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Abstract We introduce an innovative method for the investigation of human gait, which is based on the 
visualisation of the vertical component of the movement of the centre of mass during walking or running, in 
the space of the coordinates position, velocity, and acceleration of the centre of mass. We collected data and 
numerically approximated the gait by the best-fitting curve for a non-linear model. The resulting equation for 
the best fitting plane or curve in this space is a differential equation of second order. The model that we 
suggest is a Duffing equation with coefficients that depend on the height of a walker or runner and on the 
angular frequency of the oscillation. We present statistical analyses of the distribution of the Duffing stiffness 
depending on the speed.  
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1. INTRODUCTION

Research on the mechanics of human gait is of interest to different disciplines, for example sport science, 
medicine, and robotics. In this paper, we introduce a model for the movement of the vertical coordinate of a 
person’s centre of mass (COM) during walking and running.  

Human locomotion is an inherently complicated process requiring the complex integration of neural control 
and musculoskeletal dynamics in response to both internal and external forces. In an attempt to strip away 
complexity and gain an understanding of the fundamental principles underpinning human locomotion, simple 
mechanical models have been developed [1, 2]. The mechanical simplification of locomotion allows the 
identification of just a few key parameters that can be manipulated to examine cause and effect relationships 
and identify which features most influence the system.  

Blickhan suggested a linear spring-mass model for hopping in 1989, [3]. Other papers followed, for example 
[4–7]. The motion of the centre of mass is described by the equation 𝑚𝑧!! +𝐾𝑧 = −𝑚𝑔, where 𝑚 is the body 
mass, 𝑧 is the vertical deflection of the centre of mass with the origin on the treadmill surface and the direction 
chosen upwards. The constant 𝐾 is the stiffness, and 𝑔 is gravitational acceleration. By 𝑧!! we denote the 
second derivative of 𝑧, i.e., the vertical acceleration of the centre of mass. There have been different 
approaches on how to calculate leg stiffness. Blickhan’s approach uses the formula 𝐾 = 𝑚𝜔"#, where 𝜔" is the 
stride’s angular frequency of the oscillation, which, during gait, reflects the stride’s angular frequency. [3, 6]. 
Another approach for calculation of the leg stiffness is to find the ratio of 𝐹$, the maximum value of the 
vertical ground reaction force, and Δ𝐿, the absolute value of the leg compression, i.e., 𝐾 = %!

∆'
. This definition 

of leg stiffness is used in several publications [4, 5, 7–9; see 6 for an overview]. There is a third approach to 
leg stiffness calculation based on the measurements of loss of mechanical energy by walking/running, 𝑊. Leg 
stiffness 𝐾 is derived from the formula 𝑊 = (

#
𝐾(∆𝑟)2, where ∆𝑟 is the shortening of a spring (e.g. [10]). In

examining mechanical and metabolic determinants of the human walking gait, Kuo [11, 12] employed an 
anthropomorphic three-dimensional, passive-dynamic model, in which human legs were represented as rigid 
inverted pendulums with small point masses modelling each foot and a larger mass modelling the 
concentration of the COM at the pelvis. These studies drew on earlier models of a rigid swing leg during 
walking [13] and continued the view that walking and running were two distinct gaits that could not be 
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described using similar mechanical models. This view, however, was discounted by Geyer, Seyfarth, Blickhan 
(2006) [14] who demonstrated that a compliant-legged, spring-mass bipedal model consisting of two linear, 
equal and massless springs and a single COM point as an extension of Blickhan’s one-dimensional model, 
reliably predicted ground reaction forces and COM behaviour in both human walking and running. Several 
subsequent studies further validated the efficacy of a bipedal spring-mass model of walking [2, 15–18]. While 
much of the twenty-first century research in the field has adopted the bipedal spring-mass model and focused 
on adapting or adding selected elements to improve prediction accuracy for both walking and running gait 
mechanics, Blickhan’s spring-mass model remains largely valid and has been applied, with modifications to 
suit certain parameters, in recent studies [19, 20].  

Our mathematical model is based on the analysis of three-dimensional movement of COM. We concentrate on 
the projection of the movement of COM on the vertical axis. We suggest a new approach for finding leg 
stiffness for the simple harmonic oscillation model, and then develop a more precise model assuming that the 
stiffness for a fixed speed is not a constant but depends on the displacement of the COM. The innovative idea 
of our method is to visualise the data for the vertical component of a motion of the COM, 𝑧(𝑡), as a curve in 
the three-dimensional space,	(𝑧, 𝑧! , 𝑧!!) (see Section 2). Here 𝑧! and 𝑧!! are the first and the second derivatives 
of the function 𝑧(𝑡), velocity and acceleration, correspondingly. The linear differential equation 𝑧!! +
)
$
(𝑧 − 𝑧") = 0, which is a simple harmonic oscillation model of a gait, can be interpreted as an equation of the 

plane in the space (𝑧, 𝑧! , 𝑧!!). Here 𝐾 is the leg stiffness, 𝑚 is the mass of a participant, and 𝑧" is the average 𝑧-
coordinate of the COM by the movement. Finding the best fitting plane to the data curve gives us the slope of 
the plane )

$ and the value of 𝑧". This simple model suggests that the leg stiffness is a constant. But we can 
observe that the slope in general is not a constant (see for example Fig.2), but can be represented as a non-
linear model with a cubic term. Thus, we use a non-linear differential equation model, approximating the 
curves by the Duffing equation. The best fitting curves have the form 𝑧!! + 𝑘𝑧(𝑧 − 𝑧")(ℎ − 𝑧) = 0. Here ℎ is 
the height of a participant in motion. We called the value 𝑘𝑚 Duffing stiffness. The constant 𝑘 is different for 
each participant and increases with the speed of walking/running. We first analyse how Duffing stiffness 
relates to speed using data for six participants collected by us, then verify the results using data publicly 
available for 42 walking participants and 29 running participants [21, 22].  

Modelling of gait by Duffing equations emphasises the commonalities of stable walking and running. 
However, the curves also contain individual features for each person and velocity. We provide examples of the 
variety of these curves in Section 8. Studying outliers might be more interesting for sport science, because they 
are a sign of some anomalies and instability in gait, which might, for example, suggest an injury.  

2. DATA RECORDING  

We collected walking and running data from six participants (aged 18 to 55 years, 3 men and 3 women). The 
study followed ethical protocols as per ethics requirements (HE19- 239). We measured the vertical coordinates 
𝑧(𝑡) of the COM for each participant walking or running on the treadmill. The markers were the Left and 
Right PSIS and ASIS; we then computed the average of all four. The data was collected for different integer 
velocities, at 100 frames per second, over 10 seconds, for each velocity, using an 8 camera, Qualisys Motion 
capture system with the COM reconstructed using a pelvic marker set within Visual3D.  

Using MATLAB, we visualised the data as curves in the three-dimensional space (𝑧, 𝑧! , 𝑧!!). We filtered out 
high frequency oscillations, such as noise and individual features, using the fast Fourier transform function in 
MATLAB. The direction of the motion along the curve can be found, for example, in the following way. Find 
the point with the greatest 𝑧-coordinate. This is the highest point of the centre of mass during the gait cycle. 
The velocity at this point is equal to zero. Hereafter, the movement goes down, i.e., the velocity 𝑧! becomes 
negative. In both pictures of Figure 1, from those perspectives, the movement is clockwise.  
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Fig 1. A MATLAB 3D figure shown from different perspectives. The green curve is a smoothed data curve with high-pass FFT threshold 
0.03, the red curve is a smoothed data with FFT threshold 0.3.  

 

3. DATA INTERPRETATION  

The pictures in the space with the coordinates position, velocity, and acceleration, are rich in information. For 
example, Figures 2 and 3 show the data for walking (4 km/hr) and running (9 km/hr), respectively, of the same 
participant.  

  
           Fig 2                                                                                                     Fig 3 
Figs 2 and 3 show data for walking, 4 km/hr and for running, 9 km/hr, correspondingly. The horizontal axis shows position and the 
vertical axis the acceleration of the COM. In both Figs, the part CD corresponds to the phase of the gait when a foot touches the surface, 
DE corresponds to the propulsion during toe-off, during EA the COM moves upwards and the acceleration diminishes. The arc AB 
appears only in Fig 3 and corresponds to the flight phase             
 

Here we look into the projection to the plane 𝑧, 𝑧!!, i.e., the horizontal axis shows the position of the COM (in 
meters) and the vertical axis shows the acceleration (in m/se𝑐#). The part CD of both curves corresponds to the 
phase of the gait when a foot touches the surface of the treadmill. In the case of walking, it is a flat line; 
vertical acceleration is close to zero. In the case of running, acceleration is diminishing because of braking 
during initial foot contact. The phase DE corresponds to the propulsion during toe-off, where acceleration (and 
consequently force) increases. On the segment EA acceleration diminishes, turns to zero when the COM 
reaches its average position, and is minimal at the point A. The minimum acceleration for the walking curve is 
−2 m/se𝑐#, the minimum acceleration for the running curve is about −10 m/se𝑐#, i.e., close to the gravitation 
constant g. The acceleration is less during walking than during running because the body is always in contact 
with the ground whereas during running there is a flight phase. 
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The arc AB on Figure 3 corresponds to the flight phase of running. This part of the curve is more complicated 
than just a flat constant 𝑧!! = −𝑔, because it is smoothly connected with the rest of the curve. Some 
information that we get from these curves is common for all participants and walking/running speeds, but 
some features are individual – for example not each participant has the “flight” component AB at running 
speeds, due to individualised transitions between walking and running gait patterns. In this paper we 
concentrate on their common properties, and suggest three models, based on differential equations. We build 
our three models based on data, purely numerically and mathematically. 

4. MODELLING GAIT AS HARMONIC OSCILLATOR  

By Hook’s Law [23], a movement of a spring with stiffness 𝐾 satisfies the equation  

(1) 𝑚𝑧!! +𝐾(𝑧 − 𝑧") = 0,  

where 𝑚 is the mass, 𝐾 is stiffness and 𝑧 − 𝑧" is the displacement of the COM. In three-dimensional space 
(𝑧, 𝑧! , 𝑧!!), Eq (1) is the equation of a plane that passes through the point (𝑧", 0, 0). We find the coefficients in 
Eq. (1) numerically, by finding the best fitting plane for the smoothed data curve. The initial values specify the 
ellipse on this plane. The gravitation constant is included in Eq. (1) implicitly. We can rewrite the equation as  

(2) 𝑚𝑧!! +𝐾(𝑧 − 𝑧*!) = −𝑚𝑔.  

The coordinate 𝑧*! is the average of the vertical coordinate of the centre of mass of a standing body but in a 
walking/running posture. It is not exactly the same as the coordinate of COM in a standing position. The 
relation between 𝑧" and 𝑧*! is calculated from Eqs. (1) and (2) and is 𝑧" = 𝑧*! −

$+
)

.  

5. MODELLING BY A NON-LINEAR HOMOGENEOUS DIFFERENTIAL EQUATION  

5.1. Best fitting curve, interpreted as a non-linear second order differential equation. Non-linear gait 
dynamics has been discussed, for example, in [24]. Stride-to-stride fluctuations, which are often considered to 
be noise, actually convey important information. To describe these fluctuations, we refine the method used for 
the harmonic oscillation model in section 4. We approximate the movement of the COM during walking or 
running by a Duffing equation, i.e., a homogeneous non-linear second order differential equation. We write  

(3) 𝑚𝑧!! +𝐾(𝑡)(𝑧 − 𝑧") = 0,  

where, unlike the harmonic oscillation model from Section 4, we consider stiffness to not be constant, but as 
dependent on time, 𝐾(𝑡), as stiffness and viscosity depend on a phase of a stride. For example, the slope on 
Figures 2 and 3 depends on 𝑧(𝑡), and the slope in the plane 𝑧, 𝑧!! reflects stiffness: it is )(!)

$
	at a time t. We 

divide both sides by 𝑚 and consider the approximation of the function 𝑘(𝑡) = )(!)
$

 by polynomial,  

(4) 𝑧!! + (𝑘((𝑧 − 𝑧") + 𝑘#(𝑧 − 𝑧")# + 𝑘.(𝑧 − 𝑧").) = 0.  

As the value 𝑧" is not known beforehand, we look for the best fitting curves of the form:  

(5) 𝑧!! + 𝑘(𝑧 + 𝑘#𝑧# + 𝑘.𝑧. + 𝐶 = 0.	 

The best fitting curve in the chosen coordinates is a differential equation of second order. Initial conditions are 
the values 𝑧(0) and 𝑧!(0). We visualize the solution of this differential equation as a curve in the same 
coordinate system as the data curve. See, for example, Figure 4, where the red curve is the data curve, and the 
blue curve is the solution of the differential equation given by the best fitting curve. We computed a scaled 
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mean squared error between the Duffing equation output and the observed data. As the values 𝑧, 𝑧! and 𝑧!! 
have different units, we scaled each value by dividing by the difference between the minimum and maximum 
values on the corresponding axis.  

5.2. Finding and analysing the fixed points. We are also interested in the fixed (equilibrium) points [25]. We 
first rewrite the second order differential Eq. (5) as a system of first order differential equations:  

(6) 𝑧! = 𝑧(,  (𝑧()! = −𝑘(𝑧 − 𝑘#𝑧# − 𝑘.𝑧. − 𝐶.  

We found the fixed points by solving the equilibrium equations (see for example [26])  

       (7) 𝑧( = 0,  −𝑘(𝑧 − 𝑘#𝑧# − 𝑘.𝑧. − 𝐶 = 0. 

The solutions to Eq. (5) are plotted in the same coordinate system as the data curves, see for example Figure 4. 
The solution curves are stable if we set one fixed point equal to zero, i.e., 𝐶	 = 	0. Then the two other fixed 
points occur at 𝑧" (the centre of the closed curve, average coordinate of the centre of mass during 
walking/running), and at ℎ for stable walking/running. The differential equation Eq. (5) becomes  

       (8) 𝑧!! + 𝑘𝑧(𝑧 − 𝑧")(ℎ − 𝑧) = 0.  

Numerical computations show that, for stable gait, the fixed point 𝑧 = 𝑧" is a centre, while the fixed points 
𝑧 = 0 and 𝑧 = ℎ are saddles.  

5.3. Interpretation of the parameters in the model. Eq. (8) shows that we can model the movement of COM 
with a Duffing equation, up to a constant 𝑘, knowing only ℎ and 𝑧". The values ℎ and 𝑧" are close to the height 
of a person and to the average coordinate of the COM in motion, correspondingly. The gravitation constant 𝑔 
is involved implicitly in the differential equation, in a similar way as in the harmonic oscillation model in 
Section 4. The coefficient 𝑘 does not have the meaning of the square of the angular frequency, 𝜔# = *!/0012**

$3**
, 

as in a linear case (Section 4), but 𝑘 behaves in a similar way: it increases with an increase of the 
walking/running speed. We call this constant, multiplied by the mass, the Duffing stiffness. The meaning of 
the coefficient 𝑘 is found from the following consideration. We rewrite Eq. (8) as  𝑧!! + 𝑘[−(𝑧 − 𝑧"). +
(ℎ − 2𝑧")(𝑧 − 𝑧")# + 𝑧"(ℎ − 𝑧")(𝑧 − 𝑧")] = 0. For 𝑧 close to 𝑧"	the linear approximation at 𝑧" is 

         (9) 𝑧!! + 𝑘𝑧"(ℎ − 𝑧")(𝑧 − 𝑧") = 0.  

Comparing this equation with Hook’s Law (Eq. (1)) we get an expression that relates the angular frequency 𝜔 
with the coefficient 𝑘 and the values 𝑧" and ℎ: 𝜔# 	≈ 𝑘𝑧"(ℎ − 𝑧"). Hence, the Duffing stiffness  

        (10) 𝑚𝑘 ≈ $4"

5#(675#)
= )

5#(675#)
. 

We used that leg stiffness 𝐾	is expressed as 𝐾 = 𝑚𝜔#. Assuming the model when the centre 𝑧" is 
approximately in the middle between two saddle points, 0 and ℎ, we get ℎ	 = 	2𝑧", and Eq. (15) becomes 
symmetrical, 

         (11) 𝑧!! + 𝑘𝑧"#(𝑧 − 𝑧") − 𝑘(𝑧 − 𝑧"). = 0, where 𝑘 > 0,  

and 𝑘 ≈ 4"

5#"
. Eq. (11) is the Duffing equation for a softening oscillator [26], i.e., the stiffness diminishes with 

the displacement.  

5.5. Example based on the collected data. Figure 4 shows the observed smoothed data curve (red) and the 
curve corresponding to the solution of Eq. (8) (blue) for one of the participants, together with the fixed points. 
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The differential equation that describes the movement of the centre of mass of this participant running at the 
speed 8 km/hr is 𝑧!! + 279(𝑧 − 0.9)(1.8 − 𝑧) = 0. We have rounded 𝑘 to an integer, and 𝑧" and ℎ to the first 

decimal place. From 𝑘 = 279, 𝑧 = (
#
ℎ = 0.9 we can compute 𝜔 ≈ C 8

5#"
≈ 18.56, i.e., the number of strides in 

a second is 4
#9
≈ 2.95. This participant made 24 strides in 10 secs, i.e., the real number of strides in a second is 

2.4.  

 

 

Fig 4. Curve (blue) for the solution to Eq. (8) for a participant (178cm tall, running at 8 km/h) compared with the data curve (red). The 
mean squared error is 0.015. The fixed points are saddles at 𝑧 = 0 and 𝑧 ≈ 1.8 and the centre at 𝑧! ≈ 0.9  

6. STATISTICAL ANALYSIS  

6.1. (University of New England (UNE) data. Fig.5 (left) shows that the Duffing stiffness depends on the 
speed of walking/running for each participant. By visually inspecting the graph, we see some outlier points. To 
further examine these, we calculated the standard deviation of Duffing stiffness for each participant, for the 
walking data. Two participants had standard deviations (SDs) > 400, while the rest of the participants had SDs 
< 100. Our observation of these two participants during the data recording showed that they were 
uncomfortable with some of the speeds, and they reported having no experience with treadmills. Therefore, we 
excluded these two participants from all further analyses. Fig.5 (right) shows the data for the remaining four 
participants.  

The behaviour of the Duffing stiffness is different for walking (3 - 8 km/hr) and running (9 - 14 km/hr). 
Therefore, we separately fit data for walking and running speeds. We fitted a Linear Mixed Effect model in R 
for the walking data. We included speed as the fixed effect and Duffing stiffness as the dependent variable. We 
allowed both the slopes and the intercept to vary across participants. The model showed a slope estimate of 
𝛽G=41.4, 𝑡 = 9.1, 𝑝 = 0.004. For the running data, we performed an equivalent analysis. Here, the slope 
associated with speed trended in a positive direction, 𝛽G = 13.9, 𝑡	 = 3.0, 𝑝	 = 0.05.  
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Fig 5. Duffing stiffness depending on speed with and without outliers. We consider the models for walking and for running separately. 
Each line represents a different participant  

6.2. Comparing UNE dataset against public datasets. Next, we compare our data against public datasets for 
42 walking participants [21], and 29 running participants [22]. As these sources were set up slightly differently 
than the UNE data, in order to match the data, we estimated the COM during walking or running, using the 
midpoint of the ASIS markers and subtracting the lowest value for the heel’s marker.  

Figure 6 shows the relationship between speed and Duffing stiffness.  

 

Fig 6. Duffing stiffness as a function of speed, with and without outliers. Note that the Duffing stiffness, 𝑘, depends also on the height of 
the COM of a participant, 𝑧!, and the angular frequency of walking/running, 𝜔: 𝑘 ≈ "!

#"!
 . 

First, we removed one participant with only one data point. Then, to identify outliers, we calculated the SDs in 
Duffing stiffness for each participant and excluded outliers for the walking and the running datasets, 
separately. For the walking data, [22], the SDs ranged from 39.2 to 3183.5. We chose to remove all 
participants with SD > 100. This left us with 12 participants for the walking data. We proceeded to fit the data 
with a Linear Mixed Effect model, akin to the UNE data. Again, we get a significant effect of speed on 
Duffing stiffness, 𝛽G=36.7, 𝑡 = 11.8, 𝑝 < 0.0001. For the running data, [21], we removed three out of 29 
participants with SD > 100. The Linear Mixed Effect model showed a significant effect of speed, 𝛽G = 13.5, 
𝑡 = 14.0, 𝑝 < 0.0001.  

Finally, we compared the two datasets against each other. We created two models, one for running and one for 
walking, including both of the trimmed datasets. In the Linear Mixed Effect model, Duffing stiffness acted as 
the dependent variable, and the fixed effects were speed, dataset UNE versus [21, 22], with UNE acting as a 
baseline. We allowed the slope and the intercept to vary across participants. For walking, the effect of speed 
was, again, significant, 𝛽	L = 36.7, 𝑡 = 12.4, 𝑝 < 0.0001. However, the effect of dataset was not significant, 
𝛽G = −43.1, 𝑡 = −1.5, 𝑝 = 0.2,	nor was the interaction between dataset and speed, 𝛽G = 5.3, 𝑡 = 0.9, 𝑝 = 0.4. 
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Similarly, in the running dataset, the effect of speed was  𝛽G = 13.5, 𝑡 = 13.2, 𝑝 < 0.0001. Neither the effect 
of dataset, nor the interaction of dataset and speed were significant, 𝛽G = 27.5, 𝑡 = 0.9, 𝑝 = 0.4 and 𝛽G = 3.4,
𝑡 = 1.1, 𝑝 = 0.3, respectively.  

In summary, we found, overall, a significant positive relationship between speed and Duffing stiffness. For the 
running UNE data, the slope was not significant; however, when we combined the two datasets, the running 
slope was significant, and we found no interaction. Thus, the lack of significance in the UNE running data may 
be a result of low statistical power. We found no main effect of dataset, nor an interaction between dataset and 
speed. Thus, we find no evidence of a difference across datasets.  

6.3. Identifying and examining outliers. From a practical perspective, an interesting aspect is participants 
whose data deviates from the fitted model. Here, we defined outliers based on SDs. This is the simplest 
method, which can easily be applied by a sport scientist without mathematical training. We drew a somewhat 
arbitrary threshold, where we treated all participants with a SD > 	100 as outliers. The reasons for high SD 
could vary across participants. For example, a typical problem for uncomfortable speeds less than 3 km/hr is 
an additional loop, as on the red line in Fig.7. The Duffing equation does not take into account the loop, as the 
blue approximation curve demonstrates. The other example of an outlier is illustrated in Fig. 8, where the 
curve breaks down into two parts, corresponding to the left or to the right leg. Red lines represent the data, 
blue lines are the solutions of the differential equation. A third reason for outliers that we noticed is an 
instability of walk, when each step varies in the amplitude and in the average height.  

Fig 7. Slow walking speeds (< 3 km/hr, FTT=0.03) often contain an additional loop because of the compelled braking during each step 

Fig 8. Asymmetry of the gait (4.7 km/hr) due to different strengths of the left and the right legs. The red curve brakes down into two parts, 
corresponding to the left or to the right leg  

7. DUFFING EQUATION WITH VISCOSITY AND EXCITATION FORCE

7.1. Motivation. Approximation by a homogeneous equation with zero viscosity does not take into account the 
asymmetry caused by damping and excitation forces. For example, the red curve in Figure 9 shows a smoothed 
data curve for a running participant (14 km/hr, FFT threshold=0.3) in the phase plane (𝑧, 𝑧!). This curve is 
close to an ellipse, and the absolute value of the slope of the main axis of the ellipse, AC, is equal to 𝑣 = :

$
 if 

we assume that the viscosity is a constant. (If the viscosity 𝜈 = 0, the slope vanishes, and the corresponding 
axis is horizontal.) The symmetry with respect to 𝑧! = 0 is disturbed by the slope. Now we compare this 
slightly asymmetrical typical data curve with the symmetrical energy level curves, see Figure 9. Solutions of 
Eq. (8) with different initial values of 𝑧(𝑧! = 0) give a set of energy level curves. The red curve is the data 
curve, the movement occurs in the direction ABCD. Energy is gained twice in each cycle (gait) in a phase of a 
“step”, BC, and in a phase of a “fall” (in general not free fall), DA. The maximum of the energy occurs at 
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points A and C, the minimum occurs when at points B and D. There is a natural desire to find an 
approximation that considers the viscosity and the restoring force.  

Fig 9. The energy level curves (blue) and the data curve (red) in the phase plane (z,zt). The absolute value of the slope AC multiplied by 
mass m is the viscosity ν 

7.2. A best fitting curve for a non homogeneous differential equation We identified the best fitting curve in 
the form 

(12) 𝑧!! + 𝑣𝑧! + 𝑘𝑧"#(𝑧 − 𝑧") − 𝑘(𝑧 − 𝑧"). = 𝑓𝑐𝑜𝑠(𝛺𝑡 − 𝜑),

where the term 𝑣𝑧! is the linear approximation of the damping force divided by mass.	The constant 𝑓 = %
$

 , 
where 𝐹 is the amplitude of the excitation force, 𝛺 is the angular frequency of the excitation force. The 
gravitation constant 𝑔	is involved in the equation in a similar way as for the two already discussed models. As 
in the previous models, the equation for the best fitting curve was interpreted as a second order differential 
equation. The solution of the equation was computed and plotted in the same system of coordinates as the data 
curve. However, the balance between the viscosity and excitation force was too delicate, and most solution 
curves became stable spirals.  

8. CONCLUSION

We introduced a new method for the investigation of human gait. This method is based on the visualisation of 
the vertical component of the movement of the COM during walking or running, in the space of the 
coordinates position, velocity, and acceleration of the centre of mass. We suggested a model by a non-linear 
homogeneous differential equation. We also had a partial success in approximation of the movement by a 
second order non-linear non-homogeneous differential equation. In this paper, we concentrated on features 
that are common for walking and for running. The individual features of the curves are of special interest for 
sport science, because they point to uncomfortableness in walking or running. We plan to investigate possible 
reasons for injuries by determining how stress is generated. One possible idea is to investigate why female 
runners have more frequent ACL (anterior cruciate ligament) tears than men [27].  
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