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A B S T R A C T   

This study presents a comprehensive evaluation of seasonal, locational, and varietal variations in canopy 
reflectance responses in 315 commercial citrus blocks from three major growing regions in Australia. The dataset 
includes three different citrus types (Mandarin, Navel, Valencia) and 26 varieties. The aim is to utilize this 
combined information to better understand yield variation and develop improved forecasting models. Landsat 
satellite data spanning from October 2006 to February 2021 (1419 tiles) were used to derive reflectance values, 
and calculate four vegetation indices (NDVI, GNDVI, LSWI, and GCVI), for each citrus block. These indices were 
then analyzed alongside corresponding yield data, which consisted of 3660 individual yield records dating back 
to 2007. Two temporal resolutions were incorporated as predictors: spatio-temporal vegetation index time series 
(TS) aggregated every two months and annual time series of historical block-yield records. Six statistical and 
machine learning algorithms were calibrated using a leave-one-year-out cross-validation approach (LOYO CV) 
and validated for one-year forward prediction over a five-year period (2017–2021). The results highlight sig-
nificant yield variations across years, alternate bearing patterns, and spatio-temporal changes in reflectance 
profiles influenced by seasonal conditions, varietal characteristics, and locations. The support vector machine 
(SVM) algorithm with a radial basis function kernel consistently outperformed other algorithms, indicating a 
non-linear relationship between citrus yield and predictors. The SVM model achieved an RMSE of 15.5 T ha− 1, R2 

of 0.88, MAE of 12.1 T ha− 1, and MAPE of 29% in predicting block-yield across farms, varieties, and seasons. 
These prediction accuracy metrics demonstrate an improvement over current forecasting methods. Notably, the 
proposed approach utilizes freely available imagery, provides forecasts between two to nine months before 
harvest, and eliminates the need for infield counting of fruit load for image calibration. This approach provides 
an improved method for understanding seasonal yield variation and quantifying citrus block-yield, offering 
valuable insights for growers in harvest logistics, labor allocation, and resource management.   

1. Introduction 

Accurate pre-harvest yield forecasting is of great importance to 
growers and the agricultural industry, facilitating informed decision- 
making regarding market access and forward selling (Zhang et al., 
2019). Better predicting total yield as well as its spatial distribution 
across a farm and over larger spatial extents, can be used to better 
optimize resources fomenting more responsible and environmental 
friendly practices (Luo et al., 2022; Zhang et al., 2019). While yield 
forecasting methodologies have been extensively studied in broad-acre 
crops like rice, maize and wheat (Basso and Liu, 2019; Schauberger 
et al., 2020), limited research has focused on tree crops, particularly in 
the context of block-yield forecasting crops (Brinkhoff and Robson, 

2021; Rahman et al., 2018; Schauberger et al., 2020). The unique 
characteristics of tree crops, including their fixed nature, evergreen 
leaves, irregular bearing patterns, and extended growth periods, present 
significant challenges in adapting broad-acre forecasting methodologies 
to these crops (Ali and Imran, 2021; Sola-Guirado et al., 2017; Zhang 
et al., 2019). 

Tree crops, such as citrus, exhibit flush-based maturity and are 
subject to alternate bearing, a phenomenon predominantly associated 
with the source -sink relationship of the tree, that being the trans-
location of annual accumulated resources such as carbohydrates from 
photosynthesis to flower and fruit production (Sakai et al., 2008; Somers 
et al., 2010). A heavy crop load will exhaust the tree’s energy reserves 
and reduce vegetative growth affecting flowering, fruit sites and 
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carbohydrate stores for the following season (Bevington et al., 2003). 
Although this ecological phenomenon occurs at the tree level, yield may 
become synchronous within larger areas affecting national market pri-
ces (Sakai et al., 2008). The alternate bearing process, along with factors 
like abiotic and biotic stresses, and the complex interplay between yield 
potential, tree age, and management practices including pruning, 
contribute to the variability in tree crop yields and introduces a higher 
level of complexity in yield forecasting (Bevington et al., 2003; 
Brinkhoff and Robson, 2021; Isagi et al., 1997; Stephenson et al., 1986). 
Although, some authors, such as Konduri et al. (2020), have indicated 
weather conditions are the major cause of yield variability in cereals, 
others have rejected the hypothesis for tree crops, as production at the 
block level varies to a greater degree than the weather conditions would 
indicate (Isagi et al., 1997). Stephenson et al. (1986), and more recently 
Brinkhoff and Robson (2021) found that meteorological variables did 
not play a significant role in predicting tree crop yield seasonally or 
across various growing locations. 

Existing yield estimation practices in commercial citrus farms 
involve manual fruit counting, which is labor-intensive and time- 
consuming (Koirala et al., 2019). This activity is generally undertaken 
soon after the physiological fruit drop when fruitlets are about 10–15 
mm in diameter, typically occurring between 5 and 9 months before 
harvest. Yield estimations during this period are crucial for improved 
decision-making regarding budgeting and marketing demand (Dorj 
et al., 2017). However, recent studies exploring alternative approaches 
using machine vision and remote sensing techniques have faced limi-
tations in accuracy and practicality, often requiring in-season sampling 
and struggling with the visibility of fruitlets (Anderson et al., 2021b; 
Rahman et al., 2018; Robson et al., 2017a). 

Yield estimation methodologies using high-resolution satellite 
(Rahman et al., 2018; Robson et al., 2017a; Robson et al., 2017b) and 
airborne imagery (Ye et al., 2008; Ye et al., 2007) have been tested with 
varied results. These studies concluded that the empirical relationships 
established for each block could not be extrapolated to other locations or 
seasons due to large yield variability caused by alternate bearing and the 
variability of the canopy structure resulting from management practices 
every season. More recent studies have utilized remote sensing and 
weather data to forecast almond and macadamia block-level yields 
(Brinkhoff and Robson, 2021; Zhang et al., 2019) at early stages of the 
growing season, avoiding the need for sampling. However, such research 
on early block-yield forecasting in citrus crops has been limited, 
requiring further investigation, especially encompassing a large number 
of commercial farms and considering the influences of type, variety, 
location, management, and season. 

Although the assessment of sophisticated prediction algorithms in 
citrus crops has been limited, they offer a wide range of solutions for 
comprehensive analysis. Leukel et al. (2023) provide a detailed review 
of machine learning (ML) approaches for predicting grain yield, while 
Schauberger et al. (2020) present an overview of successful approaches 
for forecasting yield weeks or months before commercial harvest across 
various crops. Tree-based algorithms, such as gradient boosting trees, 
sequentially construct an ensemble of decision trees to rectify errors 
made by previous trees. Support vector-based algorithms excel in 
handling high-dimensional data by fitting a regression line while mini-
mizing errors and managing outliers effectively. They can also handle 
non-linear relationships through kernel functions. Neural network- 
based algorithms, consisting of interconnected nodes or ’neurons’ 
organized in layers, can model intricate relationships between input and 
output variables. However, their less interpretable internal workings 
have led to them being regarded as ’black boxes.’ Regression-based al-
gorithms assume a linear relationship between input features and the 
output variable, decomposing predictors and response variables into a 
lower-dimensional space defined by latent variables. Detailed informa-
tion on tuning parameters and internal representation of these algo-
rithms can be found in Kim et al. (2019); Kuhn (2008); and Kuhn and 
Johnson (2016). All of these algorithms can handle the impact of 

multicollinearity on model performance through the incorporation of 
linear and non-linear transformations, along with regularization pa-
rameters (Rosipal and Trejo, 2002). 

Model assessment is a critical step in evaluating the performance of 
predictive models, and it involves analyzing several accuracy parame-
ters. However, the choice of specific parameters may vary across 
different studies, and establishing a standard approach can be chal-
lenging (Schauberger et al., 2020). Studies often implement the Root 
Mean Square Error (RMSE) or the Mean Average Error (MAE) which 
units are the same as the response variable. MAE, being less sensitive to 
distant outliers than RMSE, is suitable when the impact resulting from a 
poor forecast is proportional to the forecast error (Notton and Voyant, 
2018; Perez et al., 2013). The Mean Absolute Percentage Error (MAPE, 
%) is a scale-invariant parameter as it is not affected by the magnitude of 
the values to be predicted. It treats positive and negative errors equally 
since it calculates the absolute percentage difference, therefore, the 
overestimation and underestimation errors have the same impact on the 
overall MAPE value. MAPE, provides a straightforward interpretation as 
a percentage error but it is sensitive to zero or near-to-zero values (de 
Myttenaere et al., 2016; Lee et al., 2022). The Mean Bias Error (MBE) 
represents the systematic error of a forecast model and indicates 
whether it overestimates (+), underestimates (− ), or shows equal dis-
tribution of errors (zero MBE) (Kato, 2016; Mkhabela et al., 2011; 
Notton and Voyant, 2018). However, MBE is not suitable for evaluating 
errors of individual predictions. As each parameter possess a particular 
characteristic and limitation, it is usually recommended the use of 
different performance metrics to gain a comprehensive understanding of 
the model’s performance. 

This study employs a combination of statistical and machine learning 
(ML) techniques to analyze and forecast block-yield in citrus crops. By 
comparing several predictive models, our objective is to identify the 
most effective and consistent method for understanding and predicting 
future trends and seasonal yield potential across different citrus types, 
seasons and locations using spatio-temporal data analysis of Earth 
observation data and historical production. Our aim is to surpass current 
commercial practices and eliminate the need for in-season sampling. 
The study encompasses three major citrus-growing regions in Australia 
to ensure robustness and scalability to other locations. 

In addition to forecasting future yields, our study compiles a 
comprehensive dataset directly provided by growers, covering over a 
decade of block-level information from multiple locations. This dataset 
enables the description of reflectance profiles based on phenological 
stages, age, location, and citrus type, shedding light on patterns and 
potential effects on forecast performance, robustness, and scalability. 
We also explore different temporal resolutions of time series data, Earth 
observation data, and historical production as predictors to determine 
the optimal combination for accurate forecasting. Moreover, we assess 
the selected model’s ability to predict production trends. 

By addressing these research objectives, our study aims to bridge the 
existing gap in citrus early block-yield forecasting and contribute to the 
advancement of model selection and decision-making processes in the 
citrus industry. 

2. Materials and methods 

2.1. Study area 

Three main growing regions in Australia were incorporated in this 
study: Riverland, Sunraysia (Murray Valley) and the Wheatbelt (West-
ern Australia) (see Fig. 1). About 44% of Australia’s citrus production 
occurs in these regions. For all the regions, the main crop is Navel, fol-
lowed by Mandarin and Valencia. Navels represent 65% of planted area 
in Sunraysia, 51% in the Riverland and 49% in the Wheatbelt region and 
Mandarin (Valencia) represents 23% (6%), 25% (17%) and 28% (15%), 
respectively. Of the total citrus planted area, this study analyzed 27% of 
the Wheatbelt region, 14% of the Riverland and 3% of Sunraysia. The 
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most common varieties (national planted area) were included such as 
Leng (2%), M7 (2%), Navelina (3%), Washington (10%), Late Lane 
(10%), Cara Cara (3%), Valencia (16%), Imperial (5%), Afourer (8%) 
and Murcott (4%) as well as 16 lesser produced varieties (Table S1). 
Farms of different sizes (named as FH, FK, FM, and FT) with citrus blocks 
of various age (maturity), varieties, management practices and histori-
cal production were included in this study (Fig. 1). Management prac-
tices, including row spacing, irrigation scheduling, pruning, 
fertilization, and soil management, varied across blocks to meet market 
demands and farm production calendars. Crops under permanent 

netting were excluded from the analysis due to the non– canopy related 
influence they have on the EO data. Citrus blocks were distributed across 
two climatic regions (Bureau of Meteorology, 2023): grassland (GL) and 
subtropical (SBT). More specifically, the grassland blocks were located 
in the Riverland (FK) and Sunraysia growing region (FH, FT) and the 
subtropical blocks (FM) were located in the Wheatbelt growing region. 

Meteorological data from the SILO database (2007–2021) was 
collected for each farm, including rainfall and temperature records. R 
software was used for further analysis. Long-term mean values of annual 
and monthly rainfall and temperature were calculated by climatic region 

Fig. 1. Long-term mean yield of citrus blocks located the main growing regions in Australia. Location of (a) KM farm, (b) FK farm, (c) FH farm and (d) FT farm. 
Climatic classification map sourced from Bureau of Meteorology (2023). 

L.A. Suarez et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103434

4

(Fig. S1). The GL-blocks had a mean maximum temperature of 24.9 ◦C, 
while SBT-blocks experienced temperatures approximately 2 ◦C higher. 
GL blocks had a mean monthly rainfall of 45.6 mm, and SBT blocks had 
32.1 mm. Rainfall in the GL region declined rapidly since 2016 but 
showed a slight increase in 2020. In 2019, both regions experienced 
their lowest recorded rainfall due to severe drought. Despite the 
drought, all blocks analyzed were irrigated, minimizing immediate 
production impacts. The diverse growing conditions, encompassing crop 
type, age, management practices, and climate variations, allowed for 
scalability and robustness of the study. 

2.1.1. Growing cycle of citrus 
In Australia, most of the citrus blocks are harvested by October. 

However, in very few cases, depending on the variety harvest can be 
extended until November. Between October and November flowering 
and fruit set occur accompanied by the first flush of new shoot growth. 
From here, fruit growth, particularly cell division occurs until 
December, followed by cell expansion until April and maturity until 
harvest (June – September) (Table 1) (Bevington et al., 2003). 
Commercially, three yield estimates during the growing season take 
place: a) during latest phase of flowering and Stage I of fruit growth, b) 
after a physiological drop usually at the beginning of the Stage II of fruit 
growth, and c) during the latest stages of maturation just before har-
vesting. Decisions around crop intervention occur during the second 
yield estimation when crop load is set, therefore the timing of this es-
timate is the most important one for farm operations, and it is the focus 
of this study. 

2.2. Data 

2.2.1. Historic yield records 
Block-yield records (in tons per hectare, T/ha) and farm maps de-

tailing block boundaries, varieties and planting year and area (ha) were 
provided by the participating growers. Initially, 3660 individual yield 
records extending back to 2007 were collated. The dataset contained 
information on management practices, planting year per block (from 
1966 to 2018, average tree age = 15), production (0.1 T ha− 1 – 122 T 
ha− 1), harvest seasons (2007–2021), block area (0.5 ha – 14.6 ha) and 
location (4 farms). Each individual block had uniform tree age, man-
agement, irrigation scheduling and variety. From the data, block level 
yield varied greatly between citrus types and years (Fig. 2). Mandarin 
blocks displayed the greatest variation in yield within and across seasons 
(spatial and temporal variability), whereas Navels had less spatio- 
temporal variability. Valencia yields showed greater temporal vari-
ability, but yields were similar across blocks within a season. The 
average yield of Mandarin blocks was 37.7 T ha− 1 (standard deviation, 
SD = 22.9 T ha− 1), 35.1 T ha− 1 for Navels (SD = 15.5 T ha− 1) and 40.5 T 
ha− 1 for Valencia (SD = 18.6 T ha− 1). 

For each record (block per season), the historical block-yields of the 
previous three years were added to the dataset generating the time series 
(TS) of historical yields (TS-HY), hence only blocks with such historical 
information available were used. This accumulation of data supports a 
better understanding of alternate bearing of the citrus crops. Therefore, 
the TS-HY dataset started in 2010 and included data of the previous 
three years (2007, 2008 and 2009). Blocks with “no data” or 0 T ha− 1 

records were removed for calibration purposes, reducing the number of 
valid records to 2382. 

2.2.2. Block boundaries and spatio-temporal satellite data 
All block boundaries were digitized using ArcGIS as shapefiles and 

imported into Google Earth Engine (GEE) (Gorelick et al., 2017) to 
extract spatio-temporal information at the block level. Landsat 5 TM, 7 
ETM+, and 8 OLI surface reflectance data (collection 2, tier 1) from 
October 2006 to February 2021 was accessed. Landsat imagery was 
selected for its adequate spatial and temporal resolution. The data were 
processed in Google Earth Engine (GEE) at a 30-meter spatial resolution. 
Although harmonizing the reflectance data from different sensors is 
often considered important, previous research by Brinkhoff and Robson 
(2021) indicated that harmonization did not lead to improved model 
performance. Furthermore, a random assessment of time series at the 
block level did not reveal significant changes in the profile. Therefore, 
the step of harmonizing the data from different sensors was omitted in 
this study. To account for cloud cover, the USGS CFMASK cloud mask 
was applied to all imagery prior any calculations. A total of 1419 tiles 
were processed and four vegetation indices (NDVI, GNDVI, LSWI, and 
GCVI) were calculated per tile to describe yield variability without 
introducing excessive variables or overfitting (Table 2) during the 
modeling stage. To address mixed pixel issues, the spatial mean per 
block (per tile) was calculated, giving more weight to homogenous 
pixels enclosed within block boundaries. A minimum (maximum) of 324 
(575) tiles were available per block (average = 387). Fig. S2 shows the 
distribution of tiles per capture year and month. The resulting remote 
sensing (RS) dataset was then imported into R software (R Core Team, 
2014) for further analysis. 

To enhance data availability and mitigate the impact of cloud cover, 
RS data was aggregated into a two-month period (bTS) per block. This 
approach increases the likelihood of having data for analysis and 
modeling by reducing the obstruction caused by cloud cover. Moreover, 
aggregating the data over a bimonthly timeframe provides a more 
comprehensive understanding of the block’s characteristics and trends. 
It helps minimize the influence of outliers or noise present in individual 
pixels while creating a smoothing effect on the data. As such, six periods 
(P) were defined encapsulating key developmental stages. The first 
period (1P) started in October (~after harvest) and 6P ended the 
following September (Table 1). Similar approaches of aggregation ac-
cording to phenological-related stages have been reported by Brinkhoff 

Table 1 
Key growth stages of citrus blocks during calendar year and periods of analysis. Letters (a, b, c) indicate (usual) timing of the three commercial estimates performed in 
Australia.  
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and Robson (2021) and Gomez et al. (2019). The bTS of the previous 
three years were also added creating the final TS-RS. 

The TS-RS and the TS-HY datasets were merged creating the level 1 
(L1) dataset that included all three citrus types and all potential pre-
dictors (detailed in 2.3.1). Thus, each record (block per season) incor-
porated two TS of different temporal resolution: bimonthly (TS-RS) and 
annual (TS-HY), each of them with the respective three years of his-
torical information. For modeling, each record had a complete set of 
observations (i.e. no missing values). 

2.3. Methods 

The following sections describe the main approaches implemented in 
this study and are illustrated in Fig. 3. 

2.3.1. Selection of the best predictors 
The performance of models can vary based on the set of predictors 

used. This is because different algorithms have varying capacities to 
transform non-linear relationships between predictors and the response 
variable, as well as to minimize overfitting to noise in the training data. 
Models can extract features from different parts of the dataset that best 
describe the response variable. Therefore, the selection of predictors 
prior to model calibration can impact the results. In order to determine 
the best set of predictors, models were calibrated and validated using 
each set, and the set that consistently demonstrated the highest perfor-
mance according to the RMSE (Eq. (1)), the MAE (Eq. (2)), and MAPE 
(Eq. (3)) was selected. Six sets of predictors were tested (Table 3). These 
included combinations of:  

a) historical yields of the previous 3 years (3HY);  
b) historical RS data defined by the four VIs for each period of the 

previous 3 (3ys) or two (2ys) years; and  

c) current RS data of the four VIs during the first and second growth 
period of the current harvest season (1P and 2P respectively). 

We further explored the relationships between individual predictors 
and block-yield (Table S2 and Fig. S3) to gain insight of such relation-
ships and their relevance on model performance. 

2.3.2. Modelling approach 
We employed a combination of statistical and machine learning (ML) 

techniques to analyze and forecast yield in citrus crops. Each of these 
algorithms utilizes distinct decomposing approaches to learn the re-
lationships between the response and predictor variables, with specific 
tuning parameters controlling their behavior and influencing how they 
learn from training data and make predictions. Further information can 
be found in Kuhn and Johnson (2016). Table 4 lists the tuning param-
eters for each regression algorithm. 

For model calibration purposes, Leave-One-Year-Out Cross-Valida-
tion (LOYO CV) was implemented. In this approach, the training dataset 
was split by season, ensuring that data from each year was used for 
validation while the remaining years were used for training. The per-
formance of the model, as measured by RMSE, was assessed by sys-
tematically varying the tuning parameters. The optimal tuning 
parameters were determined by selecting the set of values that yielded 
the smallest average RMSE across the LOYO CV process. Once the 
optimal tuning parameters were identified, the entire training dataset 
was used to train the final model, employing these selected parameter 
values. 

The final models underwent independent validation using a one-year 
forward season (test dataset, t). This validation process was repeated 
five times for each year from 2017 to 2021 (t2021

2017). This approach was 
chosen to replicate real-world conditions, where forecasting block-yield 
for a new season relies solely on the previous season’s data. 

Fig. 2. Historical production by citrus type. The dotted line represents the average yield across the seasons per citrus type.  

Table 2 
Summary of vegetation indices used in the block-yield forecast.  

Vegetation Index (Abbreviation) Equation* Reference 

Greenness normalized difference vegetation index (GNDVI) (NIR-Green)/(NIR + Green) Gitelson (2011) 
Normalized difference vegetation index (NDVI) (NIR-Red)/(NIR + Red) Tucker (1979) 
Land Surface Water Index (LSWI) (NIR-SWIR1)/(NIR + SWIR1) Chandrasekar et al. (2010) 
Green Chlorophyll Vegetation Index (GCVI) (NIR/Green)-1 Gitelson et al. (2003)  

* Abbreviation in the equations: NIR, Near infrared; SWIR1: Short wave infrared 
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Additionally, it allowed us to gain insights into the temporal stability of 
the models. 

2.3.3. Model assessment 
Accuracy prediction parameters, including RMSE, MAE, MAPE, and 

MBE (Eq. (4), were calculated to assess the performance of the models. A 
temporal analysis of the accuracy parameters was further conducted to 
identify the most stable and reliable model among the validation 
seasons. 

RMSE
(
Tha− 1) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(ŷi − yi)
2

N

√

(1)  

MAE
(
Tha− 1) =

1
N
×

∑N

i=1
|ŷi − yi| (2)  

MAPE (%) = (MAE/Y)*100 (3)  

MBE
(
Tha− 1) =

1
N
×
∑N

i=1
(ŷi − yi) (4) 

where N is total number of block-yields i, ŷ and y refer to the 

predicted value and the actual value and Y refers to the mean of actual 
values. 

To gain insights into how these models make predictions and aid in 
further model selection, the calculation of variable importance (VImp) 
scores was employed. The models present varied challenges in inter-
pretation. Certain models, such as partial least squares, gradient 
boosting, and neural networks, inherently quantify the influence of 
predictors in different ways (Scholbeck et al., 2020). However, some 
algorithms, like support vector machines, lack this capability, limiting 
our understanding of their predictions. To address this, a standardized 
model-specific method was implemented to compute VImp scores 
(Greenwell et al., 2018), which can be utilized with any trained super-
vised algorithm. In this approach, the most important variable for each 
model is assigned a score of 100%, while subsequent variables receive 
relative values between 0 and 100, indicating their proximity in 
importance to the first variable. It is important to note that the VImp 
scores are relative and serve as indicators of the absolute value of the 
effect, rather than the sign or direction. 

Subsequently, the chosen model was utilized to estimate the total 
production for each citrus type at the farm level, aiming to evaluate its 
capability in predicting production trends. 

Fig. 3. Illustration of dataset compilation and modeling approach for citrus block-yield forecasting.  

Table 3 
Group of predictors, predictor origin and total number of predictors for modeling purposes. 3HY: Historical yields of the previous 3 years; 2ys (3ys): historical RS data 
defined by the four VIs for each period of the previous 2 (3) years; 1P (2P): RS data as per the four VIs during the first (second) period of the current harvest season.  

Set Predictors Abbreviation Origin of predictors Number of predictors 

1 3HY yield TS-HY 3 
2 2ys + 1P + 2P 2ys + p1 + p2 TS-RS 56 
3 3ys + 1P + 2P 3ys + p1 + p2 TS-RS 80 
4 2ys + 1P + 2P + 3HY [2ys + p1 + p2] + yield TS-RS & TS-HY 59 
5 3ys + 1P + 3HY [3ys + p1] + yield TS-RS & TS-HY 79 
6 3ys + 1P + 2P + 3HY [3ys + p1 + p2] + yield TS-RS & TS-HY 83  
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2.4. Results 

2.4.1. Citrus phenology and reflectance profiles 
The reflectance values of Mandarin, Navel, and Valencia blocks were 

aggregated into two-month periods representing different growth stages 
(Table 1 and Fig. 4). During flowering (~1P), the visible (VIS) reflec-
tance reached its highest values due to a higher number of immature 
leaves in the canopy and their biochemical and biophysical composition 
with the lowest chlorophyll content and therefore a low photosynthetic 
capacity limiting the energy absorption in this region (Mustafa et al., 
2005; Stuckens et al., 2011). From Stage I (fruit setting, 1P-2P) to Stage 
II (~3P-4P), the reflectance declined consistently as the citrus leaves 
matured, resulting in increased energy absorption in the VIS region due 
to higher chlorophyll content (Mustafa et al., 2005). The reflectance 
decreases between 3P and 4P are associated with root and shoot growth 
flushes and fruit development (cell expansion) (Bevington et al., 2003; 
Iglesias et al., 2007). At the maturation stage (5P), the reflectance values 
reached their lowest point, corresponding to a fully developed canopy 
with maximum radiance absorption, driven by high chlorophyll content 
and larger leaf area (Somers et al., 2010). After maturation, the trees 
entered the senescence or dormancy stage (6P), leading to a slight in-
crease in reflectance values associated with a decrease in chlorophyll 
content (Mustafa et al., 2005). Variations in the reflectance curve at the 
farm and block level reflect different management strategies, locations, 
health, and tree age (Fig. 4). The GNDVI values increase as trees mature, 
with the highest values observed in trees around 15 years old. Younger 
trees have lower GNDVI values due to smaller canopies and more soil 
exposure, while trees between 10 and 15 years show higher values due 
to canopy size and density. GNDVI values were found to decline in trees 
aged 15–20 years and then increase again in trees over 25 years old. 

2.4.2. Selection of predictors 
An exploratory analysis was performed to determine the relation-

ships between predictors and yield and their ability to explain variability 
in yield (Table S2 and Fig. S3). Although varying in magnitude, all the 
relationships were significant (p-value < 0.05). There was a moderate 
relationship between current season yield and the yield from the pre-
vious 2 years (th_2ys), and a weaker relationship between the current 
yield and yield from 1 and 3 year(s) ago (th_1ys and th_3ys). There was a 
weak relationship between yield and tree age and RS data (VIs). How-
ever, we noticed that the relationships were slightly stronger when 
blocks were young and the alternate bearing was not initiated. More-
over, the further the VIs (three years – two years) from current season, 
the weaker the relationship. In tree crops, the relationship between yield 
and crop reflectance is often influenced by the tree condition from past 
harvest season. In other words, there is a lag effect driven by alternate 
bearing and management such as harvest delays that would subse-
quently affect flowering, fruit set and yield of the following season. This 
condition is supported by the highest correlation coefficients (r > 0.28) 
between the VIs at 6P (harvest) of the immediate previous season (1ys) 
and 1P and 2P of the current season. Particularly, the highest correlated 
predictor of yield was GNDVI from 1ys at 6P with R^2 = 0.33 (Table S2). 

In order to select the best set of predictors, we evaluated multiple sets 
considering their origin (TS-RS or TS-HY) and the length of the time 
series (TS) in the context of the six models analyzed. Fig. 5 presents the 
average of performance metrics corresponding to each predictor set. We 
conducted One-way ANOVA tests to determine the primary factor 
influencing prediction accuracy. The results revealed that, in isolation, 
the model type and set of predictors had a significant effect (p-value <
0.05), on prediction performance but their interaction did not add sig-
nificant (p-value > 0.05) changes to the prediction accuracies. 

Fig. 4. Average temporal reflectance profiles of the green, red and NIR bands for all citrus types (a) and average GNDVI values according to tree age (b) and farms/ 
locations (c). Lines represent the average values calculated for each period among seasons (from 2007 to 2021). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 4 
Algorithm and tuning parameters used in this study.  

Model Tuning parameter(s) Abbreviation 

Partial Least Squared Regression Number of components plsr 
Bayesian Regularized Neural Networks Number of neurons brnn 
L2 Regularized Support Vector Machine (dual) with Linear 

Kernel 
Cost (c) and Loss (loss) Function svmLinear3 

Support Vector Machines with Radial Basis Function Kernel Sigma and Cost svmRadial 
eXtreme Gradient Boosting Number of boosting iterations, L2 regularization (lambda), L1 regularization (alpha), and the 

learning rate (eta) 
xgbLinear 

Neural Networks with Feature Selection (Principal 
Component Step) 

Size (Hidden Units) and decay (Weight Decay) pcaNNet  
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Therefore, the selection of set of predictors were based on trends among 
models. The importance of historical yields in enhancing overall accu-
racy was evident, while relying solely on TS-RS resulted in a decrease in 
prediction accuracy (Fig. 5). The minimum differences between pa-
rameters were calculated as follows: RMSE of 2 T ha− 1, MAE of 1.4 T 
ha− 1, and MAPE of 3.6%. The length of TS-RS did not significantly 
improve prediction accuracies. Two years of RS data (2y) was better 
than 3 years (3y) for all prediction parameters. Although not significant, 
the inclusion of the second period (2P) relative to the current growing 
season (1p + 2p) slightly improved model performances by overall, 
reducing the maximums on the prediction accuracies parameters. The 
combination of both historical yields and RS data (particularly 2ys + 1p 
+ 2p) reduced the maximum of errors regardless the model. Therefore, 
‘[2ys + 1p + 2p] + yield’ was selected as the best set of predictors. As 1P 
and 2P are included as predictors, this implies that forecast can be done 
by the end of January providing a forecast window between two to nine 
months prior harvest. 

2.4.3. Model performance for yield forecasting at the block level 
Overall, svmRadial outperformed with RMSE, MAE and MAPE 

equivalent to 15.5 T ha− 1, 12.1 T ha− 1 and 29% followed very closely by 
plsr (15.7 T ha− 1, 12.5 T ha− 1 and 30%). brnn and svmLinear3 per-
formed very similar (16 T ha− 1, 12 T ha− 1 and 30%) whilst xgbLinear 
(16.7 T ha− 1, 13.1 T ha− 1, 32%) and pcaNNet (16.7 T ha− 1, 13 T ha− 1, 
31%) yielded the poorest performances among seasons (Fig. 6). The 
temporal analysis demonstrated the accuracies exhibited significant 
fluctuations across the validated seasons. The poorest prediction pa-
rameters were obtained during 2018 with brnn and xgbLinear (18 T 
ha− 1 < RMSE < 19 T ha− 1) and the best ones with svmLinear3 and 
svmRadial during 2019 (RMSE < 13.5 T ha− 1). For the majority of the 
models, the prediction accuracies showed a notable decline in 2020 and 
2021, deviating significantly from the average performance. Models had 
limited power to forecast very high or very low yields (above 100 T ha− 1 

or below 5 T ha− 1). Such values were only seen during some of the 
calibration seasons and blocks (Fig. 2) therefore, the models did not 
have the sufficient prior learning (temporal nor spatial) to recognize 
such patters in the future. The fitted lines close to the 1:1 line and the 

Fig. 5. Average of prediction accuracy parameters among validation seasons. Points represent results per validated model.  

Fig. 6. Comparison between the forecast and actual block-yields over validation season by different models. Each point represent a block from 2017 to 2021.  
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accuracy parameters indicated that the forecasted block-yields with the 
svmRadial were consistently closer to actual yields than other models 
(R2 = 88%). We further assessed the accuracy parameters per citrus 
type, location (farm) and seasons (Table 5) confirming the svmRadial 
was, overall, the best performing model across the different levels of 
analysis. The RMSE at the citrus type level for the svmRadial (13 T ha− 1) 
was the lowest of all models whilst MAPE was the lowest among the 
different assessment levels (equally with brnn at the season level). 
Specifically, svmRadial performed well when forecasting yields between 
20 T ha− 1 and 70 T ha− 1. However, outside that range, yields were 
underestimated. 

The VImp analysis helps interpret statistical and machine learning 
models by determining the contribution of each feature to the model’s 
predictions. Although predictions between models were highly corre-
lated (r > 0.63, except for plsr-brnn), the (model-specific) VImp varied 
considerably per model. For the top performing models (svmRadial and 
plsr), the yield recorded 2 years before the current season (tha_2ys) was 
the most significant predictor (Fig. 7). For the svmRadial, the second 
most important predictors were all the VIs from the first period of the 
current growing season, followed by the GCVI, GNDVI and NDVI from 
several periods of the season immediate before (except 5P). Mostly, all 
the periods of the immediate before season were relatively important. 
Plsr is also integrating VIs but with limited relative importance as the 
top three predictors are all historical yields. 

According to the calculated MBE (data not presented), the models 
underestimated yields in three seasons and overpredicted in two sea-
sons. The largest discrepancies were observed in the 2020, with an 
average MBE of − 6.7 T ha− 1, followed by the 2021 season, with an 
average MBE of + 5.6 T ha− 1. The 2020 season stood out from the 
average (Fig. 2) as Mandarin blocks produced exceptionally high yields, 
leading to underestimation by all models. On the other hand, the 2021 
season was relatively more average, resulting in overestimation. This 
finding highlights the significant influence of the yields from the 

immediate previous season (tha_1yr) on the current season, suggesting 
the depletion of the source- sink of tree resources. plsr better captured 
this relationship compared to svmRadial. In plsr, ’tha_1yr’ ranked 
among the top three most important variables, whereas in svmRadial, it 
was the 20th most important variable. However, the heavy reliance of 
plsr on historical yields may limit the availability of data for a particular 
block. Therefore, a shorter historical yield requirement is preferable to 
mitigate this issue. 

Although prediction accuracy parameters were similar, the svmRa-
dial model was chosen as the best model for forecasting block-yields as it 
shown greater stability across validation seasons, citrus type, and loca-
tions (Fig. 6 and Table 5). Fig. 8 shows the spatial distribution of actual 
and forecast yields for 2021 season and the quantified errors high-
lighting blocks with underestimated/overestimated yields. 

2.4.4. Estimation of seasonal total production 
Assessing the temporal variability at different levels of aggregation 

provides valuable insights into the accuracy of our chosen model 
(svmRadial) for forecasting production trends. This analysis is particu-
larly crucial for end users, as it enables them to make informed decisions 
to ensure market security, pricing stability, and effective allocation of 
resources at both industry and farm levels. Moreover, understanding the 
spatial distribution of production per block offers a powerful tool for 
planning farm management operations, including fertilization and irri-
gation scheduling. 

Using the svmRadial model, we calculated the total production (in 
tons, T) for each block by multiplying the planted area (ha) with the 
block-yield (T). We then aggregated the values per citrus type (refer to 
Fig. 9). Overall, our model successfully captured the temporal variability 
in production for Valencia and Navel, with the exception of 2021. The 
average production estimate errors at the citrus type level were 15% for 
Mandarin and 11% for Navels and Valencia. The highest errors occurred 
in Mandarin and Navel blocks during 2020 and 2021. As previously 

Table 5 
Overall performance of models at different levels of assessment.  

Assessment 
level 

Accuracy parameters Model 

plsr brnn svmLinear3 svmRadial xgbLinear pcaNNet 

Citrus 
type 

RMSE 16 15 15 13 16 15 
MAE 13 11 11 11 12 12 
MAPE 32% 28% 28% 27% 30% 30% 

Location 
(farm) 

RMSE 16 17 17 16 17 17 
MAE 13 13 14 13 13 14 
MAPE 30% 30% 31% 28% 31% 32% 

Seasons RMSE 16 15 17 16 17 17 
MAE 12 12 13 13 13 13 
MAPE 30% 29% 30% 29% 30% 31%  

Fig. 7. Model-specific variable of importance for block-level yield forecasting: plsr (a) and svmRadial (b), showing the top 10 most important features.  
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explained, these two seasons, especially 2020, witnessed exceptionally 
high yields, and our models did not possess prior knowledge to account 
for such scenarios, resulting in poorer performance. 

3. Discussion 

3.1. Reflectance profiles of citrus orchards 

The bimonthly RS aggregation aligned with key developmental 
growth stages. The reflectance profiles of the citrus crops are similar to 
avocado crops as reported in Rahman et al. (2022) where the maximums 
VIs values were obtained during maturation whilst the minimum values 
were acquired during flowering. At flowering the chlorophyll content is 
relatively lower in comparison to other growth stages (Mustafa et al., 
2005). A constant increment of the VIs was also obtained during the 
vegetative growth equivalent to 3P-4P in this study. Although in 

Rahman et al. (2022) there was no analysis according to tree age, the 
variability per locations (farms) was also proved. Identifying these 
growth profiles alone offers significant benefit to growers as it can be 
used to benchmark ‘normal’ seasonal and locational performance. Any 
significant deviation or delays in the temporal pattern during a subse-
quent growing year can indicate the incidence of tree stress (e.g. pest, 
disease, climatic) and as such can serve as an early warning system for 
grower intervention. On a macro scale large variations in all crops can 
indicate changing growth patterns potentially associated with a chang-
ing climate. 

3.2. Set of predictors for block-yield forecasting 

Our forecasting models leveraged freely available remote sensing 
data and historical block-yield records to predict yields. The selection of 
predictors and model type had a significant impact on prediction 

Fig. 8. Spatial comparison of forecasted and actual block-yields for 2021 season and quantified error (T ha− 1).  

Fig. 9. Comparisons of actual and forecasted total production per citrus type (a) and total block-level yield (b) with svmRadial during 2017–2021. Each point 
represents a block from 2017 to 2021. 
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accuracy. Including the previous two years’ yields as predictors proved 
essential for capturing temporal production variability caused by bien-
nial bearing. Our analysis demonstrated strong correlations between the 
current yield and yields from two years prior, supporting the presence of 
biennial bearing at the block level. Removing these parameters led to 
decreased accuracy, as the yields from two years prior were the most 
important variable for accurate yield forecasting. Additionally, the 
correlations between the VIs of the first two periods of the current season 
(1P and 2P) and yield aligned with fruit growth stages, emphasizing the 
relevance of crop load and fruit set adjustments (Khurshid and Braysher, 
2009). Mustafa et al. (2005) highlighted the suitability of remote sensing 
techniques during the fruit setting stage for monitoring citrus crops. 
Consequently, both historical yields and remote sensing-derived vege-
tation indices offered valuable insights into the intricate interactions at 
the tree and block level. 

3.3. Model performance and block-yield forecasting: Implications 

Compared to annual crops like wheat, maize, and rice, there is 
limited research on yield forecasting for tree crops at the block-level 
(Benos et al., 2021; Schauberger et al., 2020). This study addresses 
this gap by compiling one of the largest citrus datasets in the literature, 
consisting of over 3500 yield records spanning 14 years of historical 
production. The dataset encompasses diverse citrus varieties, tree ages, 
management practices, and locations, the strengthening the trans-
ferability of the models. 

In commercial practice, yield forecasts for citrus are typically per-
formed three times during the growing season: after harvest, after fruit 
set, and closer to harvest. Among these, the estimate after fruit set is 
particularly significant as it provides valuable insights for market access 
and adjustment of management practices (Anderson et al., 2021b; Ye 
et al., 2007), and it is the focus of this study. The current approach in-
volves manual counting of fruit on a sample of trees, resulting in re-
ported average accuracy errors ranging from 8% to 57% (average of 
27%) (Anderson et al., 2021a). This labor-intensive method requires 
visits to each block within a farm and relies on the number of selected 
trees, consuming significant human and logistical resources. In contrast, 
our proposed method not only achieves acceptable accuracies but also 
eliminates the need for labor-intensive sampling during the growing 
season, providing a cost-effective and viable alternative for industry 
adoption. Importantly, our forecasting model utilizes data up to the end 
of fruit set (2P), enabling yield forecasts to be provided two to nine 
months prior to harvest. 

The assessment of accuracy parameters was used to determine the 
best model for citrus block-yield forecasting. svmRadial outperformed 
other algorithms, with results very similar to plsr. However, the (rela-
tive) variable of importance (VImp) varied per model indicating that 
each model is capturing unique information or patterns that are relevant 
for predicting citrus block-yield and so the models performed best on 
different subsets of the data. Understanding how the model made its 
predictions supported model selection and built trust in the decision. 
svmRadial was less dependent on historical yields and utilized the in-
formation provided by VIs on crop condition. Therefore, in the absence 
of historical yields, svmRadial is expected to perform within acceptable 
accuracy ranges. The choice of svmRadial as the best model was influ-
enced by its interpretability, understanding of prediction mechanisms, 
and specific requirements of the end-users. Additionally, svmRadial 
demonstrated the ability to forecast production trends which can pro-
vide insights into alternate bearing aiding more informed decisions 
(Zhang et al., 2019). 

While the high performance of svmRadial indicated a nonlinear 
relationship between predictors and yield, it is important to note that the 
choice of the best model appears to depend on the specific cropping 
system being evaluated. Brinkhoff and Robson (2021) found that the 
linear model using ridge regularized regression consistently performed 

better in forecasting macadamia yields compared to other algorithms, 
including svmRadial. Similarly, Zhang et al. (2019) tested random forest 
and stochastic gradient boosting (SGB) and found that SGB out-
performed when forecasting almond block yields. In contrast, the 
gradient boosting algorithm (xgbLinear) had poor performance in this 
study. These outcomes highlight the importance of considering different 
machine learning approaches and comparing their performance when 
conducting similar analyses in other crops. 

The primary objective of this research was to develop a robust yield 
forecasting model for citrus at the block level, utilizing a wide range of 
variables, including canopy reflectance properties and historical pro-
duction data. By examining multiple blocks, seasons, locations, and 
varieties, the study aimed to identify the most reliable approach or 
model for predicting yield, independent of the various influencing fac-
tors (abiotic and biotic) that affect production. The obtained results are 
encouraging, demonstrating a more scalable and potentially automated 
methodology that does not necessitate a comprehensive understanding 
and incorporation of all potential constraints. 

Although this methodology may not provide detailed insights into 
within-block constraints or guide precision agriculture practices, it of-
fers a valuable foundation for yield prediction across a broader context. 
To address specific within-orchard constraints, further research and a 
deeper understanding would be required. However, it is crucial to note 
that such specific applications were not the primary focus of this study. 

3.3.1. Model assessment 
Comparisons with other studies are challenging due to variations in 

dataset characteristics, hence RMSE values are not comparable 
(Schauberger et al., 2020). According to Basso and Liu (2019), most of 
the studies using RS models for forecasting yield in the mid-season re-
ported R2 values (between forecasted and actual yields) of 0.6–0.8. Our 
study fits well with an R2 equal to 0.88 across validation seasons. 
Brinkhoff and Robson (2021) reported MAPE equal to 22.9%. Our MAPE 
value across validation seasons was 6.2% higher. Given the substantial 
variability observed in our dataset (standard deviation = 17.8 T ha− 1 or 
48.8%), the prediction accuracies achieved can be deemed acceptable. 
Studies in citrus have focused on few small blocks with one particular 
variety usually based on fruit detection and counting with data cali-
brated from the same growing season (Dorj et al., 2017; Rosell et al., 
2009; Rosell Polo et al., 2009). Although more accurate results were 
reported (R2 > 0.9), the utility of such approaches for large areas with 
short returning time is strongly limited and the need to the provision of 
early yield estimates is not met. Alternative approaches using machine- 
vision systems and UAVs have been explored but face limitations due to 
small fruitlet size and occlusions caused by other fruit, branches, or 
leaves (Anderson et al., 2021b; Lee et al., 2010). These limitations 
produced errors exceeding 53% when estimating fruit yield around 90 
days before harvest (Anderson et al., 2021a). With differences between 
actual and forecasted total production varying from 15% (Mandarin) to 
11% (Navel and Valencia), our approach is an essential improvement for 
forecasting block-yields early in the season (just after the physiological 
drop) regardless the citrus varieties and location. 

3.3.2. Limitations of early yield forecasting 
The biophysical and biochemical traits of fruit trees regulate their 

structural, physiological, and phenological properties at the leaf, can-
opy, and block level (Ali and Imran 2021). In this study, we forecast 
yield taking in consideration historical production and reflectance-based 
information which is highly related to canopy structure and health 
(Mulla, 2013). Hence, some of the weakness of yield forecasting accu-
racies can be related to external factors such as abiotic and biotic 
stressors, harvest operations, management decisions, and measurement 
errors rather than model performance (Anderson et al., 2021b; Lobell, 
2013; Schauberger et al., 2020). For example, in this study, there was a 
large hailstorm at the end of January 2021 affecting most of the blocks of 
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the FH farm. As the impact of the hailstorm was severe so was the 
pruning (after forecast was performed) reducing significantly the actual 
yield over those blocks and therefore, large forecasting errors were ob-
tained. That said, the reported errors may reflect the gap between the 
actual and potential yield (yield gap). Quantifying this yield gap is 
crucial for informing policies and decision-making to minimize envi-
ronmental impacts and improve production (Van Wart et al., 2013). 

3.3.3. Scalability of citrus block-yield forecasting 
In contrast to annual crops, tree crops lack rotation and can be 

considered “fixed” as planted blocks can remain productive for over 30 
years. While this study relied on crop boundaries provided by growers, 
the methodology employed is adaptable to mapping products like The 
Australian Tree Crop Map Dashboard (ATCM) developed by McKechnie 
and Shephard (2021), which offers block boundaries at a national scale. 
Although the highest accuracy is achieved when models have access to 
historical yield data, this study also evaluated the impact of using only 
time-series remote sensing (TS-RS) data on model performance. The 
results showed that the prediction accuracies obtained solely from TS-RS 
data were within acceptable levels (Fig. S4). This finding suggests that 
our method can be successfully implemented on a national scale, 
leveraging the global availability of predictor datasets such as Landsat. 

4. Conclusion 

Our study contributes to the limited research on block-level yield 
forecasting for tree crops, showcasing the potential of remote sensing 
data and historical yield records for accurate predictions. The method-
ology presented here offers a cost-effective alternative to labor-intensive 
sampling during the growing season, making it suitable for wider 
adoption in the citrus industry. We calibrated and validated various 
statistical and machine learning algorithms, ultimately selecting the 
svmRadial model for its superior prediction accuracy. This model 
accurately forecasted block-level yields across multiple farms, varieties, 
and seasons from 2017 to 2021, with an RMSE of 15.5 T ha− 1, R2 of 
0.88, MAE of 12.1 T ha− 1, and MAPE of 29%. Although the model faced 
limitations in forecasting outliers, it effectively captured the temporal 
variability of production at different levels of aggregation (citrus type). 
Furthermore, our proposed method can be implemented on a national 
scale due to its utilization of freely available Landsat imagery. 
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