et al., 2023). Without a clear 



Chapter 5 | Wysel, Baker, Billingsley: Take my data… please. How Data Sharing Ecosystems Make  
Oversharing Rational. 

Page 150 of 235 

understanding of how markets support the co-creation of value from data, uncertainty regarding the 

enduring quality of data goods will inhibit individual exchanges, incentivize inefficient behavior in 

agents, and ultimately suppress the size of data markets (Akerlof, 1978).  

This paper explains how the sharing of data – as governed by its attributes of non-rivalry and 

conditional data network effects – enables agents to create value, even though that exchange 

amounts to giving valuable data away. Our aim is to add a formal understanding of when – and how 

– an agent should share data to maximize value created individually, and to describe the conditions 

when agents on opposite sides of the exchange might support each other’s ‘overshare’ to unloc  

greater levels of value for both parties. Our analysis responds to recent calls to promote awareness 

of value created by other’s data (Shin et al., 2022), inform data managers what actions they may 

take to build resilient data-communities (Tremblay et al., 2023) and to enable “users to control the 

level of access to their data” (Angelopoulos et al., 2021, p. 1) in order to promote fairness across 

data-driven ecosystems (Wagner et al., 2021).  

This paper asks the question: if an agent shares data to create value, how much – and how often – 

should they share? We apply this question to both sides of the data trading market, that is, data-

producers such as ‘normal’ firms and individuals, and data-analysts such as knowledge workers and 

data service providers. We consider the creation of value from data towards both short- and longer-

term goals. We take profit – with its focus on market returns – as a proxy for short-term value 

creation, and capital growth – or growth in the intrinsic value of the underlying asset base – as an 

indication of longer-term value creation. For simplicity of explanation, we assume the data-producer 

generates raw data independently from the analyst. However, the analysis proceeds unchanged if 

the analyst provides the services that enable generation of raw data, or if the analyst also ‘hosts’ the 

entire data sharing ecosystem. Examples of the first variation include enterprise resource planning 

systems and other SaaS packages61. Examples of the second variation include most social media 

platforms. In these cases, data-producers are typically referred to as clients or users, respectively. 

We include discussion of the practical limitations clients and users might experience while sharing 

data to create value when discussing the results of the model. 

We set the analysis up thus: suppose a data-producing agent desires insight regarding assets it owns 

but is unable to process the data itself. The producer generates and shares data with an 

independent analyst who enriches all data, returning it as insight. Meanwhile, the analyst also stores 

the data and repackages it for its own profit. The producer desires insight but must disclose the data 

 

61 SaaS: software-as-a-service, refers to the arrangement where the vendor (analyst) provides the 
infrastructure, platform, and software to the client (producer), typically for an all-encompassing, recurring fee. 
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to achieve it. The analyst wants to maximize value captured from the data without jeopardizing the 

partnership with the producer that enables value creation (Schreieck et al., 2021). Therefore, all 

agents have the challenge to maximize value created by sharing data while minimizing the 

associated cost.  

To ground this analysis, this paper presents a case study of an existing data trading ecosystem that 

involves the exchange of genetic data taken from animals. In this ecosystem the producer operates a 

business that selectively breeds animals, such as cattle, and elects to shares genetic data – such as a 

sample of hair – with an independent, genetic laboratory. Insight from this laboratory enables more 

profitable blood lines for the producer and valuable industry reports for the analyst. While this 

example was chosen for its concreteness and ease of illustration rather than widespread 

significance, aspects of this ecosystem may prove instructive beyond their immediate use. 

Systematic germline editing62 in humans remains highly contentious (Bergman, 2019; Farrelly, 2005) 

in part because while there is little doubt surrounding its commercial value, there remains significant 

social (Jasanoff & Hurlbut, 2018), ethical (Evans, 2021), and business model (Stoeklé et al., 2016) 

issues to address. This paper aims to address incentives and value allocation, and while retaining a 

focus on explicating the creation of value from shared data, also hopes to offer some guidance to 

those looking to architect markets that trade data as portentous as human genetics. 

We formally model the effect that an agent’s frequency of participation and level of data shared has 

on value captured by the agent and created across the ecosystem. The model is iterative, permitting 

the effects of data-enabled learning to be reflected in agents’ participation decisions as they share, 

incorporate, and re-share data. The input decisions of the data-producing agent are optimized 

against first a short- and then a long-term value creation strategy.63 As we subsequently develop, the 

decisions of the data-analyst are simpler. The analyst processes all data supplied and optimizes their 

decisions against immediate profit. We initially derive conditions for each agent to maximize value 

created when acting individually, before investigating how the non-rivalry and conditional data 

network effects exhibited by data enable agents to go beyond co-creation of valuable data and into 

cross-market collaboration around value. We illustrate how the attributes of data enable value 

created through its recombinant exchange to exceed value created if data were only a private good. 

 

62 Germline editing is genetic editing that affects all cells in an organism, including gametes, so that the 
modified genes are passed on to future generations. This contrasts with somatic gene editing that affects only 
some of the cells in the organism being treated and is not passed on to subsequent generations. 

63 For a firm, these strategies are equivalent to short-term profit and long-term capital growth. For an 
individual, these strategies are analogous to convenience and personal development.  
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This confirms findings in existing datanomic literature (Easley et al., 2018; Gregory et al., 2021; Hagiu 

& Wright, 2020b; Jones & Tonetti, 2019).  

The paper is organized as follows. Following a review of the datanomic and service-dominant 

literature, we assemble a model of a simplified data sharing ecosystem consisting of one data-

producing agent, one data-analyst, and a market that clears goods produced by both agents. The 

results of applying the model to the genetic data trading ecosystem are presented alongside 

specification of management decisions that would enable an optimum data management strategy at 

the individual or ecosystem level.  The discussion includes commentary on inverting the value 

creation process (where value is shared to create data), the training and casual use of generative AI 

systems, when to subsidize data exchanges, and the conditions for vertical integration in data supply 

chains. 

2. Review of Literature 

This paper builds on the literature that addresses data as a shared factor of production (Pentland et 

al., 2021), the self-reinforcing nature of data-based externalities (Gregory et al., 2021) , and the 

persistence of access to value that agents have when collaborating around data (Windasari et al., 

2021) even when that collaboration takes the form of co-opetition (Nalebuff & Brandenburger, 

1997).   

2.1. Data as a Shared Production Factor 

Insight64 is data that has been refined towards a goal, or desideratum (Frankel & Kamenica, 2019), as 

defined by a surrounding community of stakeholders (Wysel et al., 2021). Stakeholders are free 

economic agents who recursively interact with technological systems (Varian, 2014) to adjust and 

tailor data to their needs. These activities can take the form of generation, synthesis, analysis, or 

presentation of data (Hartmann et al., 2016) as they enrich the data into more valuable insight. This 

process includes the reduction of uncertainty (Frankel & Kamenica, 2019) and extraction of noise in 

a manner that resembles the restoration of a message in signal theory.  

This collaborative value co-creation process may proceed without the normal allocation of value that 

accompanies other intangible goods such as intellectual property (Parker et al., 2017) because while 

data is an excludable, intangible good (Easley et al., 2018) it displays non-rivalry like a pure, public 

 

64 We use the term insight rather than information throughout to avoid confusion caused by the conflation of 
the two terms in popular media. 
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good (Fleming et al., 2018). Like a club good (Wysel et al., 2021) exclusion from data also excludes 

agents from the ability to create value from it. However, once data is shared, control over who has 

access to that data is also shared (Shin et al., 2022). This permits the data to move easily beyond the 

boundary of the firm (Arrow, 1996) or ecosystem. Meanwhile, those with access to the data 

collaborate (Bardhan et al., 2020) or compete (Wagner et al., 2021) in the value creation process. 

Therefore, participation in the process of creating value from data connects agents in a series of 

symbiotic partnerships (Kotlarsky et al., 2023) centered on data-based value creation as each 

creates, derives and provides benefit in an ecosystem of shared externalities (Parker et al., 2016). 

Together, these sociotechnical arrangements come to resemble a three-fold ecosystem of agents, 

shared data, and computation whose collective function is to produce value from continuously 

circulating data (Wysel et al., 2021). 

2.2. Conditional Data Network Effects 

Generalizing the definition proposed by Gregory et al. (2021), we take data network effects as the 

value creation that occurs across a data sharing ecosystem when one agent experiences a growth in 

value in proportion to the insight produced by another agent. Central to the creation of data 

network effects is that agents on both sides of the exchange act as real-time, complementors for the 

other’s creation and capture of value (Clough & Wu, 2022) while data and more valuable insight pass 

between both parties. The practical implication of the presence of data network effects within a 

data sharing ecosystem is that the more insight the ecosystem amasses on, and for, the agents the 

more value the agents can capture from the data – conditional on the distribution of power across 

the ecosystem (Cusumano et al., 2019). The mechanics of data network effects are that data 

generated and shared by an agent, fuels a response by the ecosystem that encourages the 

generation of more data by the agent within a timespan that materially affects the agent’s ongoing 

participation. While this relationship can used to extract value from agents (Holder, 2019), the 

coercive use of data network effects is not necessary (Gregory et al., 2022) and can even produce 

suboptimum levels of data for the ecosystem.  

Agents remain free to make decisions that maximize the value each captures (Mullins & Sabherwal, 

2022) up to and including not sharing data at all. However, an agent who chooses not to share data 

chooses to maintain their data-based operations at a baseline rate which we take as a commodity 

level throughout (Parker et al., 2017). Producers choose the terms of their participation by deciding 

on the amount of data they wish to share and the frequency of their participation. In line with 

Shapiro and Varian (1998), the generation of new data effectively bundles legacy data into baseline 

operations or technologies. This sets the shape and governing terms of each agent’s utility curve 
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within the ecosystem. Agents continue to participate as long as their marginal utility of membership 

in the ecosystem remains positive.  

2.3. Data-based Co-creation, Collaboration and Co-opetition 

The co-creation of value that surrounds data relies on the application and maintenance of 

competencies by agents as they create value for themselves and, through externalities, change the 

value for others in the ecosystem. This arrangement is known as a service system (Vargo et al., 2008) 

and is typified by enduring productive relationships where the recombinant exchange of a good 

initiates the co-creation of value in use as resources are integrated and applied towards a locus of 

goals. Agents in data sharing ecosystems collaborate around non-rivalrous data-goods, reducing the 

intrinsic uncertainty contained with the data as they create and capture value both directly from the 

data and indirectly through externalities delivered by the ecosystem (Wysel & Baker, 2021). 

However, while agents collaborate to develop the data-good, they also compete for share of the 

value that proceeds from their ecosystem. In this way agents are in co-opetition (Nalebuff & 

Brandenburger, 1997) as each agent’s data and s ills contribute to the other’s competitive 

advantage even as they build their own. Therefore, while agents may compete on value capture, 

they must co-operate around data management (Gregory et al., 2022).  

Disentangling the allocation of value between agents based on share of contribution or value-of-

interactions (Johnson et al., 2005) becomes predictably difficult (Bresciani et al., 2021; Rahmati et 

al., 2020; Windasari et al., 2021) with recent literature often focusing on competitive (Cichy et al., 

2021; Ogbanufe, 2023) rather than integrative and co-creation outcomes (Acharya et al., 2022; 

Ciriello, 2021). 

Therefore, while the data-producer and data-analyst participate in the same data sharing ecosystem, 

their individual data-based production processes are necessarily twinned but not necessarily 

competitive. The excludability of data requires agents to share, the non-rivalry of data enables 

collaboration without congestion, while conditional data network effects bind the externalities 

produced by one agent’s data-based decisions initially to the other agent, and through that agent, 

back to the first. These relationships determine the operation of data sharing ecosystems and 

therefore the tradeoffs each agent makes when deciding on the nature of their participation in these 

ecosystems. Applying these relationships to the ecosystem illustrated in Figure 5-1, we assemble a 

model that describes the operation of a genetic data trading ecosystem.  
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3. The Model: Sharing Data to Create Value 

The exemplar used to illustrate the model consists of both commercial and non-commercial livestock 

breeders, who use genetic data to improve the quality of their herd through selective breeding. 

Producers65 operate commercial breeding programs designed to create genetic data from animals 

they own. These animals serve as ‘genetic hosts’ whose function is to create genetic material that 

exhibits specific performance metrics for the market (Banks, 2019). The market purchases this 

genetic material – either as gametes or ‘in’ the host animal – typically for incorporation into large-

scale production processes that service consumer markets. To maintain competitive advantage, the 

producer shares data on their current operations with an industry-based analyst who returns genetic 

reports that inform the producer which animals to breed and which to cull. As in our motivating 

discussion, the producer can elect not to share data with the analyst, but this would also stop the 

supply of genetic insight regarding which bloodlines to maintain. Both the cost and benefit 

associated with sharing data are a function of the proportion of data shared by the producer. Finally, 

the analyst repackages and sells data shared by the producer into a parallel market, keeping all 

proceeds. This arrangement accords with the data sharing ecosystem as previously described and is 

analogous to a firm engaging management consultants or operating a network of IoT devices, a user 

watching an ad-supported video streaming service or sharing exercise data with a fitness app.  

3.1. Trading Genetic Data to Create Value 

Our model assumes the producer has data-related operations with a value 𝑉, and chooses to share 

data with the analyst at a cost, 𝑋, that scales in proportion to the amount of data shared, such that 

𝑋 = 𝜎𝑉. This cost reduces the value of operations to a residual level, 𝑍, where 𝑍 = 𝑉 − 𝑋. The 

analyst takes 𝑋 as an input to their production process and uses technology that accords with a 

Cobb–Douglas production system (Müller et al., 2018) to produce an output 𝑌 = 𝑘𝑋𝛼. As in other 

industrial optimization models (Parker & Van Alstyne, 2018; Rochet & Tirole, 2003), 𝑘 represents the 

efficacy of the partnership, and 𝛼 ∈ (0,1) represents the diminishing returns of further technological 

investment in the data enrichment systems. Following Easley et al. (2018) insight is shared without 

loss between both parties: 𝑌 = 𝑌𝑃 = 𝑌𝐴. The producer applies the insight received from the analyst 

to improve the quality of their genetic material amounting to a direct payoff, 𝑊𝑃, from use of the 

analyst’s insight. The insight also creates indirect improvements to operations through data-enabled 

 

65 Readers familiar with genetic production systems will recognize the producer in this paper as a Breeder and 
that the market comprises both Commercial Producers and other Breeders. While these subcategories carry 
important distinctions, they were amalgamated chiefly avoid confusion for a non-specialist audience.  
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costs and revenues the stage length can be represented as a discount factor, 𝛿, in the usual form 

𝛿 = 𝑒−𝑟𝑡 where 𝑡 is the length of each stage and 𝑟 is determined by the type of data shared and 

represents the effective interest rate of the corresponding insight produced by the analyst. As 

developed in the Results, producers in this data trading ecosystem must work within a constrained 

operating space for both variables. Note the upper bound for the proportion of data shared is not 

𝜎 = 1. A producer might reasonably choose 𝜎 > 1 where they see additional benefit in subsidizing 

the analyst such as volunteering the supply of broader metadata. Here we assume subsidisations 

remain economically equivalent to value shared beneath 𝜎 = 1.67  

Agents always use the most up-to-date data available. Once either agent generates and shares data, 

the other agent’s operations stand to benefit from the improved and newly shared data, implying 

agents would always choose to use the newest data into their operations. This suggests value 

created from ongoing participation in data sharing ecosystems is recursive rather than iterative as 

each stage builds on the output of the previous stage. We run the model across two stages to 

capture the effect of this recursive accrual of data across the ecosystem. 

While the payoff each agent receives from the market is of the form, 𝑊 = 𝑝𝑌, the manner in which 

each agent captures their payoff is different. The producer uses insight to achieve an increase in 

genetic performance, 𝑣, which delivers value throughout the stage, while the analyst sells their 

benchmarking report at a price, 𝑝.  ustomers who purchase the producer’s improved genetic 

material know they can wait until the following stage when new material will be generated, and the 

present products are depreciated. This implies that consumers are not willing to pay more than the 

difference between their maximum willingness to pay, 𝑣, and the present value of the data from the 

next stage, 𝛿𝑣. Thus, the mar et’s expectation of the ongoing provision of new genetic material at 

the start of the next stage restricts the price the producer can achieve to  𝑣 − 𝑝 ≥ 𝛿𝑣 which sets the 

maximum price for the producer’s payoff to 𝑝𝑃 = 𝑣𝑃(1 − 𝛿). If the producer chooses to share data 

continuously, obsolescence happens immediately and they may only extract the commodity price 𝑝 =

𝑣(1 − 1) = 0. Conversely, if the producer chooses not to generate new data, then the stage does 

not end, neither data nor insight expires, and the producer may charge the monopoly price 𝑝 =

𝑣(1 − 0) = 𝑣. It follows that longer stages permit the producer to extract greater value from the 

use of improved genetic performance but also reduce the present value of revenue from subsequent 

stages.  

 

67 If subsidisations carried different returns, then a secondary production function could be implemented for 
𝜎 > 1. 
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The producer’s two value creation functions can also be expressed in primitives,  

𝜋𝑃 = (1 − 𝜎)(𝑉 + 𝛿(𝑉 + 𝑘(𝜎𝑉)𝛼))  + 𝑣𝑃𝑘(1 − 𝛿)((𝜎𝑉)𝛼 + 𝛿𝜎𝛼(𝑉 + 𝑘(𝜎𝑉)𝛼)𝛼) 

𝛥𝐾𝑃 = (𝑘(𝜎𝑉)𝛼 − 𝜎𝑉) + 𝛿(𝑘𝜎𝛼(𝑉 + 𝑘(𝜎𝑉)𝛼)𝛼 − 𝜎(𝑉 + 𝑘(𝜎𝑉)𝛼)) 

(5-3)  

(5-4) 

Similarly, the analyst’s profit can also be expressed as the sum of payoffs from both stages, 

𝜋𝐴 =  𝑊𝐴 = 𝑝𝐴(𝑦1 + 𝛿𝑦2) (5-5) 

and in primitives,  

𝜋𝐴 = 𝑝𝐴((𝜎𝑉)𝛼 + 𝛿𝜎𝛼(𝑉 + 𝑘(𝜎𝑉)𝛼)𝛼). (5-6) 

Equations (5-1), (5-2) and (5-5) give us the value created by the producer and analyst under different 

investment strategies as a function of insight yielded by the analyst. Note Figure 5-3 and Figure 5-4 

may also be combined to produce these equations.  

We can now progress to examining the effect of the producer’s decisions regarding supply level and 

supply frequency on value created by both sides of the data sharing ecosystem.  

4. Model Analysis: Sharing Data to Maximize Value 

The optimal contract for either agent is the arrangement 〈𝜎, 𝑡〉 that maximizes either profit or capital 

growth for the producer, and profit for the analyst. As Equations (5-1) – (5-6) are also functions of 𝛿, 

and where 𝑟 is constant 𝛿 is isomorphic 𝑡, we will use the decision pair 〈𝜎, 𝛿〉 to simplify the 

assessment of the producer’s decisions.  

4.1. Maximizing Profit for the Data-Producer 

Where the producer shares data to pursue a profit maximization strategy they will seek πP
∗  and 

optimize 𝜎 and 𝛿 to that end. Intuitively, we might expect the limits to this pursuit to occur when the 

analyst’s yield drops beneath the value ceded by the producer, that is where 𝑦𝑖 ≯ 𝑥𝑖, or where the 

payoff received from the market no longer exceeds the amount given away, that is 𝑊𝑃 ≯ 𝑋. While 

both conditions have important management implications, as we shall see, πP
∗  may require 𝜎 and 𝛿 

beyond both limits.  

Proposition 5-1 There exists a unique pair of 〈𝜎∗, 𝛿∗〉 that maximizes the data-producer’s profits, 𝜋𝑃
∗ . 

Provided 𝑡 < ∞, the data-producer’s profits are concave with respect to increases in 𝛿. The data-

producer’s profits are also concave with respect to increases in 𝜎, although attainment of 𝜎∗ may 
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prove impractical where the market value for the application of insight exceeds the value of latent 

data.70 

The discount rate that optimizes the data-producer’s profit for any given amount shared is, 

𝛿∗ = {  

(�̅�𝑃2 − �̅�𝑃1) + 𝑧2

2�̅�𝑃2
𝑤ℎ𝑒𝑛  

𝑦2

𝑦1
≥

�̅�𝑃1 − 𝑧2

�̅�𝑃1  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  (5-7) 

where �̅�𝑃𝑖 is the monopoly payoff for the data-producer and 
𝑦2

𝑦1
 is the yield ratio of the data-analyst. 

The proportion of shared data that optimizes the profits of the data-producer, 𝜎∗, is achieved when, 

𝑋 = 𝛼 [ 𝑊𝑃 +  𝛿(𝑧2 − 𝑧1) + 𝛿(𝑥2 − 𝑥1)
𝛼

𝛽2
 ] (5-8) 

where 𝛽2 =
𝑥2

𝑤𝑃,2
 and is the variable cost ratio for the data-producer in the second stage.  

Proposition 5-1 gives two key results: 

i) There exists a unique 𝜎 that maximizes 𝜋𝑃
∗  for any 𝛿 ∈ [0,1] 

ii) In the absence of external constraints, a data-producer can freely select their supply 

frequency while 𝜎 > 0 and  
𝑦2

𝑦1
>

�̅�𝑃1− 𝑧2

�̅�𝑃1
.  

iii) Ideal stage length is inversely proportional to the amount shared in the range 𝜎 ∈

(0, ∞). 

Proof. See the Appendix.  

Equation (5-8) may be understood as the producer maximizes profit from shared data when the 

value of data given away equals the payoff received from the market, plus the marginal shadow 

value of unshared data and the marginal ceded value, all discounted by the analyst’s technology. The 

marginal components are discounted at the appropriate rate, while the final component is further 

discounted by an ecosystem factor: the ratio of the return on investment the producer receives for 

sharing data.  

Proposition 5-1 explains several practical phenomena. Notice the left-hand side of Equation (5-8) 

increases as a function of value introduced to the ecosystem by the producer: 𝜎 and 𝑉, while the 

right-hand side increases in properties offered by the ecosystem: 𝛼, 𝑘 and 𝑣𝑃 (contained within 𝑊𝑃). 

This confirms intuition around participation within data sharing ecosystems as the more effective 

the technology employed by the analyst, the more data the producer can give away before reaching 

satiation. Likewise, the more effective the partnership between the producer and the analyst (given 

 

70 Where �̅�𝑃 ≫ 𝑍, 𝜎∗ may only be reached after assumptions like the analyst operating a Cobb-Douglas 
production system, or a single price point from the market have broken down. 
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by 𝑘), or the stronger the market value for enriched data, the greater the value of data the producer 

can give away before reaching satiation.  

Where producers have full control over both their supply level and supply frequency, a profit-

maximizing producer would seek a supply level and frequency that balanced Equation (5-8), above.71 

Notice the limit in Result (ii) comprises the ratio of the analyst’s yields on the left and the producer’s 

capture of value on the right. As 𝛼 < 1, the analyst’s technology produces diminishing returns as the 

value of data shared by the producer increases. Therefore, in the absence of structural changes in 

the ecosystem, the marginal yield, 
𝑦2

𝑦1
, diminishes towards unity for large values of 𝑋. While 𝜎 < 1, 𝑧2 

is positive and Result (ii) tells us the producer may continue to select their optimum supply 

frequency irrespective of the analyst’s capabilities. However, if 𝜎 > 1 then 𝑧2 becomes negative 

implying the producer must also consider the analyst’s yield ratio as well as their own allocation of 

value in determining the optimum frequency to share data. Practically, if the analyst’s yield ratio was 

not projected to satisfy Result (ii), the producer would immediately cease sharing any further data 

with the ecosystem, effectively setting 𝑡 = ∞. This change would set 𝛿∗ = 0 and reduce Equation 

(5-8) to 𝑥1 = 𝛼�̅�𝑃,1.72  

In ecosystems that value enriched data significantly greater than raw data, such that a large 𝑣𝑃 or 𝑝𝐴 

induces 𝑊 ≫ 𝑍, market returns inflate 𝜎∗ inferring a profit-maximizing producer ought to progress 

beyond ‘sharing everything’, even to the point of heavy subsidization of the analyst. This implication 

has a consequence for both the producer and analyst. First, where large market valuations sustain 

profit growth beyond 𝜎 = 1 additional profits from sharing data come at direct expense to the 

producer. Equation (2-3) illustrates this relationship clearly. Recalling Z = V − X, where σ > 1, X >

V resulting in a negative value for Z. The producer has begun subsidizing their own data sharing 

efforts to increase their profit. While 1 < 𝜎 < 𝜎∗ the producer is still participating beneath their 

optimum, so while this subsidy is not an ‘overshare’ it does illustrate the importance of additional 

management policies – or personal boundaries – once 𝑋 > 𝑉. This underlines the importance of 

strong data stewardship and judicial monitoring of privacy policies and terms of use offered by data 

sharing ecosystems – especially where the data-producer is also required to pay fiat currency in 

addition to ceding all data – lest data-producers ‘prop up’ inefficient technologies or support 

exploitive partnerships (Shin et al., 2022).  

 

71 𝜎∗ may be determined directly by substitution of 𝛿∗ from Equation (5-7) into Equation (5-8) and solving 
numerically for 𝜎∗. 

72 This corner solution is also observed by Parker and Van Alstyne (2018). 
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4.2. Maximizing Capital Growth for the Data-Producer 

Alternatively, the producer may share data for long-term growth. While the analyst continues to 

trade with the marketplace, the producer’s decision-making framework has narrowed to a 

straightforward exchange with the analyst. The analyst seeks 𝜋𝐴
∗ while the producer seeks 𝛥𝐾𝑃

∗ and 

will optimize 𝜎 and 𝛿 to that end.  

Proposition 5-2 The data-producer’s capital growth, 𝛥𝐾𝑃, from shared data is concave with respect 

to the proportion of data shared, 𝜎, while 𝛥𝐾𝑃(𝜎) is linearly proportional to the discount rate, 𝛿, 

adopted by the data-producer.  

The proportion of data shared that maximizes capital growth, 𝜎𝛥𝐾
∗ , is achieved when, 

(𝛼
𝑦1

𝑥1
− 1) 𝑉 +  𝛿 (𝛼

𝑦2

𝑥2
− 1) (𝑉 + 𝑦1(1 + 𝛼)) = 0,  (5-9) 

while the discount rate that optimizes capital growth for the data-producer, 𝛿𝛥𝐾
∗ , is given by the 

conditions, 

𝛿𝛥𝐾
∗ = {  

1 𝑤ℎ𝑒𝑛 𝑥2 < 𝛾
0 𝑤ℎ𝑒𝑛 𝑥2 > 𝛾

 (5-10) 

and anywhere in its normal range at the point 𝑥2 = 𝛾. Note 𝛾 = 𝑘1 1−𝛼⁄  and represents the 2-stage 

productive limit of a partnership with the data-analyst.  

Proposition 2 gives three key results: 

i) There exists a unique 𝜎 that maximises 𝛥𝐾𝑃 for any 𝛿 ∈ [0,1], 

ii) Where the data-producer’s capital growth is positive for both stages, the data-producer 

always increases 𝛥𝐾𝑃 by shortening stage length or choosing to share data that lowers 

the effective interest rate of insight, 

iii) A data-producer never maximizes capital growth by participating in a partnership that 

does not support positive capital growth for two stages.  

Proof. See the Appendix. 

While Proposition 5-2 may be mobilized to develop data sharing policies in a similar manner to 

Proposition 5-1, the practical implications for a producer who shares data for longer-term value 

creation are noteworthy. 

First, in the ideal case where the producer is only bound by the technology of the analyst and the 

efficacy of the partnership, capital growth of their data producing assets is maximized when 𝜎 

balances Equation (5-9) over two stages. From Result (iii), a producer seeking maximum capital 

growth ought to participate in an ecosystem that supports 𝑦𝑖(𝜎) > 𝑥𝑖(𝜎) for both stages. From 

Equation (5-10), participation across two stages sets 𝛿Δ𝐾
∗ = 1, and therefore, 〈𝜎Δ𝐾

∗ , 𝛿Δ𝐾
∗ 〉 reduces to 

〈𝜎Δ𝐾
∗ , 1〉, confirming an analogous solution from Parker and Van Alstyne (2018). The corollary is the 
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producer now maximizes capital growth by sharing data as frequently as possible and choose a type 

of data whose insight decays immediately.  

The 2-stage productive limit of a data sharing ecosystem offers an important threshold for data-

producers who desire longer-term value creation but must accept conditions that restrict their 

supply level or frequency of data. Examples of these scenarios include clients of SaaS packages – 

with integrated usage monitoring – or users of health tracking apps. If the restrictions on the supply 

of data, represented as �̂� is greater than 𝜎Δ𝐾
∗  – implying the producer must share more than their 

optimum – and 𝑥2 < 𝛾 the best outcome for the producer is to follow intuition: adopt the minimum 

supply level possible, �̂�, minimizes the stage length and attempt to share only data whose insight 

decays quickly. However, if �̂� results in 𝑥2 > 𝛾, the producer ought to maximize the length of each 

stage – even to the point of setting 𝑡 → ∞ – and share data whose insight decays as slowly as 

possible. That is, attempt to interact with the ecosystem once, and create the most value from that 

single interaction as possible. Where a single interaction is not possible, this strategy reduces 𝛿, and 

minimize second stage losses.73  

The case of a specific supply rate or type of data is more straightforward. Here, the producer can 

select a 𝜎 that balances Equation (5-9) and maximize growth accordingly.  

Finally, comparison of the two value creation strategies illustrates it is possible that a single decision 

pair 〈𝜎, 𝛿〉 could satisfy both 𝜋𝑃
∗  and Δ𝐾𝑃

∗. However, in general the producer’s broader priorities will 

determine the strategy pursued and optimum supply level and rate.  

4.3. Maximizing Profit for the Data-Analyst and Ecosystem 

Up until this point in our analysis, we have proceeded on the basis that the analyst is a supply-taker 

in the data sharing ecosystem, processing all data supplied by the producer at whatever frequency 

the producer elects to share it. We now examine the reason for this assumption. 

From both Equation (5-5) and Figure 5-4c, the value captured by the analyst from shared data is 

chiefly a function of the payoff received from derivative data products created from access to the 

producer’s data.  

Proposition 5-3 A profit-maximizing data-analyst is never satiated by shared data from the producer.  

Proposition 5-3 gives one central result: 

 

73 For completeness, where �̂� < 𝜎Δ𝐾
∗ , the producer would operate as in the unconstrained case. 



Chapter 5 | Wysel, Baker, Billingsley: Take my data… please. How Data Sharing Ecosystems Make  
Oversharing Rational. 

Page 165 of 235 

i) The data-analyst always desires the data-producer to increase both its level and rate of 

participation in the data sharing system.  

Proof. From Equation (5-6), a data-analyst’s profit has only positive coefficients for 𝜎 and 𝛿 and that 

a decrease in stage length, 𝑡, induces an increase in 𝛿. Therefore, an increase in data shared by the 

data-producer only ever increases the data-analyst’s profit.  

While Proposition 5-3 accords with our real-world experience of the apparently insatiable desire 

with which data collection platforms and analysts exhibit in real-world data sharing ecosystems, it 

also explains those observations in terms of ecosystem inputs and outputs. Additionally, Proposition 

5-3 also validates our prior working assumption that the analyst processes all data supplied and 

shares all insight with the producer.  

Result (i) carries important implications for the analyst’s behavior towards producers in data sharing 

ecosystems. From service-dominant logic, analysts co-create value with producers in data sharing 

ecosystems, however comparison of Result (i) from both Proposition 5-1 and Proposition 5-3 

illustrates a tension across the data sharing ecosystem. The producer’s profit is concave with respect 

to increasing 𝜎 whereas the analyst’s profit increases with increasing 𝜎. To investigate the nature of 

this tension, let us broaden our analysis to the value created across the entire data sharing 

ecosystem.   

Proposition 5-4 Operation of a data sharing ecosystem at the Pareto frontier always requires the 

data-producer to share data at a level and/or rate that is above the amount given by their individual 

optimum choice.  

Proposition 5-4 gives two key results: 

i) Collaboration between agents is necessary for a data sharing ecosystem to operate at 

the Pareto frontier.  

ii) The data-analyst always increases its data-related profit when the data-producer 

overshares data. 

Proof The profit produced by the data sharing ecosystem, 𝜋𝑒𝑐𝑜(𝜎, 𝛿), is the sum of the profit 

produced by its agents. In symbols, 𝜋𝑒𝑐𝑜 = 𝜋𝐴 + 𝜋𝑃. Recall 𝜋𝐴 > 0 and monotonically increases for 

all 𝜎 ∈ (0, ∞) and therefore, 𝜋𝐴,𝑝𝑎𝑟𝑒𝑡𝑜 > 𝜋𝐴
∗. Conversely, 𝜋𝑃

∗ > 𝜋𝑃,𝑝𝑎𝑟𝑒𝑡𝑜 while 𝜋𝑃 > 0. Therefore, a 

redistribution of value from analyst to producer supports the latter’s increase in 𝜎 beyond 𝜎𝑃
∗. Proof 

for 𝛿𝑝𝑎𝑟𝑒𝑡𝑜 follows along the same lines.  

Proposition 5-4 says optimization of the profit produced by a data sharing ecosystem requires the 

producer to overshare but that the producer will participate in this overshare rationally – that is, the 

producer will not be made worse-off for participating above their optimum amount.  

Data sharing ecosystems are defined by the value co-creation that occurs among its members as 

agents circulate each other’s productive inputs and outputs. The implication of Result (i) is 

optimization of the productive output across data sharing ecosystems requires agents to go beyond 
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co-creating around shared data and to collaborate around the shared value produced from the data. 

In other arrangements, this level of collaboration requires either a formal internal market between 

agents (Jones & Tonetti, 2020) or for the agents to address disclosure games (Easley et al., 2018; 

Gentzkow & Kamenica, 2014). Yet, Proposition 5-4 says a producer can be incentivized to share more 

data than their individual optimum – implying either the producer has incurred a marginal cost for 

this level of sharing or has been subsidized for their overshare. Result (ii) provides the willing 

benefactor. The analyst always desires the producer to share more data because, from Proposition 

5-3,  the analyst’s profits continue to increase with increases in data shared by the producer.  

However, the analyst is a supply-taker and the producer will rationally cease sharing data once they 

attain their optimal choice, 〈𝜎𝑃
∗, 𝛿𝑃

∗〉. Therefore, the analyst must incentivize the producer by at least 

the amount the producer has lost in value sharing data beyond their optimum, 

𝜋𝑃(𝜎𝑃
∗, 𝛿𝑃

∗) − 𝜋𝑃(𝜎𝑜𝑣𝑒𝑟, 𝛿𝑜𝑣𝑒𝑟)  

where 𝜎𝑃
∗ < 𝜎𝑜𝑣𝑒𝑟 and 𝛿𝑃

∗ < 𝛿𝑜𝑣𝑒𝑟. The subsidization can increase until 〈𝜎𝑝𝑎𝑟𝑒𝑡𝑜
∗ , 𝛿𝑝𝑎𝑟𝑒𝑡𝑜

∗ 〉 at which 

point the analyst has applied all potential surplus as subsidy and the ecosystem has reached a 

Pareto-efficient allocation of value.  

While this subsidy represents a concession of potential value from the analyst to the producer, as we 

investigate when considering the results of this model, under certain market conditions the 

producer may reverse the subsidy and underwrite the operations of the analyst. Importantly, these 

cross-market subsidies implement a Pareto improvement to the ecosystem but do not necessarily 

expand the productive capacity of the ecosystem. 

We turn now to apply this model to analyze the data sharing decisions of both data-producing and 

data-analyzing agents in the genetic trading ecosystem.  

5. Results: Giving Away Genetic Data 

5.1. Profiting from, and Improving, Genetics 

The decision space available to producers in the genetic trading ecosystem corresponds to a partial 

constraint of both variables in the model. Participation in the ecosystem requires producers to share 

a non-zero proportion of either phenotype or genomic data with the analyst, setting 𝜎 > 0. 

Additionally, as noted previously, each animal’s gestation period sets the minimum practical stage 

length. This has the effect of constraining producers to a discount rate 𝛿 ≤ 0.3867. Further, the 

nature of the genetic data enables the analyst to retrospectively approximate raw data from 

previous stages even if the producer chose not to share the data in those previous stages. Therefore, 



Chapter 5 | Wysel, Baker, Billingsley: Take my data… please. How Data Sharing Ecosystems Make  
Oversharing Rational. 

Page 167 of 235 

as in the model, the generation and sharing of data fully depreciates the value of all data and data-

products created in the previous stage.  

Note that the analyst in this ecosystem enriches data for a range of animals, with a particular focus 

on sheep and cattle (Banks, 2019). To simplify the following analysis, we will focus the remainder of 

this analysis exclusively on the commercial trade of genetic data pertaining to cattle.74 Table A.1 

summarizes values for each parameter in the model. 

To establish a theoretical ceiling, let us assume for a moment that producers had free reign of their 

decision space setting 𝜎 ∈ [0, ∞) and 𝛿 ∈ (0,1]. From Equations (5-7) and (5-8), the maximum two-

stage profit, 𝜋𝑃
∗ , the producer could achieve from sharing data in this genetic trading ecosystem is 

$387,301. This output is attained when 〈𝜎𝜋
∗, 𝛿𝜋

∗〉 = 〈0.6432, 0.1673〉. Similarly, without constraints, 

the maximum two-stage capital growth, 𝛥𝐾𝑃
∗, the producer could achieve from sharing data is 

$119,286 and is attained when the producer operates at 〈𝜎Δ𝐾
∗ , 𝛿Δ𝐾

∗ 〉 = 〈0.1367, 1〉. These results are 

summarized in Table 5-1. 

However, producers’ participation in this ecosystem requires they operate beneath a threshold 

discount rate, 𝛿 = 0.3867. Producers remain free to choose terms that result in a lower discount 

rate, as would occur if they elected not to generate data in a particular stage but they cannot choose 

terms that produce a discount rate above the threshold. Initially observe that 𝛿 > 𝛿𝜋
∗  and therefore 

from Proposition 1 the producer may increase profits if they adopted longer stage lengths and 

reduced δ towards 𝛿𝜋
∗  although this strategy would be difficult to implement given the biologically 

determined gestation period of cattle. Notice also from Proposition 2 as 𝑥2 < 𝛾, that is, the value of 

data ceded in the second stage is beneath the partnership’s two-stage productive limit, 𝛿Δ𝐾
∗ = 1 

implying producers who seek capital gains ought to shorten stage lengths.  

Therefore, producers in this data sharing ecosystem operate within conditions that support a variety 

of value creation strategies. Producers can decide to participate to maximize short-term returns, 

longer-term growth, or attempt a compromise of both strategies. While beyond the present scope of 

analysis, this structural tension permits specification of specific producer behavior including 

assessment of the effect of price elasticity across data sharing ecosystems.75 

 

74 Applying Result (iii) from Proposition 5-1 to this hybrid ecosystem, as the gestation period for sheep is 

approximately half the gestation period for cattle the threshold discount rate, �̂�𝑠ℎ𝑒𝑒𝑝 ≅ √�̂�𝑐𝑎𝑡𝑡𝑙𝑒. This implies 

producers of genetic material for sheep would need to share a lower proportion of data (smaller 𝜎) to 
maintain the same relative efficiency as producers of genetic material for cattle. 

75 Notionally, producers could share a proportion of data that causes 𝑥2 to exceed 𝛾, and while this strategy 
would remove the tension across terms, it would also reduce their capital gain from shared data. 
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Comparison of optimum conditions predicted by the model to a producer’s actual behavior reveals 

producers choose to operate at the threshold discount rate and vary the proportion of data they 

share with the ecosystem (Banks, 2019). This has the effect of reducing the two-dimensional 

decision to just the proportion of data shared. Figure 5-5 illustrates the calculated profit curve for 

the analyst and the calculated profit and capital growth curves for the producer over 𝜎 ∈ (0,1]. The 

average proportion of data shared by producers in this ecosystem is �̅�𝑎𝑐𝑡 = 0.6206, which is 

represented by the line 𝐴𝐴′.  

Several traits of this genetic trading ecosystem become immediately apparent in the light of 

Propositions 1-3. First, producers maximize capital growth at 〈𝜎Δ𝐾
∗ , 𝛿𝑎𝑐𝑡〉 = 〈0.1549, 0.3867〉 while 

profits peak at 〈𝜎𝜋
∗, 𝛿𝑎𝑐𝑡〉 = 〈0.4264, 0.3867〉. These positions are indicated on Figure 5-5 by the 

lines 𝐵𝐵′ and 𝐶𝐶′, respectively. Therefore, producers in this genetic trading ecosystem are currently 

oversharing their data, or to invert the causality: producers currently share value with the ecosystem 

to create data. In the absence of any subsidization from the analyst or market, if producers were to 

form investment strategies optimized for two-stage returns, they would rationally reduce 𝜎 to a 

value that fell within the 27-point range 𝐵𝐵′ – 𝐶𝐶′. Table 5-1 summarizes each decision. 

The analyst’s profits do not pea  𝜎 ∈ (0,1] but continue to increase with increasing 𝜎. This creates 

an ecosystem with competing incentives where the analyst desires producers to increase 𝜎, while 

producers desire a 𝜎 that maximises their preferred ratio of profit and capital growth. 

Figure 5-5. Proportion of data traded with effect on ecosystem profit and growth. 

𝜎 ∈ (0,1] and �̂� = 𝛿𝑎𝑐𝑡 = 0.3867 



Chapter 5 | Wysel, Baker, Billingsley: Take my data… please. How Data Sharing Ecosystems Make  
Oversharing Rational. 

Page 169 of 235 

The model also permits finer-grain analysis of the producer’s value creation. Figure 5-6 includes 

additional per-stage detail on the effect of 𝜎 on producers’ profit and capital growth.  s 𝜎 increases, 

second stage costs, 𝑥2, increase at a constant rate while second stage returns, 𝑦2, increase at a 

diminishing rate. Eventually, the second stage capital growth, Δ𝐾2, becomes negative at the point 

where 𝑥2 = 𝛾 represented by the line 𝐷𝐷′. This is the graphical representation of the finding from 

Proposition 2 that data sharing ecosystems possess a two-stage productive limit. Notice that 

𝑥2(�̅�𝑎𝑐𝑡𝑢𝑎𝑙) ≈ 𝛾, that is, on average producers in this genetic trading ecosystem have reached a 

short-term (two-stage) satiation for the exchange of their data-goods. This behavior is consistent 

with an ecosystem that treats the transaction of data according to goods-dominant logic, rather than 

service-dominant logic (Vargo & Lusch, 2008). 

5.2. From Oversharing Irrationally to Rational Oversharing 

Producers in this partially constrained genetic trading ecosystem currently participate according to, 

〈�̅�𝑎𝑐𝑡, 𝛿𝑎𝑐𝑡〉 = 〈0.6206, 0.3867〉 and therefore, two-stage, data-based profits, 𝜋𝑎𝑐𝑡 = $368,879. 

From Table 5-1 producers currently overshare data and could increase two-stage profits by reducing 

their participation to, 〈𝜎𝜋
∗, 𝛿𝑎𝑐𝑡〉 = 〈0.4264, 0.3867〉. Predicted foregone profit for each producer 

from oversharing data across two stages is $5,149 or 1.49%. The oversharing also creates a surplus 

for analysts of $13,457 as they enjoy the increased payoffs from producers’ ‘irrationally shared’ 

data.  

Figure 5-6. Proportion of data traded with effect on producer’s multi-stage profit and capital growth 
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However, Proposition 5-4 tells us analysts could incentivize the producer to share data at a level that 

was even further beyond their optimal. To enable a Pareto-efficient allocation of short-term value in 

this ecosystem, analysts would need to convince producers to increase participation to 

〈𝜎𝑝𝑎𝑟𝑒𝑡𝑜
∗ , 𝛿𝑎𝑐𝑡

∗ 〉 = 〈0.9839, 0.3867〉. This amounts to an increase in sharing by producers of 

approximately 36 points beyond their current position and 56 points beyond their optimal amount. 

If the analyst was to subsidize the producer to move from their optimal decision it would take a 

subsidy of $31,796. This subsidy would amount to a complete transfer of all additional value created 

by the analyst from the overshare of data to the producer. Data-producers in this ecosystem would 

overshare rationally – by 230% – with the analyst meeting the associated cost. From this point, any 

change in sharing would reduce at least one agent’s welfare, ma ing this arrangement  areto-

efficient. 

However, ta ing the producers’ current overshare as foregone profits and therefore a deadweight 

loss, the analyst would only need to provide a subsidy of $6,104 to incentivize producers to increase 

sharing to the reduced Pareto frontier of 〈𝜎𝑝𝑎𝑟𝑒𝑡𝑜,𝑟𝑒𝑑𝑢𝑐𝑒𝑑
∗ , 𝛿𝑎𝑐𝑡

∗ 〉 = 〈0.7278, 0.3867〉 

Table 5-1. Summary of Producer Decisions in Both Actual and Unconstrained Genetic Trading Ecosystem 

Decision Status Symbols Decisions Pair Value Line 

Actual Genetic Trading Ecosystem (see Figure 5-5 and Figure 5-6) 

 roducer’s  urrent  ecision 〈�̅�𝑎𝑐𝑡, 𝛿𝑎𝑐𝑡〉 〈0.6206, 0.3867〉 
𝜋𝑎𝑐𝑡 = $368,879 

Δ𝐾𝑎𝑐𝑡 = $43,747 
𝐴𝐴′ 

Maximum possible profit for 

producers 
〈𝜎𝜋

∗, 𝛿𝑎𝑐𝑡〉 〈0.4264, 0.3867〉 𝜋𝑃,𝑎𝑐𝑡
∗ = $374,028 𝐶𝐶′ 

Maximum possible capital 

growth for producers 
〈𝜎Δ𝐾

∗ , 𝛿𝑎𝑐𝑡〉 〈0.1549, 0.3867〉 Δ𝐾𝑃,𝑎𝑐𝑡
∗ = $82,757 𝐵𝐵′ 

Limit of two-stage productive 

partnership 
𝑥2(𝜎𝛾) = 𝛾 〈0.6161, 0.3867〉 - 𝐷𝐷′ 

Proportion of data sharing for 

Pareto optimal allocation of 

value 

〈𝜎𝑝𝑎𝑟𝑒𝑡𝑜
∗ , 𝛿𝑎𝑐𝑡〉 〈0.9839, 0.3867〉 

𝜋𝑃,𝑝𝑎𝑟𝑒𝑡𝑜
∗

= $342,232 
𝐸𝐸′ 

Unconstrained Genetic Trading Ecosystem (see Figure A1 and Figure A2) 

Maximum Profit for Producer 〈𝜎𝜋
∗, 𝛿𝜋

∗〉 〈0.6432, 0.1673〉 𝜋𝑃
∗ = $387,301  

Maximum Capital Growth for 

Producer 
〈𝜎Δ𝐾

∗ , 𝛿Δ𝐾
∗ 〉 〈0.1367, 1〉 Δ𝐾𝑃

∗ = $119,286  
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5.3. Reverse-Subsidies: Producers Paying Analysts 

In this genetic trading ecosystem profit maximization occurs before the two-stage productive limit. 

However, if 𝑣𝐴 rose by approximately 40% to $4.58, pursuit of �̂�𝜋
∗ would induce 𝑥2 > 𝛾 causing 

profit-maximizing producers to share data at a level that amounted to a subsidization of the analyst. 

Somewhat counter-intuitively, in this scenario, pursuit of a profit maximization strategy would 

compel the producer to incentivize the analyst to take their data through a cross-market 

subsidization of data assets or some other value such as fiat currency.   

The characterization of the payment of services using a combination of fiat currency and data under 

specific terms introduces considerable opportunities for variation into the model, ranging from the 

introduction of an additional entrance cost, signaling costs levied against final payoffs, or non-

anonymous tolls that scale in proportion to the analyst’s yield (Langley & Leyshon, 2017). We leave 

this adaptation of the model as a novel extension of this work.  

Finally, consideration of the unconstrained ecosystem offers producers who desire greater returns 

the opportunity to develop multidimensional strategies to increase the value of their data. Figure A1 

and Figure A2 illustrate the full scope of value creation for a data-producer in this genetic trading 

ecosystem as they vary how much – and how often – they share data. 

6. Discussion 

This paper relates the non-rivalry and conditional network effects of data with the value created by 

the exchange of data. The exchange of data with other agents forms data sharing ecosystems that 

promote the co-creation of value around mutually shared data.  Motivated by an existing data 

sharing ecosystem that trades genetic data, this paper develops and applies a formal model that 

evaluates the effect agents’ data-sharing decisions have on the value each creates and captures.  

We find data-producing agents in the data trading ecosystem overshare data while data-analysts 

miss the opportunity to incentivize even greater levels of data sharing and value capture. Agents on 

both sides of the data-exchange participate at sub-optimum levels as they trade data according to 

goods-dominant logic rather than service-dominant logic. This implies they also under-utilize the 

opportunity to circulate knowledge and skills within the enriched data, making sub-optimal decisions 

for themselves and inefficient decisions for the ecosystem. Adoption of service-dominant logic and 

cross-market data-based, collaboration would enable this data trading ecosystem to accelerate value 

co-creation and rationally expand data sharing by up to 230%.  
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Beyond this specific example, this paper demonstrates how an agent’s decisions regarding the level 

– and rate – of data shared drive both short- and longer-term value created and captured. We 

describe the conditions when it is necessary to give data away to create value. We also invert that 

causality and use the model to describe why an agent ought to give value away to create data. 

6.1. Data-based Co-opetition: Sharing Value to Create Data  

Agents share data to capture value beyond what they could achieve themselves. A data-analyst must 

process and re-share all data supplied to maximize the value they capture from data. However, 

adoption of the same strategy produces a sub-optimum outcome for a data-producing agent who 

must find an internal solution to their data-based, production process to avoid an overshare of data 

(Mullins & Sabherwal, 2022). When agents in the ecosystem make decisions in isolation, such as 

when data is traded according to a goods-dominant logic, disconnected production processes 

incentivize competitive arrangements causing data trading markets to deliver an inefficient 

allocation of value (Jones & Tonetti, 2020). However, while cross-market collaboration enables 

increases in value created – and typically value captured – collaboration between otherwise 

competing agents requires an understanding of the processes that produce value from their 

exchanged data (Cichy et al., 2021; Shin et al., 2022). This paper provides a framework that connects 

the non-rivalry of data with the value created by its recursive exchange to demonstrate how agents 

within a data sharing ecosystem can collaborate and capture value above the level either could 

achieve alone. 

As illustrated by the results, this collaboration requires agents to be prepared to invert the nominal 

process orchestrated by the data sharing ecosystem and share value to create data. Rather than 

stopping at sharing ‘just enough data’ to create the value they need (Mullins & Sabherwal, 2022), 

this paper demonstrates the conditions when it is profit-maximizing for an agent on either side of 

the exchange to share data beyond their individual optimum conditions. A data-producer might 

increase value captured by increasing the value of data shared. A data-analyst could subsidize the 

data-producer and incentivize them to share data beyond their nominal optimum level. 

6.2. Generative AI: The Case for Collaboration and the Warning for Overshare 

Generative AI platforms such as OpenAI’s ChatGPT and Google Bard include data that has been 

‘shared’ in two distinct phases: the initial training of the AI model (for example, Ouyang et al. (2022)) 

and users’ subsequent interactions with the model once it has been released.  
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In the former case, data producers were not necessarily aware of the ends their shared data would 

be used creating criticisms of “data laundering” (Guadamuz, 2023). In this case, data producers such 

as content creators have inadvertently overshared, unaware that their data would be enriched in a 

manner that would be applied in competition with them. When their data was initially shared, it was 

a form of rational oversharing as content creators published their work in the expectation that 

publishers (analysts) would provide value to them in the form of discoverability. However, this 

discoverability also supported the formation of a hybrid data sharing ecosystem comprising two 

competing analytic systems: the original content publisher and the nascent generative AI. The 

introduction of this new analyst recasts content creators’ initial participation as irrational 

oversharing as they inadvertently subsidized the nascent analyst through provision of their data. 

Crucially, this development of the data sharing ecosystem constitutes more than just a technological 

disruption and is also different to two competing ecosystems. In this variant, analysts rely on the 

same dataset and ostensibly the same community for value creation. Competition between analysts 

represents an important extension of this model. We conjecture when ecosystems that host two 

competing analysts are left ungoverned, a likely market-driven outcome will be data-based market 

failure and eventual tragedy of the (data) commons.  

In the second phase, users of generative AI resemble producers in the data sharing ecosystem as 

modelled.  s agents they share data which consists of an initial question, or ‘prompt’, with the 

analytic system in exchange for an immediate increase in the utility of social or knowledge assets. 

Producers can increase the value co-created through recursive ‘prompt-engineering’ as they direct 

the system towards a specific goal.  f note, while these systems are billed as “example[s] of how 

imaginative humans and clever systems can work together to make new things” (OpenAI, 2022), the 

model proposed by this paper explicates the important nuances of the co-opetitive nature of this 

data-based value creation. The cooperative aspect might be “amplifying our creative potential” (ibid) 

but as in the pervious example of content creators, while data producers participate for short-term 

gain, generative AI systems are currently eschewing short-term value creation for accrual of long-

term, algorithmic value. 

There are two other important extensions of this model that warrant discussion. The first deals with 

the supply of data, or rather the supply of lower quality data to the analyst. Throughout we have 

assumed the analyst processes all data received from the producer. However, where the producer 

supplies lower quality data, or data that inhibits rather than supports the improvement of the 

analyst’s technology, the analyst would rationally reduce or filter the data ingested as low-quality 

data would impair the efficacy of the AI model rather than improve it. This is the function engineers 

fulfill when determining what data to train and maintain AI on.  



Chapter 5 | Wysel, Baker, Billingsley: Take my data… please. How Data Sharing Ecosystems Make  
Oversharing Rational. 

Page 174 of 235 

The second extension relates to the analyst’s demand for data. Where there is an abundance of 

data, such as training large-scale AIs like GPT and Bard, the assumption that the analyst will consume 

all data will not necessarily hold. For example, generative AI is trained on an abundance of available 

data but not actually all available data. Inclusion of enrichment costs in the analyst’s data-based, 

production process for the analyst (see for example, (Parker & Van Alstyne, 2018)) means at some 

point the payoff curve for the analyst will become concave as the net value of considering more data 

becomes negative. 

6.3. Caveats in Data-based Subsidies 

Beyond generative AI, this paper also identifies other caveats around subsidies in data sharing 

ecosystems. Suppose the analyst supplements the producer’s market payoff directly. From Result (ii) 

of Proposition 5-1 the range of yield ratios the producer can maintain ideal terms within narrows. 

Cross-market subsidization of payoffs has made the producer less likely to share more data with the 

analyst.  lternatively, if the analyst subsidized the producer’s opportunity cost of participating in the 

ecosystem such as either an increase in the non-market value of data-producing operations, or even 

the value of non-data related operations76  the subsidy would expand the range of yield ratios a 

producer would still want to share data within. Noting that this type of cross-market subsidization 

has precedent in literature (Langley & Leyshon, 2017; Parker & Van Alstyne, 2002), we leave 

extension of the policy implications for governance of data sharing ecosystems for later 

development.  

However, where participation in the ecosystem places constraints on the proportion of data 

producers must share producers may still set profit-maximizing terms while 
𝑦2

𝑦1
>

�̅�𝑃,1− 𝑧2

�̅�𝑃,1
. This is the 

scenario users of search engines or social media platforms encounter. Producers are required to 

share a minimum amount of data such as search terms or email addresses in order to participate in 

the ecosystem. Where the minimum limit is less than the producer’s optimum the producer may 

operate as in the unconstrained case, pursing ideal terms and maximizing value created from their 

shared data. However, where the lower bound exceeds the optimum proportion shared, such as 

where the producer knows the analyst will compete against them, the data-producer would choose 

the lower bound and calculate terms for that value, as any terms at the constrained limit will be 

preferable to ideal terms beyond the limit. 

 

76 𝑍 in the proposed model. 
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6.4. Governance of Data Sharing: Moving from Theoretical Guidance to Quantitative 

Thresholds 

The implications of Proposition 5-1 also extend beyond ex-post responses by participating producers 

-that is, producers who are already participating in data sharing ecosystems. Potential data-

producers can use Proposition 1 to develop data governance policies from theoretically determined 

boundary conditions to quantitative thresholds that must be satisfied prior to participation. These 

thresholds amount to ‘approved operating envelopes’ that permit agents to trade off when to share 

data (or withhold data) with how much data to share. Equations (5-7) and (5-8) could be applied to 

either specific partnering analysts or entire data sharing ecosystems as they establish thresholds 

based on attributes from both sides of data markets.  

Broadening Wysel and Baker (2023)’s treatment of the calculation of the internal rate of return (IRR) 

for data-projects, where a producer has set a minimum IRR for data-sharing and stage length is 

determined extrinsically, such as seasonal sales cycles, a threshold discount rate, 𝛿, could be applied 

to each prospective ecosystem. Comparison of 𝛿 to the ideal discount rate provided by Equation 

(5-7) given by expected payoffs and shadow values provides the firm with clear quantitative decision 

criteria regarding what data – if any – to share. Where optimum terms are less than the threshold 

discount rate, above-IRR returns can be achieved by maintaining ideal terms. Conversely, where 

ideal terms exceed the threshold substitution of threshold terms into Equation (5-8) provides the 

requisite amount of data to share such that profits are maximized given the constrained IRR.  

6.5. Vertically Integrating in Data Sharing Ecosystems: When to Bring Analysts Inside 

Finally, Proposition 5-1 also supports derivation of criteria for when to go beyond subsidization and 

to internalize a data sharing ecosystem. The variable cost ratio for shared data, 𝛽, enables a 

producer who is able to achieve desired terms but unable to achieve desired profits to evaluate the 

relative contribution of the other agents in the ecosystem and respond accordingly. Following 

Buzzell (1983), a high variable cost ratio would lead a producer to prioritize market-based strategies 

attempting to increase the market value of insight, while a producer with a low variable cost ratio 

would focus on operational efficiencies across the ecosystem, such as increasing the analyst’s yield. 

As the analyst operates independently from the producer, the producer may pursue this second 

strategy directly, through an increase in the amount of data shared, or indirectly by targeted 

investments in the analyst’s technology or the efficacy of their partnership. 

Finally, pursuit of optimum profits in a data sharing ecosystem may require a 𝛽 > 1. Where data 

management costs exceed the market returns from insight the producer has given away more value 
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to the analyst than they receive as a payoff from the market. Under these conditions, if the producer 

is still sharing less that optimum levels of data – and so increases in sharing also increase profits – 

the increase in profits comes from increases in the second stage shadow value of latent data and not 

from the market. It follows, pursuit of increased profits in these conditions requires producers to 

have established a process for commercializing latent data. In the absence of this commercialization 

channel, the value-maximizing strategy would be to dynamically reduce the amount shared between 

stages. We note the analysis of a dynamic sharing model broadens Proposition 1 and leave this as a 

novel extension for others to pursue.  

7. Conclusion 

Sharing data amounts to a permanent concession of value, yet the non-rivalry and conditional 

network effects of data, enable agents to share data and create value – even beyond what is 

possible if data was ‘just’ an ordinary, private good.  ur assessment of an existing data trading 

ecosystem illustrates that a service-dominant logic of data enables agents to expand the Pareto 

frontier of the ecosystem by share value in aid of creating more shared data. This paper establishes 

the value created by sharing a non-rivalrous but excludable good that exhibits conditional data 

network effects to establish the conditions when an agent should – and should not – share data. 

We delineate between two types of data trading agents: data-producers who encapsulate ‘normal’ 

firms or individuals and generate data as a byproduct of their operations, and data-analysts who 

apply knowledge and skills to process generated data into insight that is valuable to data-producers. 

This arrangement extends to social media platforms and their users, and enterprise platform 

providers and their clients.  

We demonstrate how data-producers can vary the supply level and frequency of shared data to 

optimize either short- or longer-term value created, and explain how data-analysts, such as platform 

owners, can create a win-win outcome by incentivizing producers to share data beyond their 

nominal optimum levels. We extend this cross-market collaboration to include specification of 

Pareto-efficient allocation of value and specification of a data-based, Pareto frontier. 

In a world awash with both data and insight, this paper explains when you should share data, when 

you should refrain, and when sharing all your data is still not enough.  
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Appendix 

 

 

 

Figure A1. Two-stage profit for the data-producer where 𝜎 ∈ [0, ∞) and 𝛿 ∈ [0,1]. 

Figure A2. Two-stage capital growth for the data-producer where 𝜎 ∈ [0, ∞) and 𝛿 ∈ [0,1].  

Note the inflexion point of 
𝜕𝛥𝐾

𝜕𝛿
 at 𝜎 ≅ 0.62 
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Table A.1 Values for each parameter in the genetic trading ecosystem 

Parameter  Meaning in Model Value in 
Ecosystem 

Meaning in Genetic Trading 
Ecosystem 

Comments Source 

πO Producer’s profit $217,243   Calculated. See Equation 
(5-3). 

Δ𝐾𝑂 Capital growth of 
producer’s assets 

$43,747   Calculated. See Equation   
(5-4). 

𝜎 Proportion of data 
shared 

0.62 Median cost of sales ratio for 
producers who participate in data 
sharing ecosystem 

This also corresponds to the average 
Completeness of Performance (COP) 
that large breed societies report. 

Banks (2019, p. 18) 

𝛿 Discount coefficient 0.386741 - Calculated. 𝛿 = 𝑒−𝑟𝑡  

𝑉 Value of data-
producing assets 

$95,833 Average, annual sales for 
producers who participate in data 
sharing ecosystem 

Across-years average total sales 
value. 

Banks (2019, p. 18) 

𝑣𝑂 Value per unit output 
of producer's improved 
genetic data 

$3.27 Normalized improvement of bull 
sales due to participation in data 
sharing ecosystem 

 Banks (2019, p. 18) 

𝑝𝐴 Unit price of analyst’s 
benchmarking report 

$1.02 Weighted, average 
reimbursement of analyst per 
interaction with producer 

Calculated.  
Median stock level * weighted 
average levy * factor applied to 
breeding services 

Banks (2019); Department 
of Agriculture and Water 
Resources (2018, 2022) 

𝑡 Length of stage 1 Normalized gestational period of 
cattle 

  

𝑟 Effective interest rate 
of insight  

95% Percentage drop in value of 
enriched data between stages 

 Banks (2022) 

𝑘 AGBU's Coefficient of 
enrichment 

7833.25 Coefficient of efficacy of genetic 
trading ecosystem  

Represents real output per unit input 
from the partnership. 
Calculated. Polynomial regression. 

Banks (2019, p. 18) 

𝛼 AGBU's Enrichment 
technology  

0.234815  oefficient of analyst’s 
technology 

Represents diminishing returns of 
further technological investment. 
Calculated. Polynomial regression. 

Banks (2019, p. 18) 
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Proof of Propositions 

Summarizing the prior treatment of variables, a firm may vary both the proportion of operational 

value invested into data, 𝜎 ∈ [0, ∞), and the length of time between each investment, referred 

throughout as the stage length, 𝑡 ∈ [0, ∞). The stage length adopted by the producer will be 

influenced by several operational considerations, including the effective interest rate of insight, 𝑟 ∈

(0,1). We can formally connect the discount rate, 𝛿, to both 𝑡 and 𝑟 by noting 𝛿 = 𝑒−𝑟𝑡. Note that 𝛿 

moves in the opposite direction to both 𝑟 and 𝑡; for example, while 𝑟 is constant, a decreasing 𝛿 

implies an increasing 𝑡. 

 

Proposition 5-1 deals with variation of 𝜎 and 𝛿 by the producer to maximize the profit from sharing 

data into the ecosystem across two stages.  

The discount rate that maximizes profit over two stages is determined by setting 
𝜕𝜋

𝜕𝛿
= 0. This can be 

done quickly by rearranging 𝜋 into different powers of 𝛿 and differentiating throughout w.r.t 𝛿: 

𝜕𝜋

𝜕𝛿
=

𝜕

𝜕𝛿
{[(1 − 𝜎)𝑉 + 𝑣𝑦1] + [(1 − 𝜎)(𝑉 + 𝑦1) + 𝑣(𝑦2 − 𝑦1)]𝛿 + [−𝑣𝑦2]𝛿2}  

0 = [(1 − 𝜎)(𝑉 + 𝑦1) + 𝑣(𝑦2 − 𝑦1)] − 2[𝑣𝑦2]𝛿 

 

Solving for 𝛿 gives, 

𝛿∗ =
(1 − 𝜎)(𝑉 + 𝑦1) + 𝑣(𝑦2 − 𝑦1)

2(𝑣𝑦2)
.  

Note that: 𝑧1 = (1 − 𝜎)(𝑉 + 𝑦1), �̅�𝑃,2 − �̅�𝑃,1 = 𝑣(𝑦2 − 𝑦1), and �̅�𝑃2 = 𝑣𝑦2 which produces 

Equation (5-7). 

We must also establish the conditions which maintain 𝛿∗ > 0. Imposing that condition on Equation 

(5-7) and simplifying gives �̅�𝑃2 − �̅�𝑃1 + 𝑧2 > 0. Dividing throughout by 𝑦1 and rearranging for 

𝑦2
𝑦1

⁄  gives the condition on Equation (5-7). 

To show that 𝛿∗ is a maxima we can take the second partial derivative of profit which by inspection 

from above produces, 
𝜕2𝜋

𝜕𝛿2 = −2𝑣𝑦2. As both 𝑣 and 𝑦2 are always positive, 
𝜕2𝜋

𝜕𝛿2 < 0 ∀ 𝛿 indicating 𝛿∗ 

creates a maxima in 𝜋. 

Derivation of 𝜎∗ follows along similar lines. Using the expression for profit from Equation (2-3) and 

differentiating w.r.t 𝜎 gives, 
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𝜕𝜋

𝜕𝜎
=

𝜕𝑍

𝜕𝜎
+

𝜕𝑊𝑝

𝜕𝜎
 

=
𝜕

𝜕𝜎
((1 − 𝜎)(𝑉 + 𝛿(𝑉 + 𝑦1))) +

𝜕

𝜕𝜎
(𝑣(1 − 𝛿)(𝑦1 + 𝛿𝑦2)) 

 

At 𝜎∗, 
𝜕𝜋

𝜕𝜎
= 0, while multiplying throughout by 𝜎 greatly simplifies the treatment. Completing the 

derivative from above, 

0 = (−𝜎𝑉 − 𝛿𝜎(𝑉 + 𝑦1)) + 𝛿(1 − 𝜎)𝛼𝑦1 + 𝑣(1 − 𝛿) (𝛼𝑦1 + 𝛿𝛼𝑦2 + 𝛿𝛼2𝜎
𝑦1

𝑥2
𝑦2). 

(A5-1) 

Recalling that 𝑋 = 𝜎𝑉 + 𝛿𝜎(𝑉 + 𝑦1), 𝑧2 − 𝑧1 = (1 − 𝜎)𝑦1, 𝑥2 − 𝑥1 = 𝜎𝑦1, 𝑊𝑃 = 𝑤1 + 𝛿𝑤2 =

𝑣(1 − 𝛿)(𝑦1 + 𝛿𝑦2) and for completeness, 𝑤2 = 𝑣(1 − 𝛿)𝑦2, Expression (A5-1) may be written, 

𝑋 =  𝛼[𝑊𝑃 + 𝛿(𝑧2 − 𝑧1) + 𝛼𝛿𝑤𝑃2 (𝑥2 − 𝑥1) 𝑥2⁄ ].  

Setting 𝛽2 = 𝑥2 𝑤𝑃2⁄  which is equivalent to variable cost ratio for the producer in the second stage, 

gives us Equation (5-8). 

Establishing that 𝑋(𝜎∗) produces a maximum profit for the owner is laborious to do manually but 

nonetheless procedural. Dividing Equation (A5-1) by 𝜎 (recall we multiplied throughout to ease 

manipulation) and taking the derivative w.r.t 𝜎 gives, 

𝜕2𝜋

𝜕𝜎2
= 𝛼𝛿

𝜕

𝜕𝜎
(1 − 𝜎)𝑦1 − 𝛿

𝜕

𝜕𝜎
(𝑦1) + 𝛼𝑣(1 − 𝛿)

𝜕

𝜕𝜎
(
𝑦1

𝜎
+ 𝛿 (

1

𝜎
+ 𝛼

𝑦1

𝑥2
) 𝑦2)  

which can be followed through to: 

𝜕2𝜋

𝜕𝜎2
=

𝛼𝛿

𝜎2
𝑦1(1 − 𝜎)(1 − 𝛼)

+ 𝛼𝑣(1 − 𝛿) (
𝑦1

𝜎
(𝛼 − 1) + 𝛿

𝑦2

𝜎2
(𝛼2𝜎

𝑦1

𝑥2
+ 𝛼 − 1)

+ 𝛼𝛿
𝑦1𝑦2

𝑥2
2 ((2𝛼 − 1)(𝑉 + 𝑦1) + 𝛼(𝛼 − 1)𝑦1 ) ) 

 

Which first reapplying the substitutions following Equation (A5-1), Equation (5-8) and simplifying 

gives, 

𝜕2𝜋

𝜕𝜎2
= −

(1 − 𝛼)

𝜎2
𝑋 −

𝛿(𝑥2 − 𝑥1)

𝜎2

𝛼

𝛽2
(

𝑥1𝛼(𝛼 − 1) − 𝑥2(𝛼 + 1)(2𝛼 − 1)

𝑥2
)  

Which can be shown numerically to remain negative for all 𝜎. Inspection of Figure A1 also indicates 

the same properties.  
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Proposition 5-2 deals with the decision pair that maximize a data-producer’s capital growth.  

𝜎𝛥𝐾
∗  is determined by setting 

𝜕Δ𝐾

𝜕𝜎
= 0 and solving for 𝜎. From Equation (5-2), Δ𝐾𝑃 = 𝑌 − 𝑋 =

 (𝑦1 − 𝑥1) + 𝛿(𝑦2 − 𝑥2) =  (𝑘𝑥1
𝛼 − 𝑥1) + 𝛿(𝑘𝑥2

𝛼 − 𝑥2) and therefore, 

∂Δ𝐾𝑃

𝜕𝜎
= (𝛼𝑉𝑘𝑥1

𝛼−1 − V) + 𝛿 (𝛼𝑘𝑥2
𝛼−1(𝑉 + 𝑦1(1 + 𝛼)) − (𝑉 + 𝑦1(1 + 𝛼))).  

which by reverse substitution of 𝑦 = 𝑘𝑥𝛼 gives Equation (5-9).  

Completing the second order derivative indicates if the equality from Equation (5-9) is a maxima or 

minima. In two steps, 

∂2Δ𝐾𝑃

𝜕𝜎2
= 𝑉2 (𝛼(𝛼 − 1)

𝑦1

𝑥1
2)

+ 𝛿 (𝛼(𝛼 + 1)
𝑦1

𝜎
(𝛼

𝑦2

𝑥2
− 1) + (𝑉 + 𝑦1(1 + 𝛼))

2
(𝛼(𝛼 − 1)

𝑦2

𝑥2
2)) 

 

Which is categorically negative when 𝑥2 > (𝛼𝑘)1 1−𝛼⁄ , and must be solved numerically otherwise. 

Cursory inspection of Figure A2 reveals 𝜎Δ𝐾
∗  to be a maxima and therefore this expression to be 

negative in 𝜎. 

The discount rate that optimizes capital growth for a data-producer is likewise found by setting the 

first order derivative to zero. From Equation (5-2),  

∂Δ𝐾𝑃

𝜕𝛿
= (𝑦2 − 𝑥2) 

= (𝑘𝑥2
𝛼 − 𝑥2) 

(A5-2) 

Notice that 
∂Δ𝐾𝑃

𝜕𝛿
 is independent of 𝛿 and therefore, 

∂2Δ𝐾𝑃

𝜕𝛿2 = 0 ∀(𝜎, 𝛿). Equation (A5-2) says the 

slope of a data producer’s capital growth is their second-stage marginal return, and that for any 

given 𝜎 
∂Δ𝐾𝑃

𝜕𝛿
 is constant. Therefore, 𝛿𝛥𝐾

∗  will be pushed towards either its maximum or minimum 

bound.  

Simplifying Equation (A5-2) gives the limit at 𝑥2 = 𝑘1 1−𝛼⁄  and therefore the limits given in Equation 

(5-10). 
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Abstract 

This paper connects technological disruption with market failure for agricultural data markets. On 

the one hand, new agtech services offer consumers a greater share of the value created from their 

data. On the other hand, the ecosystems that form around agricultural data rely on the appropriate 

allocation of externalities to maintain the health of their common data libraries. New technologies 

change the value each member receives when sharing data, threatening the short-term supply of 

data, long-term membership of stakeholders, and eventually: viability of the platform.  

This paper uses the growing adoption of genotypic technologies by livestock breeders to illustrate 

the adverse effect even labor-saving technologies can have on data markets.  We show that, left 

ungoverned, widespread adoption of this technology can cause an over-grazing of the Breed 

Society’s shared data library and subsequent tragedy of their data commons.  sing a straight-

forward analytic model, we evaluate three responses the Breed Society might pursue to avoid 

market failure.  

This paper uses Club Theory to illustrate how marketplace sponsors, such as Breed Associations or 

platform owners, can balance adoption of Smart Farming technologies with the health of their data 

assets. We discuss policy implications for management of national, or supra-industry, datasets and 

provide recommendations for ongoing, finer-grained research. 
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1. Introduction 

Historically, livestoc  breeders receive insight regarding their herd’s genetics by generating and 

sharing phenotypic – or measurement – data with their Breed Society and industry-based analysts 

such as the Animal Genetics and Breeding Unit (AGBU).77 These analysts use algorithms refined from 

decades of similar genetic data to enrich breeders’ data into insight78. That insight enables short- 

and long-term benefits for breeders as they trade genetic material above commodity rates and 

achieve long term genetic improvement in their herd (Georges et al., 2019; Miller, 2010).  The 

broader Breed Society is the custodian of the shared genetic asset base. Genetic improvement in an 

individual herd can result in market gains for each breeder, while genetic improvement in the 

national or collective breed further differentiates it in commercial markets (Hine et al., 2021).79  

Breed Societies function as clubs (Sandler & Tschirhart, 1997) as they internalize the positive 

externalities of sharing data amongst producers of the same breed.  lub theory outlines clubs’ 

membership fees and usage licenses as being anonymous, and non-anonymous tolls, respectively. 

The data goods which Breed Societies produce such as access to their members’ shared genetic 

library, are analogous to club goods as membership is required for access, access is necessary to 

draw a benefit, and the extraction of benefits is not typically characterized by rivalry (Romano, 

1999). In addition to membership fees, breeders also incur direct costs for generating phenotypic 

data. These costs arise from the labor-intensive measurement of hundreds – and sometimes 

thousands – of animals. Although these costs can increasingly be capitalized through the adoption of 

agtech products and their accompanying business models (Daum et al., 2021; Fomiatti & Wysel, 

2022), they are likely to remain a significant component of  data collection activities by breeders and 

a decisive factor in the management of the aggregate  genetic value of herds (Banks, 2019).  

However, recent advances in tissue sampling technologies have lowered the cost of genotyping, that 

is, the cost associated with the direct collection of genetic data from the animal (Amer et al., 2015). 

These technologies allow breeders to generate genetic insight about an animal by sending a single 

hair from the animal to a laboratory that queries the breed society’s genetic library and returns 

insight to the breeder analogous to that returned from phenotypic data. Development of insight 

from genotypes depends on the existence of a relevant ‘reference dataset’ consisting of phenotypic 

 

77 The Animal Genetics Breeding Unit (AGBU) is a joint venture between the NSW Department of Primary 
Industries (DPI) and University of New England (UNE).  

78 We use the term insight rather than information throughout to avoid confusion caused by the conflation of 
the two terms data and information by popular media. 

79 A brief glossary of terms is included in Table A1 in the Appendix. 
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and genetic data on sufficiently sized reference population. If the reference dataset is not 

maintained at sufficient size and representativeness of the current population, it no longer supports 

the generation of reliable insight, and the value of the data drops for all users. Therefore, while the 

generation of genotypes still involves the contribution of data to the reference library, if the more 

costly phenotypic data is not also generated, then the reference library becomes increasingly 

separated from each successive generation of animal and suffers an associated drop in value.  

If data were a ‘normal’ private good, then the introduction of genotyping would be just a 

technological disruption that channels private surplus to breeders. However, the creation of value 

from data relies on the active participation of a community of stakeholders, a centralized analytic 

system, and data about which both collaborate (Wysel et al., 2021). Going further, incorporation of 

data into a market based production process requires a service-dominant logic where members of 

the data sharing ecosystem co-create value around each other’s data (Vargo et al., 2008). The non-

rivalrous nature of data makes this persistent pan-market collaboration possible as the use of data in 

one member’s production process neither excludes it from, nor diminishes its value for, other 

member’s production processes (Jones & Tonetti, 2020). The corollary is that the genetic library 

presided over by Breed Associations becomes a shared, or common, data good which each member 

– and all members together – contribute to and rely on for the derivation of data-based, value. The  

capture and allocation of value created from shared data is therefore vitally important for the long-

term health of the ecosystem and value-creating activities of its members (Gregory et al., 2021).  

Standing in the middle of this ecosystem, industry laboratories enable the transformation of raw 

data collected by breeders into genetic insight which breeders use to improve the value of their 

herds. In this context, these laboratories function as data analysts (Wysel & Baker, 2023) who ingest 

raw data and produce valuable insight for the Breed Society. As analysts, they process all data they 

receive but they cannot generate data themselves. Therefore, while the laboratories facilitate value 

creation across the data sharing ecosystem, they do not govern which data is collected, nor 

participate in the allocation of the resulting value. Rather the laboratory is motivated to continue 

providing breeders with the most valuable insight for the lowest cost. Data trading across the 

ecosystem comes to resemble a club where each member acts to maximize the value they take from 

data but also relies on the contributions of all other members for maintenance of that value creation 

process. In terms of Club Theory (for example, Sandler and Tschirhart (1997)), all members use the 

insights generated from data but if all users of the insights don’t contribute to the cost of data 

generation appropriately, the proportion of members who undertake the cost of generating costly 

data will diminish permitting the erosion of value of the reference library as each new generation of 

animals is produced. Therefore, as we develop in this paper, Breed Associations must consider 
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adoption of new data management technologies while assuring long-term governance of their 

shared data assets. For individual breeders, this paper supports the increase in consumer surplus 

offered by genotyping while offering assurance that the shared genetic libraries breeders depend on 

are safeguarded against digital over-grazing or worse, genetic cattle rustling.   

2. Background Literature 

The analysis presented in this paper draws on the three areas of literature about data as a 

production factor (Pentland et al., 2021), the management of agricultural data (Bahlo & Dahlhaus, 

2021; Wolfert et al., 2017), and agricultural datanomics – or the study of the attachment of value to 

agricultural data (Klingenberg et al., 2022; Wysel et al., 2021). 

2.1. Club Goods: Insight as Enriched Shared Data 

The incorporation of agricultural data into a firm’s production process unloc s both short- and long-

term benefits (Kosior, 2020, p. 61). Short term value arises as firms collect information regarding 

their operations, either applying it in production directly or selling it into the marketplace (Liu et al., 

2020; Saura et al., 2021). Breeders collect operational data on size of herd, feed levels and growth 

rates to improve their operations and use observed data on herd characteristics to improve livestock 

resale value. Enriching data within the ecosystem also confers longer-term value indirectly through 

data-enabled learning (Hagiu & Wright, 2020). The data that breeders collect on attributes and the 

performance of their herd enables insight that drives continuous and compounding increases in the 

genetic value of their animals. Breeders participate in these data-based production processes to 

achieve an accrual of value to their livestock (Zhao et al., 2019) as non-digital products with 

aggregated increases in value for both their individual operations (Ramsbottom et al., 2012) and the 

whole breed society (Amer et al., 2015). 

Genetic insight is a club good mediated exclusively by each Breed Society. Accordingly, breeders 

remain free to retain all value created from their society’s genetic library and are dependent on their 

society to produce that insight. Breeders choose their level of participation in the data sharing 

ecosystem by varying the proportion and type of data shared and electing what subset of data-

related services to subscribe to (Banks, 2019). Where members choose to generate and share 

phenotypic data, the Breed Society is able continually to re-baseline its data libraries ensuring they 

remain relevant to all members’ herds. In terms of club theory, sharing either phenotypic or 

genotypic data produces externalities that are captured and allocated by the Breed Society – 

typically in the form of genetic reports that rank each animal (and indirectly, each breeder) – but 
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only phenotypic data enables updating of the shared database, so it maintains accuracy for each 

generation of animals. As noted earlier, this generational externality is vital for the continued 

‘health’ of the shared data commons.  

2.2. The Trade of Data: Costs and Ownership 

The trade of phenotypic or genotypic data becomes necessary when breeders are not able to 

generate the required levels of insight internally (Picard et al., 2015). However, this trade creates 

indirect data-related costs for breeders as data that has been shared is more appropriately 

considered disclosed (Shin et al., 2022). Many studies appropriate the implied, indirect cost as 

principally a unilateral extraction of value, such as privacy concerns (Cichy et al., 2021; Wagner et al., 

2021), but there is growing research that draws attention to ‘sanctioned’ value captured by service 

providers (Klingenberg et al., 2022; Zhang et al., 2020). These service providers range from private 

companies (Birner et al., 2021) to social co-operatives (Jakku et al., 2016) each bringing different 

motivations for participation and requirement for governance (Wiseman et al., 2019).  

Easley et al. (2018) evaluate the effect of different ownership structures on the value captured by 

both a supra-industry body such as a breed society and market participants such as breeders. They 

show that where the governing analyst cares only for its own profit maximization, the overall 

ecosystem profit is maximized; but that maximization comes at the expense of benefits to market 

participants. Alternatively, where analysts are owned by, and chartered to the prosperity of, market 

participants – as is the case of Breed Societies (see for example, Herefords Australia Limited (2021)) 

– value creation for the whole ecosystem might be lower than in the previous scenario but members 

maximize value captured from their data under certain conditions. Finally, where there were no 

data-sharing arrangements – that is, where the analyst avoids active intervention – members 

eventually chose to withhold data, creating inefficient outcomes at both the individual and collective 

level (Wu, 2022).  

Trade of phenotypic or genotypic data by breeders through Breed Societies to industry analysts also 

introduces an unavoidable time separation between when a cost is incurred and when the 

corresponding benefit is received. This arrangement requires long-term relational trust between 

breeders (Cao et al., 2021) who incur the cost, and their societies who act as custodians of members’ 

benefits (Jakku et al., 2019). Therefore, in a microeconomy where breeders are individual profit-

maximizers, the ongoing maintenance of that data-based trust – and ultimately provision of data 

services by Breed Societies – relies on their efficient allocation of value that is commensurate with 

perceived value contributions by their members (Banks, 2020).  



Chapter 6 | Wysel, Baker, Banks: Agtech, Agricultural data and Market Failure.  
Avoiding a Tragedy of the (Data) Commons. 

Page 198 of 235 

2.3. Interventions: Subsidies, Anonymous and Non-Anonymous Tolls 

Breed Societies act as ex officio guardians of the breed’s genetic data and must raise funds from 

their membership to operate schemes that assist all members to derive benefits and to safeguard 

their members’ shared, club goods. While members elect whether to generate phenotypic or 

genotypic data, they access the services of the nominated data analyst by sharing data with their 

society, who then share the data with the third-party analyst. Therefore, the Breed Society is 

uniquely placed to intervene in that exchange, either to divert or allocate funds to breeders as 

individuals, groups or a collective, based on the type of data shared or quality of insight returned.  

The charter of Breed Societies generally resembles the maintenance of “general integrity, genetic 

integrity, [and] commercial and noncommercial benefits” (Herefords  ustralia  imited, 2021, p. 3) 

for members, and they raise funds to those ends. From club theory, these fund-raising schemes can 

be implemented as either anonymous, or non-anonymous tolls (Sandler & Tschirhart, 1997) and 

provide protection against free-riding of the common good (Marciano, 2021) and maintenance of 

the club’s shared commons.  nonymous tolls are tied to factors that affect all members equally, 

such as membership status, and are useful for defining the boundaries of the club. Non-anonymous 

tolls are fees levied on members based on their activities within the club or contributions to a 

common good – such as the shared genomic reference library. These tolls can by combined or 

inverted and expressed as subsidies if deemed necessary by the Breed Society.  

 ny intervention levied by Breed Societies is additive to breeders’ private costs of generating either 

phenotypic or genetic data. As membership in the club is strictly voluntary, the society must ensure 

that the utility breeders derive from membership remains positive. While breeders maintain 

membership for both public and private benefit, their preparedness to accept marginal costs, such 

as the effort of generating and sharing phenotypic data, relies on an appropriate allocation of 

private benefit from that effort.  lternatively, Breed Societies could also subsidize members’ costs of 

participating in the data sharing club if they anticipated a need to do so.  

Our analysis proceeds with the assumption that the Breed Society will intervene only to the extent 

required to protect their (shared) data commons. This suggests that it will not use the technological 

advancement to reshape the internal data market that exists between members of the ecosystem. 

For tractability we assume a homogeneous membership in the club which is responsive to change in 

the price of data services. Finally, as noted earlier, we assume each breeder acts to maximize their 

own utility without consideration for longer-term societal considerations such as the health of the 

breed society’s common data library.  
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3. The Theory: Background and Model 

We extend the three-layer Venn construction for assessing the value created from agricultural data 

proposed by Wysel et al. (2021). As described earlier, they define a data sharing ecosystem as the 

assembly of three constituent parts: a community of stakeholders; a facilitating analytic system; and 

a set of data. In our case of trading genetic data, the production process entails an analyst who 

refines data for breeders by reducing uncertainty from raw data (Frankel & Kamenica, 2019). 

Breeders use insight returned from the analyst to improve bloodlines through selective breeding 

programs to increase the value of their operations. Breeders sell their improved genetic material in 

the form of either gametes or within a ‘host’ animal into an open mar et that comprises both other 

breeders and commercial producers. The latter ta e breeders’ genetic material and scale it in large-

scale, commercial operations.  

Representing this arrangement as a series of transactions provides a model where value generated 

from data circulates within an ecosystem and flows from the ecosystem to the market (Figure 

6-1(b)). Breeders and analysts co-create successively improved genetic datasets as each stakeholder 

improves the output of the previous owner of the data. It is notable that these exchanges are 

recursive, causing value created from data to both accrue within the ecosystem and permeate 

across the ecosystem. A breeder might initially choose to generate phenotypic data with the 

relevant analyst, who generates insight permitting an increase in the value of the breeder’s 

operations. If the breeder then decides to generate genotypes, the improved data is shared with the 

other analyst who benefits from the inputs all other parties have previously made. Additionally, no 

agent is locked into a particular course of action beyond their current exchange. Here the value co-

created across the ecosystem has resulted from all members of the ecosystem collaborating around 

a shared data asset. In the ideal case, this collaboration has the effect of maintaining data in the 

ecosystem and offering each member opportunities to capture private gains from either new 

strategies or new technologies (Parker & Van Alstyne, 2018). 

Following Lancaster (1966), we assume each breeder derives utility from a bundle of different 

attributes conferred by insight, rather than the insight per se. Breeders’ motivation to accept a 

higher cost for better quality insight depends on attributes of that data that produce differentiated 

payoffs from insight within their operations. The size of breeders’ operations, both in scale and level 

of investment, and the deployment of supporting infrastructure breeders have amassed to 

incorporate data-enabled learning within operations, are factors that influence a breeder’s 

willingness to incur greater costs for higher quality insight (Banks, 2019; Zhang et al., 2020). 

Therefore, we can express the value each breeder captures from sharing data as the sum of the 

payoff of insight returned from the analyst, 𝑊𝐵, the current value of a breeder’s operations, 𝑉, less 



Chapter 6 | Wysel, Baker, Banks: Agtech, Agricultural data and Market Failure.  
Avoiding a Tragedy of the (Data) Commons. 

Page 200 of 235 

the cost of supplying data to the analyst, 𝑥, and any anonymous tolls associated with membership, 

𝐹, 

𝜋𝐵 = 𝑊𝐵 + (𝑉 − 𝑥) − 𝐹. (6-1) 

Note that 𝑊𝐵 is a product of insight returned from the analyst, 𝑦, and the price each breeder can 

capture in the market, 𝑝 (Wysel & Baker, 2023).80 In genetic trading markets, insight returned by the 

analyst is a composite function containing an estimate and an accuracy. The estimate reflects what is 

known about the animal while the accuracy describes how well that estimate is known.  More 

specifically, accuracy is a compound product that is derived from the variation of actual breeding 

values from predicted breeding values of each animal. This index is commonly taken as a proxy for 

the value of insight returned by the analyst. Estimated breeding values are derived from heuristically 

defined algorithms that tie the measurement points of decades of animals within a breed to a 

variety of indices that include specific categories of market value and long-term genetic 

improvement. The phenotypic measurement of each successive generation of animal and its 

(delayed) mar et performance permits refinement of the analyst’s technology producing benefits for 

the breeder and positive externalities for all members of the breed society.  

The generation, or collection of phenotypic data represents a combination of fixed 𝐹 and variable 𝑥 

costs to the breeder. Fixed costs are a combination of licensing fees imposed by the Breed 

Association and analyst plus operating costs from Breeder’s activities, while variable costs are tied to 

the labor cost of measuring each animal at several points across its life. The amount each breeder 

invests in data acquisition varies and both the Breed Society and analyst can track the relative 

completeness of measurements each breeder maintains (Gouws, 2016). Breeders understand that 

the accuracy of predictions returned from the analyst remain proportional to their data-collection 

ranking within their Society and that the more measurements a breeder makes, the better the 

quality the insight returned is likely to be. The enrichment technology applied by the analyst 

conforms with a standard Cobb-Douglas production function 𝑦 = 𝑘𝑥𝛼 (Parker et al., 2017) where 𝑘 

represents the efficacy of the partnership between the breeder and analyst, and 𝛼 ∈ (0,1) 

represents the analyst’s diminishing returns of further technological investment. 

In contrast, the generation of genotypes confers a fixed cost to the breeder which we take as the 

sum of analyst’s fees and the modest labor of collecting and dispatching the physical genetic sample. 

 

80 Strictly 𝑊𝐵  is the agent’s (breeder’s) payoff from insight is a product of insight returned from the analyst, 𝑦, 
and a marginal value, 𝑣, achieved by the breeder until they decide to generate new data. This duration gives 
rise to a discount factor, 𝛿, and the payoff of insight becomes, 𝑊𝐵 = 𝑣(1 − 𝛿)𝑦. As the present analysis 
assumes a constant – if binary – participation rate for breeders, we set 𝑣(1 − 𝛿) = 𝑝 throughout. 
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Importantly, where phenotypic data returned insight proportional to the amount of data a breeder 

collected, genotyping returns insight proportional to the quality of the shared genetic library. 

Therefore, breeders evaluating transactions with analysts in the data sharing ecosystem will make a 

choice that maximizes the value each individually creates from the exchange by way of: 

𝑀𝑈 = 𝑝(𝑦) − 𝑥. (6-2) 

We can now establish a preference matrix for breeders. Where a breeder’s payoff for insight is less 

than the cost of generating genotypes, or where desired accuracy exceeds what is available from 

genotypes, they would choose to collect phenotypic data.  onversely, where a breeder’s 

requirement for accuracy is below that returned by genotypic data and their payoff for that insight is 

above the fixed cost of genotyping, they would choose to collect genotypes. 

4. Data 

Data on the costs and benefits of generating phenotypic and genotypic livestock data is highly 

commercially sensitive and as a result, generally not available. However, a unique set of 

representative data was generated with the assistance of the Animal Genetics and Breeding Unit 

(AGBU) in 2022 (Banks, 2022). The data is summarized in Table A2. The data points pertain to costs 

typically incurred by breeders during their collection of phenotypic data and includes representative 

data for reproductive and hereditary data. The data has been adjusted to reflect an effective cost-

per-animal.  

The data shows breeders operating in three distinct groups. Group 1 from Figure 6-2 operates 

smaller-scale operations typified by wide ranges in operating costs and low thresholds for accuracy. 

Group 2 operates with significantly greater efficiency as they focus on cost-reductions within data 

generation. Group 3 prioritize quality of insight from the analyst and a preparedness to invest in 

completeness of measurement in order to achieve desired accuracy levels. We return to discuss the 

implications of economic intervention for each group after presenting the results. 

The current cost-per-animal for genotyping is $45 and returns an equivalent accuracy of 65%. This is 

represented as Point G on Figure 6-2. 
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indicates breeders in this representative dataset exhibit a range of operating efficiencies as they 

target a specific accuracy and are willing to accept variances in costs 𝑥 or 𝐹. Variation between 

groups is noticeably associated with different benefits generated, that is a vertical distance with a 

corresponding variance in the position occupied along the benefits curve. This variation may be due 

to groups` collecting different types of phenotypic data, or managing different sized operations 

(Banks, 2019). Even without the second assumption, tax and subsidy arrangements as proposed 

would impact each breeder in a different way. Interventions could be targeted to deliver the 

minimum amount of phenotypic data and could engage and compensate only the most efficient 

providers of data.81 This would create additional increases in productive output across the 

ecosystem as subsidies would not be ‘wasted’ generating redundant phenotypic data. However, 

analysts are unlikely to be indifferent between breeders inhabiting the different groups and they 

may seek to influence breeders by charging them spot prices. While this would enable the Breed 

Society to further increase data collection, with the dynamic effect of boosting benefits to both 

producers and analysts, they would need an output-based, non-anonymous subsidy to restore the 

market.  

6.2. Extensions 

This paper’s research contribution is the modeling of costs and benefits of club action, as strategies 

to avoid a tragedy of the (data) commons. The application uses an indicative set of secondary data, 

due to a general paucity of available primary data of this form. An obvious extension of this work is 

the collection of such data, in a manner that preserves relationships between breeders and Breed 

Societies. However, we acknowledge that generation of the benefit curve using Breed Societies’ 

members data would, on the one hand, enable personalized service delivery and, on the other hand 

identify fault lines within the membership and encourage fragmentation.  

In the long term, the disruption generated by ever cheaper genomic technologies will impact an 

ever-larger number of breeders and so remove the fragmentation incentive. Future research would 

ideally characterize the nature of data provision costs (beyond our indicative fixed and variable 

components) and relate Breed Societies’ club-like needs and capabilities to these challenges.  

This research could also be extended technically. Where this paper has assessed the interventions 

required to capture and allocate positive externalities created by the club within each generational 

 

81 Interestingly, while appealing from a technical and economic perspective, this outcome would introduce 
sub-clubs within the Breed Society, which may not be ideal for social reasons. 
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cycle, as the ecosystem functions recursively, optimization could be conducted across multiple data 

generation cycles. Recall the collection of new data immediately depreciates old data in the 

ecosystem and that generation of sufficient phenotypic data permits the restoration of the Breed 

Society’s genetic library.   Breed Society may be able to decrease the multi-year value spent on 

subsidies (and therefore reduce taxes on genotypic data) by intentionally permitting degradation of 

their genetic library for multiple cycles, before subsidizing an extraordinary phenotypic campaign to 

re-baseline the library. 

Additionally, in line with our assumption of homogeneity, this analysis assumes preservation of the 

original benefit curve was the goal. The specific nature of a breed’s genomic material and the 

algorithms dispensed by the analyst may make it possible to subsidize the collection of phenotypic 

data from specific livestock, rather than subsidizing the operations of the breeders who currently 

own them. While returning to the risk of encouraging spot-prices on specific livestock and 

fragmented clubs within the society, this strategy would greatly increase the precision of taxes and 

subsidies applied.   

7. Conclusion 

This paper deals with maintenance of data commons. We show these shared data assets both rely 

on, and are threatened by, technological advancement. Specifically, this paper looks at a Breed 

Society that stands to benefit from the adoption of genotyping but must also intervene if it is to 

avoid a market failure and subsequent tragedy of its data commons.  

Importantly, these findings are relevant beyond Breed Societies and genetics. Widespread adoption 

of digital twins in agriculture (Fomiatti & Wysel, 2022) unites existing, if latent, data libraries with 

new analytical models of creating value from shared data. Likewise, the adoption of generative AI by 

users who outsource an increasing scope of analytic tasks, from writing emails to augmenting images 

(Lu et al., 2022), also create communities that derive benefit from mutually shared data and, 

therefore, must consider the long-term health of their data and not just the short-term value 

created. 

This paper demonstrates that the non-rivalrous nature of data means that new, agricultural data-

based technologies cannot be considered in isolation from the data trading ecosystems they 

support. We demonstrate that any data sharing ecosystem must consider the long-run effects on the 

value of their data commons when evaluating new enrichment technologies. We show that 

technological disruption in distributed production processes that deal with the exchange of data 

extend beyond simply conferring consumer surplus to a subset of agents and – without adequate 
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data governance – can extend to a failure of the data trading market. Tracking and allocating the 

creation of value from data is a necessary task for industry bodies such as Breed Societies who 

preside over data sharing ecosystems and act as ex officio governing bodies.  

Without collective action, the private benefits that consumers capture from genotyping create an 

unstable market structure because value creation from various data types are causally linked via a 

common data platform. This means, ‘doing nothing’ is not an option for platform owners and 

operators as inaction will simultaneously create increasing technological inefficiencies for all 

members and decreasing yields at both macro- and micro-decision levels. Finally, in the absence of 

an adequate response, we conjecture the marginal value contributed by the platform owners such 

as Breed Societies will diminish even to the extent their shared data asset will become ripe for 

arbitrage by rogue data platforms who, competing with the whole Breed Association, will rustle first 

the data and then the whole club.  
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Appendix 

Table A1. Brief Glossary of Terms 

Term Definition 

Breed Association The formal organization tasked with preservation and continuation of a 

breed society’s genetic stoc  (material) and operations.   

Breed Society A group of breeders who own a specific type (breed) of animal. Includes 

the Breed Association as the management layer. 

Breeder Owner of livestock. Operates farming operations that produce genetic 

material, such as gametes, bulls, or heifers. Collects raw data as 

phenotypes or genotypes for internal operations and to facilitate the 

supply of insight from the Laboratory. 

Laboratory,  

Analytic System 

 artnering data enrichment service that turns Breeder’s raw data into 

valuable insight. 

Genetic Insight Information on the total genetic value of an animal, usually expressed in 

terms of Estimated Breeding Values (EBVs), specific indices that rank 

animals against established baselines. Broadly considered a proxy for the 

worth of an animal to a breeder. 

Genotypic Data Genetic data pertaining to livestock and collected by a breeder.  

E.g., a tail hair from an animal. 

Phenotypic Data Measurement data pertaining to livestock and generated by a breeder.  

E.g., 100-day weight.  
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Conclusion 

1. The Problem of Creating Value from Data 

The proliferation of data at a personal, organizational, and societal level has created widespread 

confusion, uncertainty, and inefficiency. This thesis proposes a straightforward and academically 

rigorous explanation for the process by which value is created from data within a firm, across a 

marketplace, and within a microeconomy. This research has built on the literatures of platform 

economics, the economics of information, production and innovation literature, as well agricultural 

datanomics to derive the components of the economic value of data, and how these components 

come together within agriculture and more broadly.  

Unravelling the process of creating value from data is an important problem to solve because when 

data is surrounded by enriching technologies the resulting insight retains the near-infinite 

economies of scale of data (Arrow, 1996) but continues to confer increasing value to the data 

sharing systems that control access to it. This thesis explains how the simple absence of an 

understanding of ‘how my data could be valuable’ does not preclude other agents in ad hoc data 

sharing ecosystems from amassing value around that data and applying it to cooperative, 

competitive, and co-opetitive ends. This information asymmetry is replicated in data markets and 

across data microeconomies such as those that Breed Societies mediate. Indeed, without a clear 

understanding of how markets support the co-creation of value from data, uncertainty regarding the 

enduring quality of data goods will inhibit individual exchanges (Cichy et al., 2021), incentivize 

inefficient behavior in agents (Wagner et al., 2021), and ultimately suppress the size of data markets 

(Koohang et al., 2022). 

The problem of creating value from data is that the solution cannot be simply abstracted from 

somewhere else. Firms do not have an answer (Short & Todd, 2017), neither do markets (Kenney & 

Zysman, 2016), nor individuals (Shin et al., 2022). Data producers and data analysts struggle to 

define a trustworthy process whether together (Windasari et al., 2021) or individually (Kotlarsky et 

al., 2023; Libert et al., 2014). We cannot simply appropriate an answer from management (Pentland 

et al., 2021), economics (Fleckenstein et al., 2023), or information systems (Angelopoulos et al., 

2021). The development of an explanation for the mechanism whereby value is accrued to data 

necessarily requires an interdisciplinary approach as theories from each discipline and field of 

practice are analyzed, synthesized, and harmonized into a coordinated and coherent whole.   
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2. The Objectives 

The first objective was the identification and explanation of the component parts of the value 

creating process that surrounds data and an explanation of how those components interacted. 

Chapter 2 derived a decision framework that connected the three asset classes of data, a community 

of agents and a mobilizing system, together with the relevant management interactions and 

presented the model as an approachable three-layer Venn diagram.  

The second objective was to explain the interactions of the mechanics of how value is created from 

data and to identify the economic drivers. Chapter 3 compiled a single economic expression for the 

creation of value from data that reflected the sustained engagement that agents and systems must 

maintain when collaborating to accrue value to data and strip uncertainty from it (Frankel & 

Kamenica, 2019). We reversed Shannon (1948)’s theory of communication in a noisy pipe to 

assemble an entropy-based explanation for the effect of the exchange of prompts and replies on the 

average entropy of a dataset.  

We assembled these theories to explain how data could be valued in use as a resource, valued in 

exchange as a good, and utilized as a value accrual medium when valued as a currency. The third 

objective was to show how these processes operated within a firm and across a marketplace. 

Chapter 4 projected those mechanics onto a firm-level production process, while Chapter 5 applied 

these concepts to the exchange of value across a marketplace. The former leveraged the non-

rivalrous nature of data to explain how firms could simultaneously realize the value created from 

data as three different types of market-based payoffs and one internal value creation modality. 

Chapter 5 empirically applied the consequence of the same properties of data to first derive and 

then investigate the service-dominant logic that the creation of value around data enables. When 

agents in an ecosystem adopt a service-dominant view of data both benefits, and their collective 

productive capacity is also expanded. 

Finally, using a representative dataset, we assessed the implications of a partial impairment of a data 

sharing ecosystem. In this case, unilateral value appropriation by data producing breeders was 

causing a collapse in their mar et’s allocation of value throughout their community. The immediate 

consequence was the rational adjustment of participants in the microeconomy to maximize the 

value each created from their own exchange of data. This created a disproportionally large marginal 

cost for any one agent to produce the premium phenotypic data they all relied on. By deliberately 

viewing Breed Societies as data sharing ecosystems, we showed that as the entropy contained in 

their shared data library continued to increase with each passing donation of genotypic data, the 

value of their data library first diminished, and then collapsed. Using Club Theory, Chapter 6 
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assessed three potential interventions and proposed a cost-neutral policy the Breed Society could 

use to repair and sustain the operation of their data sharing ecosystem.  

3. Contributions and Extensions 

The purpose of this thesis was to propose a unifying theory for the creation of value from data that 

could be abstracted into a variety of contexts of increasing economic complexity. We began by 

offering a data-centric, decision framework (Figure 2-3) that explicates the components in the value 

creation process, how they interact, and specifying what the characteristics of that process are. 

Following Arrow (1996)’s exposition of the economics of information, the economic circulation that 

occurs across data sharing platforms was represented within a single economic expression (Equation 

(3-10)), while the mechanics of how the two asset classes with agency (the system, and the 

community of agents) interacted to create value from the third asset class (data) was explained in 

terms of the exchange of Shannon Entropy (Figure 3-3). This exchange informed the modes of 

valuing data (Chapter 3, Section 4, 5, 6) which were then identified within a firm in Chapter 4. More 

generally, the firm was represented as the compilation of the three asset classes but also permitted 

to decide how much, and how often it would generate value from shared data.  

Chapter 5 lifted these functions from the firm level to permit the specialization that typically 

happens within data sharing ecosystems (Hartmann et al., 2016). Collected into two firms that 

embodied the data-analyzing system and the data-producing community, the persistent, self-

reinforcing and co-opetitive nature of data sharing ecosystems was revealed in the way breeders 

organized the trade of data and managed themselves (Figure 5-2). The theory was applied to this 

real-world ecosystem to assess how the data sharing ecosystem might increase its productive output 

(Chapter 5, Section 5.3, 6.1). Finally, the causality was inverted to permit investigation of a partial 

impairment to one part of the data sharing ecosystem in Chapter 6. This theory forecasts a 

technological market failure that leads to a tragedy of the agricultural data commons, draws 

parallels with contemporary competitive agents in data sharing ecosystems (Chapter 5, Section 6.2; 

Chapter 6, Section 7) and informs policy makers what actions are required to avoid that failure.  

Throughout this thesis, wherever theory is advanced it is kept at a very high level to make it readily 

applicable to a very broad set of use cases. However, we also repeatedly illustrate how the theory 

can be tested by specific real-world use-cases and how these specific examples may also be tested 

by the applied theory. For instance, on the one hand, the theory describes the general relationships 

within a production function or across a microeconomy while on the other, it may be applied to 

answer the very specific questions, ‘how much should I invest in data?’ or ‘how often ought I repeat 
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that process?’. This is the first time such an expansive definition of data as a productive asset has 

been brought together with the very practical exercise of creating value from data. 

The most topical extension of this work is the direct analysis of the effect of generative AI on societal 

knowledge assets (Chapter 5, Section 6.2; Chapter 6, Section 7). Analysis of such a use-case could 

proceed in almost precisely the same manner as  hapter 6. ‘Thinkers’, as producers of knowledge-

assets, currently exhibit a large variety in their willingness to accept the cost of applying these 

knowledge-assets to derive knowledge-based benefits of varying levels of payoffs (Figure 6-2). The 

ensuing analysis could even group Thinkers into various groups according to education or 

explicitness of interactions with the engine (for example, exclusively via third party apps through to 

paying members of the ecosystem). As in Chapter 6, the long-term viability of this knowledge-based 

ecosystem relies on the ongoing willingness of Thinkers to apply their knowledge-assets outside the 

auspices of generative AI systems. However, the marginal cost of this strategy will become 

increasingly prohibitive. Therefore, the overall health of the knowledge-assets in the knowledge-

based ecosystem will diminish unless there is either economic intervention or fracturing within the 

community (Chapter 6).  

The corollary of this thesis is the specification of a value generation engine whose operation could 

be inverted so as to value the contributions of agents based on the change each instigates on the 

data contained within the ecosystem (Chapter 2). This extension would open several new avenues 

for research as agents in data sharing ecosystems could now be treated like individual stocks in a 

portfolio of assets. Where the system desires a reduction in entropy of data, differing messages of 

the form described in Figure 3-3 might be offered to an otherwise homogenous community of 

agents, whose response would confer value to the ecosystems data and also rank the agents. 

 ommunities of agents could be described according to systematic and unsystematic ‘ris ’ which 

would be reflected in terms of correlation with established responses. Indeed, ‘ /B testing’ in online 

marketing is well-established and represents a rudimentary form of this inverted value creation 

where data values those ad hoc communities. 

This dissertation began with an observation that organizations – and by extension, the world around 

them – was fast becoming ‘awash with data’, and that want for a valuation framewor  inhibited 

individuals, firms, and even economies from prioritizing the allocation of scarce resources to first 

establish, and then to assess, the efficiency and efficacy of a process that seemed as intractable as it 

was ubiquitous. Our hope is that this thesis lays the foundations for what will one day become a 

collection of commonplace tenets in a society that has learnt to integrate non-rivalrous exchange 

with value co-creation, data-based contribution with governance, and finally transparency with 

equity.  
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