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Abstract: A brief review of 50 studies from the last 10 years indicated that it is often accepted
practice to apply log transformation processes to raw EEG data. This practice is based upon the
assumptions that (a) EEG data do not resemble a normal distribution, (b) applying a transformation
will produce an acceptably normal distribution, (c) the logarithmic transformation is the most valid
form of transformation for these data, and (d) the statistical procedures intended to be used are not
robust to non-normality. To test those assumptions, EEG data from 100 community participants
were analysed for their normality by reference to their skewness and kurtosis, the Kolmogorov–
Smirnov and Shapiro–Wilk statistics, and shapes of histograms. Where non-normality was observed,
several transformations were applied, and the data again tested for normality to identify the most
appropriate method. To test the effects of normalisation from all these processes, Pearson and
Spearman correlations between the raw and normalised EEG alpha asymmetry data and depression
were calculated to detect any variation in the significance of the resultant statistic.

Keywords: EEG; alpha asymmetry; normalisation; logarithmic; correlations

1. Introduction

Although previously considered to be found in humans alone [1], more recent research
indicates that hemispheric symmetry is a characteristic of most vertebrate brains [2]. This
division of the brain into two hemispheres occurred early in evolution and conferred
some selective advantage [3]). However, the appearance of a symmetrical brain in hu-
mans does not extend to neurological structure and functioning, which is demonstrably
asymmetrical in terms of such capabilities as motor control [4], cognitive capacity [5],
speech [6], emotional processing [7], attentional processes [8] and other core aspects of
the cognitive and behavioural characteristics of humans. Consequent to the importance
of functional asymmetry in many cognitive activities, there is some evidence that alter-
ations to this functional and/or structural asymmetry are associated with psychiatric
disorders [9], including autism [10], schizophrenia [11], psychosis [12], dyslexia [13] and
attention-deficit-hyperactivity disorder [14].

One particular psychiatric disorder that has been repeatedly associated with alterations
in brain asymmetry is depression [15]. Much of the early research regarding depression
and brain asymmetry used alpha wave (8–13 Hz) discrepancies across the frontal lobe
hemispheres as its principal predictor variable [16–18] and, although many other brain
regions and frequencies have been examined, most of the current research in this field
remains focused upon alpha wave asymmetry in the frontal region [19]. Despite the initial
and ongoing support for an association between alpha wave asymmetry and depression,
not all results are uniformly supportive [20], and this field continues to draw the attention
of researchers. As such, clarification of the required methodological processes necessary for
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adequate testing of the association between frontal alpha asymmetry (FAA) and depression
is an important step in clarifying the occurrence of some unconfirmed results in the previous
literature. One of those methodological processes is the commonly-applied logarithmic
transformation of EEG data prior to statistical analysis.

Normalisation of skewed data is argued as necessary because some statistical proce-
dures may be confounded by non-normally distributed data [21]. This rule has been almost
universally applied to EEG data, but the basis for that application is unclear, apart from
a publication by Allen et al. (2004), which has been cited over 650 times in subsequent
EEG research and which presented EEG data exhibiting skewness and kurtosis in a unique
dataset. Those authors argued that this degree of skewness and kurtosis in their data
necessitated logarithmic transformation to produce a reasonably normal distribution.

However, the requirement to apply a logarithmic transformation that is based on Allen
et al. [22] depends upon a number of steps, including evidence that (a) the EEG data in
question do not resemble a normal distribution, (b) the application of a transformation will
produce an acceptably normal distribution, (c) the logarithmic transformation is the most
valid form of transformation for these data, and (d) the statistical procedures intended
to be used are not robust to non-normality. These steps were used as research questions
and will be discussed below. The first research question was to ascertain the extent of log
transformation of EEG data in studies of FAA.

The presence of log transformations in the FAA-depression literature.

1.1. Search Procedure

Table 1 presents summary data from 50 studies published during the period 2013–2022,
using five studies per year selected on the basis of their citation scores in Google Scholar
(GS). GS was chosen as the search engine because it is the most encompassing in terms of
sources identified. The search criteria were “EEG/eeg, alpha asymmetry, depression” and
the search was carried out by authors CFS and VB independently, with any disagreements
decided by consultation until 100% agreement was reached on which papers should be
included. As a general rule, this was achieved by the identification of relevant peer-
reviewed papers that used alpha asymmetry as their primary dependent variable, then
reference to the citation score, and examination of the abstracts to eliminate review or
methodological discussion papers. These search criteria were relatively easily applied for
the years 2013 to 2020. However, the comparative lack of citations in later years resulted in
selections more focused on the content of the abstracts and the papers themselves. Thus,
the selection criteria may be summarised as the study was: (i) peer-reviewed, (ii) focused
on using EEG to measure alpha asymmetry as its primary dependent variable, usually also
with a measure of depression, and (iii) had the highest citation scores for a chosen year,
based on GS. Exclusion criteria were the absence of any of these three characteristics.



Symmetry 2023, 15, 1689 3 of 16

Table 1. Major publications from the last 10 years, samples, EEG site for Asymmetry analysis, normalisation procedures, and statistical analyses.

Author, Year Citations 1 Sample 2, Age
Range (Yr)

Eyes Open (EO).
Eyes Closed (EC)

Number of EEG
Sites Used in Data
Analysis; Regions

Testing for
Normality

Normalisation,
Process 3

Confirmation of
Normalisation Statistical Procedures

De Pascalis et al.
[23] 129 51F (20–34) Both 13 pairs; frontal,

temporal, parietal ln Pearson correlations;
Regression

Gold et al. [24] 127 62F, 17M (18–50) EC 3 pairs; frontal ln
√

Pearson correlation
Moynihan et al.

[25] 249 62F, 48M (65+) Both 1 pair; frontal ln ANOVA

Fachner et al. [26] 151 62U (18–50) EC 3 pairs; frontal ln Pearson correlations
Pérez-Edgar et al.

[27]
26F, 19M (M = 21)

EC 1 pair; frontal ln ANCOVA
108

Stewart et al. [28] 166 211F, 95M (17–34) Both 4 pairs; frontal ln MANOVA

Gollan et al. [29] 118 72M/F (18–65) Both 2 pairs; frontal ln Pearson correlations;
Regression

Beeney et al. [30] 81 57F (18–60) Both 11 pairs; frontal ln ANOVA
Papousek et al.

[31] 77 148F (18–42) EC 1 pair; frontal None reported ANOVA;
Laterality coefficients 4

Ischebeck et al.
[32] 51 8F, 12M (not

reported) EO 6 pairs; frontal
6 pairs; parietal ln ANOVA

Mennella et al.
[33] 31 24F (M = 22.2) EO 4 pairs; frontal

4 pairs; parietal ln ANOVA

Cantisani et al.
[34] 49 21F, 18M (21–66) EC 3 pairs; frontal ln Pearson correlations

Meerwijk et al.
[35] 65 27F, 8M (M = 35.0) EC 1 pair; frontal ln Pearson correlations

Alessandri et al.
[36] 33 51F (18–34) Both 5 pairs; frontal

3 pairs; parietal ln Pearson correlations

Keune et al. [37] 65 25F, 27M (M = 36) Both
2 pairs; frontal
1 pair; parietal
1 pair; central

ln ANOVA

Zotev et al. [38] 171 18F, 6M (M = 410) EO 2 pairs; frontal ln Pearson correlations

Arns et al. [39] 156 218F (not
reported) Both 1 pair; frontal None reported Pearson correlations

Harrewijn et al.
[40] 78 56F (M = 19.5) EC 2 pairs; frontal ln Mann-Whitney U test

Moore et al. [41] 50 81M (21.2) EC 2 pairs; frontal None reported ANOVA
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Table 1. Cont.

Author, Year Citations 1 Sample 2, Age
Range (Yr)

Eyes Open (EO).
Eyes Closed (EC)

Number of EEG
Sites Used in Data
Analysis; Regions

Testing for
Normality

Normalisation,
Process 3

Confirmation of
Normalisation Statistical Procedures

Goldstein et al.
[42] 34 129F, 124M (3–6) Both 2 pairs; frontal ln Mixed linear modelling

Brzezicka et al.
[43] 40 52 (M = 22) EC

1 pair: frontal
1 pair; temporal
1 pair: parietal

ln Pearson correlations

Mennella et al.
[44] 146 32F (M = 23.1) EO 1 pair: frontal ln ANOVA

Adolph and
Margraf [45] 52 28F, 15M (19–24) Both 1 pair; frontal ln Pearson correlations

Papousek et al.
[46] 70 78F (18–34) Both 3 pairs; frontal None reported Laterality coefficients 4;

Regression

Brooker et al. [47] 33 129 (6–12 mo) EO 2 pairs; frontal
1 pair; parietal ln Pearson correlations

Grünewald et al.
[48] 40 31F, 20M (12–17 Not reported 1 combined ROI 5

pair; frontal
ln ANOVA

Smith et al. [49] 45 211F, 95M
(not reported) Both 4 pairs; frontal

2 pairs; parietal ln Wilcoxen signed the
rank test

Nusslock et al.
[50] 46 94F (M = 25.3) Both

6 pairs; frontal
1 pair; temporal
2 pairs; parietal
1 pair; occipital

ln ANOVA

Cao et al. [51] 63 45F, 10M (M = 48) EC 1 pair; frontal
1 pair: lateral ln ANOVA

Baskaran et al.
[52] 38 27F, 17M (18–60) Both 1 pair; parietal ln ANOVA

Wang et al. [53] 52 47F, 23M (M = 42) EC 1 pair; frontal ln ANOVA

van der Vinne
et al. [19] 28 247F, 206M (M =

38) Both 1 pair; frontal
√

Non-log-
transformed

difference ratio (F4
- F3)/(F4 + F3)

√
ANOVA

Park et al. [54] 27 51F, 15M (19–65) Both 3 pairs; frontal None reported Spearman correlations

Gheza et al. [55] 25 65F, 37M (M = 39) EO 1 pair; frontal
1 pair; parietal ln ANOVA
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Table 1. Cont.

Author, Year Citations 1 Sample 2, Age
Range (Yr)

Eyes Open (EO).
Eyes Closed (EC)

Number of EEG
Sites Used in Data
Analysis; Regions

Testing for
Normality

Normalisation,
Process 3

Confirmation of
Normalisation Statistical Procedures

Ocklenburg et al.
[56] 30 125F, 110M (18–34) EC

5 pairs; frontal
2 pairs; temporal
4 pairs; parietal
1 pair; occipital

ln ANOVA

Olszewska-
Guizzo et al. [57] 54 13F, 9M (M = 33) EO 1 pair; frontal None reported ANOVA

Zhang et al. [58] 38 36F, 44M (17–28) Both 1 pair; frontal ln Regression
Mahato et al. [59] 47 44M (M = 36) EC 3 pairs; temporal ln Support Vector Machine

Roh et al. [60] 35 108F, 19M (M = 36) EO 3 pairs; frontal None reported ANOVA;
Spearman correlations

Saeed et al. [61] 75 13F, 20M (18–40) EC 1 pair; frontal
1 pair; temporal None reported t-tests

Li et al. [62] 9 11F, 15M (21–24) Both 1 pair; frontal ln ANOVA
Lin et al. [63] 9 187F, 91M (20–75) EC 1 pair; frontal ln MANOVA

Härpfer et al. [64] 13 84F, 46M (18–65) EO 1 pair; frontal
1 pair; parietal ln ANOVA

Szumska et al. [65] 15 11F, 9M (25–48) Both 1 pair; frontal Normalised to
their sum ANOVA

Dell'Acqua et al.
[66] 21 64F (M = 22) EO

3 pairs; frontal
1 pair; temporal
1 pair; parietal
1 pair; occipital

ln Spearman correlations

Metzen et al. [67] 22 220F, 50M (20–70) Both 2 pairs; frontal
2 pairs; parietal ln ANOVA

Olszewska-
Guizzo et al. [68] 15 52F, 40M (21–74) EO 3 pairs; frontal None reported Mixed Linear Modelling

Berretz et al. [69] 8 51M (18–39) EO 2 pairs; frontal
1 pair; occipital None reported ANOVA

Glier et al. [70] 5 63F, 82M (9–16) Both 2 pairs; frontal None reported
Laterality coefficients 4;
Wilcoxon Signed-Ranks

Test

Wu et al. [71] 2 67F, 18M (60+) EC 1 pair; frontal
1 pair; parietal ln Spearman’s correlations

1 Collected from Google Scholar for most comprehensive sources as of 14 August 2023; 2 F = female, M = male, U = unstated; 3 ln = log transformation; 4 Laterality coefficients are almost
perfectly correlated with ln [72]; 5 region of interest.
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To inform this discussion of normalisation of EEG data, the following aspects of these
papers were identified and appear in Table 1: author and year of publication (to demonstrate
any variation over time), citations listed in GS (as an index of relative importance in the
field according to peers), sample size, sex, age (to identify the range of these covered by
the studies), whether EEG data were collected under eyes open or eyes closed conditions
(the former has been found to be less reliable than the latter: [67]), the number of EEG
sites used to calculate FAA (as an indicator of possible reliability of the FAA index used),
whether the EEG data were tested for normality prior to normalisation (a necessary step
in rationalizing the use of normalisation), which form of normalisation was used (if any),
whether the effect of normalisation was measured (i.e., was the normalisation process
effective in producing normally-distributed data), and the statistical procedures used with
these EEG data (because some statistical processes do not require normalisation).

1.2. Summary of Findings from Table 1

The reports summarised in Table 1 included both sexes, a range of ages from 6 months
to 80 years, and 42% of studies using both eyes open and eyes closed conditions, 32% only
eyes closed, 24% only eyes open, and one study (2%) which did not report that information.
There were varying numbers of EEG sites used to calculate FAA (from 1 pair up to 11 pairs),
mostly in the frontal region alone, but sometimes with other regions also. These 50 papers
may, therefore, be said to represent a range of methodological factors.

Of the 50 papers summarised in Table 1, eleven did not report undertaking any
normalisation procedures, one applied a non-log process, another normalised EEG data
to their sum, and 37 (74%) reported using log transformations. Only one study tested
for non-normality before normalising their data, and two reported that they checked the
effects of normalisation to determine if non-normality was reduced or removed. These data
suggest that the practice of applying log transformation to EEG data has been relatively
widespread but not completely so. If the four steps described above regarding the decision
to normalise are followed, the following emerges from this brief and selective review of the
last decade’s research on FAA depression.

(a) The EEG data in question do not resemble a normal distribution. This is impossible to
decide in 48 of the 50 studies because no attempt was made to determine if the EEG
data under examination were non-normal.

(b) Application of a transformation will produce an acceptably normal distribution. This also
cannot be determined in 48 of the 50 studies because no check was made on the effect
of the transformation upon the nonnormality of EEG data in all but two studies that
normalised their EEG data.

(c) The logarithmic transformation is the most valid form of transformation for these data. This
was not established in any of the 50 studies. There are multiple methods of normalising
data, and the preferred method can be identified by scrutinising the distribution of
the data, but no studies reported taking this step. In fact, logarithmic transformation
is recommended only when “the distribution differs substantially” from normal;
by contrast, if the difference from normality is only “moderate”, then “a square
root transformation is tried first” ([21], p. 87). The onus is upon the researcher to
interrogate the distribution of their data (preferably by observation of the histograms,
the expected normal probability plots, and the detrended expected normal probability
plots, rather than reference to formal inference tests such as the Kolmogorov–Smirnov
statistic [21], then apply the appropriate transformation depending on whether the
data are positively or negatively skewed, and the degree to which they are skewed (i.e.,
moderately, more severely, or quite severely). However, without identification of the
presence, form and severity of the departure from normality prior to transformation,
there is no evidence from almost all of the studies reviewed in Table 1 that log
transformation was the most appropriate method.

(d) The statistical procedures intended to be used are not robust to non-normality. There is
some argument that most or all of the statistical procedures used to test the major
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research question in these 50 studies are reasonably robust to non-normality under
some circumstances. Of the 50 studies reviewed, six used nonparametric statistical
procedures (Spearman’s rho, Mann-Whitney U-test, Wilcoxon signed rank test), which
do not assume normality. Twelve studies used Pearson correlations or regression
analysis, and 26 applied ANOVA models.

Although Norris and Aroian ([73], p. 67) argued that “data transformation is not
always needed or advisable” when using Pearson correlations with non-normal data, other
simulation studies have not been so positively conclusive [74–77]. What is clearer from
these studies is that the impact of non-normality on Pearson correlation coefficients is
dependent upon sample size, the magnitude of the correlation coefficient (i.e., the effect size
being detected), and the nature of the non-normal distribution, with high kurtotic distribu-
tions and the presence of outliers being of greater concern than skewness alone [75,78,79].
Cohen et al. [80] noted that “Violations of the normality assumption do not lead to bias in
estimates of the regression coefficients”, but Serlin and Harwell [81] recommended using
nonparametric tests of significance rather than the F test to evaluate regression outcomes
when sample sizes are small. Tabachnik and Fidell ([21], p. 251) commented that “Univari-
ate F is robust to modest violations of normality as long as there are at least 20 degrees of
freedom for error” and that MANOVA also exhibits “robustness to nonnormality” when
the sample size is at least 40. In all of the studies that used ANOVA, there were suffi-
cient participants to produce more than 20 degrees of freedom, and in the two studies
that used MANOVA, both had samples much greater than 40. Two studies used mixed
linear modelling, which is robust to violations of normality [82]. One study used t-tests,
which are argued to be “so robust against non-normality that there is nearly no need to
use” non-parametric tests ([83], p. 175), one applied Support Vector Machine ([84], noted
that only 2% of studies using this procedure also performed normalisation and that the
necessity for normalisation when using this procedure is yet to be determined), and two
used Laterality Coefficients. As noted by Brumer et al. [85], there are several methods
by which a Laterality Coefficient or Laterality Index may be calculated, but all depend
upon the comparison of a number of indices (usually brain regions of interest) that meet a
particular threshold indicative of neural activity, calculated across brain hemispheres and
subject to further statistical analyses of hemispheric differences, depending upon the aims
of the study. As shown in Table 1, one of the studies that used Laterality coefficients also
applied regression analysis, and the other used ANOVA.

On the basis of the findings presented in Table 1, plus the discussion in the paragraphs
above, there is no compelling reason for applying logarithmic normalisation procedures
to these datasets. However, because the necessary number of steps in identifying the
normality status of the data and then selecting the appropriate normalisation procedure
(and checking for its efficacy in removing non-normality) have not been demonstrated
in these 50 studies, it is relevant to follow that process for the purpose of evaluating the
relative necessity and benefit of normalisation.

Therefore, the following sections of this paper apply the four steps described above
with an EEG dataset collected across a number of frontal sites to address the research
questions: (i) are these data non-normal, (ii) if so, what is the form and severity of that
non-normality, (iii) what is the effect of application of the recommended normalisation
procedure in terms of the normality of the data, and (iv) is there evidence of any meaningful
difference in the outcomes of correlational analyses applied to the non- normalised versus
the normalised data. Correlational analyses were selected because ANOVA models and
other statistical procedures described above are relatively robust to non-normality. Discus-
sion of these findings and their implications for statistical analyses of EEG data, specifically
whether normalisation (particularly log transformation) is necessary or advantageous, will
be based upon these analyses.
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2. Materials and Methods
2.1. Data

EEG and depression data were collected from a previous study of FAA and depres-
sion in 100 community volunteers [86]. Descriptions of participants and procedures are
presented there. The depression measure was the self-rated depression scale (SDS) [87,88].
Data for this study were those collected from EEG sites FP1, FP2, F3, F4, F7, F8, FT7, FT8,
FC3, and FC4 during eyes-open (EO) and eyes-closed (EC) conditions because this was the
methodology used by the largest proportion (42%) of studies reviewed in Table 1. From
these, five alpha asymmetry indices were derived according to the following procedures:
FP2-FP1, F4-F3, F8-F7, FT8-FT7, and FC4-FC3, consistent with the wider literature on the
FAA-depression hypothesis [89].

2.2. Analyses

As recommended in the methodological literature pertaining to the impacts of outliers
on assessments of normality (e.g., [79]), EEG frontal site data were screened for univariate
and multivariate outliers. Univariate outliers were determined by converting EEG data to
z-scores for each case, with values above or below a threshold of ±3.29 (i.e., 0.001 alpha
level) considered to be problematic [21]. Multivariate outliers were assessed by computing
Mahalanobis distance and analysing with a χ2 test using an alpha level of 0.001 [21]. For
the EC condition, two cases which were significant multivariate outliers and had z-scores
above the threshold on all 10 frontal alpha sites were deleted. Five cases in the EO condition
were deleted due to being significant multivariate outliers and having z-scores above the
threshold on several frontal alpha sites. The resulting sample sizes were 98 participants for
the EC and 95 participants for the EO conditions.

Normality was assessed with frequency histograms, skewness and kurtosis values,
plus their associated z-scores, also using a threshold of ±3.29, computed by dividing the
skewness and kurtosis values by their respective standard errors [90], and the Shapiro–Wilk
(SW) and Kolmogorov–Smirnov (KS) tests.

Following the recommendations set out for each form of histogram distribution and
skewness by Tabachnik and Fidell ([21], pp. 79–80, 87–89), several transformation methods
were applied to correct variables that were non-normal. This included nonlinear trans-
formations (square root, logarithmic, and inverse) and rank-based inverse normal (RIN)
transformation using the rankit equation [91] as employed in previous simulation stud-
ies [74,78]. As recommended by Tabachnik and Fidell (2013), these normality statistics and
histograms were again inspected following each transformation to determine the most
appropriate method.

To assess how each of these transformations affected the outcome of the calculation
of the correlation between SDS and FAA, Spearman’s rank order correlation (rho) was
applied to the association between the raw data for SDS score and each of the pairs of
frontal EEG asymmetry values under eyes open and eyes closed conditions. Because
Spearman’s rho is specifically designed to cater for the presence of non-normality, these
results were used as the yardstick against which Pearson’s r results could be compared
when raw data and the logarithmic and RIN normalisation data were included. Due to the
exploratory nature of this study, those correlation coefficients that reached the p-value of
<0.1 are also shown in Table 2 in addition to those that reached traditional (p < 0.05) levels
of statistical significance.
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Table 2. Spearman’s (S) and Pearson’s (P) correlation coefficients (with corresponding p-values)
between SDS 1 score and FAA 2 asymmetries across Eyes Open (n = 95) and Eyes Closed (n = 98)
conditions for raw, logarithmic and rank-based inverse normal (RIN) normalisation techniques.

Condition Raw (S) Raw (P) Log (P) RIN (P)

Eyes Open

FP2–FP1 0.050 (0.633) −0.070
(0.500)

−0.124
(0.235)

−0.161
(0.120)

F4–F3 0.167 (0.107) 0.066 (0.526) 0.011 (0.916) 0.033 (0.754)
F8–F7 0.084 (0.418) 0.035 (0.738) 0.012 (0.908) 0.001 (0.992)

FT8–FT7 0.098 (0.348) 0.058 (0.580) 0.031 (0.768) 0.090 (0.388)
FC4–FC3 0.170 (0.100) 0.196 ′ (0.059) 0.089 (0.396) 0.146 (0.161)

Eyes Closed

FP2–FP1 0.122 (0.231) −0.033
(0.750)

−0.039
(0.702)

−0.033
(0.745)

F4–F3 0.087 (0.392) 0.004 (0.971) 0.018 (0.857) 0.056 (0.585)
F8–F7 0.224 * (0.027) 0.113 (0.267) 0.142 (0.163) 0.161 (0.114)

FT8–FT7 0.135 (0.184) 0.101 (0.322) 0.094 (0.357) 0.115 (0.258)
FC4–FC3 0.084 (0.408) 0.011 (0.913) 0.055 (0.591) 0.094 (0.355)

Raw (P) = Pearson’s r for untransformed data; Raw (S) = Spearman’s rho for untransformed data; ′ p < 0.1;
* p < 0.05; 1 Self-rated Depression Scale (Zung, 1965); 2 Frontal Alpha Asymmetry.

3. Results

Research Question 1: Are these data non-normal? If so, what is the form and severity of that
non-normality, and what normalisation procedure is recommended?

For both the EC and EO conditions, all 10 frontal EEG sites’ alpha data were markedly
non-normal, such that: (i) all associated SW and KS tests were significant at the p < 0.001
level; (ii) the kurtosis z-score for FT7 (EC) was 1.85, but in all other cases the skewness
and kurtosis z-scores exceeded the ±3.29 threshold (i.e., all p < 0.05) [90]; and (iii) visual
inspections of frequency histograms were consistent with these findings in determining
that the distributions were markedly non-normal.

Research Question 2: If the recommended normalisation procedure is applied, does it reduce
the level of non-normality to acceptable levels?

For all 10 sites under both EC and EO conditions, square root and inverse transforma-
tions were ineffective in producing normal data and thus are unreported here. In the EC
conditions and across all 10 sites, logarithmic transformation improved normality metrics;
no skewness or kurtosis z-scores exceeded the±3.29 threshold after log-transformation, and
all associated SW and KS tests were also non-significant (all p > 0.05). However, while this
was also the case for RIN transformations of these same 10 frontal sites, visual inspection
of the frequency distribution histograms determined that RIN was consistently superior in
normalising these data when compared to log-transformation for all 10 frontal sites.

Similarly, for the frontal site data under the EO condition, none of the skewness and
kurtosis z-scores exceeded the ±3.29 threshold after both logarithmic and RIN transfor-
mation. However, three sites were still non-normal following logarithmic transformations
according to the KS tests: FP2 (D(95) = 0.093, p = 0.040), F4 (D(95) = 0.105, p = 0.011), and F8
(D(95) = 0.118, p = 0.002). The SW tests also determined that these same three sites were still
non-normal (FP2, W(95) = 0.968, p = 0.021; F4, W(95) = 0.967, p = 0.016; F8, W(95) = 0.970,
p = 0.028) plus also the FC4 site (W(95) = 0.961, p = 0.006). For the RIN-transformed data
under EO condition, all 10 frontal sites were successfully normalised according to the KS
tests, but the SW tests found two sites were still non-normal: F4 (W(95) = 0.973, p = 0.049)
and FC4 (W(95) = 0.961, p = 0.006). Visual inspections of histograms were consistent with
these findings, and overall, these normality tests determined that the RIN transformation
was again superior to the logarithmic transformation for the EO data but also that these
two transformations were less effective at normalising the data under EO conditions when
compared to the EC condition.

Figure 1 (EC) and Figure 2 (EO) contrast examples of these histograms for raw
(i.e., untransformed), log-transformed, and RIN-transformed frontal alpha data for the
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sites F4 and FC4, as examples of the above findings (all histograms are presented in
Supplementary material).

Research question 3: Are there any meaningful differences between the results of statistical
tests using the non-normalised versus the normalised data?

Results of the correlation analyses between FAA and SDS data are reported in Table 2,
with Spearman’s rho results shown in column 3, followed by each of the Pearson correlation
results. Coefficients that reached the p < 0.1 level are shown in light grey, and those that
reached the p < 0.05 level are depicted in darker grey for ease of reading. Examining the
columns data (i.e., the specific correlation process outcomes), Spearman’s rho produced
the only significant result at the p < 0.05 level (F8–F7 × SDS, EC condition). Pearson’s
correlation coefficients based on the raw EEG data produced only a single p < 0.1 result
(FC4–FC3 × SDS, EO condition) and none when using either the log-transformed data or
RIN-transformed data. The p < 0.1 Pearson correlation coefficient found for FC4-FC3 (EO)
using untransformed EEG data was not found with Spearman, nor when logarithmic or
RIN-transformed EEG data were used. Finally, both the EO and EC conditions FP2-FP1-SDS
analyses produced positive correlations for the Spearman analysis of raw data but negative
coefficients for all three Pearson calculations.
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4. Discussion

The primary aim of this study was to evaluate the necessity for applying logarithmic
normalisation procedures to EEG data when testing for the association between FAA and
depression. A brief review of 50 published papers during the last 10 years indicated that
log transformation of EEG data was evident in almost 75% of those 50 studies but that only
one of those studies had tested for nonnormality in their raw data, and two performed a
post-normalisation test to determine the effectiveness of that transformation in resolving
nonnormality. This finding suggests that the process of normalisation is widespread and
unquestioned but not usually applied in a logical sequence. That is, only one of these
50 studies examined the presence of any nonnormality in their EEG data (i.e., the severity of
skewness and kurtosis) prior to normalisation, which is a necessary step in choosing which
normalisation process to apply. Finally, statistical procedures applied in these 50 studies
varied in their robustness to nonnormality. Although it is true that, with reasonably large
samples, many of these procedures are usually robust to nonnormality if it is not severe,
thus removing the necessity for normalisation, some studies had only limited size samples
(e.g., [38], n = 24). Further, the commonplace use of Pearson correlation analysis with raw
or logarithmic transformed data may be questioned simply because of the limitations of
that procedure to accommodate non-normality under some conditions. On the basis of this
aspect of the current investigation, it is yet to be proven that normalisation was required in
49 of the 50 studies.

Therefore, to run a test case of the need for normalisation and to identify which
kind of normalisation was most relevant, a dataset of 100 participants’ EEG data from
10 frontal sites was examined. All of these 10 sites produced EEG data that showed non-
normality as identified by two statistical tests, examination of the severity of skewness and
kurtosis, and inspection of the histograms. Two standard transformations recommended
for skewed data (square root, inverse) [21] did not produce normality. The commonly-
used logarithmic transformation did reduce non-normality to acceptable levels in most
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of the variables studied, but not as effectively as the rank-based inverse normal (RIN)
transformation, which was consistently superior in normalising these data when compared
to log-transformation for all 10 frontal sites’ EEG data. None of the 50 reviewed papers
shown in Table 1 applied this transformation method, and it is relevant for consideration in
future EEG studies where data have been demonstrated to be non-normal.

However, it is the results of the third stage of these investigations that hold the most
important implications for studies of EEG data—the effect of transformation upon statistical
outcomes from Pearson correlation analyses. By using Spearman’s rho with untransformed
EEG data, a yardstick was able to be applied to the results from the Pearson-log/RIN
transformed data results. It is apparent from Table 2 that the use of Pearson correlation
analyses with raw, logarithmic, and RIN data is open to some uncertainty in the outcomes.
On that basis, the very commonly used process of logarithmic transformation of EEG data
is not the most reliable data analysis method for detecting associations between EEG FAA
data and other variables such as depression. Instead, the application of a nonparametric
procedure such as Spearman’s rho with the untransformed EEG data may be more likely
to produce valid results due to its ability to handle non-normal data irrespective of the
nature of the distribution of that data. Further, if Spearman’s rho results are accepted
as the yardstick because of the ability of that statistic to process untransformed data,
then it is of importance that none of the Pearson procedures also produced significant
coefficients at either p < 0.1 or p < 0.05 levels for the F8–F7 × SDS association under the
eyes closed condition, thus potentially contributing to a Type II error. On the basis of these
comparisons between the yardstick of Spearman’s rho on raw EEG data and Pearson’s r
using raw, log-transformed, and RIN-transformed EEG data, there is no evidence indicating
that transforming these EEG data to meet the assumptions of a parametric test produced
appreciably stronger or more valid correlations compared to a nonparametric test on
untransformed data.

Several additional comments are relevant to this discussion. First, it is argued else-
where that transformation can hinder the interpretation of data and that researchers should
instead use untransformed data with procedures that are robust to non-normality [92].
We would agree with this sentiment in the current case of EEG data used to test the FAA
depression hypothesis. Second, Spearman’s rho does not solely account for non-normality
in EEG data (as in this example) but also with skewness and kurtosis in the SDS data as
well, which is not so when transformations are made to the EEG data alone, as was the case
in many of the 50 studies reviewed in Table 1. The Spearman analysis may be a preferable
process to follow because the Pearson correlation assumes that the two variables being
examined “follow a bivariate normal distribution in the population from which they were
sampled” ([93], p. 1764), but psychological data (such as depression, and EEG spectral
power) are pervasively non-normal [94]. Third, despite these limitations upon the use
of Pearson correlational procedures in general and particularly with smaller datasets, if
statistical power is maximised (i.e., by utilising large enough samples to detect the effect
size of interest) and outliers are dealt with, Pearson correlations may be relatively robust
to violations of normality, although the issue of non-normality in the second variable (i.e.,
depression) also needs to be considered. Finally, ANOVA-based models are highly robust
to violations of normality [21,95] when wishing to answer research questions based upon
comparisons between sample means.

Therefore, the necessity for data normalisation when employing such statistical proce-
dures is questionable.

5. Conclusions

Although it is widespread in the FAA literature, the application of logarithmic trans-
formations is not easily defended for EEG data. Similarly, other forms of EEG data transfor-
mation may be unnecessary, especially when the analysis performed is robust to violations
of normality (e.g., ANOVA). Spearman’s rho is but one nonparametric procedure and
there are others, such as generalised estimating equations (GEE), which does not assume a
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normal distribution [92]. The use of Spearman’s rho and GEE is only necessary when data
are non-normally distributed, but if data do resemble a normal distribution, parametric
procedures can provide more accurate results [92].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym15091689/s1, Figures S1 to S20: Frequency distribution
comparisons between raw, log, and RIN data for 10 frontal EEG sites under eyes closed and eyes
open conditions.
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