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A B S T R A C T   

Effective monitoring tools are key for tracking biodiversity loss and informing management intervention stra-
tegies. Passive acoustic monitoring promises to provide a cheap and effective way to monitor biodiversity across 
large spatial and temporal scales, however, extracting useful information from long-duration audio recordings 
still proves challenging. Recently, a range of acoustic indices have been developed, which capture different 
aspects of the soundscape, and may provide a way to estimate traditional biodiversity measures. Here we 
investigated the relationship between 13 acoustic indices obtained from passive acoustic monitoring and 
biodiversity estimates of various vertebrate taxonomic groupings obtained from manual surveys at six sites 
spanning over 20 degrees of latitude along the Australian east coast. We found a number of individual acoustic 
indices that correlated well with species richness, Shannon’s diversity index, and total individual count estimates 
obtained from traditional survey methods. Correlations were typically greater for avian and total vertebrate 
biodiversity than for anuran and non-avian vertebrate biodiversity. Acoustic indices also correlated better with 
species richness and total individual count than with Shannon’s diversity index. Random forest models incor-
porating multiple acoustic indices provided more accurate predictions than single indices alone. Out of the 
acoustic indices tested, cluster count, mid-frequency cover and spectral density contributed the greatest pre-
dictive ability to models. Our results suggest that models incorporating multiple acoustic indices could be a 
useful tool for monitoring certain vertebrate groups. Further work is required to understand how site-specific 
variables can be incorporated into models to improve predictive capabilities and how to improve the moni-
toring of taxa besides avians, particularly anurans.   

1. Introduction 

Biodiversity loss is occurring worldwide, and is caused by a variety of 
factors, including invasive species (Clavero et al., 2009; Doherty et al., 
2016), habitat loss (Brooks et al., 2002), and climate change (Pimm, 
2009). This loss is severe enough for the current era to be classified as 
the sixth mass extinction event (Ceballos et al., 2015). Key to under-
standing and preventing biodiversity loss is effective monitoring, so that 
species declines can be detected, and the success of interventions and 
management strategies appropriately evaluated (Schmeller et al., 2015). 
Given the scale of biodiversity loss, traditional monitoring techniques 
that rely on manual surveys are unlikely to be sufficient, as they are 

impractical (expensive and time-consuming) to conduct on large tem-
poral and spatial scales (Darras et al., 2019). Given that many taxa 
vocalise, emerging technologies such as passive acoustic monitoring 
may be viable alternatives to traditional surveys and might help facili-
tate the efficient and effective monitoring of biodiversity at the required 
scale (Acevedo & Villanueva-Rivera, 2006; Obrist et al., 2010; Sugai 
et al., 2019). 

Recent advances in data storage have allowed the establishment of 
large-scale acoustic sensor networks, which may be useful for scaling 
biodiversity monitoring, because acoustic recorders can be deployed at 
many locations and survey the soundscape (i.e., the collection of sounds 
within an area) continuously (Digby et al., 2013; Roe et al., 2021). Many 
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taxa vocalise and contribute to the soundscape, therefore analysis of 
these recordings should provide useful estimates of biodiversity through 
time, allowing the detection of species population trends, including 
declines (Laiolo, 2010; Obrist et al., 2010; Sugai & Llusia, 2019). 
However, many barriers still exist to effectively extracting useful data 
from acoustic recordings for biodiversity monitoring (Gibb et al., 2019). 
Despite the promise of automated recognition of species from vocal-
isations, the majority of acoustic analyses still employ manual identifi-
cation (Sugai et al., 2019), because we lack either the labelled data or 
the requisite investment to develop deep-learning models of species 
vocalisations (Bravo Sanchez et al., 2021). While species inventories 
obtained by manually listening to the audio are useful for estimating 
biodiversity in small-scale studies, this approach is laborious and does 
not scale well to large acoustic datasets (Sugai et al., 2019). The solution 
has often been to sample large acoustic datasets or implement temporal 
sampling at the time of deployment, however this may reduce species 
detectability and impact biodiversity estimates (Sugai et al., 2019). 
Alternative approaches are needed that can take advantage of the large 

amount of data present in long-term passive recordings, while still 
providing accurate estimates of biodiversity. 

Acoustic indices provide a sum of spectral and temporal information 
obtained from audio recordings, and they may provide a way to monitor 
biodiversity without the need to determine species identity (Sueur et al., 
2008; Buxton et al., 2018; Towsey et al., 2018). Over the last 15 years, a 
great number of acoustic indices have been developed (Boelman et al., 
2007; Sueur et al., 2008; Sueur et al., 2014; Towsey et al., 2014), most of 
which aim to capture information about the acoustic diversity of a site 
(e.g., the range of occupied frequencies, often with the assumption that 
greater acoustic diversity is, in some way, a function of greater species 
diversity). While the use of acoustic indices to compare habitats has 
increased in recent years, results from studies quantifying the ability of 
acoustic indices to estimate traditional biodiversity measures (i.e., 
richness, evenness, abundance) at a location are mixed (Mammides 
et al., 2017; Eldridge et al., 2018; Moreno-Gómez et al., 2019; Retamosa 
Izaguirre et al., 2021). Typically, the performance of indices has been 
tested using birds, and using sites that are in close proximity to one 
another. Therefore, it is uncertain whether any patterns found still hold 
at large spatial scales. Additionally, the majority of previous work has 
focused on correlating biodiversity metrics with single acoustic indices, 
rather than attempting to generate multi-index models (but see Towsey 
et al., 2014; Buxton et al., 2018). If acoustic indices are to be useful in 
monitoring programs, then their reliability for providing estimates of 
the biodiversity of a site needs to be determined, as well as testing which 
acoustic indices are most informative (Alcocer et al., 2022). Addition-
ally, we need an improved understanding of which taxa can be effec-
tively monitored using acoustic indices (Alcocer et al., 2022). Vertebrate 
taxa other than birds contribute to the soundscape (e.g., mammals and 
frogs), yet they were seldom considered in studies employing acoustic 
indices until relatively recently (see Ferreira et al., 2018; Moreno-Gómez 
et al., 2019; Boullhesen et al., 2021). 

In this study we aimed to test the utility of 13 acoustic indices for 
monitoring vertebrate biodiversity at a number of sites in the recently 
deployed Australian Acoustic Observatory (Roe et al., 2021). Specif-
ically, we aimed to test the performance of individual acoustic indices, 

Fig. 1. A) Map showing the locations of the six study locations along the east coast of Australia. b) approximate layout of the vertebrate trapping methods used on 
each survey plot. 

Table 1 
Table of study sites, survey dates, and the total number of surveys with seven 
days of matched vertebrate survey and acoustic data, two sites were not sur-
veyed in spring because they were inaccessible because of high rainfall.  

Site name Survey dates - Trip 
1 

Survey dates - Trip 
2 

Total number of 
matched surveys 

Tarcutta 2021–04-29 – 
2021–05-06 

2021–10-18 – 
2021–10-25 

8 

Duval 2021–04-18 – 
2021–04-25 

NA 4 

Mourachan 2021–05-09 – 
2021–05-16 

NA 3 

Wambiana 2021–07-05 – 
2021–07-12 

2021–11-09 – 
2021–11-16 

7 

Undara 2021–06-03 – 
2021–06-10 

2021–09-29 – 
2021–10-06 

6 

Rinyirru 2021–06-14 – 
2021–06-21 

2021–10-09 – 
2021–10-16 

7  
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and models incorporating multiple acoustic indices, for estimating 
traditional biodiversity measures of species richness, Shannon’s di-
versity index, and total count, of various vertebrate taxonomic 
groupings. 

2. Methods 

2.1. Study sites 

We surveyed six sites distributed along the east coast of Australia 
that form part of the Australian Acoustic Observatory (Roe et al., 2021; 
Fig. 1a). All six sites were selected to be a similar broad habitat type of 
open eucalypt woodland. Each site consisted of four 100 × 100 m plots. 
Plots were arranged in pairs (≥500 m between pairs), and each pair 
included a wet plot (≤50 m from a body of water) and dry plot (≥50 m 
from a body of water and ≥ 500 m from the wet plot). When possible, 
each site was surveyed twice in 2021. Each survey lasted for seven days 
(excluding setup days), and all four plots within a site were surveyed 
simultaneously. 

2.2. Vertebrate surveys 

For each survey plot, a standardized series of survey and trapping 
methods was used to document the vertebrate fauna (Gibbons & 

Semlitsch, 1981; Garden et al., 2007; McKnight et al., 2015; Nordberg & 
Schwarzkopf, 2015). All methods were used continuously for 7 days 
during each survey period, and methods were consistent across plots. 
Each plot contained: two drift fences with pit and funnel traps, 12 
arboreal cover boards, four cage traps, and 24 Elliot traps (Fig. 1b). 

Drift fences (30-cm tall) were + -shaped, with four 10-m arms and 
five 20-L pitfall traps (one in the center and one at the end of each arm). 
Additionally, each arm had two funnel traps (18 × 18 × 79 cm; one in 
the middle of each side of the arm) with an opening on each end (eight 
funnel traps per fence). To improve capture rates, a “wing” (18 × 30 cm) 
of fence fabric was placed at a 45◦ angle to each opening of each funnel 
trap to guide additional animals into the traps (McKnight et al., 2013). 
To prevent desiccation and overheating, wet sponges were placed in 
each funnel and pitfall trap, shade cloths were placed over the funnel 
traps, and all traps were checked twice daily (in the morning and 
evening). 

Arboreal cover boards consisted of foam mats (50 × 50 × 1 cm) 
attached to trees by two elastic straps (Nordberg & Schwarzkopf, 2015). 
They were placed on 12 haphazardly selected trees and checked every 
morning. They were placed at the start of each survey period and 
removed at the end. 

Cage traps were 66 × 26 × 25 m and were placed in each corner of 
the plot (~10 m from the corner at a 45◦ angle to the plot boundaries). 
Elliot traps were 8 × 9 × 33 cm and were placed in a line (six per line) 

Fig. 2. Bootstrapped Spearman’s rank correlation values (±95 % CI) of thirteen acoustic indices and three biodiversity measures (species richness, Shannon’s di-
versity index and total count) for a) all vertebrate taxa, b) all non-avian vertebrate taxa, c) avians, and d) anurans. 
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starting in each corner ~ 5 m from the cage trap and ending near the 
center of the plot (~5 m between each trap). Cage and Elliot traps were 
baited with bait balls made of peanut butter, oats, and vanilla. Each trap 
was opened in the evening, checked the following morning, and closed 
during the day. Baited camera traps were also deployed at each plot; 
however, we have not reported vertebrate data from cameras here 
because we were interested in comparing active surveys methods with 
passive acoustic recordings. 

In addition to trapping methods, we conducted a 15-minute area 
search each morning and night. Searches were conducted by two re-
searchers who recorded any animals that were seen or heard. While 
researchers stayed within the plots, animals seen or heard off the plots 
were also noted. Morning searches focused on diurnal bird species, while 
nocturnal searches used head torches and focused on reptiles, anurans, 
and nocturnal birds such as owls. During each 7-day survey, researchers 
rotated among teams and plots to minimize observer bias. Finally, 
throughout the 7-day surveys, we noted incidental encounters with 
animals that were seen or heard outside of our 15-minute search periods. 

2.3. Audio surveys 

At each survey plot, audio was continuously recorded using acoustic 
sensors that are part of the Australian Acoustic Observatory (Roe et al., 
2021). Each sensor was fitted with a single microphone mounted 
1.2–1.8 m above the ground, recording continuously at a sampling rate 
of 22.05 kHz in the FLAC file format (FrontierLabs Solar BAR - https:// 
www.frontierlabs.com.au/solar-bar; see Roe et al., 2021 for full details). 
A total of 5,965 h of audio was recorded across the 6 sites in 2021. 

2.4. Vertebrate diversity measures 

To compare manual survey results with acoustic indices, we split the 
data into four taxonomic groupings: all vertebrates (containing all ob-
servations regardless of taxa or method of detection), anurans (all frogs 
detected by any method), avians (only birds observed during the 
morning birding surveys), and non-avian vertebrates (all taxa other than 

birds detected by any method). The anuran and avian subsets were 
chosen because both taxa vocalise and are likely to be detected on 
acoustic recorders (thus directly testing acoustic indices). The remaining 
two categories were intended to test the possibility that diversity in 
acoustic species would reflect diversity more generally and, therefore, 
acoustic indices would be useful for describing the broader vertebrate 
diversity. For each plot, we calculated species richness (total species 
observed), Shannon’s diversity index (which combines richness and 
evenness), and the total count of observations for each taxonomic 
grouping. 

2.5. Acoustic indices 

Thirteen acoustic indices were generated from the audio for the 
entire 7 days (12:00 on day of first spotlighting survey – 12:00 on the 
day of last bird survey) at a 1-min resolution using Kaleidoscope Pro 
(Wildlife Acoustics; version 5.4.1) and QUT Ecoacoustics Audio Analysis 
Software (Towsey et al., 2020; version 20.11.2.0; Table 2). 

Acoustic indices were calculated using their default settings and 
frequency ranges as they broadly cover the range expected to be affected 
by the vertebrate groups under study. From Kaleidoscope Pro, both the 
Acoustic diversity index (ADI) and the Acoustic evenness index (AEI) use 
0–11 kHz, with 1 kHz steps, the Bioacoustic index (BI) uses 2–11.025 
kHz, the Normalized difference soundscape index (NDSI) uses 1–2 kHz 
for the anthropophony component and 2–11.025 kHz for the biophony 
component, and Spectral entropy (SH) uses 0–11.025 kHz. From the 
QUT Ecoacoustics Audio Analysis Software, the Activity (ACT) and 
Events per second (EVN) indices use the full 0–11.025 kHz range. The 
Low-frequency cover (LFC), Mid-frequency cover (MFC), and High- 
frequency cover (HFC) indices measure the fraction of spectrogram 
cells exceeding 3 dB in the ranges 1–1000 Hz, 1–8 kHz, and 8–11.025 
kHz respectively. The Acoustic complexity index (ACI), Cluster count 
(CLS), and Spectral peak density (SPD) indices utilise the same fre-
quency band as MFC (i.e., 1–8 kHz; Towsey, 2017). 

For comparison with the on-ground vertebrate survey data, we only 
examined audio data for the dates that corresponded to survey dates. 
Each acoustic index was aggregated into a weekly value (per plot) by 
taking the average of all 1-minute values for certain taxa-specific time 
periods. Initial exploration of using the median instead of the average 
found very little difference between these two options. For avians, 
indices were averaged for the day (sunrise-sunset; 3478–5537 min per 
weekly value). For anurans, indices were averaged for the night (sunset- 
sunrise; 3959–5614 min). For total vertebrate biodiversity and non- 
avian vertebrate biodiversity, indices were averaged for the entire 7- 
day dataset (7437–10080 min). These times were selected based on 
expected periods of high activity for the different taxonomic groups and 
have been used in previous studies (Sugai et al., 2019). Any time period 
that had less than 70 % of the audio available (e.g., due to hardware 
failure) was removed from the dataset. This resulted in a total of 35 
matched, 7-day vertebrate and acoustic survey periods (Table 1). 

2.6. Statistical analyses 

To determine which individual acoustic indices may be useful 
proxies for vertebrate biodiversity, bootstrap Spearman’s rank correla-
tion values (and 95 % CIs) were calculated for each acoustic index and 
each biodiversity measure (i.e., species richness, Shannon’s diversity 
index, total count) for the four vertebrate taxonomic groupings. 

To determine how well multiple acoustic indices predict vertebrate 
biodiversity, random forest models were fit to each biodiversity measure 
using all 13 acoustic indices as predictors. Unbiased random forest 
models were fit using 1000 trees, and 10 × 3 cross validation was used to 
estimate predictive performance (R version 3.6.1; ‘party’ version 1.3.7; 
‘caret’ version 6.0.86). Model performance was evaluated on the out-of- 
bag samples using normalised mean absolute error (MAE; MAE/ 
(maximum – minimum response)). To determine which acoustic indices 

Fig. 3. Normalised mean absolute error of random forest models predicting 
richness, Shannon’s diversity index, and total count of all vertebrates, non- 
avian vertebrates, avians, and anurans. Values closer to zero indicate better 
performance while values closer to one indicate worse performance. Perfor-
mance measured with 10 × 3 cross-validation. 
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contributed most to the predictive accuracy of each model, variable 
importance for each random forest model was calculated using condi-
tional permutation importance (threshold = 0.95) and scaled by the 
total (null-model) error using the permimp package (version 1.0.1). 

Given that site-specific environmental characteristics and species 
composition will influence the soundscape, models for individual sites 
may perform better than models for all sites (Fuller et al., 2015). So, to 
determine how well acoustic indices predict avian biodiversity within a 
single site, site-specific linear mixed effects models (with survey plot as a 
random effect) were fit using the top three, most important, acoustic 
indices from the random forest models as predictor variables and avian 
richness and avian total count as the response variables for the three 
sites with the most surveys (i.e., >7; Tarcutta, Wambiana, Rinyirru). 
Models were fit using lme4 (version 1.1.26; Bates et al., 2015) and 
lmerTest (version 3.1.3; Kuznetsova et al., 2017). 

3. Results 

3.1. Vertebrate surveys 

A total of 327 vertebrate species were found during surveys across all 
sites. There were 172 avian species detected during bird surveys, and a 
total 21 anuran species found from all methods. The mean (±SD) 
number of species found on each survey plot during each seven-day 
survey period was 50.9 (±12.8) for all vertebrates, 32.4 (±10.9) for 
avian vertebrates, 2.66 (±2.29) for anuran vertebrates, and 14.9 
(±4.96) for non-avian vertebrates. 

3.2. Acoustic index correlations 

A number of the acoustic indices had moderate to strong correlations 
(0.5 ≤ rs ≥ 0.8) with the vertebrate biodiversity measures, particularly 

Fig. 4. Comparison of observed biodiversity values and out-of-bag predicted values from each random forest model. The Concordance Correlation Coefficient (CCC) 
values measure the agreement between data and the 45-degree line (i.e., 1 = perfect concordance). 
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for avians and all vertebrates, less so for anurans and non-avian verte-
brates (Fig. 2). In general, acoustic indices had lower correlations with 
Shannon’s diversity index than with species richness and total count 
across all vertebrate groupings examined. 

For all vertebrates, species richness had the highest correlation 
(index; mean correlation; 95 % CI) with spectral density (SPD; rs = 0.68; 
0.48–0.83) and mid-frequency cover (MFC; rs = 0.71; 0.54–0.83), 
Shannon’s diversity index had the highest correlation with activity 
(ACT; rs = 0.5; 0.23–0.71) and SPD (rs = 0.52; 0.22–0.73), and total 
count had the highest correlation with the acoustic complexity index 
(ACI; rs = 0.71; 0.45–0.85) and MFC (rs = 0.67; 0.4–0.82; Fig. 2a). 

For non-avian vertebrates, many of the acoustic indices tested had 
low correlations approaching zero (Fig. 2b). High-frequency cover (HFC; 
rs = 0.59; 0.23–0.79) and SPD (rs = 0.53; 0.25–0.75) correlated with 
species richness, and the normalized difference soundscape index 
correlated with total count (rs = 0.62; 0.33–0.8). 

For avians, MFC, SPD, ACI and cluster count (CLS) had the highest 
correlations with biodiversity measures (Fig. 2c). Specifically, species 
richness (rs = 0.7; 0.49–0.83) and Shannon’s diversity index (rs = 0.53; 
0.23–0.76) had the highest correlation with CLS, and total count had the 
highest correlation with MFC (rs = 0.75; 0.57–0.88). 

For anurans, MFC and SPD had moderate correlations with species 
richness (rs = 0.61; 0.41–0.77, and rs = 0.58; 0.36–0.74 respectively) 
and total count (rs = 0.75; 0.57–0.88, and rs = 0.69; 0.47–0.84 respec-
tively), while none of the acoustic indices correlated particularly well 
with Shannon’s diversity index (Fig. 2d). 

3.3. Random forest models 

Random forest models for all vertebrate groupings examined per-
formed well (i.e., mean normalised MAE < 0.25; Fig. 3). In general, 
models for anurans had a higher MAE (i.e., worse predictive perfor-
mance) than the equivalent models for the other vertebrate groupings 
considered. 

Observed vs predicted plots show that, in general, of the three 
biodiversity measures examined, Shannon’s diversity index was most 
poorly predicted using random forest models combinations of indices 
(Fig. 4), while species richness was the best. For species richness and 
total count, models were more accurate at predicting all vertebrates and 
avians than the other vertebrate groupings we examined. Random forest 
models had higher spearman rank correlations than the best performing 
individual acoustic index for all vertebrate groupings and biodiversity 
measures (Table 3), indicating predictive models using multiple acoustic 
indices had a stronger relationship with biodiversity measures than in-
dividual indices alone. 

For all vertebrates, SPD and MFC were the most important acoustic 
indices for predicting species richness, and MFC and ACI was the most 
important for total counts. For non-avian vertebrates, only high- 
frequency cover (HFC) was identified as an important acoustic index 
for the species richness model. For avians, the most important acoustic 
indices according to the random forest models were CLS, SPD and MFC 
for both species richness and total count, with no particular acoustic 
index the most important for Shannon’s diversity index (Fig. 5). For 
anurans, no single acoustic index was particularly important to model 
performance, which aligns with random forest models for frogs per-
forming comparatively poorly. 

Site-specific, linear, mixed-effects models were fit to data from Tar-
cutta, Wambiana and Rinyirru (the sites with most sample points) to 
predict avian species richness and avian total count using cluster count 
(CLS), spectral density (SPD) and mid-frequency cover (MFC). Observed 
vs predicted plots for these site-specific models showed that avian spe-
cies richness and total count were accurately predicted using these three 
indices (Fig. 6). 

4. Discussion 

Acoustic monitoring has the potential to be a powerful tool to 
monitor vertebrate biodiversity at large temporal and spatial scales, but 
reliable analysis methods, validated with on ground-surveys, are needed 
to take advantage of large acoustic datasets for ecological monitoring 
and prediction. We used data from six sites across a large geographic 
area to examine the relationships among 13 acoustic indices and 
biodiversity estimates of various vertebrate taxonomic groupings and 
found a number of individual acoustic indices had moderate to strong 
correlations with species richness and total count. Despite this, only 
relatively poor correlations with Shannon’s diversity index were 
observed. Models incorporating multiple acoustic indices outperformed 
individual indices and predicted species richness of all vertebrates and 
avians with reasonable accuracy, but they performed relatively poorly 
for non-avian vertebrates and anurans. Additionally, site-specific 
models showed strong relationships between acoustic indices and 
avian species richness and total count, and they suggest that it may be 
possible to monitor for fine-scale changes at specific sites using acoustic 
indices. 

Previous studies have reported correlations between bird species 
richness and ADI (Machado et al., 2017; Mammides et al., 2017; Dröge 
et al., 2021; Retamosa Izaguirre et al., 2021) and AEI (Mammides et al., 
2017; Jorge et al., 2018; Dröge et al., 2021). In contrast, we found low 
correlations between ADI and AEI and our biodiversity measures in this 
study, highlighting the importance of ground-truthing relationships 
between acoustic indices and local biodiversity data for a given project. 
We found that ACI correlated well with total avian count but not rich-
ness or Shannon’s diversity index, similar to the results of Retamosa 

Table 2 
List of the 13 acoustic indices generated from the acoustic recordings.  

Acronym Name Reference 

ADI* Acoustic diversity index Villanueva-Rivera et al. 
(2011) 

AEI* Acoustic evenness index Villanueva-Rivera et al. 
(2011) 

BI* Bioacoustic index Boelman et al. (2007) 
NDSI* Normalized difference soundscape 

index 
Kasten et al. (2012) 

SH* Spectral entropy Sueur et al. (2008) 
ACT† Activity Towsey (2017) 
EVN† Events per second Towsey (2017) 
LFC† Low-frequency cover Towsey (2017) 
MFC† Mid-frequency cover Towsey (2017) 
HFC† High-frequency cover Towsey (2017) 
ACI† Acoustic complexity index Pieretti et al. (2011) 
CLS† Cluster count Towsey (2017) 
SPD† Spectral peak density Towsey (2017) 

*Indices generated using Kaleidoscope Pro. 
†Indices generated with QUT Ecoacoustics Audio Analysis Software. 

Table 3 
Spearman rank correlation coefficients (rs) for the best individual acoustic index 
and random forest model predictions.  

Vertebrate Grouping Biodiversity measure Individual 
Acoustic Indices 

Random forest 

rs Index rs 

All richness  0.71 MFC  0.77 
Shannon’s  0.52 SPD  0.62 
count  0.71 ACI  0.78 

Non-avian richness  0.59 HFC  0.73 
Shannon’s  0.34 ACT  0.47 
count  0.62 NDSI  0.66 

Avian richness  0.7 CLS  0.78 
Shannon’s  0.53 CLS  0.72 
count  0.75 MFC  0.8 

Anuran richness  0.61 MFC  0.71 
Shannon’s  0.43 MFC  0.59 
count  0.75 MFC  0.76  

S. Allen-Ankins et al.                                                                                                                                                                                                                           



Ecological Indicators 147 (2023) 109937

7

Izaguirre and Ramírez-Alán (2018). In general, we did not find strong 
correlations between many of the commonly used acoustic indices (e.g., 
ACI, ADI, AEI, NDSI) and species richness. However, in addition to those 
indices, we also included some less common acoustic indices, three of 
which were often the indices with the highest single-index correlations 
and the most important variables in random forest models. Cluster count 
(CLS), spectral density (SPD), and mid-frequency cover (MFC) were the 
three best performing acoustic indices for avian biodiversity. All three 
indices are calculated using the 1–8 kHz frequency range which captures 
the range occupied by most bird species (Towsey, 2017). Cluster count 
(CLS) performed best for species richness and Shannon’s diversity index, 
as it measures the number of distinct clusters identified in the middle 
frequency band, which should increase with the number of unique bird 
vocalisations within that band, whereas mid-frequency cover was the 

individual acoustic index with the highest correlation with avian total 
count, and the most important index from random forest models. This 
makes sense, as the amount of sound in the middle frequency band 
should increase with lots of vocalisations from birds, whether they are 
from the same species, or from many different species. To our knowl-
edge, this is the first time these three acoustic indices have been used to 
estimate biodiversity and future studies should include these highly 
promising indices to determine whether they are useful in a broader 
range of situations and environments. 

Acoustic indices were the most useful as proxies for total vertebrate 
biodiversity and avian biodiversity of a site. Across our survey periods, 
bird richness contributed on average 62 % of total vertebrate species 
richness, and the two biodiversity measures correlated strongly (rs =

0.89). This suggests that despite many other vertebrate taxa not 

Fig. 5. Variable importance metrics for each random forest model. Values are the mean decrease in accuracy as a proportion of total null-model error from random 
permutations of each acoustic index (i.e., high values indicate that an index was an important predictor in the model). 
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vocalising and contributing directly to the soundscape, acoustic indices 
may still act as a reasonable proxy for estimating the total vertebrate 
biodiversity of a site. This may, however, only be true in environments 
where birds are the dominant sources of sound. Environments with 
diverse insect fauna (e.g. tropical environments, or years in which loud 
taxa such as cicadas are present) may reduce the correlation between 
acoustic indices and total vertebrate diversity (Eldridge et al., 2018). 

To date, there has been very little research using acoustic indices to 
estimate the biodiversity of anurans. However, previous research has 
shown that multiple acoustic indices can be reliable predictors of 
species-level calling behaviour of various frogs at short time-scales 
(Brodie et al., 2020; Indraswari et al., 2020). In general, acoustic 
indices performed poorly as proxies for frog biodiversity in this study (i. 
e., low correlations, poorer performing random forest models). Frogs are 
known for conspicuous vocalization, so this result is surprising. One 
likely reason for this poor performance is that, during the week-long 
surveys, there was typically low or no frog vocalisation. A number of 
the sites examined are located in tropical savannah environments where 
frog chorusing activity is initiated by rainfall (Woinarski et al., 1999; 
Brodie, 2022). Indeed, vocalizations are seasonal for many species of 
frog, and acoustic indices may not accurately reflect frog diversity unless 
they coincide with breeding events (for sites where many species breed 
simultaneously) or cover a long time period (for sites where breeding is 
staggered among species; McKnight & Ligon, 2016). One previous study 

on acoustic indices and frog biodiversity found poor correlations be-
tween seven acoustic indices and frog richness (Moreno-Gómez et al., 
2019). Of those same indices tested here, we also found low correlations, 
however, the two indices with highest correlations in the present study, 
MFC and SPD, were not used by Moreno-Gómez et al. (2019). Further 
study should examine whether acoustic indices may perform well for 
frogs at appropriate times of the year (e.g., the rainy season or when a 
breeding pulse is known to have occurred onsite), particularly those 
indices that worked well for birds (i.e., MFC, CLS and SPD), as they have 
not been examined before. These indices were calculated using the 1–8 
kHz frequency band which also covers most frog vocalisations; however, 
they could be adjusted to be more specific to frogs, which primarily 
vocalise below 5 kHz (Loftus-Hills & Johnstone, 1970). The fine-tuning 
of acoustic indices to certain frequency bands has been shown to 
improve biodiversity predictions of certain taxonomic groups and war-
rants further investigation (Metcalf et al., 2021). 

Models incorporating multiple indices performed better than any 
single acoustic index, and in general performed reasonably well at 
predicting total vertebrate and avian species richness, and avian total 
count. However, other studies have used multiple acoustic index models 
to predict biodiversity with mixed results (e.g. Buxton et al., 2018; 
Retamosa Izaguirre et al., 2021). This may be due to methodological 
differences used to estimate biodiversity. For example, Buxton et al. 
(2018) estimated biodiversity from the audio recordings themselves and 
found random forest models predicted biodiversity accurately, whereas 
Retamosa Izaguirre et al. (2021) used bird point count surveys, which 
include both visual and aural detections, and found random forest 
models predicted biodiversity poorly. Our models still predicted biodi-
versity measures relatively well for birds and all vertebrates, even when 
estimating these measures from on-ground field surveys. This difference 
may occur because these studies used different time-scales. We aggre-
gated acoustic indices into weekly summary indices for comparison with 
7-day field surveys, whereas Retamosa Izaguirre et al. (2021) estimated 
bird diversity from 6-minute point counts, possibly introducing more 
variability. 

The study sites examined here spanned a large latitudinal gradient 
(>20◦), with sites having distinct but overlapping community compo-
sition, yet indices performed well for representing vertebrate biodiver-
sity in a number of cases. Most prior studies examining the relationship 
between acoustic indices and biodiversity have done so using sites 
spaced much closer together (e.g., Depraetere et al., 2012; Moreno- 
Gómez et al., 2019; Bradfer-Lawrence et al., 2020). This suggests that 
acoustic indices may be useful in a wide range of conditions and that 
large-scale ecological monitoring networks such as the Australian 
Acoustic Observatory (A2O) could potentially use acoustic indices for 
rapid estimates of vertebrate biodiversity. However, more work is 
needed if acoustic indices are to be used to monitor finer scale changes in 
species richness, such as the loss of a species. Site-specific models 
showed a much stronger relationship between acoustic indices and 
avian biodiversity than models using all sites, suggesting that account-
ing for the unique fauna and environmental characteristics of a site may 
further strengthen the predictive performance of acoustic indices (Fuller 
et al., 2015). Accounting for unique site characteristics is potentially 
possible using acoustic monitoring, as long-term fine-scale temporal 
data at a variety of sites are available using this method. 

5. Conclusions 

Biodiversity monitoring techniques that can be used at large tem-
poral and spatial scales are needed to provide the necessary data to 
detect changes in biodiversity and inform management interventions. 
The use of acoustic indices promises to provide a rapid way to monitor 
the biodiversity of terrestrial environments, however, at least initially, 
they need to be thoroughly tested and ground-truthed using more 
traditional monitoring methods. Our study found moderate to strong 
correlations between vertebrate diversity and specific acoustic indices, 

Fig. 6. Comparison of observed biodiversity values (avian species richness and 
avian total count) and predicted values from each site-specific linear mixed- 
effects model. The Concordance Correlation Coefficient (CCC) values measure 
the agreement between data and the 45-degree line (i.e., 1 = perfect 
concordance). 
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and especially combinations of acoustic indices, over week-long surveys. 
Additionally, models combining multiple indices made accurate biodi-
versity estimates for avians and all vertebrates. Future work should 
incorporate site-specific environmental variables that may account for 
some of the variability in the relationship between acoustic indices and 
biodiversity measures, and thus improve predictive capabilities. Addi-
tionally, the effectiveness of using acoustic indices for monitoring taxa 
beside avians, particularly anurans, requires more examination. 
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