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A B S T R A C T   

The Chen-Lee -Liu model has many applications in assorted fields, particularly in the study of nonlinear dy
namics, chaos theory, circuit design, signal processing, secure communications, encryption and decryption of 
chaotic signals, as well as cryptography. The modified extended auxiliary equation mapping method has been 
applied to the Chen-Lee-Liu model in this article and explores new wave profiles, such as singular periodic so
lutions, periodic solutions, and kink-type soliton solutions. The complex wave conversion is considered to make a 
simple differential equation. Three- and two-dimensional images are plotted using Mathematica and MATLAB, 
and their dispersion and nonlinearity effects are discussed. We also discuss the bifurcation analysis of the studied 
model. The stability of the equilibrium points is studied, and the phase portrait of the system is presented 
graphically. The obtained wave profiles might play an important role in telecommunication systems, fiber optics, 
and nonlinear optics.   

Introduction 

The investigation of optical soliton solution (OSS) is the basic fabric 
of soliton transmission technology in data transmission [1], communi
cations systems [2–4] and optical fibers [5] over the globe. The OSS is an 
isolated light wave whose form remains unchanged in a wide range, 
which can produce crystal clear phone calls worldwide [6]. There are a 
lot of models such as the nonlinear Schrödinger equation [7], the cubic 
nonlinear Schrödinger equation [8], the complex Ginzburg-Landau 
equation [9], the Kaup-Newell equation [10] and the Lakshmanan- 
Posezian-Daniel equation [11,12], the (2 + 1)-dimensional Heisenberg 
ferromagnetic spin chain equation [13], the (2 + 1)-dimensional Kundu- 
Mukherjee-Naskar equation [14], that can be described the dynamics of 
the soliton spectrum in optical fibers, nonlinear optics and meta
materials and so on. 

The studied nonlinear Schrödinger (DNLS) equation is a vital 
nonlinear model in applied science and engineering, such as nonlinear 
optics, plasma physics, and quantum mechanics. This equation is usually 
nominated as DNLSE-I, DNLSE-II and DNLSE-III which are instead raised 
to as the Chen-Lee-Liu (CLL) equation [15], and the Gerjikov-Ivanov 
equation [16], the higher order nonlinear Schrödinger equation [17] 
and so on. The wave phenomena of the CLL equation can be used in 

optical fibers. The signal pulse of the OSS of the CLL equation can be 
discussed in the optical fiber. Clearly, most of these systems are typically 
described in the time domain and are described by field propagation at 
different frequencies. Most dynamic systems have complex partial dif
ferential equations and focus on these equations in fiber optic commu
nication systems. In addition, significant advances were made during 
this period, such as the development of fiber amplifiers, non-linear ef
fects on optical fibers and optical solitons for transmitting data through 
optical fiber losses. Many scholars have studied the CLL equation and 
investigated the OSSs. In that sense, Zhang et al. [18] studied the CLL 
equation through the Darboux transformation that included higher- 
order components and obtained rogue wave solutions. Yildirim [19] 
reported the dark, bright, and singular solitons of the CLL equation using 
the trail equation scheme. Biswas et al. [20] have explored chirped OSSs 
from the CLL equation by using the extended trial equation scheme. A 
complex envelope traveling wave method was applied to the CLL 
equation and explored chirped OSSs by Triki et al. [21]. Bansal et al. 
[22] reported the dark, bright type OSSs in the CLL equation using the lie 
symmetry analysis. Recently, Rehman et al. [23] and Akinyemi et al. 
[24] investigated the new and explicit OSSs of the CLL equation by 
utilizing the new extended direct algebraic and generalized 
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(G′

/G)-expansion approaches. Inc et al. [25] reported the combined 
optical solitary waves and conservation laws of the CLL equation 
through complex envelope function ansatz. Ozdemir et al. [26] have 
investigated OSSs including dark, singular, dark-singular soliton, sin
gular periodic waves and rational function solutions to the perturbed 
Chen-Lee-Liu equation using the modified extended tanh expansion 
scheme. Younis et al. [27] have extracted OSSs from the CLL equation 
through the Fan-extended sub-equation method. The researchers re
ported some novel OSSs, such as dark and bright singular-type soliton 
solutions, according to the above discussion in the previous literature. 

Stability and bifurcation analysis plays a significant role in under
standing the behaviour of dynamic systems. Stability analysis provides a 
fundamental framework for studying complex phenomena and dy
namics in various scientific disciplines, such as physics, reaction diffu
sions, chemical reactions, biology, engineering, economics, and many 
other domains. It also helps to predict the long-term behaviour of 
dynamical systems; in engineering disciplines, it aids in the design and 
optimization of stable and robust systems, such as electrical circuits, 
mechanical structures, and chemical processes. Stability analysis is 
particularly essential in designing and controlling systems to ensure 
their stability and prevent unwanted behaviours such as oscillations, 
instabilities, or chaotic dynamics. Bifurcation analysis, on the other 
hand, explores the qualitative changes that occur in a system as a 
parameter is varied. It helps uncover critical values of parameters at 
which the system undergoes transitions, such as the emergence of new 
equilibrium points or the onset of complex dynamics like chaos. By 
studying stability and bifurcations, researchers gain valuable insights 
into the behaviour and stability of dynamical models, enabling a deeper 
understanding of complex systems in various scientific disciplines. 

The MEAEM method has been employed by diverse researchers in 
various studies for different objectives. Seadawy and Cheema [28] 
focused on the analysis of the higher-order dispersive extended 
nonlinear Schrödinger equation using the MEAEM method. Another 
study by Seadawy et al. [29] examined the application of the MEAEM 
method in solving time fractional nonlinear evolution equations. 
Furthermore, Cheemaa et al. [30] applied the MEAEM method to study 
the Maccari system. 

This study aims to establish some inclusive general OSSs through the 
MEAEM scheme, such as singular periodic solutions, periodic solutions, 
and kink-type soliton solutions of the CLL model. The wave solutions 
discussed in this research paper hold great significance in various sci
entific domains such as optical fibers, nonlinear optics, and communi
cation systems. Additionally, we delve into a detailed examination of the 
model’s stability and conduct a bifurcation analysis to gain a more 
profound understanding of complex systems in diverse scientific fields. 

The mathematical model 

The CLL equation was first introduced by Chen et al. [15]: 

i
∂Φ
∂t

+ γ
∂2Φ
∂x2 + iμ|Φ|

2∂Φ
∂x

= 0 (1.1)  

where the function Φ(x, t) represents the complex wave envelopes and 
where x and t respectively indicate the wave’s distance travelled and the 
time it took to travel that distance. If we choose γ = μ = 1, the CLL 
equation is collapsed [21]. In Eq. (1.1), the constant γ represents the 
group velocity dispersion, μ represents the nonlinear dispersion. Chen 
et al. [15] used the inverse scattering technique to linearize the 
nonlinear Hamiltonian system and used part of the Lax equation to test 
the integrability of the nonlinear Hamiltonian systems. Both of these 
processes were carried out to determine whether or not the nonlinear 
Hamiltonian systems were integrable. 

The remaining parts of the manuscript are structured as follows: the 
modified extended auxiliary equation mapping (MEAEM) technique has 
been deliberated in section 2. The optical soliton and its physical behav
iours have in section 3. The stability analysis of the CLL model has been 
discussed in section 4, and lastly, the conclusion is specified in section 5. 

Overview of the MEAEM method 

We will explain the suggested MEAEM approach for studying the 
optical soliton solution of NLEEs in this section. The NLEEs are consid
ered as the following form: 

℧(u, ut, ux, uxx, utt, uxt,⋯) = 0 (2.1)  

in which u = u(x, t) is a wave function. 
Step 1: The traveling wave transformation is considered as follows: 

u(x, t) = u(ξ) and ξ = x − ωt (2.2) 

In Eq. (2.2), ω is the wave speed. We obtain the following equation: 

H (u, u′

, u′′, u′′′ ,⋯) = 0, (2.3) 

Step 2. In the realms of mathematics and physics, an ansatz is a well- 
informed conjecture that aids in problem-solving and is subsequently 
verified through its results as part of the solution. When employing the 
direct method to obtain wave solutions, the selection of an appropriate 
ansatz holds immense importance. Any individual capable of conceiving 
a suitable ansatz can discover the desired solution with reduced effort 
and potentially uncover novel results. In the MEAEM method, an 
“Ansatz” has been utilized, and it has been established that this partic
ular conjecture is a significant technique. In comparison to other ap
proaches, the MEAEM method offers closed-form wave solutions with a 
lower number of free parameters for nonlinear evolution equations 
(NLEEs) than other methods. Consequently, the obtained solutions can 
effectively explain the observed facts. 

We hypothesize that the solution to Equation (2.3) is: 

u(x, t) =
∑m

j=0
AiΦj(ξ)+

∑− m

j=− 1
B− jΦj(ξ)+

∑m

j=2
CjΦj− 2(ξ)Φ′

(ξ)+
∑m

j=1
Cj

(
Φ′

(ξ)
Φ(ξ)

)j

,

(2.4)  

where the constants Al,Bl,Cl, and Dl (l = 0, 1, ..,m) are determined later, 
the auxiliary equation satisfy to the values of Φ(ξ) and its derivative 
Φ′

(ξ). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Φ′

(ξ))2
= λ1Φ2(ξ) + λ2Φ3(ξ) + λ3Φ4(ξ);

Φ′′(ξ) = λ1Φ(ξ) +
3
2
λ2Φ2(ξ) + 2λ3Φ3(ξ);

Φ′′′ (ξ) =
(
λ1 + 3λ2Φ(ξ) + 6λ3Φ2(ξ)

)
Φ′

(ξ);

Φ′′′′(ξ) =
1
2

Φ(ξ)
(
2λ2

1 + 15λ1λ2Φ(ξ) + 5
(
3λ2

2 + 8λ1λ2
)
Φ2(ξ) + 60λ2λ3Φ3(ξ) + 48λ2

3Φ′

(ξ)
)
;

(2.5)   
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where λ1, λ2, λ3 ∈ R and λ3 ∕= 0. 
Step 3. To determine the value of m we need to balance between the 

highest-order non-linear term and the highest-order linear term in Eq. 
(2.3). 

Step 4. After inserting Eq. (2.5) into Eq. (2.4) and setting the co
efficients of Φ′ l(ξ)Φj(ξ) (l = 0, 1; j = 1, 2, 3,…,m) to zero, we 
obtain a system of algebraic equations. By solving this system of equa
tions using Maple 20, the constants Al,Bl,Cl, and Dl (l = 0, 1, ..,m) can be 
determined. 

Step 5. By entering the values of constants and Φ(ξ) into Eq. (2.3), 
and we can derive the necessary solutions from Eq. (2.1) [28,29]. 

Optical solitons and their physical behaviours 

To use the CLL model to study the importance of OSSs, the following 
wave conversion is used: 

Φ(x, t) = ℘(ξ)exp(iϕ(x, t) ), (3.1)  

where ℘(ξ) represent the amplitude of the wave as ξ = x − ωt and ϕ(x, t)
represents the phase component of the wave as ϕ(x, t) = − αx + βt + θ. 
Here, ω is the traveling wave, α is the frequency of the soliton, β is the 
wave number and θ is the extra phase component of the soliton 
depending on ξ. By utilizing the wave conversation technique and 
inserting Equation (3.1) into Equation (1.1), we derived the nonlinear 
equation and subsequently separated the real and imaginary parts [20]. 
as: 

γ℘′′ −
(
γα2 + β

)
℘+ μα℘3 = 0, (3.2)  

and 

ω = − 2αγ + μ℘2, (3.3) 

The speed of the OSSs is derived from the imaginary component 
(3.3), whereas the profile of the OSSs is bestowed with the assistance of 
incorporating the real component (3.2) [20]. Using the balance principle 
in Eq. (3.2) yields m = 1. Now for m = 1, Eq. (2.4) takes the following 
form: 

℘(x, t) = A0 +A1Φ(ξ)+
B1

Φ(ξ)
+C1

Φ′

(ξ)
Φ(ξ)

, (3.4) 

Putting Eq. (2.5) and solution (3.4) into Eq. (3.2), and collecting all 
terms in the same order of Φ′ l(ξ)Φj(ξ) (l = 0, 1; j = 1, 2, 3,…,m), 
we get the system of algebraic equations and solving them, yields a 
solution set. 

β = −
γ(2α2 + λ1)

2
,A0 = 0,A1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅

−
λ3γ
2αμ

√

,B1 = 0,C1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅

−
γ

2αμ

√

(3.5) 

Substituting the positive values from (3.5) in solution (3.4), the op
tical soliton solutions of Eq. (1.1) are obtained as: 

Φ1(x, t) = −
λ1

̅̅̅̅̅̅̅̅̅̅
− 2λ3γ

αμ

√ (
∊coth

(
M
2

)
+ 1

)

4
̅̅̅̅̅̅̅̅̅
λ1λ3

√ +
∊
̅̅̅̅̅
λ1

√ ̅̅̅̅̅̅̅̅
− 2γ

αμ

√ (
1 − coth2( M

2

) )

4
(
∊coth

(
M
2

)
+ 1

)

× ei(− αx+βt+θ) (3.6) 

Fig. 1. (a) Graphical representation of the solution |Φ1(x, t) |, (b) Effect of dispersion for γ = − 0.1, − 0.3, − 0.5 and (c) Effect of nonlinearity μ = 0.02,0.04, 0.06 at 
t = 1.5. 

Fig. 2. (a) Graphical representation of the solution |Φ2(x, t)|, (b) Effect of dispersion for γ = − 0.13, − 0.16, − 0.19, and (c) Effect of nonlinearity μ = 0.13,0.16, 0.19 
at t = 1.5. 
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where λ1 > 0, ∊ = ±,1, λ2
2 − 4λ1λ3 = 0, β = −

γ(2α2+λ1)
2 ,M =

̅̅̅̅̅
λ1

√
(ξ + υ0)

and ξ = x − ωt. Now, if we set α = 1, μ = 0.02, γ = − 0.1, λ1 = 1, λ3 = 2.3,
ω = − 1, υ0 = 1.5,∊ = 1, β = 0.15, θ = 0 in Eq. (3.6), we get the singular 
periodic solution of |Φ1(x, t) | as displayed in Fig. 1(a). Fig. 1(b) and (c) 
signify the 2D line chart of the same solution, which is displayed the 
dispersion and nonlinearity effects. 

Φ2(x,t)=

⎛

⎜
⎜
⎜
⎜
⎝
−

̅̅̅
λ1
λ3

√ ̅̅̅̅̅̅̅̅̅̅
− 2λ3γ

αμ

√ (
∊sinh(M)

cosh(M)+η+1
)

4
+

̅̅̅̅̅̅̅̅
− 2γ

αμ

√ (
∊
̅̅̅
λ1

√
cosh(M)

cosh(M)+η −
∊
̅̅̅
λ1

√
sinh2(M)

(cosh(M)+η)2

)

2
(

∊sinh(M)

cosh(M)+η+1
)

⎞

⎟
⎟
⎟
⎟
⎠

×ei(− αx+βt+θ)

(3.7)  

where λ1, λ3 > 0, (∊, η) = (1,1), (1, − 1), ( − 1, 1), ( − 1, − 1), λ2
2 − 4λ1λ3 =

0,M =
̅̅̅̅̅
λ1

√
(ξ+υ0), β = −

γ(2α2+λ1)
2 and ξ = x − ωt. The 3D and 2D line 

plots of Eq. (3.7) are given as: 
The 3D plot of the solution |Φ2(x, t)| signifies the v-shape structure 

for choosing the values of the parameters α = 0.11,μ = 0.12,γ = 0.13,
λ1 = 0.01, λ3 = 0.1, ω = − 1, υ0 = 2, ∊ = 1, β = 0.13, θ = 0, η = 1, 
which are displayed in Fig. 2(a). Such behavior is confirmed by their 2D 
line plot at t = 1.5 as shown in Fig. 2(b) and Fig. 2(c) respectively. It 
further notes that Fig. 2(b) represents the dispersion effect and the 
nonlinearity effect is represented in Fig. 2(c).  

where λ1 > 0, (∊, η) = (1, 1), (1, − 1), ( − 1,1), ( − 1, − 1), λ2
2 − 4λ1λ3 = 0, 

M =
̅̅̅̅̅
λ1

√
(ξ+υ0), β = −

γ(2α2+λ1)
2 and ξ = x − ωt. The 3D and 2D line plots 

of Eq. (3.8) are given as 
Fig. 3(a) represents the periodic wave profiles of the solution 

Re(Φ3(x, t)) for selecting the parameters α = 0.01, μ = 0.3, γ = 0.13,
λ1 = 0.01, λ3 = 0.2, ω = − 1, υ0 = 12, ∊ = − 1, β = 0.3, θ = 0.2, η =

1, p = 0.1. The 2D line plot of such types of wave profiles is represented 
in Fig. 3(b) and (c), which are shown in the dispersion and nonlinearity 
effects of the CLL model. 

Fig. 4(a) represents the kink-type structure of |Φ3(x, t)| for choosing 
the parameters α = 0.01,μ = 0.3,γ = 0.13,λ1 = 0.01,λ3 = 0.2,ω = − 1,
υ0 = 12,∊ = − 1, β = 0.3, θ = 0.2, η = 1, p = 0.1. Such types of wave 
profiles are explored in 2D line plots of the same solutions as represented 
in Fig. 4(b) and (c), which are revealed in the dispersion and nonline
arity effects of the CLL model. 

Substituting the negative values from (3.5) in solution (3.4), the 
attain the results of Eq. (1.1) are 

Φ4(x, t) =
λ1

̅̅̅̅̅̅̅̅̅̅
− 2λ3γ

αμ

√ (
∊coth

(
M
2

)
+ 1

)

4
̅̅̅̅̅̅̅̅̅
λ1λ3

√ +
∊
̅̅̅̅̅
λ1

√ ̅̅̅̅̅̅̅̅
− 2γ

αμ

√ (
1 − coth2( M

2

) )

4
(
∊coth

(
M
2

)
+ 1

)

× ei(− αx+βt+θ) (3.9)  

where λ1 > 0,∊ = ±, 1, λ2
2 − 4λ1λ3 = 0,M =

̅̅̅̅̅
λ1

√
(ξ+υ0), β = −

γ(2α2+λ1)
2 ,

Φ3(x, t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

λ1

̅̅̅̅̅̅̅̅̅̅
− 2λ3γ

αμ

√ (
∊(sinh(M)+p )

cosh(M)+η
̅̅̅̅̅̅̅̅
p2+1

√ + 1
)

4
̅̅̅̅̅̅̅̅̅
λ1λ3

√ +

̅̅̅̅̅̅̅̅
− 2γ

αμ

√
(

∊
̅̅̅
λ1

√
cosh(M)

cosh(M)+η
̅̅̅̅̅̅̅̅
p2+1

√ −
∊(sinh(M)+p )

̅̅̅
λ1

√
sinh(M)

(
cosh(M)+η

̅̅̅̅̅̅̅̅
p2+1

√ )2

)

2
(

∊(sinh(M)+p )
cosh(M)+η

̅̅̅̅̅̅̅̅
p2+1

√ + 1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× ei(− αx+βt+θ) (3.8)   

Fig. 3. (a) Graphical representation of the real part of the solution Φ3(x, t), (b) 
Effect of dispersion for = − 1, − 3, − 5, and (c) Effect of nonlinearity μ = 1, 2,3 
at t = 1.5. 

Fig. 4. (a) Graphical representation of the solution |Φ3(x, t)|, (b) Effect of dispersion for γ = − 0.02, − 0.03, − 0.04, and (c) Effect of nonlinearity μ = 10,15,20 at t =

1.5. 
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and ξ = x − ωt.  

where λ1,λ3 > 0, (∊, η) = (1,1), (1, − 1), ( − 1, 1) ( − 1, − 1), λ2
2 − 4λ1λ3 =

0, M =
̅̅̅̅̅
λ1

√
(ξ+υ0), β = −

γ(2α2+λ1)
2 and ξ = x − ωt.  

where λ1 > 0, (∊, η) = (1, 1), (1, − 1), ( − 1,1), ( − 1, − 1), λ2
2 − 4λ1λ3 = 0, 

β = −
γ(2α2+λ1)

2 , M =
̅̅̅̅̅
λ1

√
(ξ+υ0) and ξ = x − ωt. The 3D and 2D line plot 

of the Eq. (3.11) is given as 
The periodic structure of the solution |Φ6(x, t)| for choosing the pa

rameters α = 1,μ = 0.01,γ = 0.02,λ1 = − 0.15,λ3 = 1.5,ω = 1,υ0 = 1,
∊ = 1,β = 1,θ = 1,η = − 1,p = 1, which as shown in Fig. 5(a). Fig. 5(b) 
and 5(c) also represent the dispersion and the nonlinearity effects of the 
CLL model. 

It is understood from Fig. 1(b)-5(b) that the amplitude of the soliton 
increases with the increases of γ. It is also seen in the Fig. 1(c)-5(c) that 
the amplitude of the soliton decreases with the increases of μ. The 
attained optical soliton solutions can be more applicable in optical fi
bers, communication systems, telecommunication systems, nonlinear 
optics and other domains. 

Stability analysis of the CLL equation 

We set X = u, Y = X′ to start the phase plane analysis for the CLL 
problem. We can now rewrite Equation (3.2) as a first-order dynamical 

system using the following notation: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX
dξ

= Y = f (X,Y),

dY
dξ

=
γα2 + β

γ
X −

μα
γ

X3 = g(X,Y),
(4.1)  

which defines the well-known phase plane associated with optical so
lutions of the CLL equation. The differential equation Eq. (3.2) or Eq. 
(4.1) comes from the Hamiltonian 

H(X,Y) =
Y2

2
−

γα2 + β
2γ

X2 +
μα
4γ

X4 (4.2)  

by using Hamilton canonical equations X′

= ∂H
∂Y and Y′

= ∂H
∂X. 

If β = − γα2, the system has only one equilibrium point as (X*,Y*) =

(0,0). On the other hand, if β ∕= − γα2, then the system has three equi

Fig. 5. (a) Graphical representation of the solution |Φ6(x, t)|, (b) Effect of dispersion for γ = 0.02,0.03, 0.04, and (c) Effect of nonlinearity μ = 0.01, 0.04 and 0.07 at 
t = 1.5. 

Φ5(x, t) =

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅
λ1
λ3

√ ̅̅̅̅̅̅̅̅̅̅
− 2λ3γ

αμ

√ (
∊sinh(M)

cosh(M)+η + 1
)

4
−

̅̅̅̅̅̅̅̅
− 2γ

αμ

√ (
∊
̅̅̅
λ1

√
cosh(M)

cosh(M)+η −
∊
̅̅̅
λ1

√
sinh2(M)

(cosh(M)+η )2

)

2
(

∊sinh(M)

cosh(M)+η + 1
)

⎞

⎟
⎟
⎟
⎟
⎠

ei(− αx+βt+θ) (3.10)   

Φ6(x, t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1

̅̅̅̅̅̅̅̅̅̅
− 2λ3γ

αμ

√ (
∊(sinh(M)+p )

cosh(M)+η
̅̅̅̅̅̅̅̅
p2+1

√ + 1
)

4
̅̅̅̅̅̅̅̅̅
λ1λ3

√ −

̅̅̅̅̅̅̅̅
− 2γ

αμ

√
(

∊
̅̅̅
λ1

√
cosh(M)

cosh(M)+η
̅̅̅̅̅̅̅̅
p2+1

√ −
∊(sinh(M)+p )

̅̅̅
λ1

√
sinh(M)

(
cosh(M)+η

̅̅̅̅̅̅̅̅
p2+1

√ )2

)

2
(

∊(sinh(M)+p )
cosh(M)+η

̅̅̅̅̅̅̅̅
p2+1

√ + 1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× ei(− αx+βt+θ) (3.11)   
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libria (0,0), 
( ̅̅̅̅̅̅̅̅̅̅

γα2+β
μα

√

, 0
)

and 
(
−

̅̅̅̅̅̅̅̅̅̅
γα2+β

μα

√

, 0
)

. Note that μα ∕= 0. 

The Jacobian matrix is J(X,Y) =
∂(f ,g)
∂(X,Y) =

⎛

⎜
⎝

∂f
∂X

∂f
∂Y

∂g
∂X

∂g
∂Y

⎞

⎟
⎠

(X*,Y*)

=

⎛

⎜
⎝

0 1
γα2 + β

γ
−

3μα
γ

X2 0

⎞

⎟
⎠. 

The eigenvalues of J are given by det(J − λI2×2) = 0 which implies 

λ2 − tr(J)λ+ det(J) = 0 

where tr(J) = 0,det(J) = 3μα
γ X2 − γα2+β

γ . 

Case 1: Stability of the equilibrium point (0,0)

In this case, the eigenvalues are λ1 =

̅̅̅̅̅̅̅̅̅̅
γα2+β

γ

√

and λ2 = −

̅̅̅̅̅̅̅̅̅̅
γα2+β

γ

√

. If 

γα2+β
γ > 0, then the eigenvalues λ1 =

̅̅̅̅̅̅̅̅̅̅
γα2+β

γ

√

and λ2 = −

̅̅̅̅̅̅̅̅̅̅
γα2+β

γ

√

are the 
real, opposite sign. Therefore, the equilibrium of (0.0) is unstable saddle 

point (See Figs. 6 and 7). If γα2+β
γ < 0, then the eigenvalues are λ1 =

i
̅̅̅̅̅̅̅̅̅̅
γα2+β

γ

√

and λ2 = − i
̅̅̅̅̅̅̅̅̅̅
γα2+β

γ

√

(imaginary) and the given equilibrium point 
is a stable centre or ellipse (See Figs. 8-10). That is, the stability of (0,0)

Fig. 6. Phase portrait of the planar system (4.1) for the values of α = 1, β = 1, γ = 1, μ = 1. Fig. 6(a) represents the trajectories of the system along with isoclines and 
nullclines, and Fig. 6(b) depicted the corresponding solutions of the trajectories in terms of wave variable ξ. 

Fig. 7. Phase portrait of the planar system (4.1) for the values of α = 1,β = 1,γ = 1,μ = − 1. Fig. 7(a) represents the trajectories of the system along with isoclines 
and nullclines, and Fig. 7(b) depicted the corresponding solutions of the trajectories in terms of wave variable ξ. 
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is altered from an unstable saddle to stable centres due to the change in 
the values of the parameters. 

Case 2: Stability of the equilibrium points 
(
±

̅̅̅̅̅̅̅̅̅̅
γα2+β

μα

√

,0
)

In this case, the characteristic roots are λ1 = i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(γα2+β)

γ

√

and λ2 =

− i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(γα2+β)

γ

√

. If μα > 0 and γα2+β
γ > 0, then the eigenvalues λ1 = i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(γα2+β)

γ

√

and λ2 = − i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(γα2+β)

γ

√

are imaginary, and thus the equilibrium points 
(
±

̅̅̅̅̅̅̅̅̅̅
γα2+β

μα

√

,0
)

are stable centres (See Fig. 6), whereas for μα > 0 and 

γα2+β
γ < 0, the eigenvalues λ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(γα2+β)

γ

√

and λ2 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(γα2+β)

γ

√

are the 

real, opposite sign. Therefore, the equilibria 
(
±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(γα2+β)

γ

√

,0
)

are un

stable saddles (See Fig. 8). Analogous to Case 1, the stability of 
(
±

̅̅̅̅̅̅̅̅̅̅
γα2+β

μα

√

,0
)

are altered from stable centres to unstable saddles due to the 

change in the values of the parameters. 

Conclusion 

The Chen-Lee-Liu model has been examined in this article to reveal 
important optical soliton solutions. With the help of parameter con
straints and a modified extended auxiliary equation mapping method, 
periodic, singular periodic, and kink-type solutions have been found. 
These wave profiles have useful applications in nonlinear optics, quan
tum simulation, high-energy physics, the transmission of light pulses in 
optical fibers, cosmology, reaction–diffusion wave propagation in near- 
shore regions, and coastal erosion. The physical conception is explained 
by drawing two- and three-dimensional diagrams and discussing the 
dispersion and nonlinearity effects of solutions for different values of the 
parameters. It is perceived from Figs. 1-5 that the amplitude increases 
with increasing dispersion coefficient. On the other hand, the amplitude 
decreases with increasing nonlinear coefficient. We also presented the 
bifurcation analysis of the studied model. The stability of the equilib
rium points is studied, and a phase portrait of the system is presented 

Fig. 8. Phase portrait of the planar system (4.1) for the values of α = − 1, β = − 1, γ = 0.5, μ = 1. Fig. 8(a) represents the trajectories of the system along with 
isoclines and nullclines, and Fig. 8(b) depicted the corresponding solutions of the trajectories in terms of wave variable ξ. 

Fig. 9. Phase portrait of the planar system (4.1) for the values of α = − 1, β = − 1, γ = 0.5,μ = − 1. Fig. 9(a) represents the trajectories of the system along with 
isoclines and nullclines, and Fig. 9(b) depicted the corresponding solutions of the trajectories in terms of wave variable ξ. 
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graphically in Figs. 6-10. Through bifurcation, from the analysis, we 
may conclude that the change of the values of the parameters can alter 
the dynamics of the optical soliton solutions of the Chen-Lee-Liu model 
and can play an important role in optical fibers, nonlinear optics and 
communication systems. 
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