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ABSTRACT A 1932 editorial in Poultry Science
stated that sampling theory, or experimental power,
could be useful for “the investigator to know how
many . . . birds to put into each experimental pen.”
Nevertheless, in the past 90 yr, appropriate experi-
mental power estimates have rarely been applied to
research with poultry. To estimate the overall varia-
tion and appropriate use of resources with animals in
pens, a nested analysis should be conducted. Bird-to-
bird and separate pen-to-pen variances were separated
for 2 datasets, one from Australia and one from North
America. The implications of using variances for birds
per pen and pens per treatments are detailed. With 5
pens per treatment, increasing birds per pen from 2 to
4 decreased the SD from 183 to 154, but increasing
birds/pen from 100 to 200 only decreased the SD from
70 to 60. With 15 birds per treatment, increasing
pens/treatment from 2 to 3 decreased SD from 140 to
126, but increasing pens/treatment from 11 to 12 only
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decreased the SD from 91 to 89. Choosing the number
of birds to include in any study should be based on
expectations from historical data and the amount of
risk investigators are prepared to accept. Too little
replication will not allow relatively small differences to
be detected. On the other hand, too much replication
is wasteful in terms of birds and resources, and viola-
tes the fundamental principles of the ethical use of
animals in research. Two general conclusions can be
made from this analysis. First, it is very difficult to
detect 1% to 3% differences in broiler chicken body
weight with only one experiment consistently because
of inherent genetic variability. Second, increasing
either birds per pen or pens per treatment decreased
the SD in a diminishing returns fashion. The example
presented here is body weight, of primary importance
to production agriculture, but it is applicable when-
ever a nested design is used (multiple samples from
the same bird or tissue, etc.).
Key words: experimental design, experimental power, nested design, ethical animal use
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INTRODUCTION

Institutional Animal Ethics Committees are entrusted
by the public to approve the use of animals in teaching
and research only when it is deemed ethical, humane
and responsible (e.g., Australian Government, 2013;
Rose and Grant, 2013). In most countries, legislation
dictates that researchers are required to justify their use
of animals in scientific research, including the number of
experimental animals (Ibrahim, 2006). Typically, a
power analysis is performed to calculate experimental
power and justify the use of animals in proposed experi-
ments. The chance of determining a given response dif-
ference in a future experiment is called experimental
power. In the case of poultry, the choice of the number
of birds in an experiment usually involves the number of
pens to use for each treatment and the number of birds
to put in each pen. This is particularly true for nutrition
and behavior studies. Because of genetic diversity
between birds and environmental differences between
pens, experimental conclusions are always based on
probabilities. To estimate the overall variation and
appropriate use of resources with animals in pens, a
nested analysis should be conducted (Krzywinski et al.,
2014). Nested designs are “A class of experimental design
in which every level of a given factor appears with only a
single level of any other factor. Factors which are not
nested are said to be crossed. If every level of one appears
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with every level of the others, the factors are said to be
completely crossed: if not, they are partly crossed” (Mar-
riott, 2002).

The objective of planning experiments should be to
have adequate numbers of birds to ensure a high proba-
bility of finding real differences, without using excessive
or unethical amounts of resources, be they birds or
money. An editorial in Poultry Science (Hays, 1932)
summarized statistical analytical techniques that could
be useful in research with poultry: “Among the most use-
ful applications of biometrics to poultry research may be
mentioned: 1. The theory of sampling which enables the
investigator to know how many and what kind of birds
to put into each experimental pen.” However, as Roush
and Tozer (2004) observed: “With some exceptions, the
power of tests is rarely formally considered or mentioned
in poultry research.” Upon searching literature in poul-
try research following 2004, it is evident that the situa-
tion has not changed significantly; there is scarce use of
test power in poultry research, and a lack of detail pre-
sented when it is used (Sadurni et al., 2022). The impor-
tant pieces of information needed to predict
experimental power for a future experiment are the
expected means and standard deviations from past
experiments. The terms that need to be added to the
Schroedek and Lawrence (1932) analysis of variance
(ANOVA) are the variances due to the birds within a
pen (the genetic variation) and the variances between
the physical pens themselves. Pen-to-pen environmental
variation can result from differences in ventilation
within a house, lack of lighting uniformity, differences in
noise, humidity, and arbitrary human disruptions.

It is always important to assess if the experiment is
relevant to the intended application. Birds kept solely
indoors usually have decreased exposure to many stres-
sors, but more exposure to coccidiosis due to oocyst
build up in the litter. Birds with outside access are more
likely to be exposed to a variety of climatic conditions
and other stressors: These stressors include predators
and any number of diseases due to contact with wild
birds and their excrements. Experiments conducted
with more controlled conditions are more repeatable. Is
an experiment under closely controlled (inside) condi-
tions relevant to birds grown with outside access and
subject to a variety of uncontrolled conditions and stres-
sors? No, and this question raises another: Is there value
in conducting an experiment with birds with access to
the outside with uncontrolled conditions that is not
likely to be repeated? If the experiment is not strictly
repeatable, how can its value (validity) be assessed? If
the outcomes of subsequent experiments are to be
repeated from preliminary ones, great care must be
taken to assure that the preliminary experiments’ condi-
tions are consistent with the application of the intended
research.

Since the very beginning of trials with poultry to com-
pare different feeds, there has been an interest in the sta-
tistical interpretation of experimental results (Parker,
1925), and in determining the optimum number of birds
required to find significant differences (Schroedek and
Lawrence, 1932). Schroedek and Lawrence (1932) dem-
onstrated how to calculate ANOVA for results when
males and females were kept in the same pens. The
ANOVA was based on individual variation within a sin-
gle pen per treatment. They used paired t tests for indi-
vidual mean separation between 4 dietary treatments,
the same procedure used currently with Proc LSMeans
of the Statistical Analysis System (SAS, 2012). Schroe-
dek and Lawrence (1932) emphasized the need to keep
birds under identical conditions, presenting pictures of
seemingly identical pens with identical sunporches. At
that time, physical separation of birds on different treat-
ments, whereas ensuring pen environments were as simi-
lar as possible, was considered adequate. The practice of
keeping birds in replicate pens that are randomized, and
including this information in the ANOVA, did not
become common practice for several decades.
In the early 1930s, the concept of experimental power

was brand new (Neyman and Pearson, 1928, 1933).
Titus and Hammond (1935) published the first paper on
power analyses for poultry experiments. Their discussion
centers around the reasons experimental results are
often not repeatable: 1) the variability of feed ingre-
dients making replicating diets nearly impossible, and 2)
an insufficient number of individuals used in a trial.
They believed that it was necessary to have enough indi-
viduals in each treatment for the frequency plot of the
data to appear normal. These conclusions were based on
outputs from rudimentary simulations, many of which
were insightful for the time and quite correct: “In a very
general way, the accuracy of the results tends to increase
as the square root of the number of individuals.”
The basic concepts needed to estimate treatment rep-

lication before conducting an experiment were detailed
in Poultry Science (Demetrio et al., 2013). The expected
variation in measured responses (e.g., growth, feed utili-
zation efficiency) between experimental units (tissues,
individuals, pens of individuals, etc.) is used to estimate
experimental power. Figure 1 is from a Microsoft Excel
application, where the user can input the mean and stan-
dard deviation expected for a future experiment and cal-
culate what the expected power would be with different
numbers of replications (Pesti et al., 2018). This exam-
ple is from an experiment with 3 treatments and 7 pens
of five 36-day-old broilers per treatment (Supplemental
material). The standard deviation (SD) is based on pen
means. The usual way to express experimental power is
the number of replicates necessary to detect a real 5%
difference 80% of the time (while declaring a false signifi-
cant difference no more than 5% of the time). Such
representation of experimental power may be misleading
since it only represents one point of the sigmoidal line
for each number of replicates. In this example, 20 repli-
cate pens would be necessary to find a 10% difference in
9 of 10 identical experiments (the orange line in Figure 1
crosses the 0.9 horizontal line just below 10% on the hor-
izontal axis). From the graph, it can be seen that: 1) it is
practically impossible to detect a 5% difference with
such a mean and SD from only 1 experiment more than
40% of the time; 2) the effect of increasing replication is



Figure 1. The proportions of experiments expected to have significant differences with different numbers of replicates and different real differen-
ces between 2 means. The historical mean = 2,353 and bird-to-bird standard deviation within a pen = 217.
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a diminishing-returns phenomena; and 3) with 14 to 20
replicates and a real difference of 10%, a significant dif-
ference could be expected almost every time.

In explaining basic power concepts, Demetrio et al.
(2013) wrote: “Determining the sample size is compli-
cated because it involves 2 sources of uncontrolled varia-
tion: i. between-pen variation, sM

2, and ii. between-bird
within-pen variation, sS

2, and requires a guess of the val-
ues of these 2 variances.” The guess is only required if
individual bird responses are not measured or no other
estimate of bird-to-bird variation is available. The diffi-
culty in estimating the 2 variances is due to the fact that
birds are most often measured together as group within
a pen, so the bird-to-bird variation is not commonly
known. Similarly, when birds are sub-sampled the pen
mean is typically used as the experimental unit, so varia-
tion between individual birds is rarely known. A limita-
tion of the results in Figure 1 is that the SD was only
based on pen means. To estimate the overall variation
and apply appropriate use of resources with animals in
pens, a nested analysis should be conducted (Krzywinski
et al., 2014). The observed variation in the presented
example is among pens containing fixed numbers of
birds, and so contains both sources of variation, as
explained by Demetrio et al. (2013). That is appropriate
for comparing treatment means from past experiments,
but not for estimating variance for future experiments,
in which there is possibility of changing both pens/treat-
ment and birds/pen.

The objective of this paper is to demonstrate how to
partition variances into bird-to-bird within pen (genetic)
and pen-to-pen (micro-environmental) sources (Figure 2).
Data from 2 experiments with growing broilers is used to
show the practical application of the results. Growth, or
body weight, was used in the example as it is the most
important attribute for production agriculture. The prin-
ciples apply for any experiment where birds are kept in
pens, or multiple samples are taken from the same bird
or tissue, etc. (nested design).
MATERIALS AND METHODS

The first example dataset was derived from the Rob
Cumming Poultry Innovation Centre at The University
of New England (Armidale, Australia). Broiler chickens
were raised from hatch to 35 d of age in 21 pens. There
were 3 treatments (2 therapeutic agents and a control)
with a 1-way nested design. There were 7 replicate pens
of 10 birds each per treatment. Final body weight was
the response variable investigated. By 35 d of age, the
pens contained different numbers of males, due to sexing
errors at placement and random mortality. To simplify
this example, the first 5 male broilers from each pen
were chosen on the assumption that they were randomly
recorded and thus remained random (210 birds total).
The second example dataset is from J-House at the

University of Georgia Poultry Research Center (Da
Costa et al., 2017). Broiler chickens were raised from
hatching to 48 d of age in 48 pens (28 broilers per pen,
nested in pens at hatching). There were 4 treatments
with a 2 £ 2 factorial nested design (2 genetic strains
and males vs. females). Responses of the 2 strains were
very similar and strain differences were not considered
in this analysis. Body weight at 12, 17, 25, 32, 41, and 48
d of age was the response variable investigated. For
hypothesis testing this experiment should be analyzed
with a repeated measures design. Our purpose was to
estimate variances at each age, so the data were ana-
lyzed separately for each time.
The response model is:
Response (Y) = m + Ti + Pj(i) + eijk,

k ¼ 1; . . . ; b; j ¼ 1; . . . ; p; i ¼ 1; . . . t;



Figure 2. A diagram showing nesting of birds within pens and cells nested within tissues, nested within pens.
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where Yijk = kth observation from the jth bird in the ith

pen,
Ti » N(0,s2

2)
Pj(i) » N(0,s1

2)-Random Model
eijk » N(0,s2) i.e., s2

2 is the variation between treat-
ments Ti,

s1
2 is the variation between pens within treatments

Pj(i),
s2 is the experimental error; or, effectively, Ti is the

effect of the ith treatment and Pj(i) is the effect of the j
th

pen within the ith treatment, and eijk is the observed
error within replicate pens (between birds).

Then the total sum of squares =
PPP

(Yijk − Y )2

= Between treatments SS + between pen within
treatment SS + residual SS (Table 1) where the between

treatment SS ¼ bp
Pt

i¼1
ðYi ¢ ¢ � Y Þ2 ¼ P

i ¢ ¢
Y 2

i ¢ ¢
bp � CF ¼

P
i
T2
i

bp � CF with CF = (
PPP

Yijk)
2/tpb.

Between pens within treatment SS = bP
i

P
j ðYij ¢ � Yi ¢ ¢ Þ2
Table 1. Analysis of variance table for partitioning variances
between pens and birds.

Source df SS MS

Between treatments t�1
P

i
T2
i

pb � CF j j

Between pens within
treatments

t(p�1)
P

i

P
j
P2
ij

pb �
P

i
T2
i

pb k =m-j

Between pens tp�1
P

i

P
j
T2
ij

pb � CF m

Residual tp(b�1) Difference l

Total tpb
PPP

Yijk
2 - CF
¼
X

i

X

j

P2
ij

b
�
X

i

T2
i

bp

¼
X

i

X

j

P2
ij �

X

i

T2
i

bp

¼
X

i

X

j

P2
ij

b
� CF � between treatment SS

where Pij = jth pen total in ith treatment =Yij.,
Ti = total of ith treatment = Yi¢¢,and residual

SS =
P

i

P
j

P
k ðYijk � Yij ¢ Þ2.

The residual SS can also be thought of as between
birds.
It can be shown that:

Between pens SS ¼ b
P

i

P
j Y ij � Y
� �2

¼ P
i

P
j Y ij ¢ � Yi ¢ ¢
� �2 þP

i Y i:: � Y
� �2

¼ Between pens within treatments SSþ between treatments SS:

Between pens mean square (MS) was calculated from
the between treatments MS (s2 + bs1

2+ bps2
2) minus

the between pens within treatments MS (s2 + bs1
2).

Further, SDs for future experiments were estimated as
follows: x(((MSP2P £ xph)/xpf) +x((MSB2B £ xph)/
(xpf £ bf))), where p = number of pens/treatment,
b = number of birds/pen, MS = mean square,
P2P = pen-to-pen, B2B = bird-to-bird, subscripts h and
f indicate from historical (h) and future (f) experiments.
Sample size to detect a given difference between 2 means
was estimated by Lehr’s method (Lehr, 1992; van Belle,
2008).



Table 2. Analysis of variance table showing calculation of the
variation from individuals nested within pens for an experiment
with a 1-way ANOVA table showing calculation of the variation
from individuals nested within pens for an experiment with a 1-
way design, 3 treatments, 7 pens per treatment and 5 birds per
pen.

Source df SS MS E(MS)

Between treatments 2 796,057.62 398,028.81 s2 + bs1
2+ bps2

2

Between pens within
treatments

18 864,397.14 48,022.06 s2 + bs1
2

Between pens 20 1,660,454.76 83,022.74
Between birds 84 3,957,170.00 47,109.17 s2

Total SS 104 5,617,624.76 54,015.62

The response variable is 35-day body weight.
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RESULTS

The MS for between pen variation within treatments in
the first dataset was found to be: (MS between pens within
treatments − MS between birds)/(birds/pen) = 182.578
(Table 2). The between pen and between bird MSs were
used to create Table 3. Table 3 demonstrates the relative
importance of the number of pens and the number of birds
per pen in this particular facility.
Table 3. The influence of observed bird-to-bird mean squares (MSB2
(SDTOTAL) and total numbers of birds per treatment for future experim

1 2 3 4 5

Birds
/Pen

MSB2B MSP2P . . . 69.01 48.80 39.84 34.50 30.86

1 105,339 SDTOTAL 8.31 6.99 6.31 5.87 5.56
Birds 324.67 273.01 246.69 229.57 217.12
Samples 1 2 3 4 5

2 74,486 SDTOTAL 122 86 70 61 54
Birds 273.05 229.60 207.47 193.07 182.60
Samples 2 4 6 8 10

4 52,670 SDTOTAL 86 61 50 43 39
Birds 229.65 193.11 174.50 162.39 153.58
Samples 4 8 12 16 20

8 37,243 SDTOTAL 61 43 35 30 27
Birds 193.16 162.43 146.77 136.59 129.18
Samples 8 16 24 32 40

10 33,311 SDTOTAL 43 30 25 22 19
Birds 182.70 153.63 138.82 129.19 122.18
Samples 10 20 30 40 50

15 27,198 SDTOTAL 39 27 22 19 17
Birds 165.13 138.86 125.47 116.76 110.43
Samples 15 30 45 60 75

20 23,555 SDTOTAL 32 22 18 16 14
Birds 153.70 129.25 116.79 108.68 102.79
Samples 20 40 60 80 100

25 21,068 SDTOTAL 27 19 16 14 12
Birds 145.39 122.25 110.47 102.80 97.22
Samples 25 50 75 100 125

30 19,232 SDTOTAL 24 17 14 12 11
Birds 138.93 116.82 105.56 98.24 92.91
Samples 30 60 90 120 150

50 14,897 SDTOTAL 22 16 13 11 10
Birds 122.34 102.87 92.96 86.51 81.81
Samples 50 100 150 200 250

100 10,534 SDTOTAL 17 12 10 9 8
Birds 102.97 86.59 78.24 72.81 68.86
Samples 100 200 300 400 500

200 7,449 SDTOTAL 12 9 7 6 5
Birds 86.70 72.91 65.88 61.31 57.98
Samples 200 400 600 800 1,000

The average body weight was 2,353, SD = 220 g. Sample size (Samples) was
ing a real 5% difference in body weight (ß = 0.20) and with a 5% chance of decla
Increasing either birds per pen or pens per treatment
decreased the SD in a diminishing returns fashion
(Table 3, Figure 3). With 5 pens per treatment, increas-
ing birds per pen from 2 to 4 decreased the SD from 183
to 154, but increasing birds/pen from 100 to 200 only
decreased the SD from 70 to 60. With 15 birds per treat-
ment, increasing pens/treatment from 2 to 3 decreased
SD from 140 to 126, but increasing pens/treatment from
11 to 12 only decreased the SD from 91 to 89. More than
approximately 5 pens/treatment gave relatively little
difference between SDs, and the total number of birds
was the most important factor in reducing SDs. There
was little difference in SDs from 5 pens of 100 or 10 pens
of 50 (70.19 vs. 69.74).
The same phenomenon in diminishing returns for

increasing birds/pen and pens/treatment was observed
for the second facility, where measurements from a
larger experiment were taken over time (Table 4, Fig-
ures 5 and 6). Body weights and predicted SDs
increased over time, with males exhibiting higher levels
of both. The slopes of the lines depicting the effects of
using the standard method of analyzing pen means vs.
individuals nested within pen means are quite different
B) and pen-to-pen (MSP2P) variations on the predicted variation
ents.

Pens per Treatment

6 7 8 9 10 11 12

28.17 26.08 24.40 23.00 21.82 20.81 19.92

5.31 5.11 4.94 4.80 4.67 4.56 4.46
207.44 199.60 193.05 187.45 182.57 178.27 174.44
6 7 8 9 10 11 12
50 46 43 41 39 37 35
174.46 167.87 162.36 157.64 153.55 149.93 146.70
12 14 16 18 20 22 24
35 33 30 29 27 26 25
146.73 141.19 136.55 132.59 129.14 126.10 123.39
24 28 32 36 40 44 48
25 23 22 20 19 18 18
123.42 118.75 114.86 111.52 108.62 106.07 103.78
48 56 64 72 80 88 96
18 16 15 14 14 13 12
116.74 112.32 108.64 105.48 102.74 100.32 98.16
60 70 80 90 100 110 120
16 15 14 13 12 12 11
105.51 101.52 98.19 95.34 92.86 90.67 88.72
90 105 120 135 150 165 180
13 12 11 11 10 10 9
98.21 94.49 91.39 88.74 86.43 84.40 82.58

120 140 160 180 200 220 240
11 10 10 9 9 8 8
92.89 89.38 86.45 83.94 81.76 79.83 78.11

150 175 200 225 250 275 300
10 9 9 8 8 7 7
88.77 85.41 82.61 80.21 78.13 76.29 74.64

180 210 240 270 300 330 360
9 8 8 7 7 7 6
78.17 75.21 72.74 70.63 68.79 67.18 65.73

300 350 400 450 500 550 600
7 7 6 6 5 5 5
65.79 63.31 61.23 59.45 57.90 56.54 55.32

600 700 800 900 1,000 1,100 1,200
5 5 4 4 4 4 4
55.40 53.30 51.55 50.06 48.76 47.61 46.58

1,200 1,400 1,600 1,800 2,000 2,200 2,400

estimated by Lehr’s method (Lehr, 1992) to have an 80% chance of detect-
ring a difference significant when none exists (a ¼ 0:05Þ:



Figure 3. Comparison of the effects of changing the number of replicates when the variances are based only on pen means (pen-to-pen and bird-
to-bird variation not partitioned) vs. partitioning variation so that only pen-to-pen variation is considered
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(Figure 3). Twenty simulated experiments with an
experimental power of 0.8 resulted in probabilities
between P = 0.000 and P = 0.125 (Figure 6). Twenty
simulated experiments with an experimental power of
0.8 resulted in probabilities between P = 0.003 and
P = 0.717 (Figure 7).
DISCUSSION

The primary goal of experimental power analyses is
to balance the number of experimental units, birds in
this case, with the risk of not finding a real difference
if one exists, or declaring a significant difference
when none exists. The cost of the experiment, both
monetary and animal lives, has to be weighed against
the value of the expected outcome. The process of
estimating experimental power is clearly very com-
plex. Without considering nesting, it is a 4-dimen-
sional mathematical problem with 4 variables: 1) The
previously observed mean and SD; 2) The proportion
of experiments with P < 0.05; 3) The potential num-
ber of replicates; and 4) The detectable difference
(Figure 1). Partitioning the variance into bird-to-bird
and pen-to-pen portions adds an additional dimension
to interpret (Figures 4 and 5). Figures 4 and 5 are
only 2 of n possible figures with n = number of birds
per pen. It would take n such figures to illustrate all
the possible choices of the number of birds per pen
and pens per treatment and their effects on the prob-
abilities of detecting differences of various sizes. The
choice of 25 and 50 birds per pen was not entirely
arbitrary. They were chosen to illustrate the rela-
tively small effect of doubling the size of an experi-
ment can have on experimental power. Had lower
numbers of birds per pen been chosen, say 2 vs. 4
birds in each of 3 pens per treatment, the number of
samples to detect a specified difference would be
much greater, 50 vs. 35 (Table 3).
A tabular presentation, like Table 3, may be helpful

for comparing the effects of birds per pen and pens per
treatment vs. sample size. Such a presentation could be
helpful for budgeting purposes, by including costs for
birds, pen space, feed and labor, for example. The esti-
mate of sample size (sz) in Table 3 is only an estimate of
one arbitrarily chosen point on the lines presented in
Figures 1 to 3, presenting an 80% chance of detecting a
real 5% difference in body weight (ß = 0.20), with a 5%
chance of declaring a difference significant when none
exists (a ¼ 0:05Þ. For practical purposes, it may be pru-
dent to consider some arbitrary difference (d) that could
be detected some proportion of the time with some alpha
and beta errors for each cell. After such an initial screen-
ing, plots of probability lines (Figures 4 and 5) vs. costs
in money or birds could then be considered.
For the predicted experimental power illustrated in

Figures 3 and 4, the mean squares for the number of
birds per pen were changed independently of the number
of pens, conversely, theoretically resulting in an increase
in accuracy vs. simply the pen mean approach in
Figure 1. The question is: by how much? This is
answered by the slope of the lines presented in Figure 3,
which shows the magnitude of the differences in the 2
approaches for this example. This demonstrates that the
2 approaches lead to different numbers of replicates
being proposed. In this example, the effects on predicted
variation were much greater with fewer than 5 or 6 pen-
s/treatment compared with more than 8 pens/treat-
ment.
The same general patterns were found with the second

dataset over time (Table 4 vs. Table 3). The pen-to-pen
variation was greater at similar ages for the experiment



Table 4. Descriptive statistics and prediction of SD for use in estimating experimental power for future experiments.

Age (d) Pens (ph) Birds/pen (bh) Avg. BW (grams) Birds

Mean square Predicted SD (pens £ birds/pen)

Pens + birds Birds (MSB2B) Pens (MSP2P) 2 £ 10 4 £ 10 4 £ 25 4 £ 50 10 £ 50 5 £ 100

Females
0 8 28.0 41 448 6 10 N/A N/A N/A N/A N/A N/A N/A
12 8 27.8 301 444 3,952 1,060 2,892 83 74 52 49 43 40
17 8 27.9 522 446 9,443 2,255 7,188 129 113 80 76 65 61
25 8 27.9 1,156 445 24,123 8,821 15,302 205 185 134 123 110 101
32 8 27.8 1,793 445 62,614 19,968 42,646 331 295 213 198 174 161
41 8 23.9 2,613 382 69,377 43,061 26,316 337 316 239 211 198 175
48 8 19.6 3,260 314 141,024 59,323 81,701 479 432 314 289 258 236
Males
0 8 28.0 42 448 16 11 N/A N/A N/A N/A N/A N/A N/A
12 8 28.0 306 448 5,698 1,042 4,656 100 87 61 58 49 47
17 8 27.8 541 445 8,447 2,734 5,713 122 109 78 73 64 59
25 8 27.7 1,255 443 33,058 10,959 22,098 240 215 155 144 127 117
32 8 27.3 1,985 437 129,672 26,966 102,705 478 418 294 279 238 225
41 8 22.9 2,613 366 138,271 69,086 69,185 478 438 324 293 267 240
48 8 18.4 3,830 294 309,657 94,863 214,795 716 633 450 423 367 343

N/A: not available, birds were weighed prior to being placed in pens.
Data from an experiment at the University of Georgia’s Poultry Research Center (Da Costa et al., 2017).
SDs for future experiments were estimated as follows:x(((MSP2P £xph)/xpf) +x((MSB2B £xph)/(xpf £ bf))), where p= pens/treatment, b = birds/pen, MS =mean square, P2P = pen-to-pen, B2B = bird-

to-bird, subscripts h and f indicate from historical and future experiments.
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Figure 4. The proportions of experiments expected to have significant differences with different numbers of replicates and different real differen-
ces between 2 means. The historical mean = 2,353 and bird-to-bird standard deviation within a pen = 217.
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in Table 4 than Table 3. The estimated SDs were very
similar for 10 pens of 50 birds vs. 5 pens of 100 birds for
both datasets (69.9 vs. 70.3 in Table 3, and 238 vs. 225
for male birds at d 32 in Table 4).

The ethical considerations for the use of animals in
research dictate that a minimal number of animals
should be used while ensuring the validity of the results
(e.g., Australian Government, 2013). The reality of
research involving sampling populations of animals with
inherent variability is that there is no “minimal number
of animals . . . to ensure the validity of results.” There
Figure 5. The proportions of experiments expected to have significant d
ces between 2 means. The historical mean = 2,353 and bird-to-bird standard
are only different numbers of birds that lead to different
probabilities of declaring results significant. Appropriate
experimental designs can be chosen to increase the odds
of making suitable statistical inferences, but the conclu-
sions should only be stated in terms of the odds that con-
clusions are correct, not binary concepts like valid or
invalid. Results should never be regarded as valid or
invalid, only likely or unlikely to be repeatable to some
specified degree or probability. Researchers are always
faced with the dilemma of balancing type I vs. type II
error; using more animals decreases the chances of
ifferences with different numbers of replicates and different real differen-
deviation within a pen = 217.



Figure 6. Twenty simulated experiments comparing Treatments A and B by Student’s t test at P < 0.05. The number of simulated “Experi-
ments” with H0: Treatment A 6¼ Treatment B were summed to estimate experimental power for experiments with mean body weights of 2,353 and
1,911 g and standard deviations of 217 g (18.8% difference). Responses were simulated with Microsoft Excel’s random number generator (Pesti et
al., 2018).

Figure 7. Twenty simulated experiments comparing Treatments A and B by Student’s t test at P < 0.05. The number of simulated “Experi-
ments” with H0: Treatment A 6¼ Treatment B were summed to estimate experimental power for experiments with mean body weights of 2,353 and
2,047 g and standard deviations of 217 g (13% difference). Responses were simulated with Microsoft Excel’s random number generator (Pesti et al.,
2018).
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declaring real differences not significant if they exist, and
also decreases the chances of declaring significant differ-
ences if none exist.

From Figures 4 and 5, we show that predicting power
considering the number of birds per pen is a critical exer-
cise to meet the ethical requirements for the use of ani-
mals in research. However, the practicality of this
approach can be problematic, as the number of birds
that can be housed in a pen is dictated by the facilities
available. For example, to detect a 10% difference 500
birds are required for 2 treatments; either 5 replicates of
50 birds per pen, or 10 replicates of 25 birds per pen.
Housing these birds in a way that practices “refinement”
must then be considered. Refinement takes into consid-
eration the space available for appropriate pen size and
stocking densities, social dynamics related to group size,
and the ease of managing 25 birds compared to 50.
Should the researcher require detection of a 5% differ-
ence, 18 replicates pens of 25 birds per pen is needed
(Figure 4), or 14 replicate pens of 50 birds per pen. This
results in a total of 450 birds vs. 700 birds, respectively.
Calculating the error based on individual birds, that is,
predicting power based on individual bird variation in
addition to pen variation, ensures the appropriate
amount of birds are used, considering the researchers
adversity to risk. It is difficult to interpret risk assess-
ment in terms of legislative standards required for ethi-
cal research using terms like “valid” results. As such, this
analysis demonstrates considering individual bird data
is best to predict the sample size required for ethical
research in the future by clarifying just what the risks
involved are.

The sampling of normally distributed measurements
of experimental subjects, such as chickens, results in
power curves that are sigmoidal in nature, as presented
in Figures 2 to 4. This makes determining the optimum
number of animals difficult. Choosing one arbitrary
point on one of the lines in Figure 4 or 5 to be the stan-
dard for experimental power decisions is obviously a
great over-simplification of the problem. It might be
helpful if the mean difference between treatments was
known, but in this scenario outcomes will not be known,
because we are dealing with research. Knowing a mini-
mum difference for economic importance of mean differ-
ences could be helpful to decision makers in some cases.

There are ways to decrease variation amongst sam-
pled birds. One method is to choose only one sex to
study greatly decreases within pen (genetic) variation.
The drawback of this approach is that it is then applica-
ble to industries that house mixed-sex flocks (i.e., meat
chickens) as it is not known if the results are also appli-
cable to the other sex. Another way is to truncate distri-
butions and choose only birds close to the mean.
However, then it is not known the results are applicable
to large and small birds in mixed flock scenarios.

There are 2 situations in practical experiments with
poultry that would especially benefit from attempts to
estimate, experimental power. The first is when the
treatments being compared are feed additives and the
objective is to show that one additive, or diet, is just as
good as the other. In this case, experimental power
should be linked to the level of difference that is econom-
ically important. Conclusions of no statistical difference
should not be the result of inadequate bird numbers and
replication (Greenland, 2011). Consider, for example, if
Treatment A were declared to be just as good as Treat-
ment B (no significant difference), but the actual mean
difference was 50 g body weight per bird. If 50 g per bird
meant a very significant increase or decrease in profits to
a company, the declaration of no significant statistical
difference would be entirely misleading. The second case
is in determining responses to an input such as an envi-
ronmental constraint or nutrient level in the feed. It is
important to have small confidence limits on any
response to make further economic modeling meaning-
ful. For instance, in many nutritional requirement
experiments the requirement is listed without a confi-
dence interval. However, an estimate of the confidence
interval for the requirement is absolutely necessary to
understand the value of the requirement, and apply it to
feed formulation in a meaningful way. Although experi-
mental power may be considered for funding and animal
care committees, it is not often discussed in published
papers where it would be helpful to readers. When
experimental power has been considered, in our experi-
ence it has always been with commonly accepted, and
arbitrary, levels of significance.
Commonly accepted levels of significance for a and b

error are 0.05 and 0.80 (Hartnell, 2007, FEEDAP,
2011). That is, researchers would expect to wrongly
declare significant differences when none exist about 5%
of the time, but only detect real differences (of a specified
size) 80% of the time. These values were arbitrarily cho-
sen at a time when calculating actual probabilities was
very time consuming. The actual calculations of experi-
mental power are now based on the significance levels
and the differences that the researcher would like to be
declared significant in the experiment. With modern
computing capacity, it is possible to perform many thou-
sands of such calculations each second, allowing
researchers to visualize experimental power as a 3-
dimensional surface instead of a static point (Figure 1).
It is tempting to conclude that experimental conclusions
of no significant differences are justified based on power
considerations from previous research. Any such conclu-
sions are not valid. The conclusions from each experi-
ment should be based solely on the probabilities
calculated from the actual variation observed in that
experiment (Greenland, 2011).
A limitation of the prediction presented in Figure 1 is

that the SD was based on pen means. Since poultry sci-
entists changed the experimental unit from individual
birds on a treatment in one pen to the mean of several
birds in multiple pens there is little data available on the
individual variation of birds within experimental pens.
From the perspective of geneticists, all variation in
responses is either due to genetics or the environment.
The genetic component of our experiments is straight
forward, it is the bird (or animal) that we choose to use.
The choice of genetic strain determines the amount of
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inherent genetic variability. The remainder of the varia-
tion, the environmental factors, include the imposed
treatments and the microenvironment (the pens) in
which our birds are kept.

From the traditional statistical perspective, experi-
ments have been conducted with the pen average as the
experimental unit in poultry studies, with the average
responses of birds in each pen providing the experimen-
tal observations (body weight in the present example).
In this scenario, variation not attributed to the treat-
ment is considered to be random error. When planning
future experiments, the error mean square is regarded as
the standard deviation squared for the purpose of
describing and estimating experimental variation. The
SD of pens of n replicate birds, being normally distrib-
uted, is then proportional to n0.5. For example, if a his-
torical experiment had 5 birds per pen, and an SD = 7,
then the SD of experiments with 10 birds per pen would
be predicted to be SDx = (7 £ 50.5)/100.5 = 4.95. This
assumption is based on the birds not becoming crowded,
limited by feeder space, altering their own micro-envi-
ronment by producing heat, presence of ammonia build
up in the house, or becoming subject to social stressors.

With this traditional approach, the error that should
be attributed to pen-to-pen variation is not totally
ignored, it is simply included within the random error.
This is entirely appropriate for hypothesis testing of an
experiment that has already been conducted. However,
it may not be appropriate for estimating variation in
future experiments if there is a possibility of having dif-
ferent numbers of observations per pen and/or different
numbers of pens per treatment. For future planning pur-
poses, the error attributable to pens and the random
error should be separated. Just as increasing the number
of birds per pen decreases the error mean square relative
to any observed mean differences, increasing the number
of pens decreases the error mean square relative to any
observed mean differences. By determining the contribu-
tion of pen-to-pen variation independent of bird-to-bird
variation, the accuracy of predicting overall SDs for
future experiments should be improved. Demetrio et al.
(2013) wrote that bird-to-bird and pen-to-pen variations
had to be guessed. For many response variables, there
are historical data on bird-to-bird variation that could
and should be used when estimating future responses.

Ethical decisions are often said to be underpinned by
the 3 Rs framework, which state: 1) Where possible the
use of animals should be replaced (i.e., in vitro experi-
ments); 2) Methods should be refined to safeguard ani-
mal welfare; and 3) The minimum number of animals
should be used to produce a valid result (Fenwick et al.,
2019). First, regarding point 1. Above, the quote often
attributed to Albert Einstein should be considered “If we
knew what it was we were doing, it would not be called
research, would it?” Computer simulations can be very
helpful in refining (planning) research, as evidenced by
the power graphs in Figures 1, 4, and 5; however, they
cannot replace it. Computer modeling must be based on
what we know, and projections made from our current
knowledge base. Even when we have an excellent
understanding of current interrelationships, we may not
know if the projections should be linear, log transformed,
or sine wave. It is only research if it is trying to under-
stand the unknowns yet to be solved and modeled. Com-
puter-based techniques like holo- and meta-analyses can
be very helpful in refining experiments. They can indi-
cate where researchers should look for cause and effect
relationships, make experiments more meaningful, and
reduce the number of animals used, based on accurate
test power predictions.
Second, only by using nested designs when the data

are nested, can refinements be made for future experi-
ments and the appropriate balance be struck. Refining
experiments is the real key to safeguarding or improving
animal welfare and use of resources. Very thoughtful
consideration should be given prior to running each
experiment regarding how the resulting data will be ana-
lyzed (Shim and Pesti, 2013), the potential outcomes,
and their interpretations. Third, the latter R (reduction)
suggests that too many animals used in an experiment is
unethical, but too few animals will result in incorrect
conclusions, which is also unethical (i.e., a type I error of
no effect found when an effect is present). Therefore, R’s
for Replace and Reduction should be replaced by B for
Balance. Research efforts have to use a balanced
approach, accounting for numbers of birds and pens,
acceptable type I and type II errors, economic costs,
potential outcomes, and chances of improving bird wel-
fare while improving food production efficiency.
The implications of various experimental designs are

often hard to predict because of the complexity of bio-
logical systems. It may be tempting to over-simplify
experimental power considerations for experiments
where careful consideration of nested designs and proper
calculation of the sources of variation involved can be
most helpful. For instance, cost and benefit analysis
decision making is particularly difficult for animal
experiments. Many problems are multidimensional, like
maximizing the bone health of growing broiler chickens.
The interacting factors and interrelationships that must
be understood include dietary calcium and calcium solu-
bility, dietary phosphorus and its chemical form, dietary
vitamin D, ultraviolet light exposure, bird activity,
genetics (which are constantly changing), and exogenous
dietary enzymes. There is great potential to exaggerate
the importance of any single experiment on the bone
health and welfare of billions of birds grown world-wide
each month. Computer simulations and projections of
experimental power can only help answer these ques-
tions.
Another aspect of research where computers can be par-

ticularly helpful is in aiding researchers to visualize and
understand the different aspects of experimental power.
Experiments can be simulated to illustrate the magnitude
of different outcomes obtained from identical experiments
(Figures 6 and 7). The proportion of experiments finding
P < 0.05 with a real difference of 18.8% is 16 of 20,
indicating a power of 0.80 (Figure 6). If the real difference
is 13.0%, only half the experiments result in P < 0.05,
indicating an experimental power of 0.50 (Figure 7).
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These figures show examples of the ranges of typical
simulations, presenting a range of P < 0.001 to 0.144 with
a real difference of 18.8%, and P < 0.003 to 0.717 with a
real difference of 13.0%. When 10,000 simulations
were conducted, the range for both real differences was
P < 0.000 to 0.998. When conducting such simulations
with Microsoft Excel running on Windows the operator
need only press the <F9> to almost immediately create
another set of 10,000 randomly generated samples based
on the mean and standard deviations inputted.

Many variables need to be considered when plan-
ning for future experiments. Decisions have to be
made based on the probability of finding differences,
meaning there is no single correct answer to how
many birds per pen and pens per treatment should be
used. Decisions must be based on the risk of finding
differences that the experimenter finds acceptable. An
80% chance of finding a real difference of 5% seems
to be acceptable for many trials, but it is totally arbi-
trary, albeit accepted practice. Therefore, the level of
difference to be detected must be determined by the
purpose of the experiment, with its impact and appli-
cation in mind. Experimental power considerations
should also include costs. Since researchers do not
know the expected outcome of their experiments, it
would be prudent to look at the slopes of the lines
for different numbers of replicates depicting possible
real differences vs. the chances of declaring a differ-
ence significant. In different intervals of these curves,
it may or may not be deemed valuable to increase
sample sizes to decrease the chances of a wrong con-
clusion.

Different and perfectly valid outcomes can result from
seemingly identical experiments. This is due to random
sampling from the same population (Pesti et al., 2018).
When researchers accept the null hypothesis that there
are no differences (P < 0.05) when they expect to find
some, they are faced with choices. They may re-examine
their hypothesis and determine that it was incorrect in
the first place. Alternatively, they may still think that
their hypothesis was correct and the P > 0.05 was the
result of random error. They can therefore repeat the
experiment, often with increased replication. The choice
between these 2 approaches will be influenced by the
actual probability of real differences, and not by reliance
on an arbitrary standard like 0.05 (1 chance in 20). If
the probability that there were real differences was 0.99,
the researcher’s conclusion may be the opposite had the
probability been 0.051. The response would be different
if the probability of real differences was 0.10 or 0.20, or
even 0.50 (half a chance of a real difference). Because dif-
ferent outcomes can come from seemingly identical
experiments, many researchers will not accept the
results of one “valid” experiment, be they positive or neg-
ative, and insist on replicating experiments twice, or sev-
eral times, before making conclusions that they deem
“valid” for their application. Adding covariates, such as
sex or feed intake, is another possibility when attempt-
ing to design experiments to maximize experimental
power (Bloom et al., 2007).
The need to repeat experiments comes from several
sources. Research is always a matter of chance when ran-
domly choosing experimental subject samples from a
large population. There are also other possible sources of
variation that are not perfectly controlled, especially
dietary composition. For instance, chicks may come
from different breeder flocks of different ages and be fed
different feeds. Similarly, feed ingredients may be
sourced from widely different localities and their compo-
sitions cannot be perfectly controlled for different
experiments. Simply repeating (doubling the amount of
birds) an experiment greatly decreases the chances of
type I error, declaring significance when none exists. If P
< 0.05 is the standard for one experiment, then repeat-
ing the experiment decreases the odds of declaring signif-
icance by mistake twice to 0.05 £ 0.05 = 0.0025.
Similarly, simply repeating an experiment could
decrease the chance of not finding a difference twice if
one really exists (type II error) from (1-0:b) to (1-
b)2 = 0.04 for b = 0.2 or 0.01 for b = 0.1.
From the example datasets examined here, there are

broad conclusions that can be drawn. First, with a single
experiment it is practically impossible to consistently
declare small differences significant. Of course this
depends on the means and SDs. For the body weight
example, up to approximately 3% differences in broiler
chicken growth were impossible to consistently declare sig-
nificant, because of inherent bird-to-bird individual varia-
tion. Second, as illustrated in Figures 1, 4, and 5 (with
example means and SD’s) there are great differences in
the slopes of the response lines and thus great differences
in how changing the number of birds in a nest or nests in
a treatment will affect SDs and experimental outcomes.
It is important to note that these examples have been

for comparing multiple means with a 1-way design, not
mean separation. When further tests to separate multi-
ple means are being applied, or there are repeated meas-
ures, the same general assumptions apply. However,
consideration must be given to the nature of the particu-
lar design being used. Particularly, when multiple com-
parisons need to be made, whether the researchers are
willing to accept liberal or conservative tests must be
considered.
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