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A B S T R A C T

Fractional nonlinear evolution equations are mathematical representations used to explain a wide range of
complex phenomena occurring in nature. By incorporating fractional order viscoelasticity, these equations
can accurately depict the intricate behaviour of materials or mediums, requiring fewer parameters compared
to classical models. Furthermore, fractional viscoelastic models align with molecular theories and thermo-
dynamics, making them highly compatible. Consequently, the scientific community has shown significant
interest in fractional nonlinear evolution equations and their soliton solutions. This study employs the extended
Kudryashov method to derive soliton solutions for the time-fractional unstable nonlinear Schrödinger equation,
utilizing the Atangana–Baleanu fractional derivative known as the beta derivative. The obtained solitons exhibit
various shapes, including V-shaped, periodic, singular periodic, flat kink, and singular bell, under specific
conditions. To better understand their physical characteristics, 3D and contour plots are presented by assigning
parameter values to certain solutions. Additionally, 2D graphs are generated to observe how the fractional
parameter affects the solutions. The Hamiltonian function is determined to further analyse the dynamics of the
phase plane. The simulations were conducted using Mathematica and MATLAB software tools. The outcomes of
this research contribute to a deeper understanding of the behaviour of fractional nonlinear evolution equations
and their soliton solutions, offering insights into the complex dynamics of viscoelastic systems.
. Introduction

An enormous number of natural phenomena can be described by
onlinear evolution equations (NLEEs). The NLEEs arise in various
ields of science and engineering including optics, plasma physics,
olid-state physics, fluid dynamics, and so on.1–4 The fractional-order
erivative is a generalization of the derivative of integer order. In many
ractical situations, fractional nonlinear evolution equations (FNLEEs)
re more suitable and general than NLEEs. For illustration, the classical
ifferential relaxation and oscillation equations are the two special
ases of fractional differential equation 𝐷𝜇

𝑡 𝑢 (𝑡) + 𝑢 (𝑡) − 𝑞 (𝑡) = 0,
> 0, 0 < 𝜇 ≤ 2, and 𝐹 = 𝑘𝐷𝜇

𝑡 𝑥 which is the generalization
f Hooke’s model of elasticity, Newton’s second law, and Newton’s
ormula for viscosity.5 The behaviour of viscoelastic food ingredients
nder stress and relaxation may be modelled mathematically using
ractional calculus.6 Also, the use of fractional differential equation
olutions to fit experimental data is a promising technique in the
odelling of the change of properties of wires in transport equipment.7

NLEEs and their applications in science and engineering are highly
ssential and, recently, have piqued the attention of many scholars

∗ Corresponding author at: Department of Mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh.
E-mail address: kkamruzz@une.edu.au (K. Khan).

and researchers. To analyse FNLEEs effectively, a precise and well-
defined framework for fractional derivatives (FD) is required. Several
noteworthy definitions have emerged as prominent choices in this field,
including the Caputo FD, Riemann–Liouville (R–L) FD, the conformal
fractional derivative,8 M-fractional derivatives,9 ABC FD10 and the beta
FD,11 and others. These definitions provide a solid framework that
allows for rigorous investigation and understanding of FNLEEs.

The family of nonlinear Schrodinger equations is used extensively
in various applied research domains, such as plasma physics, nonlinear
optics, quantum mechanics, metrology, etc. One of them is the time-
fractional unstable nonlinear Schrodinger equation (UNLSE) that de-
scribes the time evolution of perturbation in the two-layer baroclinic in-
stability and the lossless symmetric two-stream plasma instability.12,13

The time-fractional unstable nonlinear Schrodinger equation (UNLSE)
has the following form14:

𝑖𝐷𝜇
𝑡 𝑞 (𝑥, 𝑡) + 𝑞𝑥𝑥(𝑥, 𝑡) + 2𝜂 |𝑞 (𝑥, 𝑡)|2 𝑞 (𝑥, 𝑡) − 2𝛾𝑞 (𝑥, 𝑡) = 0, 0 < 𝜇 ≤ 1, (1.1)

where 𝑞(𝑥, 𝑡) is the complex-valued function that represents the en-
velope of the wave or the quantum mechanical wave function. 𝜂 is
the coefficient that determines the strength of the nonlinearity in the
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UNLSE. It affects the interaction between the wave and itself, leading
to phenomena such as self-focusing or self-phase modulation. 𝛾 is the
coefficient that represents the strength of the linear damping or loss
term in the NLSE. It accounts for energy dissipation or attenuation of
the wave.

The physical motivation and reasoning behind considering the non-
linear Schrödinger equation lie in its broad applicability and relevance
to various physical phenomena. The nonlinear Schrödinger equation
arises in diverse fields of physics, including optics, quantum mechanics,
fluid dynamics, and condensed matter physics, among others.15 In
optics, the nonlinear Schrödinger equation is widely used to study
phenomena such as self-focusing, soliton propagation, and optical pulse
shaping. It provides a valuable framework for understanding the be-
haviour of intense laser pulses in nonlinear media, optical fibre com-
munication systems, and nonlinear optical devices.16

In quantum mechanics, the nonlinear Schrödinger equation finds
applications in Bose–Einstein condensates, where it describes the col-
lective behaviour of ultracold atomic gases.15 Moreover, the nonlinear
Schrödinger equation has implications in fluid dynamics, where it can
describe the behaviour of weakly nonlinear waves on the surface of wa-
ter or in other fluid systems. It provides insights into phenomena such
as rogue waves and wave breaking. Overall, the nonlinear Schrödinger
equation serves as a versatile mathematical tool for understanding and
analysing various physical phenomena in different fields of research,
enabling deeper insights into the behaviour of nonlinear waves in
complex systems.

A set of methodologies have been successfully developed to achieve
the analytical solution for FNLEEs such as the 𝜙6 model expansion
technique,1 the extended hyperbolic function method,2 the two-variable
(𝐺′∕𝐺, 1∕𝐺)-expansion method,9,17 the tanh–coth method,18 the en-
hanced modified simple equation method,19,20 the Exp-expansion
method,21 the improved Bernoulli sub-equation function method,22,23

the sine-Gordon function method, the Jacobi elliptic method,24 the
homotopy decomposition method,25 the Kudryashov method,26 the
generalized Kudryashov method,27 the extended Kudryashov method,28

the multiple Exp-function method,29 hyperbolic function method,30

first integral and the functional variable strategy,31 Hirota bilinear
method32,33 and so on. Among the methodologies, the extended
Kudryashov method is an effective and straightforward method that
takes full advantage of the combination of all solutions of the Riccati
and Bernoulli equations.28 To solve an FNLEE we take the help of
homogeneous balance between the highest order derivative and non-
linear term. For this reason, the solutions that come out from this
method are in the form of soliton. Soliton is a special type of travelling
wave that can travel a long distance without deviation. In the field of
analytical solutions for FNLEEs, soliton wave solutions play a crucial
role in enhancing our understanding of nonlinear systems and their
characteristic features. Researchers have previously attained various
soliton shapes, including but not limited to lump-stripe, lump-periodic,
breather, bell, anti-bell, kink, periodic, singular and others.1–5,34 These
soliton shapes offer valuable insights into the dynamics of nonlinear
systems, allowing for the exploration of their properties, interactions,
and stability.34 In past years, some techniques for extracting the soliton
solution of the UNLS equation both for fractional and integer order
have been executed. For example, Mousa Ilie et al.14 implemented the
modified Kudryashov method and the sine-Gordon expansion approach
in a conformable fractional derivative context. In a conformable frac-
tional derivative sense, Razzaq et al.35 used an improved auxiliary
equation strategy. The authors36,37 applied the new Jacobi elliptic
function rational expansion method, the exponential rational function
method, and improved auxiliary equation strategies to solve integer
order UNLS equation. The authors38 utilize extended Jacobi’s elliptic
expansion functions method to the time-fractional UNLS equation with
the truncated M-fractional derivative.

In this article, we will find the soliton solution of the time fractional

UNLS equation using the extended Kudryashov method in the frame of

2

beta derivative. To the best of our knowledge, no prior research has
used this technique with beta derivative to solve the time fractional
UNLS equation.

The leftover article is organized as follows: The definition and
properties of the beta derivative are given in Section 2. In Section 3, the
key steps of the above-mentioned technique are explained. In Section 4,
we apply this technique to Eq. (1.1). In Section 5, Comparisons are
discussed. The graphical demonstration and discussion are presented
in Section 6. In Section 7, the phase plane is discussed. Finally, in
Section 8, we retrieved the conclusions and future directions.

2. Preliminaries of beta derivative

In 2016 Atangana et al.39 published a new method of fractional
derivative in the paper ‘‘Analysis of time-fractional Hunter-Saxton
equation: a model of nematic liquid crystal’’ which is well-known
as beta derivative or Atangana conformal derivative. The Atangana
fractional derivative for the function 𝜓 (𝑡) ∶R+ → R is defined as,11,39

𝐷𝜇
𝑡 𝜓(𝑡) = lim

𝛿→0

𝜓
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

− 𝜓(𝑡)

𝛿
, 0 < 𝜇 ≤ 1. (2.1)

Using the transformation 𝛿 = 𝜉
(

t + 1
𝛤𝜇

)𝜇−1
, 𝜉 → 0 as 𝛿 → 0 (2.1)

can be reduced to the following form:40

𝐴
0𝐷

𝜇
𝑡 𝜓(𝑡) =

(

𝑡 + 1
𝛤𝜇

)1−𝜇
lim
𝜉→0

𝜓 (𝑡 + 𝜉) − 𝜓(𝑡)
𝜉

=
(

𝑡 + 1
𝛤𝜇

)1−𝜇 𝑑𝜓 (𝑡)
𝑑𝑡

.

(2.2)

This definition satisfies all the fundamental properties of conven-
tional calculus. Assuming that functions 𝜓 ≠ 0 and 𝛷 ≠ 0 are
differentiable with 𝜇 ∈ (0, 1]. Then the following five relations hold.41

i. 𝐴0𝐷
𝜇
𝑡 𝐶 = 0.

ii. 𝐴0𝐷
𝜇
𝑡
[

𝑐1𝜓 (𝑡) + 𝑐2𝛷 (𝑡)
]

= 𝑐1𝐴0𝐷
𝜇
𝑡 𝜓(𝑡) + 𝑐2

𝐴
0𝐷

𝜇
𝑡 𝛷(𝑡).

iii. 𝐴0𝐷
𝜇
𝑡 {𝜓 (𝑡)𝛷 (𝑡)} = 𝜓 (𝑡) 𝐴0𝐷

𝜇
𝑡 𝛷 (𝑡) +𝛷 (𝑡) 𝐴0𝐷

𝜇
𝑡 𝜓(𝑡).

iv. 𝐴0𝐷
𝜇
𝑡
𝜓(𝑡)
𝛷(𝑡) =

𝛷(𝑡)𝐴0 𝐷
𝜇
𝑡 𝜓(𝑡)−𝜓(𝑡)

𝐴
0 𝐷

𝜇
𝑡 𝛷(𝑡)

𝛷2(𝑡) .
v. 𝐴0𝐷

𝜇
𝑡 𝜓 (𝛷 (𝑡)) = 𝑑𝜓(𝛷(𝑡))

𝑑𝛷(𝑡)
𝐴
0𝐷

𝜇
𝑡 𝛷(𝑡).

The proof of the above relations:

heorem 1. The beta derivative of a constant function is zero, i.e. 𝐴0𝐷
𝜇
𝑡 𝑘

0.42

roof. Consider a constant function 𝜓 (𝑡) = 𝑘, for any values of 𝑡.
Now, 𝜇 (0 < 𝜇 ≤ 1) times beta derivative of 𝜓 is defined as in

Eq. (2.1)

𝐴
0𝐷

𝜇
𝑡 𝜓(𝑡) = lim

𝛿→0

𝜓
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

− 𝜓(𝑡)

𝛿
.

𝐴
0𝐷

𝜇
𝑡 𝜓(𝑡) = lim

𝛿→0

𝑘 − 𝑘
𝛿

= 0.

Therefore, the beta derivative of a constant function is zero.

Theorem 2. The beta derivative of the product of a constant and a function
is the product of the constant and the beta derivative of the function,42
i.e., 𝐴0𝐷

𝜇
𝑡 𝜓 (𝑡) = 𝑘𝐴0𝐷𝛷(𝑡).

roof. Consider a function 𝜓 ∶R+ → R defined as 𝜓 (𝑡) = 𝑘𝛷(𝑡) where
𝑘 is a constant. The beta derivative of 𝜓 is

𝐷𝜇
𝑡 𝜓(𝑡) = lim

𝛿→0

𝜓
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

− 𝜓(𝑡)

𝛿
0 < 𝜇 ≤ 1.

𝐴𝐷𝜇𝜓(𝑡) = lim
𝑘𝛷

(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

− 𝑘𝛷(𝑡)
.
0 𝑡 𝛿→0 𝛿
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𝐴
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𝜇
𝑡 𝜓(𝑡) = 𝑘 lim

𝛿→0

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛷(𝑡)

𝛿
.

𝐴
0𝐷

𝜇
𝑡 𝜓 (𝑡) = 𝑘𝐴0𝐷𝛷(𝑡).

Hence, the beta derivative of the product of a constant and a
function is the product of the constant and the beta derivative of the
function.

Theorem 3. The beta derivative of the product of the two functions is equal
to the sum of the product of the first function and beta derivative of the
second function and the product of the second function and beta derivative
of the first function,42 i.e.

𝐷𝜇
𝑡 {𝜓 (𝑡)𝛺 (𝑡)} = 𝛺 (𝑡) 𝐴0𝐷𝑡𝜓 (𝑡) + 𝜓(𝑡)𝐴0𝐷

𝜇
𝑡 𝛺 (𝑡).

Proof. Consider a function 𝛷∶R+ → R defined as 𝛷(𝑡) = 𝛺 (𝑡)𝜓 (𝑡). The
beta derivative of function 𝜓 is

𝐴
0𝐷

𝜇
𝑡 𝛷(𝑡) = lim

𝛿→0

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛷(𝑡)

𝛿
, 0 < 𝜇 ≤ 1

= lim
𝛿→0

1
𝛿
[𝛺

(

t + 𝛿
(

t + 1
𝛤𝜇

)1−𝜇
)

𝜓

(

t + 𝛿
(

t + 1
𝛤𝜇

)1−𝜇
)

−𝛺 (t)𝜓 (t)]

= lim
𝛿→0

1
𝛿

[𝛺
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

𝜓

(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛺 (𝑡)𝜓 (𝑡)

−𝛺

(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

𝜓 (𝑡) +𝛺

(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

𝜓 (𝑡) ]

= lim
𝛿→0

𝛺

(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

lim
𝛿→0

𝜓
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

− 𝜓 (𝑡)

𝛿

+ 𝜓 (𝑡) lim
𝛿→0

𝛺
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛺 (𝑡)

𝛿

= 𝛺 (𝑡) lim
𝛿→0

𝜓
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

− 𝜓 (𝑡)

𝛿

+ 𝜓 (𝑡) lim
𝛿→0

𝛺
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛺 (𝑡)

𝛿

𝐷𝜇
𝑡 𝛷(𝑡) =

𝐴
0𝐷

𝜇
𝑡 {𝜓 (𝑡)𝛺 (𝑡)} = 𝛺 (𝑡) 𝐴0𝐷𝑡𝜓 (𝑡) + 𝜓(𝑡)𝐴0𝐷

𝜇
𝑡 𝛺 (𝑡).

Therefore, the beta derivative of 𝛺(𝑡)𝛷(𝑡) is equal to the sum of the
product of 𝛺(𝑡) and the beta derivative of 𝜓 (𝑡) and the product of 𝜓 (𝑡)
and beta derivative of the 𝛺(𝑡).

Theorem 4. The beta fractional derivative of a composite function,
𝜓(𝛷 (𝑡)) is equal to the product of the classical derivative of 𝜓 with respect
to 𝛷 (𝑡) and the beta derivative of 𝛷 (𝑡) with respect to 𝑡.41

Let a composite function 𝑍 ∶R+ → R defined as 𝑍 = 𝜓(𝛷 (𝑡)). This
can be written as 𝑍 = 𝜓(𝜒) where 𝜒 = 𝛷(𝑡). Also, assume that both the
functions 𝜓 and𝜙 are differentiable. The beta derivative of function 𝑍
is
𝐴
0𝐷

𝜇
𝑡 𝑍 = 𝐴

0𝐷
𝜇
𝑡 𝜓 {𝛷 (𝑡)}

= lim
𝛿→0

𝜓
{

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)}

− 𝜓 {𝛷 (𝑡)}

𝛿
, 0 < 𝜇 ≤ 1

= lim
𝛿→0

𝜓
{

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)}

− 𝜓 {𝛷 (𝑡)}

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
)1−𝜇

)

−𝛷 (𝑡)
𝛤𝜇

3

.
𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛷 (𝑡)

𝛿

= lim
𝛿→0

𝜓
{

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)}

− 𝜓 {𝛷 (𝑡)}

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛷 (𝑡)

. lim
𝛿→0

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛷 (𝑡)

𝛿

= lim
𝛿→0

𝜓
{

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)}

− 𝜓 {𝛷 (𝑡)}

𝛷
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

−𝛷 (𝑡)
.𝐴0𝐷

𝜇
𝑡 𝛷 (𝑡)

[by Eq. (2.1)]

Setting
(

𝑡 + 𝛿
(

𝑡 + 1
𝛤𝜇

)1−𝜇
)

= ℎ, ℎ→ 0 as 𝛿 → 0,

= lim
ℎ→0

𝜓 {𝛷 (𝑡 + ℎ)} − 𝜓 {𝛷 (𝑡)}
𝛷 (𝑡 + ℎ) −𝛷 (𝑡)

.𝐴0𝐷
𝜇
𝑡 𝛷 (𝑡)

Consider,

onsidered, 𝛷 (𝑡 + ℎ) −𝛷 (𝑡) = 𝑘, 𝑘→ 0 as ℎ→ 0,

= lim
ℎ→0

𝜓 {𝜙 (𝑡) + 𝑘} − 𝜓 {𝛷 (𝑡)}
𝑘

.𝐴0𝐷
𝜇
𝑡 𝛷 (𝑡)

= 𝑑
𝑑𝜙(𝑡)

𝜓 {𝛷 (𝑡)} .𝐴0𝐷
𝜇
𝑡 𝛷 (𝑡)

herefore, 𝐴0𝐷
𝜇
𝑡 𝜓 (𝜙(𝑡)) =

𝑑𝜓 (𝜙(𝑡))
𝑑𝛷(𝑡)

𝐴
0𝐷

𝜇
𝑡 𝛷 (𝑡).

3. Overview of the extended Kudryashov method

In this part of the article, we will briefly discuss the working
procedure of the EK method. We split the entire procedure of this
method into five key steps as follows:28

Assume the following space–time fractional non-linear evolution
equation (FNLEEs) with function Z (real or complex) of the indepen-
dent variables 𝑋 = (𝑥1, 𝑥2, 𝑥3,… , 𝑡)

𝑄(Z,Z𝑥1 …𝐷𝜇
𝑡 Z, 𝐷𝜇

𝑥2
Z, 𝐷𝜇

𝑥3
Z,… , 𝐷2𝜇

𝑡 Z, 𝐷2𝜇
𝑥2

Z, 𝐷2𝜇
𝑡𝑥2

Z,…) = 0 (3.1)

where Q is a polynomial in Z and its various partial fractional deriva-
tive involving the highest-order derivative and nonlinear terms.

𝐷𝜇
𝑡 = 𝑑𝜇

𝑑𝑡𝜇
, 𝐷𝜇

𝑥2
= 𝑑𝜇

𝑑𝑥𝜇2
, 𝐷2𝜇

𝑡 = 𝑑𝜇

𝑑𝑡𝜇
𝑑𝜇

𝑑𝑡𝜇
,

𝐷2𝜇
𝑥2𝑡

= 𝑑𝜇

𝑑𝑥𝜇2

𝑑𝜇

𝑑𝑡𝜇
,…denote the fractional beta derivative operator.

Step 1. The travelling wave transformation is a combination of space
and time. For the real function, the transformation is

Z
(

𝑥1, 𝑥2, 𝑥3,… , 𝑡
)

= 𝑢 (𝜌) , (3.2)

𝜌 =
𝑘1
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇
+
𝑘2
𝜇

(

𝑥2 +
1
𝛤𝜇

)𝜇
+
𝑘3
𝜇

(

𝑥3 +
1
𝛤𝜇

)𝜇
+⋯ + 𝑘𝑝𝑥1

nd for the complex-valued function, the transformation is
(

𝑥1, 𝑥2, 𝑥3,… , 𝑡
)

= 𝑢 (𝜌) 𝑒𝑖𝜃 , (3.3)

𝜌 =
𝑘1
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇
+
𝑘2
𝜇

(

𝑥2 +
1
𝛤𝜇

)𝜇
+
𝑘3
𝜇

(

𝑥3 +
1
𝛤𝜇

)𝜇
+⋯ + 𝑘𝑝𝑥1

nd

=
𝜂1
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇
+
𝜂2
𝜇

(

𝑥2 +
1
𝛤𝜇

)𝜇
+
𝜂3
𝜇

(

𝑥3 +
1
𝛤𝜇

)𝜇
+⋯ + 𝜂𝑝𝑥1,

where 𝑘 , 𝑘 , 𝑘 … 𝑘 , 𝜂 , 𝜂 , 𝜂 ,… 𝜂 are arbitrary constant.
1 2 3 𝑝 1 2 3 𝑝



S. Devnath, K. Khan and M.A. Akbar Partial Differential Equations in Applied Mathematics 8 (2023) 100537

T

S

𝑞

S

𝑞

w

𝑞

w

𝑞

Eq. (3.2) or Eq. (3.3) converts Eq. (3.1) to the following nonlinear
ordinary differential equation

𝑄
(

Z,Z′,Z′′,Z′′′,…
)

= 0. (3.4)

Step 2: The solution to Eq. (3.4) can be written in the following form,

𝑢 (𝜌) = 𝐴0 +
𝑁
∑

𝑙=1

∑

𝑖+𝑘=𝑙
𝐴𝑖𝑘𝛷 (𝜌)i 𝜓 (𝜌)𝑘 +

𝑁
∑

𝑙=1

∑

𝑖+𝑘=𝑙

𝐵𝑖𝑘
𝛷 (𝜌)i 𝜓 (𝜌)𝑘

, (3.5)

where the constants 𝐴0, 𝐴𝑖𝑘, 𝐵𝑖𝑘(𝑖, 𝑘 = 1, 2, 3…𝑁) to be determined. The
function 𝛷 (𝜌) and 𝜓(𝜌) satisfies the Riccati and Bernoulli equation.

The Bernoulli differential equation,

𝜓 ′ (𝜌) = 𝑆0 + 𝑆1𝜓(𝜌) + 𝑆2𝜓
2(𝜌), (3.6)

has the following solutions,

𝜓(𝜌) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−𝑆1
2𝑆2

−
√

𝛼
2𝑆2

tanh
(

√

𝛼
2 𝜌 + 𝛽

)

, 𝛼 > 0

−𝑆1
2𝑆2

−
√

𝛼
2𝑆2

coth
(

√

𝛼
2 𝜌 + 𝛽

)

, 𝛼 > 0

−𝑆1
2𝑆2

+
√

−𝛼
2𝑆2

tan
(

√

−𝛼
2 𝜌 + 𝛽

)

, 𝛼 < 0

−𝑆1
2𝑆2

−
√

−𝛼
2𝑆2

cot
(

√

−𝛼
2 𝜌 + 𝛽

)

, 𝛼 < 0
−𝑆1
2𝑆2

+ −1
𝑆2𝜌+𝛽

, 𝛼 = 0.

(3.7)

where 𝛼 = 𝑆2
1 − 4𝑆0𝑆2 and 𝛽 is an arbitrary real constant.

The Riccati differential equation,

𝛷′ (𝜌) = −𝑅1𝛷 (𝜌) + 𝑅2𝛷
2 (𝜌) , (3.8)

has the following solutions,

𝛷 (𝜌) =

⎧

⎪

⎨

⎪

⎩

−1
𝑅2𝜌+𝛽

, 𝑅1 = 0
𝑅1

𝑅2+𝑅1𝑒𝑥𝑝(𝑅1𝜌+𝛽)
, 𝑅1 ≠ 0.

(3.9)

The coefficients 𝑆0, 𝑆1, 𝑆2 in Eq. (3.6) and 𝑅1, 𝑅2 in Eq. (3.9) are
constant coefficients of the Bernoulli and Riccati equation.
Step 3: The value of 𝑁 in Eq. (3.5) is most important for the soliton
solutions of Eq. (3.4). In the case of soliton solution the highest order
derivative balance with the nonlinear terms of Eq. (3.4), which provides
the positive integer value of N.
Step 4: A polynomial of 𝛷 (𝜌)𝜓 (𝜌) is attained after inserting (3.5) into
(3.4) along with (3.6) and (3.8). Then we construct an algebraic system
of equations by collecting all the coefficients of 𝛷l (𝜌)𝛹m (𝜌), (l, 𝑚 = 1,2,
3, . . . ) from the polynomial and equating them to zero.
Step 5: With the assistance of Mathematica, this difficult algebraic
system of equations can be solved for 𝐴0, 𝐴𝑖𝑘, 𝐵𝑖𝑘 (𝑖, 𝑘 = 0, 1, 2, 3,… , 𝑁).
Substituting the values of the coefficients into solution (3.5) together
with Eq. (3.7) and Eq. (3.9), a list of solutions to the FNLEE Eq. (3.1)
can be obtained.

4. Solutions analysis

Eq. (1.1) is transformed into a nonlinear differential equation

𝑒𝑖𝜃
(

−
(

𝑝2 + 2𝛾 + 𝜈
)

𝑢(𝜌) + 2𝜂𝑢(𝜌)3 + 𝑖 (2𝑘𝑝 + 𝜔) 𝑢′(𝜌) + 𝑘2𝑢′′(𝜌)
)

= 0 (4.1)

by performing the travelling wave transformation 𝑞 (𝑥, 𝑡) = 𝑢 (𝜌) 𝑒𝑖𝜃(𝑥,𝑡),

𝜌 = 𝑘𝑥 − 𝜔
𝜇
(𝑡 + 1

𝛤𝜇
)𝜇 and 𝜃 = 𝑝𝑥 + 𝜈

𝛼
(𝑡 + 1

𝛤𝜇
)𝜇

where the real function 𝑢(𝜌) and 𝜃(𝑥, 𝑡) are the shape and the phase
component of the soliton, 𝑝 represents the frequency, 𝜈 is the wave
number, and 𝜔 is the velocity of the soliton.

The real and imaginary parts of (4.1) provide

−
(

𝑝2 + 2𝛾 + 𝜈
)

𝑢(𝜌) + 2𝜂𝑢(𝜌)3 + 𝑘2𝑢′′(𝜌) = 0 (4.2)

and 𝜔 = 2𝑘𝑝. (4.3)
4

In Eq. (4.2), if we balance 𝑢′′(𝜌) with 𝑢(𝜌)3, then we attain 𝑁 = 2.
Consequently, Eq. (4.2) has the solution in following form,

𝑢 (𝜌) = 𝐴0 + 𝐴1,0𝜙(𝜌) + 𝐴0,1𝜓(𝜌) +
𝐵1,0

𝜙(𝜌)
+
𝐵0,1

𝜓(𝜌)
. (4.4)

he following sets of the coefficient value along with 𝜈 are attained
according to the method.
Set 1: 𝐴0 = ∓ 𝑖𝑘𝑅1

2
√

𝜂
, 𝐴1,0 = ± 𝑖𝑘𝑅2

√

𝜂
, 𝐴0,1 = 𝐵1,0 = 𝐵0,1 = 0, 𝜈 = 1

2 (−2𝑝
2 −

4𝛾 − 𝑘2𝑅2
1).

et 2: 𝐴0 = ± 𝑖𝑘𝑆1
2
√

𝜂
, 𝐴1,0 = 0, 𝐴0,1 = ± 𝑖𝑘𝑆2

√

𝜂
, 𝐵1,0 = 𝐵0,1 = 0, 𝜈 =

1
2 (−2𝑝

2 − 4𝛾 − 𝑘2𝑆2
1 + 4𝑘2𝑆0𝑆2).

Set 3: 𝐴0 = ± 𝑖𝑘𝑆1
2
√

𝜂
, 𝐴1,0 = 𝐴0,1 = 𝐵1,0 = 0, 𝐵0,1 = ± 𝑖𝑘𝑆0

√

𝜂
, 𝜈 = 1

2 (−2𝑝
2 −

4𝛾 − 𝑘2𝑆2
1 + 4𝑘2𝑆0𝑆2).

Solution type 1.
Soliton solutions of (1.1) corresponding to set 1,

𝑞 (𝑥, 𝑡) = ±
𝑖𝑘𝑅2𝑒

𝑖(𝑝𝑥+ 𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇
)

√

𝜂(𝛽 + 𝜌𝑅2)
, 𝑅1 = 0 (4.5)

(𝑥, 𝑡) =
𝑖𝑘𝑅1

2
√

𝜂
𝑒𝑒
𝑖(𝑝𝑥+ 𝜈

𝛼
(

𝑡+ 1
𝛤𝜇

)𝜇
)
(1 −

2𝑅2

𝑅1𝑒𝛽+𝜌𝑅1 + 𝑅2
), 𝑅1 ≠ 0. (4.6)

After performing some simplification, solution in Eq. (4.6) reduces to

𝑞 (𝑥, 𝑡) = ±
𝑖𝑘𝑅1𝑒

𝑖𝑝𝑥+ 𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇

2
√

𝜂

×

⎛

⎜

⎜

⎜

⎝

1 −
2𝑅2

(

𝐶𝑜𝑠ℎ
[

1
2

(

𝛽 + 𝜌𝑅1
)

]

− 𝑆𝑖𝑛ℎ
[

1
2

(

𝛽 + 𝜌𝑅1
)

])

(

𝑅1 + 𝑅2
)

𝐶𝑜𝑠ℎ
[

1
2

(

𝛽 + 𝜌𝑅1
)

]

+
(

𝑅1 − 𝑅2
)

𝑆𝑖𝑛ℎ
[

1
2

(

𝛽 + 𝜌𝑅1
)

]

⎞

⎟

⎟

⎟

⎠

,

𝑅1 ≠ 0. (4.7)

ome special cases of the solution in Eq. (4.7)
when 𝑅1 = 𝑅2 ≠ 0,

(𝑥, 𝑡) = ±
𝑖𝑘𝑅1

2
√

𝜂
𝑒𝑒
𝑖𝑝𝑥+ 𝜈

𝛼
(

𝑡+ 1
𝛤𝜇

)𝜇

tanh
( 1
2
(

𝛽 + 𝜌𝑅1
)

)

, (4.8)

when 𝑅1 = 4, 𝑅2 = 1,

𝑞 (𝑥, 𝑡) = ±2𝑖𝑘𝑒𝑖𝑝𝑥+
𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇

2
√

𝜂

⎛

⎜

⎜

⎜

⎝

1 −
2
(

𝑐𝑜𝑠ℎ
[

1
2
(𝛽 + 4𝜌)

]

− 𝑠𝑖𝑛ℎ
[

1
2
(𝛽 + 4𝜌)

])

4𝑐𝑜𝑠ℎ
[

1
2
(𝛽 + 4𝜌)

]

+ 3𝑠𝑖𝑛ℎ
[

1
2
(𝛽 + 4𝜌)

]

⎞

⎟

⎟

⎟

⎠

,

(4.9)

hen 𝑅1 = 3, 𝑅2 = 1,

(𝑥, 𝑡) = ± 3𝑖𝑘
2
√

𝜂
𝑒𝑒
𝑖𝑝𝑥+ 𝜈

𝛼
(

𝑡+ 1
𝛤𝜇

)𝜇 ⎛

⎜

⎜

⎜

⎝

𝑐𝑜𝑠ℎ
[

1
2 (𝛽 + 3𝜌)

]

+ 2𝑆𝑖𝑛ℎ
[

1
2 (𝛽 + 3𝜌)

]

2𝑐𝑜𝑠ℎ
[

1
2 (𝛽 + 3𝜌)

]

+ 𝑆𝑖𝑛ℎ
[

1
2 (𝛽 + 3𝜌)

]

⎞

⎟

⎟

⎟

⎠

,

(4.10)

here, 𝜈 = 1
2 (−2𝑝

2 − 4𝛾 − 𝑘2𝑅2
1), 𝜌 = 𝑘𝑥 − 2𝑘𝑝

𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇
.

Solution type 2
Soliton solutions of (1.1) corresponding to Set 2

𝑞 (𝑥, 𝑡) =
±𝑖𝑒𝑖(𝑝𝑥+

𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇
)𝑘
√

𝛼𝑡𝑎𝑛ℎ[𝛽 + 1
2 (𝑘𝑥 −

2𝑘𝑝
𝜇 (𝑡 + 1

𝛤𝜇 )
𝜇)
√

𝛼]

2
√

𝜂
, 𝛼 > 0,

(4.11)

(𝑥, 𝑡) =
∓𝑖𝑘

√

𝛼𝑒𝑖(𝑝𝑥+
𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇
)𝑐𝑜𝑡ℎ[𝛽 + 1

2
(𝑘𝑥 − 2𝑘𝑝

𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇
)
√

𝛼]

2
√

𝜂
, 𝛼 > 0,

(4.12)
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Fig. 1. (a) 3D plot, (b) 2D plot at 𝑡 = 7, (c) contour plot of the absolute part of the solution (4.6).
0
2
𝜇

𝜇
g
0

(𝑥, 𝑡) =
±𝑖𝑘

√

−𝛼e𝑖(𝑝𝑥+
𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇
) tan[𝛽 + 1

2
(𝑘𝑥 − 2𝑘𝑝

𝜇
(𝑡 + 1

𝛤𝜇
)𝜇)

√

−𝛼]

2
√

𝜂
, 𝛼 < 0,

(4.13)

𝑞 (𝑥, 𝑡) =
∓𝑖𝑘

√

−𝛼e𝑖𝑝𝑥+
𝜈
𝛼 (𝑡+

1
𝛤𝜇 )

𝜇
cot[𝛽 + 1

2 (𝑘𝑥 −
2𝑘𝑝
𝜇 (𝑡 + 1

𝛤𝜇 )
𝜇)
√

−𝛼]

2
√

𝜂
, 𝛼 < 0,

(4.14)

𝑞 (𝑥, 𝑡) =
𝑖𝑘𝑆2e

𝑖𝑝𝑥+ 𝜈
𝛼 (𝑡+

1
𝛤𝜇 )

𝜇

√

𝜂(𝛽 + (𝑘𝑥 − 2𝑘𝑝
𝜇 (𝑡 + 1

𝛤𝜇 )
𝜇)𝑆2)

, 𝛼 = 0, (4.15)

where 𝜈 = 1
2 (−2𝑝

2 − 4𝛾 − 𝑘2𝛼), 𝛼 = 𝑆2
1 − 4𝑆0𝑆2.

olution type 3
Soliton solutions of (1.1) corresponding to Set 3

(𝑥, 𝑡) =
±𝑖𝑘𝑒𝑖

(

𝑝𝑥+ 𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇)
(

𝛼 +
√

𝛼𝑆1 𝑡𝑎𝑛ℎ
[

𝛽 + 1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)
√

𝛼
])

2
√

𝜂
(

𝑆1 +
√

𝛼𝑡𝑎𝑛ℎ
[

𝛽 + 1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)
√

𝛼
])

, 𝛼 > 0,

(4.16)

𝑞 (𝑥, 𝑡) =
±𝑖𝑘𝑒𝑖

(

𝑝𝑥+ 𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇)
(

𝛼 −
√

𝛼𝑆1𝑐𝑜𝑡ℎ
[

𝛽 + 1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)
√

𝛼
])

2
√

𝜂
(

𝑆1 +
√

𝛼𝑐𝑜𝑡ℎ
[

𝛽 + 1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)
√

𝛼
])

, 𝛼 > 0,

(4.17)

𝑞 (𝑥, 𝑡) =
±𝑖𝑘𝑒

𝑖
(

𝑝𝑥+ 𝜈
𝛼
(

𝑡+ 1
𝛤𝜇

)𝜇)
(

𝛼 − 𝑆1𝑡𝑎𝑛
[

𝛽 + 1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)√

−𝛼
]

√

−𝛼
)

2
√

𝜂
(

𝑆1 − 𝑡𝑎𝑛
[

𝛽 + 1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)√

−𝛼
]

√

−𝛼
)

, 𝛼 < 0,

(4.18)

𝑞 (𝑥, 𝑡) =
±𝑖𝑘𝑒𝑖(𝑝𝑥+

𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇
)(𝛼 + 𝑆1𝑐𝑜𝑡

[

𝛽 + 1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)
√

−𝛼
]

√

−𝛼)

2
√

𝜂(𝑆1 + 𝑐𝑜𝑡[𝛽 +
1
2

(

𝑘𝑥 − 2𝑘𝑝
𝜇

(

𝑡 + 1
𝛤𝜇

)𝜇)
√

−𝛼]
√

−𝛼)
,𝛼 < 0,

(4.19)

𝑞 (𝑥, 𝑡) = ± 𝑖𝑘𝑒
𝑖
(

𝑝𝑥+ 𝜈
𝛼

(

𝑡+ 1
𝛤𝜇

)𝜇)

2
√

𝜂
(𝑆1 −

2𝑆0
𝑆1
2𝑆2

+ 1

𝛽+
(

𝑘𝑥− 2𝑘𝑝
𝜇

(

𝑡+ 1
𝛤𝜇

)𝜇)
𝑆2

), 𝛼 = 0,

(4.20)

where 𝜈 = 1
2 (−2𝑝

2 − 4𝛾 − 𝑘2𝛼), 𝛼 = 𝑆2
1 − 4𝑆0𝑆2.

. Comparisons

The extended Kudryashov method and the He’s semi-inverse method
re two distinct approaches used to analyse equations in mathemat-
cal physics, each with its characteristics and advantages. Now we
 i

5

will compare the extended Kudryashov method with the He’s semi-
inverse method,43 through the solutions of the time-fractional unstable
nonlinear Schrödinger equation. Wang and Xu investigated the time-
fractional unstable nonlinear Schrödinger equation by employing the
He’s semi-inverse method in their research and explored only one
solution.43 Nevertheless, in our current paper, we have utilized the ex-
tended Kudryashov method and discovered sixteen solutions expressed
in hyperbolic, trigonometric, and exponential functions. The solutions
we obtained in our study differ from those presented by Wang and Xu.

6. Graphical representations and discussion

The soliton solutions with specific parameter values are depicted in
this section using three-dimensional (3D), two-dimensional (2D), and
contour plots within the range −10 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 10. The effects
of the fractional parameter on solutions will be investigated using 2D
plots.

The absolute part of the solution (4.6) is exhibited for 𝑝 = 1, 𝑘 =
0.16, 𝜇 = 0.9, 𝜂 = 5, 𝛽 = 5, 𝑅1 = 2.32, 𝑅2 = 5 in Fig. 1. This is a V-shaped
soliton and propagates with a velocity of 0.32. The 2D graph is plotted
for four distinct fractional parameter (𝜇) values: 0.15, 0.40, 0.65, and
0.90.

The imaginary part of the solution (4.6) exhibits periodic soliton for
𝑝 = 0.91, 𝑘 = 0.23, 𝜇 = 0.95, 𝛾 = 0.1, 𝜂 = 1.87, 𝛽 = 5, 𝑅1 = 3, 𝑅2 = 4
in Fig. 2. The 2D graph is drawn for four different values of fractional
parameter, 𝜇 = 0.15, 0.40, 0.65, and 0.90. This soliton moves with a
velocity of 0.42.

The real part of the solution (4.6) is exhibited for 𝑝 = 1.155, 𝑘 =
0.36, 𝜇 = 0.6, 𝜂 = 1.87, 𝛽 = −5, 𝑅1 = 4, 𝑅2 = 3.8, 𝛾 = 0.1 in Fig. 3. The
2D graph is drawn for three particular values of fractional parameter,
𝜇 = 0.1, 0.5, and 0.9. This is a periodic soliton and moves with a
velocity of 0.83.

The absolute part of the solution (4.11) exhibits a flat kink-shaped
soliton for 𝑝 = 1.92, 𝑘 = 2.19, 𝜇 = 0.8, 𝜂 = 0.2, 𝛽 = 2.5, 𝛼 = 0.001 in
Fig. 4. The 2D graph is plotted for four distinct fractional parameter
(𝜇) values: 0.1, 0.4, 0.7, and 1.0. This soliton propagates at the velocity
of 8.4.

The imaginary part of the solution (4.11) is exhibited for 𝑝 = 0.62,
𝑘 = 0.47, 𝜇 = 0.98, 𝜂 = 4.5, 𝛽 = −2.4, 𝛼 = 1.28 in Fig. 5. The 2D graph is
plotted for four distinct fractional parameter (𝜇) values: 0.22, 0.57, and
0.92.

The real part of the solution (4.11) is exhibited for 𝑝 = 1.43, 𝑘 =
.725, 𝜇 = 0.89, 𝜂 = 4.5, 𝛽 = 5, 𝛼 = 2.98, 𝛾 = −1.4 in Fig. 6. The
D graph is drawn for three different values of fractional parameter,
= 0.2, 0.6, and 1.0.

The real part of the solution (4.20) is exhibited for 𝑝 = 0.58, 𝑘 = 5,
= 0.85, 𝜂 = 0.1, 𝛽 = 1, 𝑆0 = 1, 𝑆1 = 2, 𝑆2 = 1 in Fig. 7. The 2D

raph is drawn for four distinct fractional values of the parameter (𝜇):
.10, 0.50, and 0.90. It is clear from Fig. 7(b) that the wave amplitude
ncreases with the increase of the values of the fractional parameter 𝜇.
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Fig. 2. (a) 3D plot, (b) 2D plot at 𝑡 = 3, (c) contour plot of the imaginary part of the solution (4.6).

Fig. 3. (a) 3D plot, (b) 2D plot at 𝑡 = 4, (c) contour plot of the real part of the solution (4.6).

Fig. 4. (a) 3D plot, (b) 2D plot at 𝑡 = 10, (c) contour plot of the absolute part of the solution (4.11).

Fig. 5. (a) 3D plot, (b) 2D plot at 𝑡 = 5, (c) contour plot of the imaginary part of the solution (4.11).
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Fig. 6. (a) 3D plot, (b) 2D plot at 𝑡 = 4, (c) contour plot of the real part of the solution (4.11).
Fig. 7. (a) 3D plot, (b) 2D plot at 𝑡 = 3.5, (c) contour plot of the real part of the solution (4.20).
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. Phase plane analysis

To proceed with phase plane analysis for the time-fractional un-
table nonlinear Schrödinger Eq. (1.1), we introduce 𝑋 = 𝑢, 𝑌 = 𝑋′.
ow we may re-write Eq. (4.2) as a first-order dynamical system of the

orm,

𝑑𝑋
𝑑𝜉 = 𝑌 ,
𝑑𝑌
𝑑𝜉 = 𝑝2+2𝛾+𝜈

𝑘2
𝑋 − 2𝜂

𝑘2
𝑋3,

(7.1)

which defines the well-known phase plane associated with travelling
wave solutions of the studied equation. (𝑋 (𝜉) , 𝑌 (𝜉)) is the solution of
the system (7.1).

The ordinary differential equations in Eq. (7.1) come from the
Hamiltonian function in Eq. (7.2), by using Hamilton canonical equa-
tions 𝑑𝑋

𝑑𝜉 = 𝑋′ = 𝜕𝐻
𝜕𝑌 and 𝑑𝑌

𝑑𝜉 = 𝑌 ′ = − 𝜕𝐻
𝜕𝑋 , where 𝐻 is a 𝐶2 function.

(𝑋, 𝑌 ) = 𝑌 2

2
−
𝑝2 + 2𝛾 + 𝜈

2𝑘2
𝑋2 +

𝜂
2𝑘2

𝑋4. (7.2)

Theorem 6.1. The values of the Hamiltonian function are conserved
(constant) along solution curves.

Proof. We can write 𝐻 ′ (𝑋, 𝑌 ) = 𝐻𝑋𝑋′ +𝐻𝑌 𝑌 ′.
Applying Hamilton canonical equations, we obtain

𝐻 ′ (𝑋, 𝑌 ) = 𝐻𝑋𝐻𝑌 +𝐻𝑌
(

−𝐻𝑋
)

= 0.

Which implies 𝐻 (𝑋, 𝑌 ) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(= ℎ).

Hence 𝐻 (𝑋, 𝑌 ) = 𝑌 2

2
−
𝑝2 + 2𝛾 + 𝜈

2𝑘2
𝑋2 +

𝜂
2𝑘2

𝑋4 = ℎ, (7.3)

where ℎ is the constant of integration.
Hence a given solution curve of the system (7.1) must therefore be

on a level curve of the Hamiltonian function 𝐻 (𝑋, 𝑌 ). Hence proved.

Three equilibrium points of the dynamical system (7.1) are
(

±
√

𝑝2+2𝛾+𝜈
2𝜂 , 0

)

and (0, 0). For values of 𝑝 = 1, 𝛾 = 1, 𝜈 = 1, 𝜂 = 1 and
 s
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Fig. 8. Hamiltonian function 𝐻(𝑋, 𝑌 ) of the Schrödinger equation corresponds to
Eq. (7.2). Simulations were run for the values of 𝑝 = 1, 𝛾 = 1, 𝜈 = 1, 𝜂 = 1 and 𝑘 = 1.

𝑘 = 1, the equilibrium points (0, 0) , (−1.4142, 0) and (1.4142, 0) represent
circle, saddle point, and saddle point, respectively (See Figs. 8 and

). On the other hand, for the values of 𝑝 = 0.5, 𝛾 = −1.25, 𝜈 =
, 𝜂 = −1.5 and 𝑘 = 1. the equilibrium points (−7638, 0) , (0, 0) and
0.7638, 0) represent saddle point, circle, and saddle point, respectively
See Figs. 10 and 11). From this analysis we can conclude that the
ynamics of the system altered due to the change of values of the
arameters.

. Conclusions and future directions

In this study, we have successfully utilized an extended Kudryashov
pproach to investigate the time-fractional unstable nonlinear
chrödinger equation with a beta derivative. By employing this method,
e were able to generate precise travelling wave solutions, including
xponential, trigonometric, hyperbolic, and rational solutions. These
olutions exhibit various shapes such as V-shaped, periodic, singular
eriodic, flat kink, and singular bell solitons, which are obtained for
pecific parameter values. Notably, these solutions are more general as
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E
a

(

Fig. 9. Phase plane visualization of the system of ODEs (7.1) for the values of
𝑝 = 1, 𝛾 = 1, 𝜈 = 1, 𝜂 = 1 and 𝑘 = 1. Three equilibrium points are (0, 0) , (−1.4142, 0)
and (1.4142, 0).

Fig. 10. Hamiltonian function 𝐻(𝑋, 𝑌 ) of the Schrödinger equation corresponds to
q. (7.2). Simulations were run for the values of 𝑝 = 0.5, 𝛾 = −1.25, 𝜈 = 0.5, 𝜂 = −1.5
nd 𝑘 = 1.

Fig. 11. Phase plane visualization of the system of ODEs (7.1) for the values of
𝑝 = 0.5, 𝛾 = −1.25, 𝜈 = 0.5, 𝜂 = −1.5 and 𝑘 = 1. Three equilibrium points are (0, 0),
−7638, 0) and (0.7638, 0).

they involve multiple free parameters. Therefore, the obtained travel-
ling wave solutions have significant potential for practical applications
in applied science and engineering.

Furthermore, our analysis demonstrates the effectiveness and con-
ciseness of the extended Kudryashov method with the beta derivative.
This suggests that it can be employed to extract soliton solutions from
8

other fractional nonlinear Schrödinger equations (FNLEEs). After deter-
mining the Hamiltonian function, we briefly examined the phase plane
and presented the graphical phase portrait of the system in Figs. 8–11.
Through bifurcation analysis, we observed that altering the parameter
values can lead to changes in the dynamics of the soliton solutions
of the Schrödinger equation. This finding has important implications
for optical fibres, nonlinear optics, and communication systems. It is
worth mentioning that all the reported results in this article successfully
satisfy the governing equation, ensuring the validity of our findings.

In this research paper, we present our findings based on the Ansatz
method. It would be intriguing to explore alternative approaches for de-
termining the solutions of the time-fractional Schrödinger equation and
their applications in real-world situations. Specifically, in this study,
we utilize Beta fractional derivatives to characterize the behaviour of
the time fractional Schrödinger equation. While there are numerous
studies available in the literature on the time-fractional Schrödinger
equation,14,43 limited efforts have been devoted to comprehending the
fractional differential effects of other variables in specific situations.
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