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Abstract
We improve results of Baouendi, Rothschild and Treves and of Hill and Nacinovich by 
finding a much weaker sufficient condition for a CR manifold of type (n, k) to admit a local 
CR embedding into a CR manifold of type (n + �, k − �) . While their results require the 
existence of a finite dimensional solvable transverse Lie algebra of vector fields, we require 
only a finite dimensional extension.
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1  Introduction and notation

Consider a CR manifold (M, D, J) of type (n, k). This means that M is a manifold of dimen-
sion 2n + k with a rank 2n distribution D and a field of endomorphisms J ∶ D → D such 
that J2 = −id . We assume that M is integrable, meaning that the −i eigendistribution D0,1 
of J is involutive, that is,

where

[�0,1,�0,1] ⊆ �0,1,
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As usual, Γ indicates a space of sections and a subscript ℂ indicates a complexification. We 
write � for the space of vector fields on M.

We say that F ∶ M → M̃ is a CR embedding of a CR-manifold (M, D, J) of type (n, k) 
into another CR-manifold (M̃, D̃, J̃) of type (n + �, k − �) if F is a smooth embedding and 
F∗ ∶ D0,1

→ D̃0,1 satisfies

The case where � = k is of particular interest, as this corresponds to an embedding into a 
complex manifold.

Finding embeddings of the type envisaged above is one of the fundamental problems in 
CR geometry. We are going to consider the local problem only; that is, we fix a point p and 
look for an embedding of a neighbourhood of p. This means that we can replace M by a 
small open neighbourhood of p at any stage.

We mention a few contributions that are particularly relevant. It is well known that ana-
lytic CR-manifolds can always be locally embedded in complex space. Baouendi, Roths-
child and Treves [1] consider the case where there is an abelian Lie algebra � of real vector 
fields that is transverse, in the sense that

and normalising, in the sense that

and construct an embedding into a complex space. Baouendi and Rothschild [2] extended 
this result to deal with the case where the Lie algebra � is no longer required to be abelian. 
Jacobowitz [4] considers the case where � = 1 and finds a condition for the existence of an 
embedding into ℂn+1 . Finally, Hill and Nacinovich [3] treat the case where there is a solv-
able transverse normalising Lie algebra of complex vector fields of dimension � , and con-
struct an embedding into a manifold of type (n + �, k − �) ; they use solvability to extend by 
induction on dimension. We are going to treat the case of a finite-dimensional Lie algebra 
extension of �0,1 in �

ℂ
 by nonvanishing complex vector fields X1 , ..., Xs , and show that M 

embeds into a CR manifold M̃ of type (n + �, k − �) if dim(�(0,1) + ⟨X1,… ,Xs⟩) = n + �.

2  Main results

We state our theorem more precisely.

Theorem 1 Let (M, D, J) be a CR-manifold of type (n, k). Suppose that X1,… ,Xs are non-
vanishing complex vector fields that normalise �0,1 (as in (1)) and satisfy

where the c�
��

 are constants. If

�0,1 = {Z ∈ Γ(D)
ℂ
∶ Z = X + iJX,X ∈ Γ(D)}.

F∗J = J̃F∗.

� = Γ(D)⊕ �,

(1)[�,�0,1] ⊆ �0,1,

[X� ,X�] = c
�

��
X� mod �0,1,

dim(�0,1 + span{X1,… ,Xs}) = n + �,
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then there is a (local) CR-embedding of M into a CR-manifold M̃ of type (n + �, k − �).

Proof Fix p ∈ M . Without loss of generality we assume that each X�(p) is not purely imag-
inary. The c�

��
 are the structure constants of the Lie algebra � defined by

By renumbering the vector fields and passing to a submanifold of M containing p if neces-
sary, we may suppose that

where � ≤ s . We shall construct complex vector fields

where � = 1,… , s on a neighbourhood of (p, 0) in M ×ℝ
s such that

here t1,… , ts are coordinates in ℝs and �� means �∕�t� . Then we shall show that the func-
tions ��� can be chosen in such a way that

when � ≤ � . It will then follow quickly that the vector fields Y� with � ≤ � define a CR 
structure on M × V  , where V is a neighbourhood of 0 in ℝ� , and there is a CR-embedding 
of M in M × V .

To show that (2) holds, we observe that the Y� preserve the (lifted) �0,1 , and choose the 
functions ���(t) such that ���(0) = �

�
� and the Y� commute modulo �0,1 . Equivalently,

Consider this system of PDE. Let {��} be a basis of an abstract copy of the Lie algebra � 
and (t1,… , ts) be coordinates of � with respect to this basis. Then Λ ∶= �

�
���dt

� is a Lie 
algebra valued 1-form, and the system (4) may be rewritten as

where d is the exterior derivative with respect to the t variables. This nonlinear autono-
mous system of PDE is similar to the structure equation of the Maurer–Cartan form, and 
this similarity allows us to solve the system (5). Let Ω be the left-invariant Maurer–Cartan 
form on the simply connected Lie group G with Lie algebra � . Then Ω satisfies the Mau-
rer–Cartan equation

Let t be real-analytic local coordinates on a neighbourhood of the identity e in G such that 
0 corresponds to e and define Ω ∶= �

�
�(t)��dt

� . Then Ω(0) = ��dt
� . Let

� ∶= (span{X1,… ,Xs} +�0,1)∕�0,1.

�0,1 + span{X1,… ,Xs} = �0,1 ⊕ span{X1,… ,X
�
},

Y� = ��
�
(t)X� + i�� ,

(2)[Y� , Y�] = 0 mod �0,1;

(3)��
�
(t1,… , ts) = ��

�
(t1,… , t�)

(4)���
�

�
− ���

�

�
= i��

�
��
�
c�
��
.

(5)dΛ =
i

2
[Λ,Λ],

dΩ = −
1

2
[Ω,Ω].

��
�
(t) = ��

�
(−it).
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This is well defined since the ��
� are real-analytic, and the ��� defined in this way satisfy the 

equations (4) and ��
�(0) = �

�
�.

To arrange that (3) holds, we suppose that t1 , ..., ts are exponential coordinates of the 
second kind in some neighbourhood of e in G, that is,

We observe that the dt� component of the Maurer–Cartan form depends on t1 , ..., t�−1 only. 
Indeed, the (left-invariant) Maurer–Cartan form is

and the dt� component is

Here L and R denote left and right translations. Therefore the functions ��� do indeed 
depend only on the variables t� with 𝜇 < 𝛼.

It follows that �0,1 ⊕ ⟨Y1,… , Y
�
⟩ is well defined on M × V  , where V is a suitable neigh-

bourhood of 0 in ℝ� . It remains to show that �0,1 , the span of (the lift of) �0,1 and the vec-
tor fields Y1,… , Y

�
 defines a CR structure on M̃ = M × V  , that is,

Suppose that V + ajYj ∈ �0,1 and W + bkYk ∈ �0,1 . If

then

that is V = W = 0 , and also

Therefore aj = −bj and hence

Since Xj(p) is not purely imaginary and the Xj(p) are linearly independent, Xj + Xj ≠ 0 in a 
neighbourhood of p, and so (again passing to a submanifold if necessary) aj = 0 is the only 
solution.   ◻

It may be worth remarking that if the CR manifold (M, D, J) admits a CR embedding 
into a complex space, then in fact the conditions of Baouendi, Rothschild and Treves [1] 
are satisfied, and a fortiori those of Hill and Nacinovich [3], and ours too. It is less clear 

g = exp(ts�s)… exp(t1�1).

dLg−1dg

dLg−1
�g

�t�
= dLexp(−t1�1) … dLexp(−ts�s)

�

�t�
Lexp(ts�s) … Lexp(t�+1��+1)Rexp(t1�1)

…Rexp(t�−1��−1)
exp(t���)

= dLexp(−t1�1) … dLexp(−t�−1��−1)dRexp(t1�1)
… dRexp(t�−1��−1)

��

= Adexp(−t1�1) …Adexp(−t�−1��−1)�� .

�0,1 ∩�0,1 = {0}.

V + ajYj = W + bkYk,

W − V = ajYj − bkYk = 0,

aj(Xj + i�j) − bj(Xj − i�j) = 0.

aj(Xj + Xj) = 0.
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what happens when there is a CR embedding into another CR manifold that is not a com-
plex space.

It may also be helpful to note that in the special case where the vector fields X1 , ..., Xs 
are real, then they generate (local) flows that preserve the CR structure; if they also gener-
ate a Lie algebra, then this generates a (local) group of transformations that preserves the 
structure. Further, even in the more special case where there is a transverse normalising 
Lie algebra of real vector fields, then our result extends that of [1]; in this case, the use of 
exponential coordinates of the second kind is not necessary.

Here is a corollary of the proof of our theorem.

Corollary 1 Let (G, D, J) be a left-invariant CR structure on a Lie group G. Then G can be 
locally embedded into complex space.

Proof Let {X1,… ,Xs} be a basis of right-invariant vector fields such that X1 , ..., X
�
 are 

transverse to D at e ∈ G.
As before we can find (complex) functions ���(t) such that the vector fields Y� , given by

commute, and let t1,… , ts be exponential coordinates of the second kind on G. Then 
�0,1 + ⟨Y1,… , Y

�
⟩ determines an integrable complex structure on (a neighbourhood of 

e × 0 in) G ×ℝ
� .   ◻

Of course, this was already known, as everything is analytic in this case, but arguably 
this proof is simpler.
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