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Abstract 
 

While selective breeding has played an important role in improving the economic 

performance of animals, traditional selection methods depend on animal-based data such as 

phenotypic or Estimated Breeding Values. The advent of novel genotyping technologies have 

led to genomic data, which directly probed into the genotypic configuration of the animals. 

This allows the exploitation of non-additive genetic components such as the dominance 

effects, which previously were not exploitable in selective breeding due to their dependence 

on the genotypic configurations of the parents, an aspect not made available through animal-

based data. The use of such components has been relegated to crossbreeding systems, and 

rarely in within population mating systems.  

For this reason, the aim of this thesis is to explore the optimization of breeding pairs and 

mating decisions, with emphasis on the use of genomic data. This thesis will explore the use 

of such data in the exploitation of additive and dominance genetic components while 

constraining the inbreeding level increment. To cover the large sample space of possible 

solutions, this project will be conducted using artificial intelligence for the optimization of 

breeding pairs. The optimization method proposed in this study was validated using a 

simulated dataset.  

It is noted that there could be factors such as genetic architecture and data sizes that would 

affect the usability of genomic data in the optimization of breeding pairs, which was the 

reason this project starts by investigating the impact of these factors on the power and false 

positive rate of detecting quantitative trait loci (QTL) in a Genome-Wide Association Study 

(GWAS), a tool widely used for the detection of QTL and estimating the effect sizes of 

genomic regions. This study suggested significant impacts of sample sizes and number of 

markers, as well as genetic architecture of the traits on the power and false positive rates of 

the GWAS. This study also explored the performance of GWAS using two commonly used 

multiple testing correction methods, and also proposed a scoring method that could be used to 

test the optimality of thresholds between different multiple testing correction methods.  

From the findings of this foundational work, techniques that could improve the performance 

of GWAS experiments have been explored. One such techniques was the calculation of 

optimal threshold that takes into account the effects of genetic architecture and data size. For 

this calculation, a method based on Receiver Operating Characteristics was developed to 
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calculate the optimal threshold of a GWAS. Simulation studies suggested this method 

performed better in binary classifications and marker selection for genomic predictions, with 

the use of this optimal threshold resulting in an increment of accuracy of genomic prediction 

up to 16.8% compared to that of the Bonferroni method, and 7.0% compared to the 

Benjamini-Hochberg FDR method.  

The calculation of optimal threshold requires information on the genetic architecture of the 

trait, and this has become the basis for the next part of the thesis, where a novel method that 

estimates the genetic architecture parameters such as number of QTL and shape of the effect 

size distributions was proposed, while taking into account the impact of various confounding 

factors such as correlation between markers, heterogeneity in linkage disequilibrium 

structures, and allele frequency distribution. Using this method, the estimated number of QTL 

with effect sizes 0.1 𝜎𝑒 ranged from 69.9% to 167.0% (an average of 109.8%) of the true 

number of QTL, and for effect size 1.0 𝜎𝑒 it ranged from 101.6% to 175.8% (an average of 

123.6%). The method was developed to be able to estimate the QTL effect size, similar to a 

GWAS, but taking into account the impact of the confounding factors. This method would 

also allow the detection of QTL with smaller effect size with more confidence. New 

statistical tests designed to be powerful at the tail of the QTL distribution were developed, 

and an observation was made on the preference of utilization of test statistics for optimization 

of breeding pairs over the estimated effect size of the markers.  

For the final chapter, a framework for the optimization of breeding pairs was developed that 

could optimize both the additive and dominance genetic component while constraining the 

increment in inbreeding coefficient. For this framework, a genetic algorithm was used. Using 

the EBVs, this method successfully improved the additive genetic component by up to 87.0% 

compared to a truncation genomic selection method. Using heterozygosity as a mean of 

optimizing the dominance component, the genetic lift from the dominance component in 

offspring is approximately twice the additive genetic gain, although the lift only occurs in the 

first generation.  

This project is important for livestock producers or species conservationists who wished to 

improve the additive and non-additive genetic components in their breeding herds by using 

genomic data. It is anticipated that this framework could be further developed into a full-

fledged product that could be utilized in a commercial setting. 
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Chapter 1. Introduction 
 

Selection processes have played a major role in livestock production since the beginning of 

human civilization, starting from the process of domestication of various wild animals to the 

formation of specialized breeds tailored for high economic performance. In recent decades, 

selection has made dramatic increase on the livestock’s economic productivity (Bökönyi, 

1974; Gill and Harland, 1992).  

Previous selection processes utilized animal-based data such as phenotypic data or, derived 

from that, Estimated Breeding Values (EBVs) of the animals. The advancement of molecular 

technology and the development of genotyping techniques for high-density genetic marker 

arrays based on Single Nucleotide Polymorphism (SNP) and Whole Genome Sequencing 

(WGS) has led to the development of a new class of genetic data utilizable in a selection 

program: genomic-based data. Genomic-based data, such as a genotype array, can be used in 

combination with phenotype to estimate the genetic merit contributed by a genomic region 

toward the phenotype, which can be used to scan for causal variants associated with a trait 

through Genome-Wide Association Study (GWAS) (Spencer et al., 2009; Visscher et al., 

2017). Genomic data can also be used to estimate the additive genetic variance of a trait 

(Yang et al., 2009) and EBVs of the animals, which is subsequently utilized in genomic 

selection (VanRaden, 2008). Genomic-based estimates of level of consanguinity between 

animals have also been developed (VanRaden, 2008), which has been used in Optimal 

Contribution Selection (OCS) method where selection is done under a constraint of 

inbreeding coefficient increment (Clark et al., 2013).  

Most of the breeding programs have thus far focused on selection using additive genetic 

effects, with the non-additive effects, such as dominance and epistasis, often being used in 

crossbreeding program, but rarely for selection and mating within breed. Unlike the additive 

genetic component, which depends solely on the number of copies of alleles, the non-additive 

component depends on the exact genotypic configurations of the alleles, which would be 

scrambled from parent to offspring generations through Mendelian assortment (de Boer et al., 

1993). This precludes the use of EBV in optimization of the non-additive genetic component. 

This is further complicated by the difficulties in estimation of these non-additive genetic 

components, as that requires multiple observations of the same mating, which occurs mainly 

in species with larger full sib groups. For this reason, these genetic components were 
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considered not exploitable through selection and mating designs in most animal-based data 

(Lynch and Walsh, 1998). Marker-based data directly probes into the genotypic configuration 

of the parents however, which allows the prediction of offspring genotype, including the non-

additive effects which can be estimated from heterozygosity. In theory, genomic-based 

information would allow the selection of individuals based on both the additive and non-

additive genetic components. 

Therefore genomic-based data can theoretically also be used to optimize the breeding pairs in 

a selection program. While this optimization is traditionally done using EBVs of the animals 

(Kinghorn, 2000), genomic-based data is now available, which can then be used to select 

animals with high merit and predict offspring merit based on both additive and non-additive 

effects.  

When using genomic data in the optimization of selection and mating, it is imperative to 

establish which region in the genome is associated with the trait. This could be estimated with 

several methods, e.g. such as those used in GWAS. As a method, GWAS suffers from several 

limitations however. Due to the stringent threshold from the large number of markers and low 

proportion of variance explained by individual QTL, GWAS in general failed to explain a 

large portion of the additive genetic component (Hall et al., 2016). Studies on the factors that 

affect the false positive rate of a GWAS, which could produce a misleading result for the 

optimization, remain lacking. The effects of certain factors, especially those pertaining to the 

genetic architecture of the traits, on the power and false positive rate of the GWAS also have 

not been studied widely. There were also problems with how well a threshold balances the 

power and false positive rate of a GWAS, which previous publications have suggested to be 

highly dependent on some of these factors (Hoggart et al., 2008; Panagiotou and Ioannidis, 

2012). These issues of GWAS could have contributed to the replicability crisis of a GWAS 

(Heller and Yekutieli, 2014; Wang and Zhu, 2019), which could impede the use of genomic-

based information on the optimization of the breeding pairs. 

With this in mind, the aim of this project is to design a framework for the optimization of 

breeding pairs in a selective breeding program, with emphasis placed on optimizing the 

additive and non-additive genetic components while constraining the increment in level of 

inbreeding. For this study, only the dominance component was utilized due to the difficulty in 

obtaining estimates required for the optimization of an epistatic component. Emphasis was 

placed on the use of additive and non-additive genomic-based information in the optimization 
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of the breeding pairs, such as estimated effect sizes and test statistics from a GWAS 

experiment. Due to the vast sample space of the possible mating pairs, methods based on 

artificial intelligence was used to optimize the mating pairs.  

This project starts by investigating the factors that could affect the reliability of the genetic 

effects estimated at various genomic regions by a GWAS. A comprehensive study on 

potential confounding factors that could affect such reliability, such as genetic architecture of 

the trait, data size, allele frequency distribution and correlations between markers, will be 

detailed in the first experimental chapter (Chapter 3), which serves as a foundation for the 

subsequent chapters. Using the findings obtained from Chapter 3, techniques that could be 

utilized to improve the power and false positive rate of the GWAS were developed. This 

includes the calculation of an optimal threshold that balances power and false positive rate of 

a GWAS, which is proposed in Chapter 4, and presentation of a method of estimating genetic 

architecture parameters and QTL effects size while taking into account the effects of 

aforementioned confounding factors in Chapter 5. In the final chapter (Chapter 6), findings 

from the previous chapters were incorporated into the development of an optimized selective 

breeding method that could utilize genomic-based information to optimize the additive and 

non-additive genetic component under a constraint of increment of inbreeding level. This 

method was tested using simulated data under varying parameter values. 

This project would be important for livestock breeders and producers who aim to improve the 

genetic merits of the animals while constraining the level of inbreeding and exploiting the 

non-additive genetic components, as well as breed or species conservationists that aim to 

preserve the additive and non-additive variation for traits.  

 

  



21 
 

Chapter 2. Literature Review 

 

2.1. Abstract 

The aim of this chapter is to review previous studies that have been done on optimizing 

breeding pairs, as well as all the necessary components for such optimization. There are three 

main sections in this literature review. The first part covers optimal contribution selection for 

the optimization of contributions of selection candidates to the next generation. The second 

part of the chapter deals with the components required for the optimization. This includes the 

estimation of inbreeding coefficient and co-ancestry of the selected animals, as well as 

previous attempts to detect the additive and non-additive effects of quantitative trait loci 

(QTL). The third part focuses on factors that would be important in the detection of these 

QTL, and how to improve their detection. This includes a discussion on the threshold for the 

multiple testing correction methods in the testing of QTL effect sizes. Findings from this 

literature review will also be used to establish the most practical approach for designing the 

breeding pair optimization method, as well as various aspects that need to be taken into 

account when designing such methods.  

2.2. Selection Process and the Beginning of Optimized 

Selection Program 

Selection processes have played a major role in the livestock production since the beginning 

of human civilization, from the breeding of domestic sheep from mouflons for wool colour 

and reduced fibre diameter (Ryder, 1973) up to the breeding of cattle for meat and dairy 

production (Gill and Harland, 1992). The selection process has been imperative in the 

improvement of the livestock herds to fulfil the ever-increasing needs of the humanity 

(Bökönyi, 1974).  

For most of the history, selective breeding is done based on truncation selection, where the 

individuals were selected based on their performance alone, with all the substandard 

individuals being culled and the top animals were chosen to be propagated into the next 

generation (Akdemir and Sánchez, 2016; Crow and Kimura, 1979). The selection can be done 

from the traditional phenotype-based selection process up to the most recent genomic 

selection process (VanRaden, 2008). This breeding system is simple to operate and execute 
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and is effective in changing the phenotype of the animals (Crow and Kimura, 1979). There 

are several models being proposed in terms of expected additive genetic gains that could be 

obtained from a certain breeding strategy, most notably the link between the proportion of 

sires and dams selected with the expected additive genetic gain per generation (Crow and 

Kimura, 1979; Falconer, 1989; Robertson, 1970).  

The traditional selection method and its associated models have their shortcoming, however. 

One such shortcomings is the un-optimized contributions and allocation of sires toward the 

dams. As dams are more restricted in the amount of contributable genetic material to the next 

generation per animals, they represented a limiting resource toward a breeding program 

(Wray and Goddard, 1994; Robertson, 1970). Traditional selection methods tend to produce 

an “equal and randomized contribution” of sires, where each sire has equal chance of 

contribute to the next generation, and yet their contributions and mating are randomized (i.e. 

no specific patterns in the sire contributions and sire-dam matching). The equal and 

randomized contribution of sires might cause less valuable sires to contribute excessively to 

the gene pool in the offspring while leaving fewer dams for the best sires, impacting the 

overall performance of the offspring and reducing the efficiency of a breeding program. 

Randomized contribution also produces un-optimized pairings of sires and dams, which 

would lead to a failure in optimization of the non-additive genetic components that depend on 

the exact configuration of alleles of sire and dam (de Boer et al., 1993).  

Furthermore, truncation selection method and its associated models assume that the optimal 

values for some parameters, such as the proportion of selected sires, can be calculated before 

the commencement of a breeding program, and then remain unchanged for the subsequent 

generations (Brotherstone and Goddard, 2005; Meuwissen, 1997). Such breeding methods 

have been noted as the “static” breeding decision, which is less optimal as it fails to exploit 

unforeseen genetic gains in the subsequent generations (Meuwissen, 1997), while not taking 

in consideration the actual situations of the breeding herds, such as the consanguinity in the 

base population. This has become the impetus for a “dynamic” or “tactical” breeding 

decision, where the optimal sire contributions are calculated using information about the 

pedigree structure from the breeding herds (Brotherstone and Goddard, 2005; Meuwissen, 

1997).  

The paradigm of tactical breeding decision allows a more flexible framework for the breeding 

strategy, which includes controlling the level of inbreeding and the genetic diversity in the 
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population (Brotherstone and Goddard, 2005; Kinghorn, 2000). While inbreeding can also 

occur in random and natural selection, the artificial selection process utilized in livestock 

production systems accelerates the rate of inbreeding as selected animals tend to be more 

related (Falconer, 1989). Inbreeding has been implicated with a decline in the economic 

performance and welfare of the animals in a condition known as “inbreeding depression” 

(Falconer, 1989; Ryder and Wedemeyer, 1982; Schlie, 1967). This led to the development of 

tactical breeding strategies that aimed to maximize additive genetic gains while restricting the 

level of inbreeding.  

Early attempts of this strategy focused on controlling the proportion of selected sires. The 

simplest and yet most inflexible method was simply calculating the optimal proportion of top 

sires to be selected such that the expected increase in inbreeding would be at the predefined 

level (Toro and Perez-Enciso, 1990). Dempfle (1975) and Dempfle (1990) attempted to 

achieve this aim by calculating the number of sires contributed by each full-sib family, while 

finding a balance between a within-family selection, which minimizes the increase in 

inbreeding coefficient, and between-family selection, which maximize the coefficient. This 

approach might not applicable if family information is unavailable, limiting its applicability 

(Toro and Perez-Enciso, 1990; Wray and Goddard, 1994). Using linear programming, Toro 

and Perez-Enciso (1990) proposed a mate selection method where the best combinations of 

individual sires and dams were chosen in attempt to maximize the genetic gain under the 

constraint of inbreeding level increment for one generation. While this method resolves the 

impact caused by the “randomized contribution”, this method assumes a fixed equal number 

of sires and dams to be propagated into the next generation while disallowing half-sibs in the 

offspring population, thus with restrictions in its flexibility (Toro and Perez-Enciso, 1990).  

Wray and Goddard (1994) argued that all aforementioned methods have made some arbitrary 

criterion and assumptions to control the increase of inbreeding rate, which may not reflect the 

true situation that might be encountered in a livestock production system. Therefore, rather 

than finding the optimal proportion of sires selected from a predefined level of inbreeding 

coefficient, Wray and Goddard (1994) directly derive a score that dictates the balance 

between the additive genetic gains and the increase in inbreeding coefficient, which for sire-

only selection is defined using the following LaGrange objective function (denoted as 𝑓𝑜𝑏𝑗) 

(Wray and Goddard, 1994):  

𝑓𝑜𝑏𝑗(𝒙) =
1

2
𝒙𝑻𝒃 − 𝑄 ∗

1

8
∗ (𝒙𝑻𝑨𝒙) [1] 
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Where 𝒙 is defined as the vector of sire contributions, 𝒙𝑻 (with superscript 𝑻) denotes the 

transpose of the vector of the sire contributions, 𝒃 being the sire Estimated Breeding Values 

(EBVs), 𝑨 being the numerator relationship matrix between the sires, and 𝑄 being the 

Lagrange multiplier that act as a weighting factor that balances emphasis on the additive 

genetic gain versus the inbreeding coefficient. The use of LaGrange objective function in 

balancing the additive genetic gains (i.e. 𝒙𝑻𝒃) and the increase in inbreeding coefficient (i.e. 

𝒙𝑻𝑨𝒙) significantly improves the model’s flexibility by allowing a variable number of sires 

and dams to be selected with variable contributions. 

Wray and Goddard (1994) calculated 𝑄 using the expected genetic gains for an infinite 

population size, time domain and observed inbreeding depression. The increment in 

inbreeding level is not part of the calculation of 𝑄 however, due to an assumption of uniform 

risk of inbreeding depression toward a breeding program, and this has become the subject of 

criticism by Meuwissen (1997). A high inbreeding coefficient increases the probability of 

deleterious alleles being drifted toward fixation, increasing its risk toward a breeding 

program. This is especially problematic if it is used on a trait with little inbreeding depression 

during the time of calculation of 𝑄, which produces an overly lenient 𝑄. For this reason, 

Meuwissen (1997) advocated the calculation of 𝑄 directly from the targeted increment of 

level of inbreeding coefficient, with the presumption that the breeders would generally know 

the acceptable increment of level of inbreeding coefficient. Despite this, the algorithm 

proposed by Meuwissen (1997) still largely followed of the one by Wray and Goddard 

(1994), including the use of a LaGrange objective function. Therefore, both Meuwissen 

(1997) and Wray and Goddard (1994) have been hailed as the pioneering work for the 

modern-day Optimal Contribution Selection (OCS) method, which has since become the 

main method for an optimized selective breeding operation (Brothersone and Goddard, 2005; 

Clark et al., 2013; Nielsen et al., 2011). 

Despite the importance of Meuwissen (1997) and Wray and Goddard (1994), both methods 

are still highly restrictive in terms of its flexibility. This is caused by the fact that both 

methods have been built using generalized theorems based on isolated studies on the effects 

of selection on additive genetic gain and inbreeding coefficient. A more unified framework 

on other aspects pertaining to a breeding operation, such as those related to mate allocations 

and economic evaluations, remained lacking. For this reason, Kinghorn (2000) employed the 

“Mate Selection” framework, where indices from various aspects in the breeding operation 

could be integrated. In essence, given a vector of contributions of chosen and allocated sires 



25 
 

𝒙, the integrated index for mate selection, the Mate Selection Index (MSI) has the generalized 

form as follows:  

𝑀𝑆𝐼 =  ∑ 𝜆𝑘 ∗ 𝑓𝑘(𝒙)

𝑛𝑓𝑎𝑐𝑡𝑜𝑟

𝑘=1

[2] 

Where 𝑛𝑓𝑎𝑐𝑡𝑜𝑟 is the number of factors taken into account by the MSI and 𝜆𝑘 being the 

weighting factor associated with the components that needed to be optimized, which is 

defined as 𝑓𝑘(𝒙). The 𝑓𝑘(𝒙) could include any factors associated with a breeding operation, 

such as additive genetic gain, impact from inbreeding coefficients, gains from heterosis and 

cost of mating policy (Kinghorn, 2000). 

Maximizing the 𝑀𝑆𝐼 is not a trivial issue however, as this index comprises of mathematically 

disparate components. Due to this, Kinghorn (2000) utilized an differential evolution, a form 

of evolutionary algorithm, in order to find 𝒙 that maximize the MSI, given the constraints set 

by the 𝜆𝑘 and 𝑓𝑘(𝒙). This allows a more flexible model of optimization to be specified, thus 

better suited to real life scenarios commonly encountered in a breeding operation.  

Since Kinghorn (2000), many other renditions of OCS algorithms have been proposed and 

published. Many of these new algorithms draw inspirations from Kinghorn’s work however, 

with the most notable aspect being the use of evolutionary algorithm. Due to its flexibility, 

the evolution algorithm would later be directly used to optimize the OCS’s LaGrange 

objective function as defined in equation [1], allowing the more dynamic and case-by-case 

breeding strategy that maximizes the additive genetic gains under a constrained inbreeding 

rate (Gourdine et al., 2012; Sørensen et al., 2008). Evolutionary algorithms have allowed the 

emergence of new OCS algorithms such as the Look Ahead Mate Selection” (LAMS) 

algorithm (Shepherd and Kinghorn, 1998) and Differential Evolution based methods 

(Kinghorn, 2011), and OCS for conflicting breeding objective (Wang et al., 2017a).  

Given the flexibility of the evolutionary algorithm, this opened up a possibility for selection 

that takes into account non-additive genetic components such as dominance effects. While 

they could have contributed a significant portion of the genetic variance, they are there are 

difficult to exploit as they depend on the parental genotypic configuration, which is not 

observable through pedigree data (Crow, 2010; Falconer, 1989; Lynch and Walsh, 1998). 

However, with the advancement of high-density genomic data such as Single Nucleotide 

Polymorphism (SNP) markers and whole genome sequence data however, this allowed a 
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direct observation on the genotypic states of the individuals, therefore allowing the prediction 

of non-additive genetic component in the progeny. Despite this, OCS and mate allocation 

algorithms that utilize the non-additive genetic component is currently lacking. While 

Kinghorn (2000) mentioned the possibility of exploiting the additional genetic gains derived 

from crossbreeding (i.e., heterosis), the publication did not provide additional information on 

the calculation and optimization of the non-additive genetic component. González-Diéguez et 

al. (2019) have proposed a mate allocation method with dominance effect taken into account, 

but do not restrict the increment in inbreeding level. The lack of methods to increase additive 

and non-additive while constraining the increase of inbreeding coefficient stands as a missed 

opportunity of improving the long-term economic yield of a breeding program.  

Despite the opportunity, there is a possibility that an OCS that utilizes additive and non-

additive genetic components while simultaneously constraining the increase in inbreeding 

level might not be feasible. For this reason, it is important to establish the feasibility of such 

OCS, and this can be done by testing the feasibility of obtaining an estimate for each 

component in the OCS, and the feasibility of combining these estimates into an OCS.  

2.3. Aspects of an Optimized Selective Breeding 

2.3.1. Inbreeding 

Perhaps the most important aspect for an optimized selective breeding program is the control 

of inbreeding, defined as the breeding of genetically related parents (Falconer, 1989; Griffith 

et al., 2015). Statistically the coefficient of inbreeding is defined as the probability of two 

alleles in an individual being inherited from the same copy of allele of a common ancestor 

(Griffith et al., 2015). 

2.3.1.1. Estimating the Changes in Inbreeding Coefficient 

To control the level of inbreeding, the changes of inbreeding coefficient per generation of 

selection (denoted as ∆𝐹) need to be estimated.  

There were several methods being put forward to estimate the changes in the level of 

inbreeding. Some of the earliest methods utilized pedigree data, with the pioneering works 

being those of Wright (1921) and Fisher (1949). The most important and more practical 

pedigree-based method came after 1950 however, with Charles R. Henderson developing a 

matrix that contains the ancestry relationship between each individual (Henderson, 1975). 
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This matrix, now known as Numerator Relationship Matrix (NRM), has been used to develop 

efficient algorithms to calculate inbreeding coefficients in very large pedigrees (Quaas, 1976; 

Meuwissen and Luo, 1992).  

In breeding programs inbreeding needs to be managed by controlling the rate of inbreeding, 

i.e., to limit the increase of the average inbreeding coefficient from generation to generation. 

Inbreeding coefficients themselves are relative to some based population of animals where 

ancestry is unknown, e.g., these coefficients would be higher in a population with a known 

deep pedigree. Using NRM, the expected increase in inbreeding coefficient can be expressed 

as the co-ancestry among the selected parents (Meuwissen, 1997), which can be calculated as 

follows:  

∆𝐹 =  
1

2
𝒙𝑻𝑨𝒙 [3] 

This method requires an accurate and complete pedigree data, with any missing data could 

lead to underestimation of co-ancestry of selected parents and therefore the rate of inbreeding 

(VanRaden, 1992). Similarly, inbreeding coefficients can be underestimated with the 

assumption of unrelated founder population in the NRM (McQuillan et al., 2008).  

The availability of high-density genotype array allows alternative methods of estimating the 

genetic relationship between individuals, such as the “Genomic Relationship Matrix” (GRM) 

by VanRaden (2008). Mathematically, a GRM is a square symmetric matrix that contains the 

scaled covariance of genomic states between animals (Gondro, 2015), and the inbreeding 

coefficient is defined as the diagonal of the GRM subtracted by 1 (Caballero et al., 2022). It 

can also be defined as the ratio between the variance of a SNP marker with the sum of 

variances from all SNP markers, subtracted by 1 (Caballero et al., 2022). In the context of 

optimized selective breeding, the GRM could be used in place of NRM in equation [3] to 

estimate the inbreeding level changes. GRM has the advantage in its ability in estimating the 

co-ancestry of apparently unrelated animals (Gondro, 2015). Despite this, the inbreeding 

coefficient estimated through GRM is not robust against changing allele frequencies 

(VanRaden, 2008; Zhang et al., 2015), and given the fact that the GRM is the scaled 

covariance between individuals, negative values in GRM are possible, which might cause 

some discrepancies in the estimated ∆𝐹 with those that utilized NRM.  

Besides deriving inbreeding from the genomic relationship matrix as proposed by VanRaden 

(2008), several other methods have been proposed for the calculation of changes in 
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inbreeding level. For example, Yang et al. (2010) proposed a similar method for calculation 

of inbreeding coefficients based on the correlation between uniting gametes, while Li and 

Horvitz (1953) proposed a method using the expected homozygosity with the assumption of a 

Hardy-Weinberg Equilibrium (Caballero et al., 2022). 

A common feature for these methods is that they define the inbreeding coefficients as the 

sum of variance explained by each SNP marker scaled by the total variance of the allele 

frequencies from all the markers. This methodology has been described by Hou and Ochoa 

(2023) as “ratio of means” (ROM) methods. A close counterpart for these methods is the 

“means of ratio” (MOR) methods, where the variance of a SNP marker is scaled by variance 

of the allele frequency from that marker alone. VanRaden (2008), Yang et al. (2010) and Li 

and Horvitz (1953) have independently proposed the MOR counterpart of their respective 

methods. Despite this, the MOR methods have been criticized for poorly reflecting the 

kinship structure as the kinship matrix generated is ill-conditioned (Hou and Ochoa, 2023), 

and tend to behave poorly with small sample sizes (Caballero et al., 2023). Neither Caballero 

et al. (2021) and Hou and Ochoa (2023) provided explanations for this observation.  

One possible reason for the ill-conditioned matrix from MOR methods lies in the distribution 

of the kinship estimates, which in turn rooted from the denominators of these estimators. 

Since the denominator of ROM estimator involves the summations of variances across all the 

SNP markers, their denominator has a larger magnitude than the denominators of the MOR 

(which do not involve such summation). The summation of variances increases the 

magnitude of the denominator of ROM estimators, thus decreases the sample variance and 

kurtosis of this estimators (compared to MOR estimators). This observation was supported 

through additional simulations, which suggested MOR estimators of VanRaden (2008) 

produces a significantly larger variance and kurtosis than the ROM equivalent (Figure 2.1). 

Furthermore, the expressions for the MOR estimators are closely analogous to the 

expressions analysed by Pillai and Meng (2016) who proved such expressions produce 

Cauchy-distributed random variables, a distribution renowned for its “pathological” 

behaviour of having undefined mean and variance (Mun, 2012). Indeed, the expressions for 

MOR estimators suggested these estimators would follow a ratio distributions, which often 

have ill-defined moments (Brody et al., 2002). It is likely that these ill-defined moments are 

the culprit of ill-conditioning of these kinship matrix, thus the poor estimation of variance 

component. The observation of ill-conditioned kinship matrix implies the preference of using 

ROM estimators over MOR estimators in the estimation of inbreeding.  
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Figure 2.1: Histogram showing the estimated inbreeding coefficient obtained from ratio of mean (ROM) method 

(blue) and mean of ratio (MOR) methods (orange) from VanRaden (2008). The estimated inbreeding coefficient 

from MOR method has a sample variance of 0.0066 and kurtosis of 0.491, which are significantly higher than the 

corresponding values of 0.0011 and 0.027 from that obtained using ROM method. In this simulation, 100 repeats 

of 5000 unrelated samples with 50k markers with average pairwise linkage disequilibrium of 0.9 were conducted, 

with allele frequencies following a symmetric beta distribution with shape parameter of 0.5, and minor allele 

frequency filtering set at 0.01.  

Method based on effective population sizes in the selected population has also been proposed 

by Wang et al. (2017a). In this method, the variance effective population size of the selected 

sires and dam has been utilized, with the equation as defined as such:  

∆𝐹 =  
1

8𝑁𝑚
+

1

8𝑁𝑓
 [4] 

Where 𝑁𝑚 and 𝑁𝑓 are the number of selected breeding sires and dams respectively. This 

method ignores the inbreeding that might already exist in the base population. This method 

also does not take into account the impact of varying amount of contributions of sires and 

dams on the inbreeding coefficient (as an example in the scenario of 100 sires with each 

contributed to 10 dams, compared to another with 99 sires contributed to one dam, while the 

one remaining sire contributed to 901 dams). These shortcomings could be easily overcome 

with the use of relationship matrices, for which equation [3] gives the relationship among the 

selected parents, thus predicting the inbreeding rate.   
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2.3.2. Additive Genetic Component 

The most important genetic component of the phenotype contributing to long term genetic 

improvement is the additive genetic component. The loci associated with this component 

would contribute to the phenotype in an amount proportional to the number of copies of an 

allele (Falconer, 1989; Lynch and Walsh, 1998). The additive genetic effect at each locus is 

defined as half of the differences between the homozygotes:  

𝑎 =  
𝜇𝐴𝐴 − 𝜇𝑎𝑎

2
 [5] 

Where 𝜇𝐴𝐴 and 𝜇𝑎𝑎 are the phenotypic mean of the homozygotes with genotype 𝐴𝐴 and 𝑎𝑎 

respectively. Given 𝑛 number of additive QTL, the portion of the phenotype explained by the 

additive loci (denoted as 𝐴) is the sum of the individual additive effects of each of the loci 

(Falconer, 1989; Lynch and Walsh, 1998): 

𝐴 =  ∑ 𝑔𝑎𝑘

𝑛

𝑘=1

𝑎𝑘 [6] 

Where 𝑔𝑎𝑘
 is the number of copies of an allele in locus 𝑘, with the values of {0,1,2} for 

genotype 𝑎𝑎, 𝐴𝑎 and 𝐴𝐴, respectively, and 𝑎𝑘 being the additive effect size of the additive 

loci. With the assumption of independence between QTL and Hardy-Weinberg Equilibrium 

(HWE), the additive genetic variance (denoted as 𝑣𝑎𝑟(𝐴)) is defined as the sum of variances 

contributed by each of the 𝑛 QTL loci (Falconer, 1989):  

𝑣𝑎𝑟(𝐴) =  2 ∗ ∑ 𝑝𝑘(1 − 𝑝𝑘) ∗ 𝑎𝑘
2

𝑛

𝑘=1

 [7] 

Where 𝑝𝑘 is the allele frequency of locus 𝑘. In reality it is unlikely that loci act independently 

from each other. It is also infeasible to detect all QTL that contribute to the variance of a trait 

as there are likely many QTL with very small effects and difficult to detect statistically. Due 

to this the variances explained by the detected QTL often explained less variances than what 

is expected from its heritability, causing the missing heritability problem (Maher, 2008), and 

have prompted studies like Yang et al. (2011) that uses restricted maximum likelihood 

(REML) method to detect variance from additional QTL. Attempts to detect these additional 

variance or QTL warrants further studies. 
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Most of the efforts on QTL detection focused on additive loci, as their effects are heritable, 

and their frequencies and variances can be easily and reliably altered through a selection 

process (Falconer, 1989). Many polygenic traits also have significant portion of its variance 

explainable through additive genetic component, often more so than that explained by non-

additive genetic component (Crow, 2010; Visscher et al., 2017), and there are solid 

groundworks on the methodology of estimation of the effect sizes of the loci.   

2.3.2.1. Detection of Additive QTL 

The detection of additive QTL is based on regression of the phenotypes on genotypes, which 

has become the basis of association studies. The advent of high-density markers that span 

throughout the genome has given rise to Genome-Wide Association Study (GWAS). The 

additive effects could be estimated one locus at a time (as in Single SNP Regression) or 

simultaneously (as in SNP Best Linear Unbiased Prediction (SNPBLUP) or Bayesian 

methods) (Gondro, 2015; Wang et al., 2016).  

2.3.2.1.1. Single SNP Linear Regression 

The Single SNP Linear Regression method is perhaps the most straightforward method of 

detecting additive QTL. The basis of this method is to conduct a linear regression of the 

phenotypes on the genotypes for each marker. Given a locus 𝑗, the estimated additive QTL 

effect sizes (denoted as �̂�) can be defined as follows (Falconer, 1989):  

𝑎�̂� = 
𝑐𝑜𝑣(𝒙𝒋, 𝒚)

2𝑝𝑗(1 − 𝑝𝑗)
 [8] 

With the 𝑐𝑜𝑣(𝒙𝒋, 𝒚) being defined as the covariance between genotype of locus 𝑗 and the 

phenotype and the denominator the variance of the genotype 

They 𝑎�̂� could then be used to test the significance of effects of the loci, with the null 

hypothesis being 𝑎 is not significantly different from zero. The test statistic for this 

hypothesis (denoted as 𝐹) could be defined using �̂� as follows:  

𝐹 =  
2𝑝𝑗(1 − 𝑝𝑗)𝑎�̂�

2(𝑁 − 2)

𝑣𝑎𝑟(𝒚) − 2𝑝𝑗(1 − 𝑝𝑗)�̂�2
[9] 

Where 𝑁 is the sample size of the GWAS experiment. Under null hypothesis, the 𝐹 would 

follows a Snedecor’s F-distribution, which asymptotically approaches a chi-squared 

distribution with large 𝑁 (Wang and Xu, 2019), which in turn can be utilized to calculate the 
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p-values of the marker having its true effect size significantly different from the null 

hypothesis (Gondro, 2015). A detailed mathematical derivation has been provided in 

Appendix A.  

Compared to SNPBLUP, single SNP linear regression is computationally less demanding, 

and the method does not shrink the estimated effect sizes of the QTL as strongly, but 

therefore tends to overestimate the marker effect sizes, especially if the marker has extreme 

allele frequencies (Gondro, 2015; Wang et al., 2016). The single SNP regression method is 

the simplest method as it does not need knowledge on the haplotypes. Some studies such as 

Grapes et al. (2004) suggest that the power for single SNP linear regression is comparable to 

haplotype-based methods. For sufficiently large sample size and as long as the central limit 

theorem applies, linear regression does not require normally distributed residuals (Bůžková, 

2013). Single SNP regression has the disadvantage of difficulty in defining the true mutation 

due to the QTL being in linkage disequilibrium with multiple SNPs. This is especially 

problematic when large numbers of SNPs are being used. Therefore, the method is likely to 

inflate the number of detected SNPs, which can be solved by having all the SNP fitted 

simultaneously (Hayes, 2013; Pryce et al., 2010).  

2.3.2.1.2. SNP Best Linear Unbiased Prediction (SNPBLUP) 

SNP Best Linear Unbiased Prediction (SNPBLUP) is another common method used in 

GWAS. Unlike the Single SNP Linear Regression, this method fits all the SNP 

simultaneously, with the genotype fitted as random effect, and is solved through Tikhonov’s 

regularization (Gondro, 2015; Hayes, 2013). For 𝑁 number of animals and 𝑀 number of 

markers, this method estimates the effect sizes by solving the following matrix equation for �̂� 

(Gondro, 2015):  

[
�̂�
�̂�
] = [

𝟏𝑁
𝑻 𝟏𝑁 𝟏𝑁

𝑻 𝑿

𝑿𝑻𝟏𝑁 𝑿𝑻𝑿 + 𝜆𝑰𝑀

]

−1

[
𝟏𝒏

𝑻𝒚

𝑿𝑻𝒚
] [10] 

Where �̂� is a 1 × 1 vector containing the estimated mean of the phenotype; �̂� is a column 

vector of length 𝑀 containing the estimated marker additive effect sizes; 𝟏𝑁 being a column 

vector of ones with length of 𝑁, 𝑿 being a frequency adjusted genotype array of size 𝑁 × 𝑀, 

with 𝑰𝑀 being an identity matrix of size 𝑀 × 𝑀 and 𝒚 being a column vector of length 𝑁 

containing the phenotype. The 𝜆 is a scalar shrinkage factor that controls the instability of 

estimated �̂� caused by the near singularity of the 𝑿𝑻𝑿 matrix, and is defined as follow 

(Gondro, 2015; Hoerl and Kennard, 2000): 
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𝜆 =  
1 − ℎ2

ℎ2
∗ 2 ∑ 𝑝𝑘(1 − 𝑝𝑘)

𝑀

𝑘=1

 [11] 

Where 𝑝𝑘 is the allele frequency at the k-th marker locus. It is also noted that as 𝜆 could add 

up to a large number with large number of markers, thus could severely regress the marker 

genotype contrasts in the estimation of the effects. Matrix 𝑿 has also been adjusted based on 

the allele frequency at each locus as follows (Gondro, 2015):  

𝑿 = 𝑿𝒓𝒂𝒘 − 2𝒑 [12] 

Where 𝒑 is vector of length 𝑀 containing the marker allele frequencies. In terms of 

establishing the significance of the markers, the test statistics for the markers, which 

measures whether the markers jointly have an effect on the phenotypes, are estimated as such 

(Gondro, 2015):  

𝐹 =
 �̂�2

𝑣𝑎𝑟(�̂�)
 [13] 

Most of the advantages conferred by this method originated from the simultaneous fitting of 

all markers and the use of 𝜆, which restrict the overestimation of effect sizes of the QTL, and 

the SNPs unrelated to QTLs are calculated much closer to zero. Also due to this, phenotype 

predicted from the estimated effect sizes of this method is also less overestimated and closer 

to the true additive genetic values (Gondro, 2015).  

The main weakness for this method is its computational and memory intensiveness, and 

relatively slow compared to Single SNP Linear Regression. Due to its simultaneous fitting, 

this method would also produce strong shrinkage in the estimated effect sizes (Gondro, 

2015). This can be partially mitigated my assuming the prior effect of effect sizes followed a 

non-linear regression, such as Student’s t-distribution. Another method was based on 

estimating the posterior probability of whether the SNP follows a certain model, which 

assume a prior distribution of SNP effects with large mass at zero, and the remaining SNP in 

other non-linear distribution such as normal or t-distribution (Hayes, 2013).  

A computationally less intensive variant of SNPBLUP utilizes an intermediate vector of 

animals’ relationship matrix and EBVs (Gondro, 2015). With the assumption of 𝒚 being 

mean-centred, the EBVs �̂� could be calculated as follow (Gondro, 2015; Hoerl and Kennard, 

2000):  
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�̂� = [𝑰𝑁 + (
1 − ℎ2

ℎ2
)𝑮−1]

−𝟏

∗ 𝒚 [14] 

Where 𝑮 is the GRM of the animals. If there are fewer genotyped animals compared to 

number of SNP markers, the matrix 𝑮 in equation [14] is smaller than the 𝑿𝑻𝑿 in equation 

[10], thus reducing the computational intensity. Using the �̂�, the estimated additive QTL 

effect sizes can then be backsolved as follows (Gondro, 2015):  

�̂� =  
1

2∑ 𝑝𝑘(1 − 𝑝𝑘)
𝑀
𝑘=1

∗ 𝑿 ∗ 𝑮−𝟏 ∗ �̂� [15] 

2.3.3. Non-Additive Genetic Component 

Besides the additive genetic variance, there is a significant portion of the genetic variances 

that did not arise from the number of copies of an allele at a locus, but instead from the 

interaction between alleles or loci (Falconer, 1989). These non-additive genetic components 

are more difficult to estimate however, and thus frequently are being omitted in the models, 

despite its importance in many economically important traits (Lynch and Walsh, 1998).  

Unlike the additive genetic component, exploiting the non-additive genetic component is not 

trivial, as they arise from certain allelic configurations that would be scrambled in the next 

generation (de Boer et al., 1993). Thus, this component would not be inherited in a 

predictable manner, and with dependency on the mating configurations of sires and dams. 

The detection of non-additive effect sizes also provides more challenges; Visscher et al. 

(2017) commented on the power of detection of an additive locus 𝑄 using marker 𝑀 is in 

proportion to 𝑅𝐿𝐷
2 (𝑄,𝑀), whereas for non-additive genetic loci it is proportional to 

𝑅𝐿𝐷
4 (𝑄,𝑀). Thus, given an effect size of a QTL, a much larger sample size is needed to 

detect a non-additive locus compared to additive locus, reducing its feasibility of detection.  

There are two major types of non-additive genetic component: the interaction between alleles 

within a locus, which is known as dominance, and interaction between different loci, known 

as epistasis (Falconer, 1989). For this study emphasis was placed on optimizing the 

dominance genetic component. This is due to the difficulty of obtaining an estimate for the 

epistatic effect sizes, a field that warrants further study (Lynch and Walsh, 1998; Vitezica et 

al., 2018).  
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2.3.3.1. Dominance 

The term dominance was first defined by Gregor Mendel in his works on plant breeding. He 

defined an allele being dominant if its effect overcomes the effect of its alternative allele and 

expressed in the phenotype (Mendel, 1865). Under the current framework of quantitative 

genetics however, the definition of the dominance has since been reformulated into the 

interaction between alleles within a locus (Isik et al., 2003). Statistically it is defined as the 

deviation in the heterozygote genotypic value from that expected from the expected mid-

homozygote value (Falconer, 1989).  

The prediction of dominance effects can be important as it contributes genetic gains toward 

the phenotypes (de Almeida Filho et al., 2016). Dominance effects are also thought to play a 

major role in the heterosis phenomena in crossbred animals, an aspect that has been exploited 

by breeders to increase the production rate and efficiency by crossing two inbred lines (Goto 

and Nordskog, 1959; Vitezica et al., 2016; Zeng et al., 2013).  

Given a locus, the dominance is defined through the following equation (Zhu et al., 2015):  

𝑑 =  𝜇𝐴𝑎 − 
𝜇𝐴𝐴 + 𝜇𝑎𝑎

2
 [16] 

Assuming the dominance effects across loci are cumulative, given 𝑛 number of loci with 

dominance effect sizes, the portion of the phenotype described by the dominance component 

(denoted as 𝐷) is defined as follow (Duenk, 2020):  

𝐷 =  ∑ 𝑔𝑑𝑘
𝑑𝑘

𝑛

𝑘=1

 [17] 

Where 𝑔𝑑𝑘
 is the state of heterozygosity of the loci 𝑘, with 𝑔𝑑𝑘

= 1 for heterozygote loci and 

𝑔𝑑𝑘
= 0 otherwise, and 𝑑𝑘 being the dominance deviation as defined in equation [16]. Under 

the assumption of HWE and independence between QTL loci, the variance of dominance 

genetic component can be calculated through the equation (Zhu et al., 2015): 

𝑣𝑎𝑟(𝐷) =  4 ∑(𝑝𝑘 ∗ (1 − 𝑝𝑘) ∗ 𝑑)2

𝑛

𝑘=1

 [18] 
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2.3.3.1.1. Detection of Dominance Genetic Component 

The initial models on prediction of breeding qualities often ignores the effect of dominance 

due to a lack of reliable method of estimating dominance effect (Misztal et al., 1998). Due to 

massive increase in genotypic and pedigree data, the effect of dominance has been taken into 

account for some of the models (Aliloo et al., 2017; de Almeida Filho et al., 2016; Sun et al., 

2013; Zeng et al., 2013). Lynch and Walsh (1998) have suggested the following methodology 

of estimating the dominance portion of the phenotypes (denoted as �̂� in this instance):  

[

�̂�

�̂�
�̂�

] =

[
 
 
 
 
 
𝟏𝑵

𝑻𝟏𝑵 𝟏𝑵
𝑻 𝟏𝑵

𝑻

𝟏𝑵 𝑰𝑵 + (
𝑣𝑎𝑟(𝐸)

𝑣𝑎𝑟(𝐴)
)𝑨−𝟏 𝑰𝑵

𝟏𝑵 𝑰𝑵 𝑰 + (
𝑣𝑎𝑟(𝐸)

𝑣𝑎𝑟(𝐷)
)𝑫−𝟏

]
 
 
 
 
 
−1

∗ [
𝟏𝒏

𝑻𝒚
𝒚
𝒚

] [19] 

Where 𝑨 is the additive genetic relationship matrix, and 𝑫 is the dominance relationship 

matrix, which is built using the coefficient of fraternities between individuals. While 

theoretically feasible, the practicality of this method is impeded by the need of estimating the 

dominance variance 𝑣𝑎𝑟(𝐷), which itself is not trivial (Lynch and Walsh, 1998).  

Unlike additive EBV, �̂� is not directly usable in predicting the dominance component of the 

offspring. This is due to the ambiguity in the expected offspring dominance component given 

the values of parent dominance component. This could be illustrated as follows: let ℎ and 𝐻 

be two alleles in a QTL and let 𝑎 and 𝑑 be its additive and dominance effect sizes. Let the 

paternal and maternal additive genetic component be denoted as 𝑃𝐴 and 𝑀𝐴, respectively, and 

for dominance component be 𝑃𝐷 and 𝑀𝐷, respectively. The paternal additive genetic 

component is defined as follows: {ℎℎ, 𝐻ℎ, 𝐻𝐻} = {0, 𝑎, 2𝑎} and for dominance 

{ℎℎ, 𝐻ℎ,𝐻𝐻} = {0, 𝑑, 0}. Using this information, the expected additive genetic component of 

the offspring can be defined as in Table 2.1.  

Note that for all possible offspring additive genetic components, it is always defined as its 

mid-parent values 
𝑃𝐴+𝑀𝐴

2
 (Falconer, 1989). Thus, if 𝑃𝐴 and 𝑀𝐴 are known, it is possible to 

predict with certainty the expected offspring additive genetic component. This is not the case 

for dominance component however; with the same parental genotypes, the expected 

dominance genetic component of the offspring was defined as in Table 2.2. 
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Table 2.1: The expected offspring additive genetic component given the paternal additive values (𝑃𝐴) and 

maternal additive values (𝑀𝐴). 

Additive Genetic Component 

(Rows: 𝑃𝐴; Columns 𝑀𝐴) 

ℎℎ  

(𝑀𝐴 = 0) 

𝐻ℎ  

(𝑀𝐴 = 𝑎) 

𝐻𝐻  

(𝑀𝐴 = 2𝑎) 

ℎℎ (𝑃𝐴 = 0) 0 0.5𝑎 𝑎 

𝐻ℎ (𝑃𝐴 = 𝑎) 0.5𝑎 𝑎 1.5𝑎 

𝐻𝐻 (𝑃𝐴 = 2𝑎) 𝑎 1.5𝑎 2𝑎 

 

Table 2.2: The expected offspring dominance genetic component given the paternal additive values (𝑃𝐷) and 

maternal additive values (𝑀𝐷).  

Dominance Genetic Component 

(Rows: 𝑃𝐷; Columns 𝑀𝐷) 

ℎℎ  

(𝑀𝐷 = 0) 

𝐻ℎ  

(𝑀𝐷 = 𝑑) 

𝐻𝐻  

(𝑀𝐷 = 0) 

ℎℎ (𝑃𝐷 = 0) 0 0.5𝑑 𝑑 

𝐻ℎ (𝑃𝐷 = 𝑑) 0.5𝑑 0.5𝑑 0.5𝑑 

𝐻𝐻 (𝑃𝐷 = 0) 𝑑 0.5𝑑 0 

 

Note that when 𝑃𝐷 = 𝑀𝐷 = 0 the expected offspring dominance coefficient could be either 0 

or 𝑑. This introduces ambiguities onto the expected offspring dominance, thus making the 

offspring dominance genetic component unpredictable using 𝑃𝐷 and 𝑀𝐷 alone. Therefore, the 

prediction of the offspring dominance component requires the parental genotypes, an 

inherently genomic information. This entails the requirement for estimation of dominance 

effect sizes of the markers.  

Work on predicting dominance is sparse however; while dominant loci have been detected 

for some important traits (Billiard et al., 2021) Most of such studies focused on oligogenic 

traits. Attempts to detect QTL with dominance effects in a polygenic trait remained lacking. 

Due to this, in term of the practicality of optimization, a proxy that correlates with the 

dominance effect sizes would be desirable.  

2.3.4. Optimizing the Contributions from Each Components 

While the mathematical theories behind inbreeding, additive and dominance genetic 

components were relatively well-established, generalized theories on how to combine these 

components in an optimized selective breeding remained scarce. This is especially true for 
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the inclusion of dominance genetic component. In such case, these components can be 

combined using evolutionary algorithms, such as differential evolution used by Kinghorn 

(2000).  

Despite this, there are different forms of evolutionary algorithms available, each suited for 

specific types of optimization problems (Gondro and Kinghorn, 2009; Slowik and 

Kwasnicka, 2020). For example, the differential evolution method is suited for optimization 

problem in a continuous search space (Storn and Price, 1993). The mating-specific nature of 

the dominance component means the sire permutations need to be considered during the 

optimization. As sire permutation is not a continuous quantity, this impedes the usability of 

differential evolution in the optimization of the dominance component. For this reason, other 

variants of evolutionary algorithms that can tackle combinatorial problems  are needed, and 

one such variants is the genetic algorithm (Slowik and Kwasnicka, 2020). 

Initially developed by Fraser (1957) as a simple simulator for genetic processes, the genetic 

algorithm has quickly been adopted by computer scientists as a general purpose problem 

solvers and optimizer (Mitchell and Forrest, 1994). This method has been used successfully 

to solve complex combinatorial problems with potentially infinitely large sample space such 

as Sudoku (Gerges et al., 2018), travelling salesman problem (Braun, 1991) and graph 

partitioning problem (Mühlenbein, 1992). Since optimization of the dominance component 

involves finding the optimal sire-dam mating configuration, an inherently combinatorial 

problem, genetic algorithms serves as a promising route for the optimization of this genetic 

component.  

Besides combinatorial problems, genetic algorithms have also been successfully used in 

problems related to continuous search spaces (Haupt and Werner, 2007). This purpose of 

genetic algorithm is commonly used in engineering-related problems, such as optimal designs 

for hypersonic aircraft (Evans and Walton, 2017), microwave absorbing material (Jiang et al., 

2009) and antennas for satellite missions (Lohn et al., 2008) and 5G communications 

(Marasco et al., 2022). The successes of genetic algorithm in optimizing problems with 

continuous search spaces hinted the possibility of its use in optimizing the combination of 

animals to be included in the selective breeding process to optimize additive genetic merit 

and build-up of co-ancestry, similar to the achievements attained by differential evolution in 

previously published OCS such as that by Kinghorn (2000). Unlike previously suggested 

mate allocation and sire contribution optimization methods, but similar to that of Toro and 
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Perez-Enciso (1990), a method that incorporates a genetic algorithm could resolves issues 

caused by “randomized contributions” of each sire and dams but relaxing the requirements of 

“equal contributions” from each sire and dams, thus promising a fully dynamic selection 

tactics for varying genetic architecture of a trait. Overall, genetic algorithms serves as a 

promising choice for the maximization of offspring’s  additive and dominance genetic 

component under a constraint of increment in inbreeding.   

In its simplest form, a genetic algorithm starts by generating a population of candidate 

solutions. In the context of previously published OCS such as that in [1], the candidate 

solutions would be the vector of contributions of each sire toward the next generation (i.e. 𝒙). 

The performance of each solution was evaluated using an objective function (i.e. the 𝑓𝑜𝑏𝑗(𝒙) 

from equation [1]). From the population of candidate solutions, those with the top 

performance in term of the 𝑓𝑜𝑏𝑗(𝒙) were selected to be propagated into the next iteration. The 

top solutions were subjected to the effects of “genetic operators,” with the most common 

being “mutation,” where the values in the solutions were replaced or adjusted, and 

“crossover,” where part of the solutions within the population were exchanged. These altered 

solutions were then fed into the next iteration where the solutions were evaluated and selected 

again. These processes repeat up to the point of convergence, which for the OCS be defined 

as the point where subsequent iterations no longer yield a more optimal solution.  

Despite the successes of genetic algorithm, there were several shortcomings for this method 

of optimization. One such shortcomings is its propensity to converge toward a local optimum. 

There were numerous potential reasons for such convergence, such as a suboptimal 

hyperparameters for the genetic operators (Heider and Drabe, 1997), a large sample space 

and a rugged fitness landscape for the optimization (Taherdangkoo et al., 2012).  

Several modifications have thus been proposed to mitigate such shortcoming; one such 

modification is a parallelized genetic algorithm, where the algorithm is ran multiple times in 

attempt to extract the best solutions from multiple processes. This way, if one of the attempts 

converges toward a local optimum, there could be other attempts that converges toward the 

global optimum, thus increasing the chance of finding the latter (Baluja and Caruana, 1995; 

Mühlenbein, 1992). Another modification is an adaptive genetic algorithm, where the 

hyperparameters utilized were adjusted according to the performance of the offspring 

solutions. These adjustments of hyperparameters balance the exploration phase, where the 

solution space is searched for global optimum (but with the risk of disrupting an optimized 
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solution), with the exploitation phase, where the optimal solutions are extracted (but with the 

risk of premature convergence), thus improving the chance of encountering the global 

optimum (Srinivas and Patnaik, 1994). Heider and Drabe (1997) suggested a genetic 

algorithm that optimized the hyperparameter values, with these optimized values 

subsequently fed into another genetic algorithm that solves the actual problem.  

Another shortcoming of genetic algorithms is its propensity of disrupting an already 

optimized solution. As the genetic algorithm approaches convergence, the solution population 

is on average performing better (thus more optimal) than the starting population, which also 

suggested these solutions are closer to an optimum. A genetic algorithm in its simplest form 

tends to disrupt such solutions, thus increasing the risk of missing the global optimum. This 

can be mitigated through elitist genetic algorithm, where the best parent solutions are 

propagated unaltered into the next generation among other offspring solutions. This reduces 

the chance of disrupting an already optimized solutions for the genetic algorithm, thus 

improving the chance of finding the global optimum (Baluja and Caruana, 1995).  

By implementing these modifications onto the genetic algorithm, the chance of finding the 

global optimum for the optimized sire contribution and sire-dam mating configuration can be 

greatly improved. These improvements suggested a promising route for using a genetic 

algorithm in finding the exact configuration of sires and dams that would maximize both 

additive and non-additive genetic components under a predefined level of inbreeding.  

2.4. The Power and False Positive Rate of GWAS 

While GWAS has been used in detecting the QTL of a trait, there are several factors that 

could affect the power and false positive rate of a GWAS. Understanding these aspects of a 

GWAS could be important for an OCS that utilizes genomic information, such as assigning 

weights to individuals that have certain genotypic states in a marker. True positives allow 

correct assignment of QTL for the optimization process, whereas the false positives could 

mislead the optimization, causing the selection of poorly performing animals to be 

propagated into the next generation. Therefore, a reliable genomic information maximizes 

true positives and minimizes false positives, and this quality could be captured using the 

power and false positive rate of a GWAS. Thus, the effects of these factors on the power and 

false positive rate needed to be established.  
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2.4.1. The Ambiguous Definitions 

Depending on how the terms are interpreted there are two different approaches in defining the 

“power” and “false positive rate” of a GWAS. 

2.4.1.1. The Two Definitions of Power 

The first definition of power was the probability of detecting a QTL given a set of parameters 

(i.e., true QTL effect size, allele frequency, phenotype variance and sample size). This 

definition has been used by Wang and Xu (2019), Spencer et al. (2009) and Chapman et al. 

(2003). Given a critical value for a threshold in a GWAS experiment 𝑧, the power of GWAS 

to detect a marker could then be defined as one minus the cumulative distribution function of 

the non-central chi-squared distribution with a non-centrality parameter (Wang and Xu, 

2019). Wang and Xu (2019) suggested the following equation as a way of calculating a 

power of GWAS to detect a QTL 𝑘, given the estimated effect size �̂�: 

𝑝𝑜𝑤𝑒𝑟(𝑘) ≅  ∫ 𝜒𝑛𝑐𝑡
2 (𝑡; 1,

2𝑝𝑗(1 − 𝑝𝑗)𝑎�̂�
2(𝑁 − 2)

𝑣𝑎𝑟(𝒚) − 2𝑝𝑗(1 − 𝑝𝑗)�̂�2
)

∞

𝑧

 𝑑𝑡 [20] 

Where 𝜒𝑛𝑐𝑡
2 (𝑡; 𝑣, 𝑥) is the probability density function for a non-central chi-squared 

distribution with argument 𝑡 with degree of freedom 𝑣 and non-centrality parameter of 𝑥. 

Despite this, this equation assumes of having the QTL uncorrelated with one another, which 

for a highly polygenic trait might not be applicable.  

The second definition of power, used by Klein (2007), Storey and Tibshirani (2003) and Shen 

and Carlborg (2013), was the number of QTL being detected by a GWAS out of all the QTL. 

This definition of power is based on the observation that many of the traits are polygenic in 

nature, thus a practical and utilizable GWAS would be the one that could detect as many 

QTL as possible. This is calculated using the following equation:  

𝑝𝑜𝑤𝑒𝑟(𝐺𝑊𝐴𝑆) =  
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑁
 [21] 

Where 𝑁𝑇𝑃 and 𝑁𝐹𝑁 are the number of true positives and false negative, respectively. One of 

the shortcomings for the second definition is that the calculation of 𝑁𝑇𝑃 and 𝑁𝐹𝑁 require the 

number of null and non-null markers, which its estimation is not trivial (some previously 

published methods, as well as their shortcomings, were detailed in Section 2.5). This 

definition also assumed independence between tests (i.e. markers), which is broken in an 
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actual GWAS as the dependency present itself as linkage disequilibrium between markers. 

The dependency between markers introduces ambiguity in the definitions between true or 

false positives or negatives (i.e. at what point of linkage disequilibrium between a QTL and a 

null marker shall become the boundary between “true positive” and “false positive” if the 

marker is declared as a positive). This ambiguity makes the second definition ill-defined 

unless such boundary can be defined, which its criteria for definition could warrant further 

studies.  

2.4.1.2. The Two Definitions of False Positive Rate 

Similarly, the first definition of false positive rate of a GWAS was defined as the probability 

of detecting a null marker. Under this definition, given a critical value for a threshold 𝑧 the 

false positive rate could be evaluated as follows:  

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝑘) =  ∫ 𝜒2(𝑡; 1)
∞

𝑧

 𝑑𝑡 [22]  

where 𝜒2(𝑡; 𝑣) is a chi-squared distribution with argument 𝑡 and degree of freedom 𝑣. It can 

also be thought as the “power (from the first definition)” of GWAS if the true effect size 

being zero. This equation also assumes the markers being uncorrelated however, thus might 

not be directly applicable on a GWAS.  

The second definition of false positive rate was the proportion of detected markers in a 

GWAS being a null marker:  

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝐺𝑊𝐴𝑆) =  
𝑁𝐹𝑃

𝑁𝐹𝑃 + 𝑁𝑇𝑃
 [23] 

Where 𝑁𝐹𝑃 is the number of false positives. This definition of false positives rate also 

suffered from the same shortcomings from the second definitions of power, namely the 

requirements for number of null and non-null markers, and the assumption for independence 

between markers. Compared to power of GWAS, less attentions have also been placed on 

factors that affect its false positive rate.  
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2.4.1.3. The Relationship Between the Two Definitions of Power and 

False Positive Rate 

There are mathematical relationships between the first and second definitions for both terms. 

In terms of the power in the second definition, Klein (2007) defined this power (denoted as 

𝑝𝑜𝑤𝑒𝑟(𝐺𝑊𝐴𝑆)) as the average power of detection for all the non-null SNP markers:  

𝑝𝑜𝑤𝑒𝑟(𝐺𝑊𝐴𝑆) =  
1

𝑁𝑞𝑡𝑙
∗ ∑ 𝑝𝑜𝑤𝑒𝑟(𝑘) 

𝑁𝑞𝑡𝑙

𝑘=1

 [24] 

Where the 𝑝𝑜𝑤𝑒𝑟(𝑘) being the probability of detecting a QTL as defined in equation [20] 

and 𝑁𝑞𝑡𝑙 being the number of non-null SNP markers of a trait.  

The false positive rate under the second definition could also be defined in terms of power 

and false positive rate of the first definition:  

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝐺𝑊𝐴𝑆) =  
(𝑁𝑠𝑛𝑝 − 𝑁𝑞𝑡𝑙) ∗ 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝑘)

(𝑁𝑠𝑛𝑝 − 𝑁𝑞𝑡𝑙) ∗ 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝑘) + ∑ 𝑝𝑜𝑤𝑒𝑟(𝑘) 
𝑁𝑞𝑡𝑙

𝑘=1

 [25] 

with 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒(𝑘) being defined as the probability of detecting a null marker.  

While these equations are theoretically sound, they are difficult to implement in practice. 

This is because the value of 𝑁𝑞𝑡𝑙 is unknown. This calculation also relies on a perfect 

estimation of 𝑝𝑜𝑤𝑒𝑟(𝑘), which in turn requires a perfect estimation of �̂� (i.e. �̂� = 𝑎). This 

causes difficulties in estimating power and false positive rate under this definition. For this 

project, focus would be placed on the second definition of power and false positive rate.  

2.4.2. Factors that Affect the Power and False Positive Rate of 

GWAS 

2.4.2.1. Sample Size 

The factor that was most studied in the literature relates to GWAS sample size, with a general 

consensus of increased power with sample sizes (Spencer et al., 2009; Visscher et al., 2017). 

Despite this, a large range of sample sizes have been used, from less than 100 by Ren et al. 

(2016) up to more than 1 million by Jansen et al. (2019), and the proportion of true and false 

positives among the significant markers detected by these studies remained unclear.  
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There were also studies that went into the theoretical aspects of effects of sample sizes of the 

GWAS. Spencer et al. (2009) stated that in a case control design with purely additive model, 

the power is directly proportional to the sample 𝑁:  

𝐸(𝜒𝑘
2) ∝ 𝑁𝑎𝑘

2𝑝𝑘(1 − 𝑝𝑘)𝑅
2(𝑄, 𝑘) [26] 

Where 𝜒𝑘
2 is the chi-squared test statistics of the marker 𝑘, 𝑎𝑘 being the effect sizes of the 

QTL, 𝑝𝑘 being the allele frequency of marker 𝑘, and 𝑅(𝑄, 𝑘) being the linkage 

disequilibrium between QTL 𝑄 and marker 𝑘 (Spencer et al., 2009).  

Direct studies on the effects of sample size on the false positive rate in the context of GWAS 

are not as common. The general wisdom for any statistical tests, in which GWAS is a part of, 

is that increasing the sample sizes reduces the false positive rate (Forstmeier et al., 2017). 

Despite this, these statistical tests often have assumptions not applicable to GWAS, such as 

independence between tests (Gondro, 2015). An explicit experimentation of the effects of 

sample size on the false positive rate in GWAS would be desirable.  

2.4.2.2. Genetic Architecture 

Very few studies focused on the effect of genetic architecture on the power and false positive 

rate of GWAS. Most of the previous study, such as Hu et al. (2012) and Daetwyler et al. 

(2010), aimed at genomic prediction and the architecture’s impact on accuracy of phenotypic 

prediction. Those that mentioned the effect of genetic architecture on the power of GWAS 

such as Gondro (2015) focus on the effects of polygenicity, with increased polygenicity 

reduces the power of GWAS. Gondro (2015) stated that the detection of QTL for polygenic 

traits requires larger sample sizes compared to oligogenic traits, especially for QTL with 

larger effect sizes.  

2.4.2.3. Threshold of GWAS 

The large number of markers used in a GWAS experiment constituted an unprecedented level 

of multiple testing, which increases the false positive rate (Gondro, 2015; Hayes, 2013). As 

an example, let 𝑧 be the critical point for the threshold of GWAS. Assuming the markers are 

uncorrelated, the expected number of false positives can be defined as follows:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 =  (𝑁𝑠𝑛𝑝 − 𝑁𝑞𝑡𝑙) ∗ ∫ 𝜒2(𝑡; 1)
∞

𝑧

 𝑑𝑡 [27] 
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If the threshold is set at point such that the Type 1 Error 𝛼𝑧 = 0.05, the expected number of 

false positives is 0.05 ∗ (𝑁𝑠𝑛𝑝 − 𝑁𝑞𝑡𝑙), i.e., 5% of the number of null markers. If for example 

there are 10,000 null markers this threshold would produce 500 false positives. This 

phenomenon would further worsen if high density markers were utilized. For this reason, a 

multiple testing correction method should be employed in a GWAS experiment (Gondro, 

2015; Hayes, 2013). 

Several types of correction methods have been suggested for GWAS. One such method is the 

Bonferroni correction, popularized by Dunn (1961). The method calculates the expected 

Type 1 Error that needed to produce the same number of false positives as in one test. Using 

the aforementioned example, given 𝑚 = 10,000 null markers, this correction attempts to find 

an 𝛼𝑧 that would produce 0.05 false positives, the expected number of false positives for one 

test, instead of the original 500 false positives. Through proportionality, the expected 𝛼𝑧 

(𝑎𝑧𝐵𝑂𝑁
) can be calculated as follows:  

𝑎𝑧𝐵𝑂𝑁
= 

𝑎𝑧

𝑚
 [28] 

The Bonferroni correction method is simple to implement and is effective in controlling the 

false positive rate (Wilson, 2019). It assumes independence between markers however, which 

increases the threshold stringency and reducing the power of GWAS, especially for a high-

density genotype array (Hayes, 2013; Nishino et al., 2018; Wang et al., 2016). 

The stringency of threshold from the Bonferroni method has led to the development of 

alternative methods of controlling multiple testing. One of the most popular class of methods 

was those that attempted to control the False Discovery Rate (FDR). Pioneered by Simes 

(1986) before popularized by Benjamini and Hochberg (1995). This method aims at 

controlling the false discovery rate of the multiple testings.  

The method suggested by Simes (1986) is defined as follows: given a level of false discovery 

rate 𝛼, let 𝑝𝑣1, 𝑝𝑣2, 𝑝𝑣3, … , 𝑝𝑣𝑚 be a list of p-values that have been ordered from the most 

significant to the least significant that test the following set of null hypothesis 𝐻0 =

{𝐻1, 𝐻2, 𝐻3, … , 𝐻𝑚}, the critical point 𝑝𝑣𝑗  is defined as the last p-value that fulfil the 

following inequality (Simes, 1986):  

𝑝𝑣𝑗  ≤  
𝑗𝛼

𝑚
 [29] 
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for 𝑗 ranges from 1 to 𝑚. This method is known to have a more lenient threshold (i.e., the 

maximum stringency is equivalent to that of the Bonferroni method, i.e. 𝑗 = 1). Despite this, 

it also assumes independence between markers in GWAS.  

Since Simes, several FDR-based methods have been suggested. Benjamini and Yekutieli 

(2001) suggested an adjustment being made at the denominator of equation [29] to take into 

account the effects of dependencies between tests. Storey and Tibshirani (2003) has criticized 

the original method proposed by Benjamini and Hochberg (1995) as being overly 

conservative, and thus introduced an adjustment parameter based on the proportion of null 

compared to all markers. This method also assumes independent or weakly dependent 

markers. Efron et al. (2001) introduced the concept of “Local False Discovery Rate” (LFDR) 

which is defined as the expected FDR within a bounded interval of p-values. Extending the 

LFDR model, Broberg (2005) has introduced a “Pooling of Adjacent Violators” (PAVA) 

based FDR method, with the assumption that the LFDR is monotonic.  

Despite the wealth of multiple testing correction methods, many of these methods do not take 

into account numerous factors that might affect the optimality (i.e., increase the power of 

GWAS while constraining the false positive rate) of the threshold. As an example, Pryce et 

al. (2010) suggested increased stringency of the FDR-based threshold with the use of the 

single SNP regression method compared to those utilizing haplotype-based methods, 

reducing the power in the former method. Hong and Park (2012) and Nishino et al. (2018) 

suggested an increase in genotyping density also increases the sample sizes required to 

achieve the same power of GWAS. Ioannidis (2007) criticized these methods as they ignored 

the effects of population stratification and ratio between true and null markers on the 

threshold. There are also studies that criticized the increased false positive rate of FDR-based 

methods (Huang et al., 2018; Shen and Carlborg, 2013). None of the previous works have 

tested the optimality of these thresholds under changing genetic architecture parameters. 

2.5. Estimating the Genetic Architecture Parameters 

Given the potential impacts of genetic architecture on the power and false positive rate of a 

GWAS, it might be imperative to estimate the parameters for the genetic architecture of a 

trait, which includes the number of QTL and the distribution of the QTL effect sizes. Using 

the estimated genetic architecture, we can calculate the optimal thresholds for a GWAS while 

taking into account the effects of genetic architecture, from which the number of true 
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positives can be maximized and that of false positives be minimized, and thus reducing the 

chance of having the optimization misled by the latter.   

Previously proposed methods of estimating the genetic architecture parameters tend to follow 

a generalized framework of estimating the admixture proportion between null and non-null 

markers based on a certain presumed parameterized model of QTL effect size distribution 

(Cheng et al., 2020; Zhang et al., 2018, 2021; Zeng et al., 2017). As an example, Cheng et al. 

(2020), Lloyd-Jones et al. (2019) and Zhang et al. (2018) utilized Expectation-Maximization 

(EM) to estimate the admixture proportion, with the assumption the effect sizes distribute 

according to a normal distribution. Zhang et al. (2021) also proposed a set of similar methods 

that assumed fixed mixtures of normal distributions and a double exponential distribution. 

O’Connor (2021) utilizes the characteristic function for a mixture of 13 normal distributions. 

Park et al. (2010) fitted the previously published GWAS results using exponential and 

Weibull distributions, and Hall et al. (2016) calculated the number of QTL directly from the 

proportion of genetic variance explained by the markers and the heritability, with the 

assumption that the QTL effect sizes follow an exponential distribution. Many Bayesian-

based methods such as that by Meuwissen et al. (2001) and Moser et al. (2015) also assumed 

a normal distribution or a mixture of normal distributions for the modelling of QTL effect 

sizes. 

The use of presumed parameterized models for QTL effect size distribution from all 

aforementioned approaches have been criticized by Zeng et al. (2017) for having a restrictive 

shape of the normal or exponential distribution, which could cause failure in capturing the 

shape of the effect size distribution and led to a reduced accuracy and robustness in estimated 

effect size distribution. Indeed, both normal (or a fixed number of mixtures of normal) and 

exponential distributions have fixed kurtosis, which means they might not be able to capture 

the shape of the tail of the QTL effect size distribution (Mun, 2012). For this reason, Zeng et 

al. (2017) proposed a nonparametric prior for the variances of an infinite number of mixtures 

of normal distributions (although in practice still with a fixed number of normal distributions 

for computational reasons), which produces a more flexible shape of QTL effect size 

distribution.  

Despite its improved flexibility, one assumption for Zeng et al. (2017) is an infinitesimal 

QTL model where all the SNP markers have nonzero effect sizes, which might not be suitable 

for an oligogenic trait. Indeed, several authors argued against the infinitesimal model both on 
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theoretical ground (for example Hill (2010) and Orr (1999)) and on empirical ground (for 

example Moser et al. (2015) and Orr (1999)). While methods such as Moser et al. (2015) 

assume a finite QTL model, the use of a fixed number of normal distributions could restrict 

its flexibility and thus its robustness against changing genetic architectures. Methods that 

combine flexibility of QTL effect size distribution and assumption for QTL models, be it the 

infinitesimal model or finite QTL model, remain lacking, and this is an avenue worth further 

studying.  

Besides the inflexibility in distribution and assumptions on QTL models, several other 

limitations have been identified in the literature. One such limitations is the requirement of 

arbitrary, user-defined thresholds in these methodologies. For example, the method by Cheng 

et al. (2020) requires a user-defined input for the null – non-null SNP marker threshold, 

which can reduce the performance of the methodology if such a threshold is mis-specified. 

Park et al. (2010) utilized a “trivial effect size” threshold where the QTL with effect sizes 

smaller than the threshold were excluded from estimation, and Zhang et al. (2018) requires 

the use of a linkage disequilibrium threshold and a pre-specified linkage disequilibrium 

window size. The choice of these values could affect the optimality of the genetic 

architecture parameter estimations. Another limitation in the method by Park et al. (2010) is 

the requirement for previously published GWAS, which might reduce its usability for a 

newly studied trait.  

Many of the previously published methods were tested on extremely large sample sizes. For 

example, Cheng et al. (2020) tested methodology on simulated sample sizes of 5000 and 

10,000, and Park et al. (2010) used 13,532 human sample for Crohn’s disease and 63,000 for 

height. Methods for constructing a genetic architecture, such as that suggested by Cheng et al. 

(2020) and Park et al. (2010) relies on the ability to differentiate between noises and signals, 

and hence requiring the use of significance thresholds, these methods might behave 

differently for smaller dataset. Indeed O’Connor (2021) acknowledged the vulnerability of 

their method toward small sample sizes. Given that many GWAS in livestock have been 

conducted at relatively  smaller sample sizes of less than a few thousand phenotypes, the 

previously published methods might not be as reliable in these cases. Methods that could 

handle a smaller sample sizes (i.e. sample sizes comparable to GWAS in livestock 

production) warrant further studies.  
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Another important aspect worth considering is the effect of linkage disequilibrium structures. 

Unlike human samples, which have relatively short segments of homozygosity and strong 

decay in their linkage disequilibrium (Gibson et al., 2006), the strong selection regimes and 

small effective population size in livestock produce long tracts of homozygosity and extended 

blocks of linkage disequilibrium in the genome, e.g. as demonstrated  in sheep (Al-Mamun et 

al., 2015a; Kijas et al., 2014), cattle (Porto-Neto et al., 2014; Purfield et al., 2012) and horses 

(Jasielczuk et al., 2020). Differences in linkage disequilibrium structures could have a large 

impact on the performance of themethods that estimate the genetic architectures of livestock 

traits. Indeed, Zhang et al. (2018) assumes the effect sizes are independent on the local 

linkage disequilibrium structures, and Lloyd-Jones et al. (2019) commented on the negative 

effects of linkage disequilibrium structures on the convergence of the model. These 

assumptions could affect the utility of these methods to provide a model for genetic 

architecture of livestock traits.  

Finally, Lloyd-Jones et al. (2019) also commented on the infeasibility of identifying the true 

underlying mixture distribution of the QTL effect sizes due to linkage disequilibrium. They 

referred to cases where a significant region captured by a GWAS  could either be caused by 

one causal variant with a large effect, or numerous causal variants with smaller effects that 

were in linkage disequilibrium. This ambiguity would subsequently affect the estimation of 

the mixture distribution parameters. Methods to handle such ambiguity warrant further 

studies.  

2.6. Direction for the Project 

The aim of this project is to develop a method that optimizes the breeding pairs of sires and 

dams with the use of evolutionary algorithm such as genetic algorithm. This method would 

likely be OCS-like method that maximize the additive and dominance genetic component 

while constraining the level of inbreeding coefficient increment. Emphasis could be placed 

on the use of genomic data in the optimization of the breeding pairs. 

From the literatures, the additive genetic component of the offspring can be calculated using 

animal-based data such as EBVs and genomic data from a GWAS. The dominance genetic 

component can only be estimated through genomic data however and given the difficulty of 

estimating the dominance effect sizes of the markers, a proxy based on genomic data will be 

used. The objective function for the OCS might also need to be modified from [1] to take into 

account the mating-specific nature of the dominance component. The optimization of 
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epistatic component would not be emphasized in this study due to the difficulty of obtaining 

an estimate for this component (Lynch and Walsh, 1998; Vitezica et al., 2018).  

While the effects from some of the factors such as sample size on the power and false 

positive rate of the GWAS has been widely reported, effects from other factors, such as those 

pertaining to the genetic architecture, remain largely elusive. This suggests additional work 

needs to be done to ascertain the effects of various factors on the power and false positive 

rate of the GWAS. Findings from this investigation could then be incorporated into 

techniques that could improve the power and false positive rate of the GWAS before 

incorporating them into the OCS. This could include the establishment of an optimal 

threshold for the GWAS-based results, and the estimation of genetic architecture parameters 

such as number of QTL and the distribution of their effect sizes. Preferably, these techniques 

could be developed in a manner that suits a livestock GWAS-sized dataset while taking into 

accounts effects from confounding factors such as linkage disequilibrium structures.  

This project is important as it can potentially increase the accuracy of selection, concentrating 

the economically beneficial alleles in the breeding stock, while exploiting the non-additive 

components such as the dominance effects.  
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Chapter 3. Effects of Experimental Design, 

Genetic Architecture and Threshold on Power and 

False Positive Rate of GWAS 

Zhi Loh, Julius H. J. van der Werf, Sam Clark 

 

3.1. Abstract 

Genome-Wide Association Studies are an important tool for identifying genetic markers 

associated with a trait, but it has been plagued by the multiple testing problem, which 

necessitates a multiple testing correction method. While many multiple testing methods have 

been suggested, e.g., Bonferroni and Benjamini-Hochberg’s False Discovery Rate, the quality 

of the adjusted threshold based on these methods is not as well investigated. The aim of this 

study was to evaluate the balance between power and false positive rate of a Genome-Wide 

Association Studies experiment with the Bonferroni and Benjamini-Hochberg’s False 

Discovery Rate multiple testing correction methods and to test the effects of various 

experimental design and genetic architecture parameters on this balance. Our results suggest 

that when the markers are independent the threshold from the Benjamini-Hochberg’s False 

Discovery Rate provides a better balance between power and false positive rate in an 

experiment. However, with correlations between markers the threshold of the Benjamini-

Hochberg’s False Discovery Rate becomes too lenient with an excessive number of false 

positives. Experimental design parameters such as sample size and number of markers used, 

as well as genetic architecture of a trait affect the balance between power and false positive 

rate. This experiment provided guidance in selecting an appropriate experimental design and 

multiple testing correction method when conducting an experiment.  

3.2. Introduction 

Since high-density genotyping arrays using abundant genetic markers such as Single 

Nucleotide Polymorphisms (SNPs) have become available, Genome-Wide Association 

Studies (GWAS) has become an important tool in gene discovery (Wang and Xu, 2019). 

Hundreds of thousands to several millions of genetic markers can now be used in association 

studies, where the aim is to estimate and test the effect of genetic variants linked to a 
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Quantitative Trait Locus (QTL). This has provided a huge research opportunity but the use of 

large numbers of markers to be tested has also introduced a multiple testing problem of an 

unprecedented scale. Multiple testing significantly increases the number of false positives 

when using a standard significance threshold, thus necessitating the use of a correction 

method to adjust this threshold (Tam et al., 2019).  

The most popular method of controlling the number of false positives is the the Bonferroni 

correction. This multiple testing correction method is based on the joint distribution of all the 

Student’s t-distribution for each individual linear contrast, with the assumption that each of 

these tests are independent to one another (Dunn, 1961). This method had gained popularity 

due to its simplicity (Llinares-López et al., 2015; Ionita-Laza, Cho and Laird, 2012), and is 

considered one of the most effective methods in controlling the number of false positives 

(Wilson, 2019). However, the Bonferoni method has also been criticized when applied to 

GWAS as with very large numbers of SNPs tested, it has been perceived as being 

overconservative, leading to reduced power in identifying causal variants (Gao, Becker, 

Becker, Starmer and Province, 2010; Huang, Ritchie, Brozynska and Inouye, 2018; Llinares-

López et al., 2015; Wilson, 2019). The situation has been further exacerbated by decreasing 

cost of genotyping, and it now has become common practice to use all genetic variants 

obtained from Whole Genome Sequence (WGS) information, often exceeding 25 million 

marker genotypes per sampled individual (Huang et al., 2018; Tam et al., 2019; Visscher et 

al., 2017). 

Alternative multiple testing correction methods have been introduced, many of which have 

reduced stringency. One class of alternatives is those methods that attempt to control the 

False Discovery Rate (FDR), with one of the most popular methods being the Benjamini-

Hochberg’s False Discovery Rate (BH-FDR) method. Initially introduced by Simes (1986), 

this method aims at testing the ranked p-values against a stepwise threshold that varies based 

on the rank of the p-values, with the most significant p-value subjected to the most stringent 

threshold, and other p-values that are less significant are subjected to more lenient threshold. 

An example of its implementation is provided in Table 3.1.  
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Table 3.1: An example of implementation of Benjamini-Hochberg’s False Discovery Rate (BH-FDR). For this 

example, 10 SNPs were tested and have their p-values calculated according to their rank j. The point where the 

p-value of the marker falls below of that calculated from the stepwise threshold is at 𝑗 = 4 is, and this is the 

point where the threshold of the BH-FDR is set. Note that only the most significant marker (i.e. 𝑗 = 1) had been 

subjected to the stepwise threshold equivalent to a Bonferroni correction.  

Index of ranked p-

values (𝑗) 

Ranked p-

values 

Stepwise Threshold 

(
0.05∗𝑗

𝑛𝑠𝑛𝑝
) 

Decision 

(Accept or Reject Null) 

10 0.676 0.050 Accept 

9 0.324 0.045 Accept 

8 0.213 0.040 Accept 

7 0.119 0.035 Accept 

6 0.087 0.030 Accept 

5 0.034 0.025 Accept 

4 0.012 0.020 Reject 

3 0.010 0.015 Reject 

2 0.006 0.010 Reject 

1 0.002 0.005 Reject 

 

Many GWAS have chosen the BH-FDR multiple testing correction method on the grounds of 

overconservativeness of the Bonferroni correction but appeared to have no consideration on 

the possibility of increased false positive rate. In the context of gene expression analysis, 

Huang et al. (2018) considered BH-FDR to have a better balance between power and false 

positive rate, although they also commented that the use of the BH-FDR resulted in an 

inflated false positive rate whereas Bonferroni correction had a significantly lower number of 

false positives. Another consideration in most GWAS is that with the use of dense markers, 

marker genotypes can be highly correlated. Benjamini and Yekutieli (2001) suggested that in 

theory this method is valid even when the assumption of independence between tests is 

violated, as would be the case in GWAS based on dense marker genotypes. An actual study 
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on the ability of the BH-FDR in controlling the false positive rate in a GWAS and the need to 

account for the lack of independence between tests is lacking, however.  

Several factors could impact the success in detecting QTL associated with a trait while 

controlling the false positive rate, including parameters related to the genetic architecture of 

the traits, i.e., the size of the QTL effects, and experiment design, most notably the sample 

size. Spencer et al. (2009) and Visscher et al. (2017) argued a reduced power of GWAS with 

small sample size, while Forstmeier et al. (2017) argued an increased false positive rate with 

small sample size in any statistical test. The low power alongside with increased false 

positive rate could have contributed to the low replicability of a GWAS experiment where 

hits from the previous studies failed to be replicated in subsequent studies (Heller and 

Yekutieli, 2014; Wang and Zhu, 2019). Spencer et al. (2009) and Visscher et al. (2017) 

argued that increasing the sample size is the most effective way to increase the power of 

GWAS, and while the number of positives increases with sample size, it is unclear how much 

of the positives are true positives (a summary of number of positives reported in previous 

publication is provided in Table 3.2).  

The aim of this study is to test the effects of multiple testing correction methods on the power 

and false positive rate of a GWAS experiment, and subsequently evaluate the effects of 

experimental design parameters and genetic architecture of a trait on the suitability of the 

methods. We use simulation to evaluate the power and false positive rate with Bonferroni and 

BH-FDR correction methods under varying parameter values.  

3.3. Method 

The effects of the GWAS parameters and multiple testing correction methods were evaluated 

using simulated genotypes and phenotypes. This simulation is conducted using Python 

(version 3.7.3).  

To simulate a GWAS experiment with independent markers, data from a genotype array with 

M markers (henceforth denoted as 𝑿) was generated for 𝑁 individuals. The distribution of the 

allele frequency of the markers following a symmetrical Beta distribution (i.e. 𝐵𝑒𝑡𝑎(𝛽, 𝛽)). 

Values used for the shape parameter 𝛽 from the beta distribution are provided in Table 3.3. 

Some of the markers were nominated as QTL, with their effect sizes (in units of 𝜎𝑒) 

distributed based on the following gamma distribution:  

𝑄𝑇𝐿 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 (𝒂)~ 𝑔𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) [1] 
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Table 3.2: Summary of threshold used, sample size, and number of markers and positives used in previous 

publications. For studies that included multiple traits, data from only one trait was included. BH-FDR stands for 

the Benjamini-Hochberg False Discovery Rate method, and BON for the Bonferroni method. The publications are 

ranked based on the sample size used.  

Publications Sample 

Size 

Number of 

Markers 

Correction 

Method 

Alpha Threshold (-

log10(THR)) 

Number of 

positives 

Ghasemi et al. (2019) 130 41,323 BON 0.05 5.91 7 

Zhang et al. (2013) 319 48,198 BON 0.05 5.98 10 

Vanvanhossou et al. (2020) 449 32,518 BON 0.05 5.81* 4 

Signer-Hasler et al. (2012) 1077 38,124 BON 0.05 5.88 8 

Xia et al. (2017) 1141 677,855 BON 1.0 5.83 11  

Chang et al. (2018) 1217 671,990 BON 0.05 7.12 11 

Al-Mamun et al. (2015b) 1449 48,640 BON 0.01 6.69 39 

Weerasinghe et al. (2019) 3454 37974 BON 0.05 5.88 13 

Cai et al. (2019) 5373 16,503,508  BON 0.05 8.52* 58535 

Dakhlan et al. (2017) 6463 48,599 BON 0.01 6.69 17 

Yin and König (2019) 13,827 54,613 BON 0.05 6.04 10  

Jiang et al. (2019) 294079 57,067 BON 0.005* 7.00 15215  

Smołucha et al. (2021) 155 49,204 BH-FDR 0.05 5.99 1 

Wang et al. (2017b) 880 51,727 BH-FDR 0.01 4.00  5  

Steri et al. (2019) 946 135,992 BH-FDR 0.08 5.84 5 

An et al. (2020) 1,217 67,192 BH-FDR 0.01 6.17* 45 

Ibeagha-Awemu et al. (2016) 1,246 76,355 BH-FDR 0.1 4.16* 53 

Pegolo et al. (2020) 1,369 23,173 BH-FDR 0.05 4.30 24  

Akanno et al. (2018) 5,324 42,536 BH-FDR 0.10 3.16* 294 

* Values back-calculated using available data (i.e. alpha, number of SNPs, number of 

positives) 
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The 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 for the gamma distribution in [1] is set at 1.0 for all simulations, and 

the 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 is varied based on the 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑇𝐿 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒, which is provided 

in Table 3.3. The average QTL effect size is calculated as follows:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑇𝐿 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 =  
𝑆ℎ𝑎𝑝𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝐺𝑎𝑚𝑚𝑎 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑆𝑐𝑎𝑙𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝐺𝑎𝑚𝑚𝑎 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 [2] 

The 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑇𝐿 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 was specified in units of 𝜎𝑒 .With the aforementioned 

𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, the 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄𝑇𝐿 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 in [2] equates the 

𝑆ℎ𝑎𝑝𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝐺𝑎𝑚𝑚𝑎 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. Markers that were not nominated as QTL 

would have their effect sizes marked at 0. Using the vector containing the effect sizes for all 

markers and QTL (denoted as 𝒂), the additive genetic component of the phenotype (denoted 

as 𝒈) is calculated as follows:  

𝒈 =  𝑿𝒂 [3] 

The residual component of the phenotype (denoted as 𝒆) is then simulated using the variance 

of vector 𝒈 and the narrow sense heritability of the trait ℎ2. The residual component follows a 

normal distribution with mean of zero and variance as follows:  

𝑉𝑎𝑟(𝒆) = 𝑉𝑎𝑟(𝒈) ∗ (
1 − ℎ2

ℎ2
) [4] 

For all the parameter under study, the heritability was set at 0.3. The vector 𝒈 and vector 𝒆 

were then summed to obtain the simulated phenotype of the individuals. A GWAS was then 

conducted using the genotype array and phenotype vector. Single SNP regression was used to 

estimate the effect sizes of the markers, which would then be used to calculate the p-values 

for each marker using the Student’s t-test.  

Using the alpha = 0.05 for type 1 error, the thresholds from both Bonferroni correction and 

BH-FDR were calculated. The threshold for the Bonferroni correction is defined as alpha 

divided by number of markers used in the experiment: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 =  −𝑙𝑜𝑔10 (
0.05

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑁𝑃𝑠
) [5] 

For the BH-FDR in this experiment, the threshold is defined as follows (Simes, 1986; 

Benjamini and Yekutieli, 2001): 
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𝑆𝑡𝑒𝑝𝑤𝑖𝑠𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝐵𝐻 − 𝐹𝐷𝑅 =  − log10 (
0.05 ∗ 𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑁𝑃𝑠
) [6] 

where 𝑘 is the point where the 𝑘th ranked -log(p-value) of the GWAS becomes larger than the 

stepwise threshold. The point 𝑘 is equivalent to the 𝑗 = 4 from the example in Table 3.1. 

With these thresholds, the power and false positive rate, as well as differences between true 

and false positives (denoted as 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 (𝑅𝑂𝐶) 𝑠𝑐𝑜𝑟𝑒), were 

calculated. The power is defined as follows:  

𝑃𝑜𝑤𝑒𝑟 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑆𝑡𝑢𝑑𝑦
[7] 

For the calculation of power only the QTL with effect size exceeding 0.1 𝜎𝑒 were taken into 

account. The false positive rate is as follows:  

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
[8] 

And the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 is defined as follows:  

𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 [9] 

In this study the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 was used as a measure to test the capability of a threshold in 

balancing the power and false positive rate of a GWAS. This is equivalent to the weighted 

Youden’s Index as described by Habibzadeh et al. (2016), who have utilized a Receiver 

Operating Characteristic (ROC) curve to establish the optimal threshold for clinical 

diagnostic tests.  

A multiple testing correction method with its threshold having a high 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 was 

considered as capable of providing a better balance between power and false positive rates. A 

threshold with maximum 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 was considered as optimal. This is equivalent to having 

the point on the ROC curve where the tangent of the curve equals to 1, which has been 

demonstrated mathematically by Kaivanto (2008). The experiment was then repeated 200 

times for each combination of parameter values.  

To test the effect of correlations between marker genotypes on the optimal threshold and 

number of true and false positives, the experiment is repeated with pairwise marker linkage 

disequilibrium (denoted as 𝑟2) set at 0.8. This is achieved by copying the haplotype state of 

some of the alleles from one locus to its neighbouring locus while randomizing the haplotype 

state of other alleles, thus generating a genotype array with a controlled level of pairwise 
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marker linkage disequilibrium. For correlated markers, besides the true positives (denoted as 

𝑇𝑃), there were two types of false positives to be identified: (i) correlated false positives 

(henceforth denoted as 𝐹𝑃𝐶), defined as the false positives that its 𝑟2 exceed 0.1 with one or 

more true QTLs, and (ii) uncorrelated false positives (denoted as 𝐹𝑃𝑈), defined as false 

positives that had its 𝑟2 below 0.1 with any of the QTLs. For the calculation of false positive 

rate, the number of FPU is used in place of number of false positives in equation [6], and for 

𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒, the number of FPU is used in equation [7].  

A list of parameters and value tested is provided in Table 3.3. When a parameter is under 

study, default values were used of other parameters. 

Table 3.3: Parameters tested in this study.  

Parameters Default Value Alternative Values 

Sample Size 2000 200, 800, 1400, 3000, 5000 

Shape parameter for Distribution of Allele 

Frequencies () 

0.5 0.1, 0.2, 0.3, 0.7, 1.0 

Average QTL Effect Sizes (𝛾) 0.4 0.1, 0.2, 0.3, 0.7, 1.0 

Number of Markers 20k 5k, 10k, 40k, 60k, 80k 

Number of QTLs 100 20, 50, 300, 600, 1000 

 

The number of QTL was arbitrarily chosen based on the proportion of positives markers out 

of all the markers in previous studies cited in Table 3.2. The sample sizes used are based on 

those used by previous studies as cited in Table 3.2.  

Besides the parameters listed in Table 3.3, the combined effects of sample size and number of 

markers on the power and false positive rate of GWAS were also tested. To test the combined 

effects of both parameters, additional simulations on variable sample sizes have been 

conducted with number of markers of 5k, 20k and 80k. The sample sizes used in this 

additional simulation are the same as those provided in Table 3.3. This additional simulation 

is to test the power, false positive rate and suitability of the correction methods for a GWAS 

experiment that involves small sample size but large number of markers, as in Steri et al. 

(2019) that have conducted a GWAS with 946 animals but with 135,992 markers.  
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3.4. Results 

3.4.1. Parameters determining the threshold of multiple 

testing correction methods 

Number of markers and sample size. The threshold from both multiple testing methods is 

influenced by the number of markers used in GWAS. With an increased number of markers 

used in GWAS, the threshold increases in stringency. This observation was made in both 

multiple testing correction methods in both independent and correlated marker system. 

When the Bonferroni correction is used, sample size does not have any effect on the threshold 

of GWAS. This is not the case for BH-FDR however, as the threshold from the BH-FDR is 

significantly affected by sample size, with larger sample sizes decreasing the threshold. 

Generally, the threshold calculated by the BH-FDR is less stringent than those calculated by 

Bonferroni correction (Figure 3.1).  

Number of QTL and QTL effects. The number of QTL does not have any influence on the 

threshold calculated from the Bonferroni correction. The number of QTL has an effect on the 

threshold of the BH-FDR, however. When the number of QTL is small (e.g., 20) the 

threshold from the BH-FDR approaches 4.9, and this threshold declines slightly to 4.63 with 

a number of QTL of 100, but then increases again gradually with larger numbers of QTL 

(Figure 3.2(a)). A smaller average QTL effect sizes also increases the threshold slightly for 

the BH-FDR (Figure 3.2(b)). The allele frequency distribution does not have an effect on 

both multiple testing correction methods (Figure 3.2(c)).  

Correlation between marker genotypes: For Bonferroni correction, correlation between 

markers does not have any effect on the threshold for any of the parameters tested. For BH-

FDR however, marker correlation has a significant effect on the threshold. Correlation 

between markers significantly decreases the GWAS threshold (Figure 3.2). With independent 

markers, the number of markers and sample size also have significant effects on the threshold 

of BH-FDR for correlated markers. While the trend is comparable with those in independent 

markers, the threshold calculated by BH-FDR is lower with correlated markers compared to 

independent markers for all marker numbers and sample sizes tested. Correlations between 

markers also caused a similar decline in the BH-FDR threshold for all numbers of QTL, 

average QTL effect sizes and allele frequency distributions tested in this experiment.  
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Figure 3.1: Threshold of the Bonferroni correction (in solid lines) and BH-FDR (in dashed lines) under varying 

sample size and number of markers used in a GWAS experiment. This is the threshold under independent 

markers. The number of QTL maintained at 100, and the average QTL effect sizes (𝛾) and allele frequencies () 

are at 0.4 and 0.5, respectively.  

 

Figure 3.2: The effects of (a) number of QTL, (b) average QTL effect size (𝛾) and (c) shape parameter for allele 

frequencies distribution () on the threshold for the Bonferroni correction (blue line) and BH-FDR (red lines) for 

both independent (solid lines) and correlated (dashed lines) markers. The default parameters for each of the 

plots are as follows: number of QTL at 100, sample size 2000, the number of markers 20k, the average QTL 

effect size (𝛾) at 0.4 and shape parameter for allele frequencies distribution () at 0.5. The threshold for 

Bonferroni correction for independent markers fully overlaps with that for correlated markers in this figure, thus 

indistinguishable from one another. 

3.4.2. Parameters determining the power of GWAS 

Number of markers and sample size: Due to an increased stringency in threshold from both 

multiple testing correction methods, the power decreases with an increased number of SNP 
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markers used in a GWAS experiment. This observation was made for both independent 

markers and correlated markers. While correlations between markers increased the power for 

all marker number values tested, such an increase is more significant for experiments with a 

small number of markers, or when BH-FDR is used in GWAS (Figure 3.3(a)).  

Increasing the sample size increases the number of true positives and the power of GWAS, 

and this increase is more significant when BH-FDR is used. Correlation between markers has 

no effect on the power of GWAS if Bonferroni correction is used, but significantly increases 

the power for BH-FDR. This is attributable to an increased leniency in the threshold for the 

BH-FDR with larger sample size (Figure 3.3(b)).  

Number of QTL and QTL effects: The number of QTL that is associated with a trait has a 

significant effect on the power of detecting the QTL, with the power decreasing when the 

number of QTL increased, both for independent and correlated markers. This was observed 

for both multiple testing correction methods, although the power is higher for correlated 

markers when BH-FDR is used in the GWAS (Figure 3.3(c)).  

The average QTL effect sizes (𝛾) has significant effects on the number of true positives and 

power of GWAS. With an increased value of 𝛾, the number of true positives increases until it 

starts to plateau by average QTL effect size of 0.4. In all cases, BH-FDR had a higher number 

of positives. Correlation between markers also increases the number of true positives for both 

multiple testing correction methods, and this increment is more significant for BH-FDR 

(Figure 3.3(d)). The shape parameter for allele frequency distribution () has again no effect 

on the number of true positives and power of GWAS.  

3.4.3. Effect of Parameters on False Positive Rate of GWAS 

Number of markers and sample size: Despite the increasingly large number of tests needed to 

be conducted in a GWAS experiment with a larger number of markers, due to the 

increasingly stringent threshold, the raw number of false positives declines logarithmically. 

This is observed in both FPU and FPC. Due to a lower number of true positives associated 

with a more stringent threshold, however, the false positive rate is no longer significantly 

affected by the number of markers used in a GWAS experiment (Figure 3.4(a)).  
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Figure 3.3: The effects of (a) number of markers, (b) sample sizes, (c) number of QTL and (d) average QTL 

effect size (𝛾) on the power of GWAS for the Bonferroni correction (blue line) and BH-FDR (red lines) for both 

independent (solid lines) and correlated (dashed lines) markers. The default parameters for each of the plots are 

as follows: number of QTL at 100, sample size 2000, the number of markers 20k, the average QTL effect size 

(𝛾) at 0.4 and shape parameter for allele frequencies distribution () at 0.5.  

Unlike marker number, sample size has a significant effect on the false positive rate of a 

GWAS experiment (Figure 3.4(b)). The false positive rate increased significantly when the 

sample size is small (i.e., N=200). This trend was observed for both independent and 

correlated markers, and in both multiple testing correction methods. With larger sample size, 

the false positive rate remained relatively constant if the markers are independent. This is not 

the case for correlated markers however; the number of FPU increased significantly with 

larger sample sizes, and that led to an increase in false positive rate. While this was observed 

for both multiple testing correction methods, the false positive rate for the BH-FDR is higher 

for all sample sizes tested in this experiment. While the number of markers does not have an 

effect on the false positive rate of a GWAS experiment under the default sample size (i.e., 

N=2000), for small sample size (N=200) a larger number of markers also strongly increased 

the false positive rate (Figure 3.5).   
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Figure 3.4: The effects of (a) number of markers, (b) sample sizes, (c) number of QTL and (d) average QTL 

effect size (𝛾) on the false positive rate of a GWAS for the Bonferroni correction (blue line) and BH-FDR (red 

lines) for both independent (solid lines) and correlated (dashed lines) markers. The default parameters for each 

of the plots are as follows: number of QTL at 100, sample size 2000, the number of markers 20k, the average 

QTL effect size (𝛾) at 0.4 and shape parameter for allele frequencies distribution () at 0.5.  

Number of QTL and QTL effects: For independent markers, the false positive rate of a GWAS 

is not influenced by the number of QTL associated with a trait. This is not the case for 

correlated markers however; traits with small number of QTL with large effect sizes have a 

higher false positive rate compared to traits with large number of QTL with small effect sizes, 

and correlation between markers exacerbated that increment (Figure 3.4(c)). This is caused 

by an increase in raw number of FPU and a decrease in raw number of true positives (as there 

is less QTL to be detected in the first place). The increase in the number of false positives 

with a small number of QTL is due to an increase in significance from the increased 

proportion of variance explained by those QTL (which also explained the increase in power 

of GWAS with a small number of QTL). This increase in significance at the QTL also 

increases the significance of neighbouring null markers, thus increases the false positive 

rates.  
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Figure 3.5: The effects of sample size on the false positive rate of GWAS under varying number of independent 

markers and correction methods. Solid lines represent the number of false positives for the Bonferroni correction 

whereas dashed lines represent those of BH-FDR. The number of QTL is maintained at 100, and the average 

QTL effect sizes (𝛾) and allele frequencies () maintained at 0.4 and 0.5 respectively.  

The false positive rate is not significantly affected by the average QTL effect size (𝛾) when 

the markers are independent. But for correlated markers a lower value for 𝛾 significantly 

increased the number of FPU and false positive rate in both multiple testing correction 

methods. The number of false positives began to stabilize at an average QTL effect size of 

0.4 (Figure 3.4(d)). The number of false positives is not significantly affected by the 

distribution of the allele frequencies.  

Correlation between markers: For all the parameters tested, correlation between markers has 

a significant effect on the number of false positives detected in a GWAS. The presence of 

correlation significantly increased the number of false positives, although most of the false 

positives are correlated to the true QTLs (Table 3.4). This observation can be made in both 

multiple testing correction method, although the numbers of both correlated and uncorrelated 

false positives are higher for BH-FDR compared to the Bonferroni correction. 

 



65 
 

Table 3.4: The number of true positives (TP), correlated false positives (FPC) and uncorrelated false positives 

(FPU) under varying multiple testing correction methods and dependency between markers. Default parameters 

had been used in calculating the number of true and false positives for this table.  

Multiple Testing 

Correction Method 

Bonferroni correction BH-FDR 

TP FPC FPU TP FPC FPU 

Independent Markers 7.53 NA 0.22 9.13 NA 0.76 

Correlated Markers 7.86 51.12 0.80 12.23 98.44 10.18 

 

3.4.4. Effects of Parameters on 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 of Multiple 

Testing Correction Methods 

With increasingly large numbers of markers used, there is a general decline in the difference 

between number of true and false positives (𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒) for both correction methods. For 

independent markers, the BH-FDR had a higher 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 compared to the Bonferroni 

correction for all numbers of markers tested in this experiment. This suggests that the 

threshold for Bonferroni correction provided a less favourable balance between power and 

false positive rates in a GWAS experiment. The trend changes with the presence of 

correlations however; when the markers are correlated the BH-FDR had a significantly 

reduced 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for all numbers of markers tested. This is attributable to an increased 

number of FPU when the assumption of independence is violated. With the exception of 

small number of markers used, which increases the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒, correlation between markers 

generally do not have a significant effect on the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for the Bonferroni correction 

method (Figure 3.6(a)).  

Besides the number of markers used, sample size also has a significant effect on the 

𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for both multiple testing correction methods (Figure 3.6(b)). When the markers 

are independent, compared to Bonferroni correction, BH-FDR has somewhat higher 

𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 in all sample sizes tested, although this observation is more notable for very 

small sample size (N=200) or for the larger sample size (N=5000). The presence of 

correlation changes the trend however; for N=200, the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for BH-FDR is higher 

than for Bonferroni, but with sample size of 800 and larger the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 of Bonferroni is 

higher than that of BH-FDR, and with sample size larger than 1400, the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 actually 
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decreases with larger sample size for BH-FDR. This is attributable to an increased number of 

false positives for BH-FDR with large sample sizes.  

 

Figure 3.6: The effects of (a) number of markers, (b) sample sizes, (c) number of QTL and (d) average QTL 

effect size (𝛾) on the Receiver Operating Characteristics (ROC) Score of a GWAS for the Bonferroni correction 

(blue line) and BH-FDR (red lines) for both independent (solid lines) and correlated (dashed lines) markers. The 

default parameters for each of the plots are as follows: number of QTL at 100, sample size 2000, the number of 

markers 20k, the average QTL effect size (𝛾) at 0.4 and shape parameter for allele frequencies distribution () at 

0.5.  

For independent markers, the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for both BH-FDR and Bonferroni correction would 

initially increase, but when the number of QTL exceeds 100 there is a slow decline in the 

𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒. This can be attributed to a decline in power with increasingly large number of 

QTL that have smaller effect. For correlated markers, the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 of Bonferroni 

correction followed a similar trend as with independent markers, but the trend is different for 

BH-FDR. When the number of QTLs is small (less than 200) the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 went below that 

of Bonferroni correction, but with further increase in number of QTL, the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 with 

BH-FDR became significantly higher than that of Bonferroni (Figure 3.6(c)).  
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With increased numbers of QTL with large effect sizes (i.e., a high average QTL effect 

sizes), the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for both multiple testing correction method increases (Figure 3.6(d)). 

This can be attributed to an increase in power with increasingly large average QTL effect 

sizes. When the markers are independent, the BH-FDR has again a higher 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 than 

Bonferroni for all parameter values, although the increase is more significant with a larger 

average QTL effect size. This trend flipped when the markers are correlated however; while 

BH-FDR has high power in detecting QTLs, the massive increase in number of false 

positives decreased the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 to that below of Bonferroni correction. Correlation has a 

less significant effect on the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for Bonferroni correction.  

3.5. Discussion  

In this experiment the effects of parameters on the threshold of Bonferroni correction and 

BH-FDR, as well as its associated power and false positive rate, were tested. Unlike BH-

FDR, which has its threshold affected by various parameters, none of these parameters have 

an effect on the threshold of the Bonferroni correction, with the exception of number of SNP 

markers. This is due to how the threshold is calculated; with the number of SNP markers 

being the only variable for the calculation of threshold for the Bonferroni correction 

(equation [5]). The threshold of the BH-FDR also depends on the distribution of the ranked p-

values of the markers (i.e., rank “𝑘” inequation [6]). Due to this, any parameters that could 

affect the distribution of p-values would have an effect on the threshold from the BH-FDR. 

Parameter values that would increase the -log(p-value) of the markers increase the value of 

point 𝑘 and thus decrease the stepwise threshold from [6], thus decreasing the stringency of 

the threshold. Conversely parameters that decrease that -log(p-value) decrease the value of 

point 𝑘 and thus increase the threshold stringency. For example, increasing the sample size of 

the GWAS increases the test statistic of the marker and thus increases the value of the -log(p-

value). This causes an increase in the value of 𝑘 and thus decreases the stringency of 

threshold. Conversely a trait with a large number of QTL decrease the proportion of 

phenotypic variance explained of any given QTL, and this increase the p-values and thus the 

stringency of the threshold of the BH-FDR. Correlations between markers also causes the 

“bleeding” of effect sizes from the true markers into the neighbouring null markers, and this 

produces a peak of true QTL with several neighbouring null markers flanking the peak 

(Figure 3.7). This increases the p-values of the neighbouring null markers and thus decreases 

the threshold of the BH-FDR.  



68 
 

 

Figure 3.7: The estimated effect sizes (blue dots) of a peak in a correlated marker, showing the effect of 

correlation on null markers that flanked a QTL (red peak at locus 1589). The marker pairwise correlation is set at 

𝑅𝐿𝐷 = 0.95.  

The effects of these changes in the threshold of both correction methods would affect the 

power and false positive rate of a GWAS, with a decreased stringency in threshold increases 

its power and false positive rate and vice versa. For example, increasing the number of 

markers caused the threshold to become more stringent as it needs to exclude the additional 

null markers. This increased stringency however also has the effect of decreasing the number 

of true positives and thus the power. As the threshold increase in stringency in a logarithmic 

fashion with an increase in the number of markers, the power also decreases in a similar 

fashion, approaching zero as none of the true QTL had its p-value exceed the extremely 

stringent threshold. This could be an issue for Whole Genome Sequencing (WGS) data, 

where Tam et al (2019) warned the exacerbation of decline in power due to the 

overconservative threshold, especially when the Bonferroni correction is used. In this 

situation BH-FDR might serve as a better alternative.  

This study also suggested a larger number of markers does not necessarily increase the 

power, as it might increase the number of null markers utilized in a GWAS experiment and 

increase the required stringency of a threshold. In fact, we saw a decrease in power with a 

larger number of markers tested in both correlated and uncorrelated markers. Conversely 

increasing the sample size increase the -log(p-value) of the true markers, making them more 

likely to be detected. This increases the number of true positives logarithmically, thus 
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increasing the power of GWAS. This suggests that increasing the sample size could be more 

important than increasing the number of markers used in a GWAS experiment.  

On the other end of the spectrum, the use of small sample size significantly increased the 

number of false positives and decreases the number of true positives. This is due to the fact 

that observations made from a small sample size can often be explained by a larger number of 

predictors (i.e., SNPs markers), which causes the null markers that have its combination of 

genotypic values coincided with those of true markers to have an elevated p-value, 

contributing to the false positive rate (Forstmeier et al., 2017). Combined with the reduced 

number of true positives, this means a GWAS with small sample size would have low power 

and high false positive rate. This observation is also supported by the low 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 for 

small sample sizes, and this elevated the number of false positives, especially with 

increasingly large number of SNPs. As expected, the results of this experiment casted doubt 

on the validity of the results obtained from studies with a small sample size, especially for 

those with high marker density.  

Besides the experimental design parameters, the distribution of the QTL effect size of the 

trait studied also affect the threshold, power and false positive rate of a multiple testing 

correction method in a GWAS experiment. This agrees with the study of Panagiotou and 

Ioannidis (2012) which stated that the most suitable threshold used in a GWAS experiment 

might vary for different populations and genetic architecture of the trait. This could mean that 

a threshold from one study might not be suitable for another association study. Indeed, this 

can be observed with the decreased number of true positive as well as increased number of 

false positives for a trait with a small number of QTL with large effect sizes (small average 

QTL effect size in this study). While in theory this observation could be used to calculate the 

threshold optimized for the trait in study, in practice this might not be possible as it requires 

information on the underlying QTL effect size distribution. Previous works such as those 

published by Park et al (2011), Hall et al. (2016) and Zhang et al. (2018) have attempted to 

estimate such distribution using various approaches, although these algorithms assumed the 

QTL effect sizes followed exponential or normal distribution, and the effect of violation of 

such assumption (as an example, the QTL effect size followed a gamma distribution) 

remained untested. Future work should be thereby focus on an algorithm for robust 

estimation of QTL effect size distribution, and its incorporation into the calculation of 

optimal threshold for a GWAS experiment.  
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Panagiotou and Ioannidis (2012) also commented that correlated markers constituted a major 

source of uncertainty in the suitability of a threshold used in a GWAS experiment. Our results 

show that this is a valid concern. Due to the “bleeding” effect of the effect sizes, correlation 

between markers significantly increased the number of false positive in a GWAS experiment, 

especially with increasingly large number of markers used. As markers become increasingly 

dense, they become less well separated to one another and they no longer inherited 

independently, producing linkage disequilibrium between markers (Cheverud, 2001; 

Falconer, 1989). It is expected that maximal linkage disequilibrium would be observed for 

WGS data, which made high degree of correlation between markers unavoidable (Pengelly et 

al., 2015).  

While correlations between markers led to an increased number of false positives for BH-

FDR and increase in number of QTL also led to a decline in the power of GWAS, such that 

increase in number of QTLs had led to an increase in the absolute number of true positives 

and a decrease in number of false positives. This led to an increase in the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 and a 

decrease in the false positive rate. This could be attributed to an increase in threshold 

stringency for the BH-FDR with large number of QTLs associated with a trait, as well as the 

reduced proportion of variance explained by each of the QTL. Such a decrease in false 

positive rate and increase in 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 was neither observed for the Bonferroni correction, 

nor for independent markers. While this initially suggested that BH-FDR might be more 

suitable correction method compared to those of the Bonferroni for a polygenic trait, 

especially with correlated marker, it does come with a caveat: the actual false positive rate in 

BH-FDR is significantly higher than that of the Bonferroni method; the false positive rate 

from FPU is 0.095 under default conditions for BH-FDR, compared to 0.006 for Bonferroni. 

Thus, the actual suitability of the correction methods depends on the priority of the 

experiment; if the priority of the GWAS is to be placed on the explanatory power of the 

GWAS, then BH-FDR might serve as a better choice, but if the priority is to increase the 

specificity (i.e. number of false positives out of all null markers) of the GWAS, then the 

Bonferroni might be preferred.  

Rather than choosing one multiple testing correction methods over the other, perhaps a better 

alternative is to modify the methods so that they could take into account correlation between 

markers. One such method is a Bonferroni correction that utilized “effective number of 

independent markers” instead of raw number of SNP markers, similar to those suggested by 

Cheverud (2001) and Nyholt (2004). This might serve as a promising route for an increased 
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power. The calculation of effective number of independent markers utilized the variance of 

eigenvalues obtained from the marker correlation matrix to adjust the “Number of SNPs” in 

equation [3], thus yielding a less stringent threshold. One downside of this method however is 

that the calculation of a very large marker correlation matrix is memory and computationally 

demanding, which might not be feasible with large dataset. Modification of the original 

methods might thus be required. Studies on the effect of such adjustment of “Number of 

SNPs” on the false positive rate of GWAS is also lacking as well. Attempts to modify the 

BH-FDR so that it could take into account correlation between markers had also been done 

by Benjamini and Yekutieli (2001), and this might serve as a better alternative than the BH-

FDR.  

While correlation between markers is expected to be at its strongest with WGS data, the 

effects of correlation on setting the threshold in a multiple testing correction method cannot 

be ignored in GWAS experiment where WGS data is not used. With pairwise marker 

correlation as high as 0.8, it has caused such a significant decline in the stringency of the 

threshold for the BH-FDR that it fails to control the number of false positive and thus the 

false discovery rate at 0.05 in all parameter value tested. This highlighted the importance of 

selecting the appropriate multiple testing correction method in a GWAS experiment. The 

results from this experiment have also run contrary to the claims from Benjamini and 

Yekutieli (2001) on the validity of the BH-FDR in correlated marker array. This experiment 

highlighted the unsuitability of the BH-FDR with high density marker arrays, which is to be 

expected in a real GWAS experiment, especially when the markers are not sufficiently dense. 

In this situation the Bonferroni correction was shown to be more capable of maintaining the 

number of false positives.  

An important note for this experiment, which would serve as a caveat, is how the number of 

FPU and FPC is determined. It should be noted that the cut-off point between FPU and FPC 

(i.e. 𝑟2 = 0.1) is arbitrary and changing said cut-off point would affect the number of FPU 

and FPC. The rationale of using this cut-off point is to differentiate the “false positives” that 

is caused by correlation with true QTL from those that actually caused by the varying 

parameter values. This distinction is important in the context of increasing the sample size of 

the GWAS. While the naïve results of this experiment suggested that increasing the sample 

size increase the false positive rate of a GWAS, this is more likely the effect of choosing a 

certain cut-off point for FPC and FPU, as increasing the sample size would not only 

decreases the required effect size detectable by the GWAS, but also the required correlation 
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between the marker and the QTL. Thus, given a probability of detection of a QTL, the 

required correlation between a marker and QTL decreases with increasingly large sample 

size. This is best illustrated by Spencer et al. (2009) who had provided the following 

proportionality between the test statistics for the detection of a QTL and correlation between 

QTL and marker:  

𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ∝ 𝑁𝑎�̂�
2𝑝𝑘(1 − 𝑝𝑘)𝑅

2(𝑄, 𝑘) [10] 

Where 𝑁 is the sample size, 𝑝𝑘 is the allele frequency, 𝑎𝑘 being the QTL effect size and 

𝑅2(𝑄, 𝑘) being the correlation between QTL and marker. This proportionality suggests that 

for a given a test statistic value, as 𝑁 approaches infinity, the 𝑅2(𝑄, 𝑘) required for the test 

statistic to reach said value approaches zero. Thus, as long as a marker has a nonzero 

correlation with any of the QTL, regardless how small the correlation is, there would be a 

finite sample size required. Taking this to extreme, this could cause a GWAS to declare 

excessively large number of null markers to be positive, even if those markers are minimally 

correlated to the QTL. This could be the situation observed by Jiang et al. (2019), who have 

utilized 294,079 animals in their GWAS experiment, and with that sample size the 

experiment declared 27 percent of all markers as positives (15215/57067 = 0.267). It is for 

this reason that an extremely liberal cut-off point for FPC and FPU of 𝑟2 = 0.1 has been 

chosen for this experiment, to ensure that any FPU detected are “as null as possible” (i.e. as 

little influenced by a QTL as possible). In the context of multiple testing correction methods, 

this also suggest that a GWAS with large sample size could afford a more stringent threshold, 

such as those suggested by the Bonferroni correction.  

Given that differing genetic architecture of a trait and experimental designs would affect the 

suitability of the threshold of a multiple testing method, an algorithm that could test the 

suitability of such threshold would be desirable. One possible method of testing the 

appropriateness of the multiple testing correction method is to use the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒. As defined 

by equations [7], [8] and [9], a low 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 could either be caused by low power, which 

was associated with an overconservative threshold, or with high false positive rate, which 

was associated with overly lenient threshold. Only a threshold that could provide a good 

balance between true and false positives that would have a high 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒. Results from 

this experiment suggested that when the markers are independent, the BH-FDR provided a 

better balance between power and false positive rate for all parameter values tested when 

markers are not correlated, but for correlated markers, the Bonferroni correction consistently 
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provided a better balance between power and false positive rate for all parameter value tested 

except for highly polygenic trait (i.e. trait with large number of QTL).  

Given the relationship between the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 and the optimality of the threshold, another 

potential route for further study is to establish an algorithm that could find an optimal 

threshold that would maximize the 𝑅𝑂𝐶 𝑠𝑐𝑜𝑟𝑒 based on certain parameters related to 

experimental design and genetic architecture of the trait in study, similar to what is suggested 

by Habibzadeh et al. (2016) in finding a threshold that balances the power and false positive 

rate in a clinical test, and de Smet et al. (2004) had used such an algorithm in balancing true 

and false positives in a gene expression experiment. Along with suitable modification, such 

as taking into account the effect of correlation between markers, a similar algorithm could be 

suggested to be used in a GWAS experiment. A major obstacle for this route is the 

requirement of prior information on the underlying QTL effect size distribution, which 

further emphasize the importance of a robust algorithm to estimate it.  

In conclusion this experiment suggested that power and false positive rate in a GWAS 

experiment is affected by the choice of the multiple testing correction method, the 

experimental parameters such as sample size and number of markers, and the genetic 

architecture parameters of the trait studied. For independent markers, the BH-FDR provided a 

better balance between the true and false positives for all parameter values, but for correlated 

markers, the Bonferroni correction did provide a better balance between true and false 

positives. The only exception where the BH-FDR provided a better balance between true and 

false positive with correlated markers is when the trait is highly polygenic, and even so with 

the caveat of increased false positive rate. This experiment had also suggested that increasing 

the number of markers used in an experiment would not necessarily increase the power of 

GWAS but increasing the sample size would increase the power and decrease the false 

positive rate of GWAS. Our study also showed the importance of having large sample size if 

large number of markers is to be used in a GWAS experiment, which would be crucial if 

WGS data is to be used in a GWAS experiment, as a genotype array of such high density 

would inevitably and excessively increase the stringency of the threshold, necessitating a 

larger sample size. Future work should focus on a robust algorithm to estimate the QTL effect 

size distribution and using it to calculate an optimal threshold that could balance the power 

and false positive rate under arbitrary experimental designs and genetic model of the trait 

studied in a GWAS experiment.   
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Chapter 4. A Robust Algorithm for Calculation of 

an Optimal Threshold in Genome-Wide 

Association Studies 

Zhi Loh, Julius H. J. van der Werf, Sam Clark 

 

4.1. Abstract 

While Genome Wide Association Studies have become an important tool in identifying 

causal loci, the large number of markers utilized has created a severe multiple testing 

problem which reduces its power. While several methods have been suggested to control 

false positives, they have their own strengths and shortcomings in terms of balancing power 

and false positive rates, with none of them taking into account the effects of parameters such 

as distribution of QTL effect sizes. Using the Receiver Operating Characteristics (ROC), we 

developed an algorithm for the calculation of an optimal threshold that could balance the 

power and false positive for a given set of experimental parameters and evaluated its 

performance against two of the most popular correction methods. Through simulated 

genotypes and phenotypes, we found that, compared with the frequently used Bonferroni and 

FDR methods, the optimal threshold performed better in binary classification between 

significant and non-significant markers, which is important for QTL identification. The 

optimal threshold leads also to more accuracy in genomic prediction when the threshold was 

used to as a truncation point when selecting the markers to be used for genomic prediction; 

the use of optimal threshold led to an increment in accuracy up to 16.8% compared to the 

Bonferroni method and 7.0% compared to FDR method. This study is important not only 

within the scope of genomics in term of causal variant identification, but also in signal 

processing theory for the generalization of ROC algorithm in the context of handling 

correlated tests and class imbalance.  

4.2. Introduction 

Since the advent of high-density markers such as Single Nucleotide Polymorphisms (SNPs), 

Genome-Wide Association Studies (GWAS) have become one of the most important tools in 

identifying loci associated with a trait. GWAS has found several uses in the field of 
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genomics, such as identifying causal loci associated with human diseases such as diabetes 

(Cai et al., 2020) and multiple sclerosis (Cotsapas and Mitrovic, 2018), as well as truncation 

of null, uninformative markers for genomic prediction (Brøndum et al., 2015). Despite this, 

the large number of markers used in a GWAS has introduced a severe multiple testing 

problem which significantly increases its false positive rate. Such issue could be exacerbated 

by the use of increasingly dense markers or genetic variants derived from Whole Genome 

Sequence (WGS) data. Such GWAS would necessitate the correct use of a multiple testing 

correction method.  

The most popular multiple testing correction method is the Bonferroni correction, initially 

introduced by C. E. Bonferroni before being popularized by Dunn (1961). The rationale of 

this correction method is the observation that the confidence interval of the joint distribution 

of a number of variates that follow a Student t-distribution can be calculated as the Type 1 

Error divided by total number of tests (Dunn, 1961). This correction method had gained 

popularity in GWAS due to its simplicity of implementation and effectiveness in controlling 

the false positive rate (Wilson, 2019). In its effort of controlling the false positive rate 

however, the Bonferroni correction has been widely criticized for its excessively stringent 

threshold, particularly with the dramatic increase in marker number, as this led to reduced 

power in GWAS (Huang et al., 2018; Wilson, 2019).  

The low power of GWAS with the Bonferroni correction method has prompted numerous 

other multiple testing correction methods, with the most well-known class of methods being 

those that attempt to control the false discovery rate (FDR). The first FDR-based correction 

method is the Benjamini-Hochberg FDR (BH-FDR), first suggested by Simes (1986) before 

popularized by Benjamini and Hochberg (1995). While previous publications such as Storey 

(2002) suggested an increased power with the BH-FDR, the effects of violation the 

assumption of independence of markers required by the BH-FDR was not considered. Indeed, 

Broberg (2005) had suggested the inability of BH-FDR in controlling FDR when the markers 

are dependent, while Huang et al. (2018) suggested the failure of BH-FDR in controlling 

FDR in general.  

Since then, a multitude of FDR-based correction methods have been suggested, each with its 

own strength and weaknesses. For example, Benjamini and Yekutieli (2001) suggested a 

method that considers the lack of independence between tests. Storey (2002) also suggested 

another correction method that increases the power by using information from the number of 
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actual null markers, although with the assumption of independence between tests. Broberg 

(2005) suggested Pooling of Adjacent Violators FDR (pava-FDR) which enforces 

monotonicity on the local FDR, defined as the FDR within a range of p-values, with the 

assumption that local FDR in these models is monotonic (Efron et al., 2001).  

Despite the multitude of these algorithms, the optimality of these algorithm in balancing the 

power and the false positive rates in a GWAS remains unclear, especially with the context of 

changing parameter values. While Broberg (2005) tested the ability of some of the FDR-

based methods in controlling the FDR, the effects of varying parameters associated with a 

GWAS study, such as those related to experimental design and genetic architecture of the 

trait, remained unclear. Ioannidis (2007) stated that the ratio between true and null SNPs and 

population stratification could affect the FDR of a GWAS, while Hoggart et al. (2008) 

suggested a dependency of the GWAS significance level on the population structure and 

sample size used in an experiment. None of these studies went into detail on how to take 

these effects into account when deciding an optimal threshold.  

There are also questions on the severity of the impact of false positives in a GWAS. As the 

results from a GWAS experiment could have multiple uses such as detecting causal loci or 

marker selection in genomic prediction, one could ask the question of “How severe the 

impact of false positives is toward a GWAS experiment?”, or “Does the severity of impact 

from these false positives depends on the ultimate purpose of a GWAS results?” Combined 

with the arbitrariness of the chosen threshold (p-value of 0.05 before correction methods 

being applied), this also raises the question of suitability of a threshold and its associated 

multiple testing correction method. While Panagiotou and Ioannidis (2012) commented on 

the potential impact of such an arbitrary threshold on a GWAS experiment, proper studies on 

how severe such impact is to the GWAS experiment remain lacking, especially under 

different ultimate purposes of a GWAS experiment. 

Perhaps rather than choosing a threshold arbitrarily or utilizing a one-size-fit-all algorithm in 

attempts to increase the power of GWAS while controlling its false positive rate, an 

alternative method could be establishing a threshold that could provide an optimal balance 

between the power and false positive rate simultaneously. One such method is those based on 

the Receiver Operating Characteristic (ROC) curve. Initially introduced as a way of 

distinguishing signals from noise for radar operators in World War II, the ROC had found its 

use in numerous fields such as medical diagnostic tests (Habibzadeh et al., 2016), psychology 
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and psychophysics (Streiner and Cairney, 2007) and gene expression analysis (de Smet et al., 

2004). Previous studies such as Habibzadeh et al. (2016) and de Smet et al. (2004) 

demonstrated the possibility of using ROC in identifying the optimal threshold in medical 

diagnostic tests and gene expression respectively. While in the context of GWAS, the ROC 

curve has been used to evaluate the sensitivity and specificity of a GWAS experiment 

(Bossini-Castillo et al., 2021; Patron et al., 2019), or evaluating the performance of a newly 

developed model (Shafquat et al., 2020). These studies did not test the optimal balance 

between the sensitivity and specificity of a GWAS however, especially if the GWAS results 

are to be used for different purposes, or when correlation between markers, genetic 

architectures and imbalance between number of QTL and number of null markers need to be 

considered.  

With this in mind, the aim for this study is to establish an algorithm for a threshold that 

provides an optimal balance between power and false positive rates in a GWAS experiment, 

while taking into account factors that would be relevant in such experiments, such as 

correlation between markers, effects of genetic architectures and experiment designs, and the 

imbalance between number of QTL and null markers. This optimality of the threshold would 

then be tested using simulation under two ultimate uses for a GWAS experiment: in gene 

discovery and in truncated genomic prediction.  

4.3. Theory  

4.3.1. Definitions used in this Study 

In this study, the optimality or performance of a threshold is defined as its capability in 

balancing the power and false positive rate. To establish an algorithm that could produce a 

threshold that could balance the power and false positive rate of the GWAS, concrete 

definitions for both power and false positive rate were required.  

For this study the power of GWAS was defined as follows:  

𝑝𝑜𝑤𝑒𝑟 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿
 [1] 

The 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 can be defined through multitude of ways. It can be defined 

as the number of QTL with its test statistic exceeding a critical value, its p-value below a 

threshold, or its negative logarithmically transformed p-value exceeding its correspondingly 
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transformed threshold. For this study, the negative logarithmically transformed threshold 

(henceforth defined as 𝑇𝐻𝑅) was utilized.  

The 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 depends on the genetic architecture of the trait. For example, 

a highly polygenic trait would have very large 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 but most of which 

have small effect sizes, with each explaining a very small portion of the additive genetic 

variance. Whereas an oligogenic trait would have small number of large QTL and each would 

explain a relatively large portion of additive genetic variance. Methods for the estimation of 

number of QTL and its effect size distribution will be discussed below. As it is unrealistic to 

expect a GWAS to detect all the QTL, especially for QTL with very small effect sizes, only 

true markers with effect sizes greater than the bottom 30% of all QTL were counted under 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑇𝐿 in this study (i.e., only top 70% of all QTLs were included in the 

calculation).  

Under the same 𝑇𝐻𝑅, the false positive rate of a GWAS can be defined as follows:  

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑚𝑎𝑟𝑘𝑒𝑟 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ℎ𝑖𝑡𝑠
 [2] 

Both 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑚𝑎𝑟𝑘𝑒𝑟 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 and 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ℎ𝑖𝑡𝑠 can be obtained 

through the test statistic or the p-values in GWAS, with the assumption that the location of 

the true QTL can be determined.  

4.3.2. Calculation of Power and False Positive Rate in GWAS 

The basics of GWAS is to estimate the slope component 𝒂 of the line of regression such that 

it would minimize the mean squared deviation of the data points from the line. The 

phenotypic model assumed by a GWAS experiment is defined as follow (Gondro, 2015):  

𝒚 = 𝑿𝒂 + 𝒆 [3] 

where 𝒚 being a 𝑁 × 1 vector containing phenotypic values of 𝑁 number of animals; 𝑿 being 

a 𝑀 × 𝑁 matrix containing genotypic states of 𝑀 number of markers from 𝑁 animals; 𝒂 

being a 𝑀 × 1 vector containing the effect sizes of each marker allele or QTL and 𝒆 being a 

𝑁 × 1 vector containing the residual component in the phenotype.  

For the calculation of power and false positive rate in a GWAS experiment, the negative 

logarithmically transformed p-value of the markers were required. This transformed p-value 

can be defined as follows:  
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𝑙𝑜𝑔𝑝𝑣𝑎𝑙 =  − log10 (2 ∗ ∫ 𝑡(𝑇𝑖;  𝑁 − 2) 𝑑𝑥
∞

𝑇𝑖

) [4] 

Where 𝑡(𝑥; 𝑣) is the probability density function (PDF) of Student’s t-distribution. The 𝑇𝑖 is 

the test statistics of the marker which, if the Hardy-Weinberg Equilibrium (HWE) is obeyed, 

were defined as follows:  

𝑇𝑖 = 𝑎𝑖 ∗ √
𝑣𝑎𝑟(𝑿𝑖) ∗ (𝑁 − 2)

𝑣𝑎𝑟(𝒚) − 𝑎𝑖
2𝑣𝑎𝑟(𝑿𝑖)

 

= 𝑎𝑖 ∗ √
2𝑝𝑖(1 − 𝑝𝑖)(𝑁 − 2)

𝑉𝑎𝑟(𝒚) −  2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖
2
 [5] 

The mathematics for the derivation of the test statistics and p-values of a marker are provided 

in Appendix A.  

For the calculation of power of GWAS, the number of true positives from a GWAS (denoted 

as 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃) would be needed. In this study the 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 can be defined as the 

number of true QTL with its 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 exceed the threshold 𝑇𝐻𝑅:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 = (#{𝑙𝑜𝑔𝑝𝑣𝑎𝑙𝑄𝑇𝐿  ≥ 𝑇𝐻𝑅}) [6] 

And the power of GWAS calculated as follows:  

𝑝𝑜𝑤𝑒𝑟 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃

𝑛𝑄𝑇𝐿
 [7] 

For this study, the 𝑛𝑄𝑇𝐿 were defined as number of QTL associated with a trait with effect 

size larger than the “trivial effect sizes” (denoted as 𝑎𝑚𝑖𝑛 in this study). This would be the 

𝑝𝑜𝑤𝑒𝑟 that will be used in the subsequent sections. 

Several previous publications have attempted to estimate the number of QTL and its 

associated effect size distribution using GWAS-based statistics. Given a sample size and 

variance explained by the SNP markers, Park et al. (2010) utilized the previously reported 

power of a study to estimate the effect size distribution. Cheng et al. (2020) utilized the 

expectation-maximization algorithm to estimate the proportion of QTL with certain effect 

size and the variance contributed by said QTL and build a mixture model using these 

parameters. Zhang et al. (2018) also provided an algorithm for the estimation of number of 

non-null markers for a disease outcome that could be modelled using logistic regression. Hall 
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et al. (2016) provided an algorithm for estimating number of QTL using the proportion of 

variance explained by the QTL and the heritability of the trait.  

Despite this, there are many assumptions and limitations in these methods. One such 

limitations was the inflexibility of the assumed distributions (normal distribution for Cheng et 

al. (2020) or exponential distributions for Hall et al. (2016)), which might affect the validity 

of these algorithms on real data, and the effects of varying allele frequency and small sample 

sizes. For this study the 𝑛𝑄𝑇𝐿 and its associated distribution, as well as the location of these 

QTL, are assumed to be known. Further studies should focus on providing a robust algorithm 

to estimate the 𝑛𝑄𝑇𝐿, its effect size distribution and its location using a sample size 

comparable to a GWAS experiment.  

For a GWAS experiment, the number of false positives can also be defined as the number of 

null markers with its 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 that exceed the threshold 𝑇𝐻𝑅:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃 = (#{𝑙𝑜𝑔𝑝𝑣𝑎𝑙𝑁𝑈𝐿  ≥ 𝑇𝐻𝑅}) [8] 

And the false positive rate for a GWAS can be calculated as follows:  

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃
 [9] 

4.3.3. Balancing the Power and False Positive Rate 

4.3.3.1. The Basics of Receiver Operating Characteristics (ROC) 

Curve 

To balance the power and false positive rate in a GWAS, a receiver operating characteristic 

(ROC) curve can be used. An example of implementation of the ROC in identifying the 

optimal threshold is provided in Figure 4.1.  

The common interpretation for ROC curve is plotting the changes in power under varying 

probability of false alarm, defined as the total number of false positives over the total number 

of null cases (Habibzadeh et al., 2016). Under this setting the optimal threshold was defined 

as the point on the curve where the tangent of the curve equals to one (the red dot on Figure 

4.1(b)). This would also be the argument of the maxima for the ROC’s Youden’s Index, 

defined as the differences between power and probability of false alarm, as proven by de 

Smet et al. (2004), Schisterman and Perkins (2005) and Kaivanto (2008) (Figure 4.1(b)).  
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This interpretation of ROC curve is not directly usable in identification of optimal threshold 

in GWAS however, as this interpretation placed equal emphasis on false negative and false 

positives (Chicco and Jurman, 2020; Lobo et al., 2008). Given that the number of null 

markers generally far exceeds the number of true QTL in a GWAS experiment, placing equal 

emphasis on false negatives and positives has the ramification of setting the threshold overly 

lenient, which allows an excessive number of false positives. Indeed, from a test-run example 

provided in Figure 4.1(c), with 2000 QTL from 50k independent markers, under this 

definition of optimal threshold, while there are 516 true QTL being detected, the threshold 

also marked 10,230 null markers as positive, representing a false positive rate of 95.2%. 

Thus, an alternative interpretation was required.  

One such interpretation for the ROC curve, which would be used in this study, is the raw 

differences between the number of true positives and false positives under varying threshold 

levels: 

𝑅𝑂𝐶𝑇𝐻𝑅 = 𝑇𝑃𝑇𝐻𝑅 − 𝐹𝑃𝑇𝐻𝑅  [10] 

where the 𝑅𝑂𝐶𝑇𝐻𝑅, 𝑇𝑃𝑇𝐻𝑅 and 𝐹𝑃𝑇𝐻𝑅 denote the ROC score, number of true positives and 

number of false positive at threshold 𝑇𝐻𝑅, respectively. This is equivalent to the Youden’s 

index that had been described in Habibzadeh et al. (2016) weighted by total number of true 

and null markers, which made up the denominator portions of power and probability of false 

alarm respectively. The reinterpreted ROC curve has the benefit of its ability in taking into 

account the massive discrepancy between the number of true and null markers, producing a 

more applicable threshold (Figure 4.1(d)).  

Another benefit for this reinterpretation of the curve is the easiness of obtaining the optimal 

threshold; as the calculation of 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 and 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃 involves counting 

functions, the ROC curve is not smooth and not differentiable, impeding the discovery of the 

tangent of the curve. With the reinterpreted ROC curve, the optimal threshold (denoted as 

𝑇𝐻𝑅𝑜𝑝𝑡) can easily be obtained as the argument of the maxima of the curve:  

𝑇𝐻𝑅𝑜𝑝𝑡 = argmax(𝑇𝑃𝑇𝐻𝑅 − 𝐹𝑃𝑇𝐻𝑅) [11] 

4.3.3.2. Generalization of the ROC Curve and 𝑇𝐻𝑅𝑜𝑝𝑡 calculation 

Besides the aforementioned reinterpretation of ROC curve, the formulation can also be 

generalized to place more emphasis on markers that showed evidence of association with the 

phenotype (i.e., additional weightage is assigned to an associated marker).  
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An applicable weightage is weighting the 𝑇𝑃𝑇𝐻𝑅 with the effect size associated to the QTL. 

The weightage would transform the raw 𝑇𝑃𝑇𝐻𝑅 into the sum of the absolutized effect sizes 

associated with the true positives:  

𝑇𝑃𝑇𝐻𝑅𝑤𝑡
= ∑ |𝑎𝑖|

𝑖 ∈ 𝑇𝑃

 [12] 

With the index of summation 𝑖 ∈  𝑇𝑃 denoting a set of QTL being marked as positives.  

 

Figure 4.1: The implementation of ROC curve in identifying optimal threshold. Figure (a) illustrated the 

distribution of –log10(p-value) for both null markers (blue) and true QTL (orange). Figure (b) illustrated the 

classical ROC curve on the distribution of p-values, with red point indicating power and probability of false alarm 

for the optimal threshold, defined as the point where the tangent of the curve as a slope of 1. Figure (c) shows 

the changes in unweighted Youden’s Index under varying threshold, with the red line indicating the optimal 

threshold under this definition. Figure (d) illustrated the changes in weighted Youden’s Index under varying 

threshold, with red line indicating the optimal threshold. The example utilized in generating these figures is 

conducted using 50k independent markers and sample size of 2000, with number of QTL set at 2000 with effect 

size distribution of Gamma (0.5, 1) and narrow sense heritability at 0.3.  

To ensure the balance of weights between the true and the false positives, the 𝐹𝑃𝑇𝐻𝑅 would 

also need to be weighted. One applicable weight is the expected value of the QTL effect size 

distribution, which weighs the number of false positives as follows:  
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𝐹𝑃𝑇𝐻𝑅𝑤𝑡
= 𝐹𝑃𝑇𝐻𝑅 ∗ (

∑ |𝑎𝑖|
𝑛𝑄𝑇𝐿
𝑖=1

𝑛𝑄𝑇𝐿
) [13] 

With this weight, the 𝑇𝐻𝑅𝑜𝑝𝑡 was defined as the argument of the maxima in differences 

between sums of absolute effect sizes associated with the true positives and the number of 

false positives:  

𝑇𝐻𝑅𝑜𝑝𝑡 = argmax( ∑ |𝑎𝑖|

𝑖 ∈ 𝑇𝑃

− 𝐹𝑃𝑇𝐻𝑅 ∗ (
∑ |𝑎𝑖|

𝑛𝑄𝑇𝐿
𝑖=1

𝑛𝑄𝑇𝐿
)) [14] 

A shortcoming for the weighted false positive as suggested in Equation [13] is its lack of 

robustness against the distribution of the QTL effect size, most notably a distribution with 

large number of QTL with small effect sizes, which excessively downweighed the effects of 

false positives. This is especially problematic if the QTL effect sizes are gamma distributed 

with small shape parameter value (i.e., a strongly leptokurtic distribution), where the large 

number of QTL with small effect sizes heavily reduces the weight 
∑ |𝑎𝑖|

𝑛𝑄𝑇𝐿
𝑖=1

𝑛𝑄𝑇𝐿
 in equation [13].  

This can be mitigated by excluding QTL with effect size below certain cut-off point 𝑎𝑚𝑖𝑛. 

While in theory such exclusion could affect the balance for the 𝑇𝑃𝑇𝐻𝑅𝑤𝑡
 in equation [14], in 

practice such exclusion has minimal effects on the 𝑇𝑃𝑇𝐻𝑅𝑤𝑡
, as the true positives are 

generally overrepresented by detection of QTL with large effect size. This is also in line with 

the aforementioned impracticality of expectation for a GWAS to detect QTL with small 

effect sizes. With this in mind, given an effect size cut-off point 𝑎𝑚𝑖𝑛, the optimal threshold 

from equation [14] was redefined as follows:  

𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑒
= argmax( ∑ |𝑎𝑖|

𝑖 ∈ 𝑇𝑃,𝑎𝑖≥𝑎𝑚𝑖𝑛 

− 𝐹𝑃𝑇𝐻𝑅 ∗ (
∑ |𝑎𝑖|

𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∑ 𝑖𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

) ) [15] 

This effect size weighted optimal threshold would henceforth denoted as 𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑒
.  

Another option for weightage is the additive genetic variances explained by the QTL. With 

the effect size cut-off point applied, the version of weighted optimal threshold could also be 

defined as follows:  

𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑞
= argmax( ∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖

2

𝑖 ∈𝑇𝑃,𝑎𝑖≥𝑎𝑚𝑖𝑛 

− 𝐹𝑃𝑇𝐻𝑅 ∗ (
∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖

2𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∑ 𝑖𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

)) [16] 
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This version of weighted optimal threshold would henceforth denoted as 𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑞
.  

4.3.4. Incorporating the Effects of Correlation Between 

Markers in ROC Curve 

4.3.4.1. The Effects of Correlations on ROC Curve 

While the previous algorithm can be used to establish the optimal threshold for a GWAS 

experiment, it assumed the markers to be independent from one another. This is not realistic 

in actual GWAS, as some correlation between markers are to be expected. This however has 

a significant effect on the optimality of a threshold, with examples provided in Figure 4.2. 

Modification of the original model would thus be required, and with this, the impact of 

correlation on the ROC curve would need to be established.  

One of the main effects of correlation between the markers in a genotype array is the 

“bleeding” of the effect of true QTLs into its neighbouring null markers, which produces a 

peak with several null markers flanking a core with true QTL (an example was provided in 

Figure 3.7). Through additional simulations, the expected amount of effect size received by 

null marker 𝑗 from a correlated QTL 𝑖 can be calculated as follows:  

𝑎𝑗 = 𝑎𝑖 ∗ 𝑅𝐿𝐷(𝑖, 𝑗) [17] 

Where 𝑎𝑗 is the apparent effect size of a null marker, 𝑎𝑖 being the effect size of the QTL, and 

𝑅𝐿𝐷(𝑖, 𝑗) is the linkage disequilibrium between the QTL and null marker. Given two loci 𝑖 

and 𝑗, the linkage disequilibrium between the two loci 𝑅𝐿𝐷(𝑖, 𝑗) can be calculated as follows: 

𝑅𝐿𝐷(𝑖, 𝑗) =  
(𝑓11𝑓00 − 𝑓01𝑓10)

√𝑝𝑖(1 − 𝑝𝑖)𝑝𝑗(1 − 𝑝𝑗)

 [18]
 

Where 𝑓𝑥𝑦 is the haplotype frequency for genotype 𝑥 in locus 𝑖 and genotype 𝑦 in locus 𝑗, and 

𝑝𝑖 and 𝑝𝑗 are allele frequency for first and second loci respectively (Mueller, 2004).  

Another effect of correlation is the interaction between several correlated QTL. When there 

were several correlating QTL, they acted synergistically as their apparent effect sizes, scaled 

by their correlation, combine additively to one another. Indeed, with several correlating QTL, 

the expected apparent effect size of a QTL of locus 𝑗, 𝑎�̂�, can be modelled as follows:  
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Figure 4.2: An example of the effects of correlation between markers on the thresholds estimated. Figure (a) 

features a Manhattan plot for GWAS for independent markers, while (b) and (c) featured Manhattan plots with 

correlated markers with marker pairs correlation set at 𝑅𝐿𝐷 = 0.8. The blue line from each of the figures is the 

optimal threshold. The optimal threshold presented in figure (a) and (b) is calculated using the original ROC 

curve, while the threshold in (c) differentiates between the markers correlated with QTL (yellow) from markers 

uncorrelated with QTL (green). The threshold is calculated using the generalized ROC curve with 𝑅𝑐𝑢𝑡
2 = 0.05, 

𝑤𝑡 = 1, 𝑤𝑐 = 0 and 𝑤𝑢 = −1.  

𝑎�̂� = ∑ 𝑎𝑖

𝑛𝑄𝑇𝐿

𝑖=1

𝑅𝐿𝐷(𝑖, 𝑗) [19] 

Where 𝑅2
𝐿𝐷(𝑖, 𝑗) is the linkage disequilibrium between QTL 𝑖 and 𝑗.  

Correlation also altered the distribution of the estimated effect sizes and test statistics of the 

markers. For independent markers, the test statistics of the true and null markers tend to be 

rather well-distinguished, with the QTL produces the peaks and null markers formed the 

base. Thus, one simple threshold can be used to separate the peaks from the base, effectively 

classifying the null and true markers (an example of such distribution of estimated effect 

sizes was provided in Figure 4.2(a)). This is not the case for correlated markers however. Due 

to the “bleeding” effects, the null markers can have their test statistics comparable or even 

exceed the QTL. This blurs the boundary between QTL and null markers, and if the 

aforementioned ROC curve is applied, the threshold would be overly stringent as it attempted 

to exclude the correlated null markers (an example of this overly stringent threshold was 

provided in Figure 4.2(b)). The original ROC model would thus need to be modified to 

accommodate the null correlated markers.  

One applicable modification is the introduction of an additional threshold which separates the 

null markers based on their squared level of correlation with the QTL. This additional 

threshold, denoted as 𝑅𝑐𝑢𝑡
2 , act on the correlation between the QTL and null markers. It 

separates the markers into three classes: the QTL, the null markers that had correlation 
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greater than 𝑅𝑐𝑢𝑡
2  with any QTL, and null markers that had its correlation less than 𝑅𝑐𝑢𝑡

2  with 

all QTL. The number of positives from each class at a threshold 𝑇𝐻𝑅 were denoted as 

𝑇𝑃𝑇𝐻𝑅, 𝐹𝑃𝐶𝑇𝐻𝑅 and 𝐹𝑃𝑈𝑇𝐻𝑅 respectively. Weights can then be assigned to each of the 

classes, and the ROC score (𝑅𝑂𝐶𝑇𝐻𝑅) can then be calculated as follows:  

𝑅𝑂𝐶𝑇𝐻𝑅 = 𝑤𝑡𝑇𝑃𝑇𝐻𝑅 + 𝑤𝑐𝐹𝑃𝐶𝑇𝐻𝑅 + 𝑤𝑢𝐹𝑃𝑈𝑇𝐻𝑅 [20] 

Where 𝑤𝑡, 𝑤𝑐 and 𝑤𝑢 are defined as the weights for true positives, false but correlated 

positives and false and uncorrelated positives. The optimal threshold can then be defined as 

follows:  

𝑇𝐻𝑅𝑜𝑝𝑡 = argmax  (𝑤𝑡𝑇𝑃𝑇𝐻𝑅 + 𝑤𝑐𝐹𝑃𝐶𝑇𝐻𝑅 + 𝑤𝑢𝐹𝑃𝑈𝑇𝐻𝑅) [21] 

This modification can also be seen as a generalization of the original optimal threshold 

calculation, which is equivalent to the optimal threshold from equation [21] for correlated 

markers with the term 𝑤𝑡 = 1, 𝑤𝑐 = 0 and 𝑤𝑢 = −1. An example of such threshold using 

correlated ROC curve is provided in Figure 4.2(c).  

4.3.4.2. Generalization of the ROC Curve and 𝑇𝐻𝑅𝑜𝑝𝑡 calculation 

under Correlated Marker System 
As in aforementioned generalization of ROC curve and optimal threshold calculation, a 

similar generalization can also be applied to the ROC curve under a correlated marker 

system. While modification is not required for the calculation of the weighted number of true 

positives, it is required for the calculation of the weighted number of false positives.  

By classifying the number of false positives into correlated and uncorrelated false positives, it 

is in effect converting the 𝐹𝑃𝑇𝐻𝑅 from equation [11] into 𝐹𝑃𝐶𝑇𝐻𝑅 and 𝐹𝑃𝑈𝑇𝐻𝑅 in equation 

[21], and converting the original weight from -1 into a user-definable 𝑤𝑐 and 𝑤𝑢 respectively. 

Recognizing these adjustments, the weighted number of false positives can then be calculated 

by substituting 𝑤𝑐𝐹𝑃𝐶𝑇𝐻𝑅 and 𝑤𝑢𝐹𝑃𝑈𝑇𝐻𝑅 in place of 𝐹𝑃𝑇𝐻𝑅 into equation [13]:  

𝐹𝑃𝑇𝐻𝑅𝑤𝑡
= (𝑤𝑐𝐹𝑃𝐶𝑇𝐻𝑅 + 𝑤𝑢𝐹𝑃𝑈𝑇𝐻𝑅) ∗ (

∑ |𝑎𝑖|
𝑛𝑄𝑇𝐿
𝑖=1

𝑛𝑄𝑇𝐿
) [22] 

which, when adjusted for increased robustness against the large number of QTL with small 

effect size, yields the following: 

𝐹𝑃𝑇𝐻𝑅𝑤𝑡
= (𝑤𝑐𝐹𝑃𝐶𝑇𝐻𝑅 + 𝑤𝑢𝐹𝑃𝑈𝑇𝐻𝑅) ∗ (

∑ |𝑎𝑖|
𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∑ 𝑖𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

) [23] 
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and the corresponding effect size weighted optimal threshold can be calculated as follows:  

𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑒
= argmax( ∑ |𝑎𝑖|

𝑖 ∈ 𝑇𝑃,𝑎𝑖≥𝑎𝑚𝑖𝑛 

+
∑ |𝑎𝑖|

𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∑ 𝑖
𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

(𝑤𝑐𝐹𝑃𝐶𝑇𝐻𝑅 + 𝑤𝑢𝐹𝑃𝑈𝑇𝐻𝑅)) [24] 

The optimal threshold weighed by the proportion of additive genetic variance explained can 

also be generalized as follows:  

𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑞
= argmax( ∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖

2

𝑖 ∈ 𝑇𝑃,𝑎𝑖≥𝑎𝑚𝑖𝑛 

+
∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖

2𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∑ 𝑖
𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

(𝑤𝑐𝐹𝑃𝐶𝑇𝐻𝑅 + 𝑤𝑢𝐹𝑃𝑈𝑇𝐻𝑅)) [25] 

The calculation of the generalized weighted optimal tresholds under a correlated marker 

system as defined in equation [21], [24] and [25] is provided in Figure 4.3. 

 

Figure 4.3: The calculation of generalized weighted optimal tresholds featured in section 4.3.4.2. The solid lines 

depicts the ROC scores for each of the generalization under varying threshold level, and the dotted vertical line 

depicts the optimal thresholds. The blue lines represents the generalization as shown in equation [21], the 

orange lines as in equation [24] and green lines as in equation [25]. For all three methods, the sample size was 

set at 2,500, with number of markers set at 40,000, the pairwise marker correlation set at 0.8. 200 QTL was 

simulated in this example, with the distribution of the QTL effect size follows a gamma distribution 

𝐺𝑎𝑚𝑚𝑎(0.7, 1), and the “trivial effect size” 𝑎𝑚𝑖𝑛 were set at bottom 30% (i.e. only top 70% of all QTL are 

considered in the calculation of the power). The ROC scores are calculated with 𝑅𝑐𝑢𝑡
2 = 0.2, 𝑤𝑡 = 1, 𝑤𝑐 = 0 

and 𝑤𝑢 = −1. 
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4.3.4.3. Calculation of Optimal Threshold for a Highly Polygenic 

Trait 

An important consideration for the classification of false positives is the effect of the 

proportion of null markers that would be classified as correlated with a QTL. As an example, 

in a marker array with 100 QTL, if the markers are correlated in such a way that in average 

10 markers flanked each side of a QTL has a correlation greater than 𝑅𝑐𝑢𝑡
2 , there were 

2*10*100 = 2000 markers being marked as correlated, and the 𝐹𝑃𝐶𝑇𝐻𝑅 would describe the 

number of positives within these 2000 markers. While this is not so problematic if the trait is 

oligogenic or if the markers are independent to one another, it might be if both conditions are 

not met. This could be the case if the trait is strongly polygenic, which might cause most if 

not all the null markers being marked as correlated with a QTL, producing an overly lenient 

threshold that fails to exclude the false positives.  

Several approaches could be taken to mitigate such an issue. One such approach was to 

increase the stringency of the effect size threshold 𝑎𝑚𝑖𝑛, or the linkage disequilibrium 

threshold 𝑅𝑐𝑢𝑡
2 , or by increasing the penalty for 𝑤𝑐 (i.e., a negative value for the weight 𝑤𝑐). 

A less arbitrary method however is by modifying how the weighting factors are defined, and 

one such way is by assigning weights to each marker based on their correlation with a QTL.  

Given a marker 𝑖 ∈ {1,2,3, … , 𝑛𝑆𝑁𝑃}, let 𝒓𝒂
𝟐 be a vector of length 𝑛𝑄𝑇𝐿 that is defined as 

follows:  

𝒓𝒂
𝟐 = [𝑅𝐿𝐷

2 (𝑖, 𝑄𝑇𝐿1)𝑎1 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿2)𝑎2 𝑅𝐿𝐷

2 (𝑖, 𝑄𝑇𝐿3)𝑎3 … 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛𝑄𝑇𝐿)𝑎𝑛𝑄𝑇𝐿] 

Where 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛) is the squared correlation between marker 𝑖 and QTL of locus 𝑛, and 𝑎𝑛 

being the effect size associated with said QTL. Using the linkage disequilibrium and effect 

size threshold 𝑅𝑐𝑢𝑡
2  and 𝑎𝑚𝑖𝑛, the vector is trimmed such that any 𝑅𝐿𝐷

2 (𝑖, 𝑄𝑇𝐿𝑛)𝑎𝑛 that has 

𝑅𝐿𝐷
2  less than 𝑅𝑐𝑢𝑡

2  and 𝑎𝑛 less than 𝑎𝑚𝑖𝑛 are removed from the calculation. This is to ensure 

that only null markers that have sufficiently strong correlation with a QTL with significant 

effect sizes being marked as correlated false positives if the marker is deemed significant in a 

GWAS. For the remaining 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛)𝑎𝑛, the squared correlation component 𝑅𝐿𝐷

2 (𝑖, 𝑄𝑇𝐿𝑛) 

was extracted, and the maximum of the 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛), denoted as 𝑅𝐿𝐷𝑚𝑎𝑥

2 , were obtained for 

marker 𝑖. The 𝑅𝐿𝐷𝑚𝑎𝑥

2  would represents the correlation between marker 𝑖 and the nearest 

QTL. This procedure is then repeated for all 𝑛𝑆𝑁𝑃 markers. If the marker tested is a QTL of 
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significant effect size, it would receive a score 𝑅𝐿𝐷𝑚𝑎𝑥

2 = 1. If the marker is uncorrelated with 

any of the QTL it would receive a score of 𝑅𝐿𝐷𝑚𝑎𝑥

2 = 0. 

From the pool of 𝑅𝐿𝐷𝑚𝑎𝑥

2  of all markers, a new vector (denoted as 𝒓𝒂
𝟐∗) can be built using the 

following rules. If the marker is a nontrivial QTL (i.e. 𝑅𝐿𝐷𝑚𝑎𝑥

2 = 1 and 𝑎𝑛 ≥ 𝑎𝑚𝑖𝑛), then the 

entry for the new vector was assigned with the value of 𝑤𝑡. If the null marker bears no 

significant correlation with any significant QTL (i.e. 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛)𝑎𝑛 < 𝑅𝑐𝑢𝑡

2  or 𝑎𝑛 < 𝑎𝑚𝑖𝑛) 

then it was assigned with the value of 𝑤𝑢. For the remaining markers, they were deemed as 

correlated null markers (i.e. 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛)𝑎𝑛 ≥ 𝑅𝑐𝑢𝑡

2 > 1 and 𝑎𝑛 ≥ 𝑎𝑚𝑖𝑛) and were assigned 

with the median-adjusted 𝑅𝐿𝐷𝑚𝑎𝑥

2 . In summary, the 𝒓𝒂
𝟐∗ is a vector built with its entries under 

the following rule:  

𝒓𝒂
𝟐∗(𝑛) =  {

𝑤𝑡 , 𝑅𝐿𝐷𝑚𝑎𝑥

2 = 1 ∧  𝑎𝑛 ≥ 𝑎𝑚𝑖𝑛

𝑅𝐿𝐷𝑚𝑎𝑥

2 (𝑛) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐿𝐷𝑚

2 ) , 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛)𝑎𝑛 ≥ 𝑅𝑐𝑢𝑡

2 > 1 ∧  𝑎𝑛 ≥ 𝑎𝑚𝑖𝑛

𝑤𝑢 , 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛)𝑎𝑛 < 𝑅𝑐𝑢𝑡

2  ∨  𝑎𝑛 < 𝑎𝑚𝑖𝑛

 [26] 

where 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐿𝐷𝑚

2 ) is the median of all 𝑅𝐿𝐷𝑚𝑎𝑥

2  that fulfils the condition of being a 

correlated null marker (i.e. 𝑅𝐿𝐷
2 (𝑖, 𝑄𝑇𝐿𝑛)𝑎𝑛 ≥ 𝑅𝑐𝑢𝑡

2 > 1 and 𝑎𝑛 ≥ 𝑎𝑚𝑖𝑛). The rationale of 

using the median is to ensure the balance between the number of correlated null markers with 

positive weights and those with negative weights. By this rule, markers that are closer or 

more correlated with a QTL were assigned a positive weight, and those that further away with 

a negative weight.  

Under this new definition of weights, the number of correlated positives for each class can 

then be calculated as the sum of 𝒓𝒂
𝟐∗(𝑛) of the correlated false positives:  

𝐹𝑃𝐶𝑇𝐻𝑅 = ∑ (𝑅𝐿𝐷𝑚𝑎𝑥

2 (𝑖) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐿𝐷𝑚

2 ))

𝑖 ∈𝐹𝑃𝐶

 [27] 

with the index of summation 𝑖 ∈ 𝐹𝑃𝐶 denoting a set of correlated null markers being marked 

as positive by the GWAS. The optimal threshold can then be calculated as the sum of the 

positives weighted by vector 𝒓𝒂
𝟐∗: 

𝑇𝐻𝑅𝑜𝑝𝑡𝑟 = argmax(𝑤𝑡 ∑ 𝑖

𝑖 ∈𝑇𝑃

+ ∑ (𝑅𝐿𝐷𝑚𝑎𝑥

2 (𝑖) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝐿𝐷𝑚

2 ))

𝑖 ∈𝐹𝑃𝐶

+ 𝑤𝑢 ∑ 𝑖

𝑖 ∈𝐹𝑃𝑈

) [28] 

which can be simplified in terms of 𝒓𝒂
𝟐∗: 
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𝑇𝐻𝑅𝑜𝑝𝑡𝑟 =  argmax( ∑ 𝒓𝒂
𝟐∗(𝑖) ∗ 𝝅𝑻𝑯𝑹(𝑖)

𝑛𝑆𝑁𝑃

𝑖=1

) [29] 

where 𝝅𝑻𝑯𝑹 is a vector of size 𝑛𝑆𝑁𝑃 containing the acceptance-rejection status of all SNP 

markers under a threshold 𝑇𝐻𝑅. Finally, with the weights vector 𝒓𝒂
𝟐∗, the effect size weighted 

optimal threshold can be calculated as such:  

𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑒𝑟
= ∑ 𝒓𝒂

𝟐∗(𝑖) ∗ 𝒂𝑖

𝑖 ∈𝑇𝑃

+ 
∑ |𝑎𝑖|

𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∑ 𝑖𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∗ ( ∑ 𝒓𝒂
𝟐∗(𝑖)

𝑖 ∈{𝐹𝑃𝐶 ∪ 𝐹𝑃𝑈}

) [30] 

where the index of summation 𝑖 ∈ {𝐹𝑃𝐶 ∪  𝐹𝑃𝑈} denoting a set of correlated and 

uncorrelated false positives. Similarly, the optimal threshold weighted by 𝒓𝒂
𝟐∗ and proportion 

of additive genetic variance explained can be defined as such:  

𝑇𝐻𝑅𝑜𝑝𝑡𝑤𝑡𝑞𝑟
= ∑ 𝒓𝒂

𝟐∗(𝑖) ∗ 𝒑𝑖(𝟏 − 𝒑𝑖)𝒂𝑖
𝟐

𝑖 ∈𝑇𝑃

+ 
∑ 2𝑝

𝑖
(1 − 𝑝

𝑖
)𝑎𝑖

2𝑛𝑄𝑇𝐿
𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∑ 𝑖
𝑛𝑄𝑇𝐿

𝑖=1,𝑎𝑖≥𝑎𝑚𝑖𝑛

∗ ( ∑ 𝒓𝒂
𝟐∗(𝑖)

𝑖 ∈{𝐹𝑃𝐶 ∪ 𝐹𝑃𝑈}

) [31] 

An example of calculation of the generalized weighted optimal tresholds under a correlated 

marker system as defined in equations [25], [29], [30] and [31] is provided in Figure 4.4. 

4.4. Simulation Study 

The optimality of the threshold was evaluated using simulated genotype and phenotype using 

Python (version 3.7.3), where the power and false positive rate of the optimal threshold, 

alongside with the Bonferroni correction and Benjamini-Hochberg False Discovery Rate 

(BH-FDR), are tested under varying parameters and correlation between markers. The true 

number of QTL, the distribution of their effect sizes and their locations were assumed to be 

known for this chapter (i.e. these quantities have been obtained from raw data through 

methods outside this chapter).  

4.4.1. Genome Wide Association Study  

To simulate a GWAS experiment, a genotype array (denoted as 𝑿) with sample size 𝑁 and 

number of markers 𝑛𝑆𝑁𝑃 was generated, with the distribution of the allele frequencies 

following a Beta distribution. The sample size, number of markers and the shape parameters 

of the Beta distribution are provided in Table 4.2. The correlation between markers was 

generated by copying part of the genotypic state from a marker to the adjacent markers while 
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randomizing the remaining genotypic state for that adjacent marker. The proportion of 

copying were the targeted level of correlation, which is provided in Table 4.2.  

 

Figure 4.4: The calculation of generalized optimal threshold from section 4.3.4.3 based on varying correlation-

based weighting methods. The solid lines depicts the ROC scores for each of the generalization under varying 

threshold level, and the dotted vertical line depicts the optimal thresholds. The red lines denotes the weighting 

algorithm as defined in equation [25], the purple lines with equation [29], green lines with equations [30] and 

brown lines with equation [31]. For all three methods, the sample size was set at 2,500, with number of markers 

set at 40,000, the pairwise marker correlation set at 0.8, repeated 100 times. 4000 QTL was simulated in this 

example, with the distribution of the QTL effect size follows a gamma distribution 𝐺𝑎𝑚𝑚𝑎(0.7, 1), and the 

“trivial effect size” 𝑎𝑚𝑖𝑛 were set at bottom 30% (i.e. only top 70% of all QTL are considered in the calculation of 

the power). The ROC scores are calculated with 𝑅𝑐𝑢𝑡
2 = 0.2, 𝑤𝑡 = 1, 𝑤𝑐 = 0 and 𝑤𝑢 =  −1.  

Some of the markers were marked as QTL and were associated with an effect size. The QTL 

effect sizes were generated at random following a gamma distribution, with its shape 

parameter provided in Table 4.2. The null markers were assigned an effect size of zero, and 

together with effect sizes of QTL, compiled into vector 𝒂 containing the effect sizes of all 

markers. The simulated phenotypes were then generated using the method as defined in 

equation [3], with the residual vector 𝒆 simulated with the following normal distribution:  

𝒆 ~ 𝑁 (0,
𝑣𝑎𝑟(𝑿𝒂) ∗ (1 − ℎ2)

ℎ2
) [32] 
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For this experiment, the narrow sense heritability ℎ2 was set at 0.3 for all parameter tested. 

Using the simulated genotype and phenotype, a single SNP regression GWAS was 

conducted, with their negative logarithmically transformed p-values 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 being recorded.  

Based on the QTL effect size and the level of correlation between marker and nearest QTL, 

the loci were classified into three classes: true QTL, correlated null markers and uncorrelated 

null markers, with the linkage disequilibrium threshold 𝑅𝑐𝑢𝑡
2  set at 0.2 and the trivial effect 

size threshold 𝑎𝑚𝑖𝑛 set at bottom 30% of all QTL (i.e., only top 70% of all QTLs were 

included in the calculation). The number of true positives 𝑇𝑃𝑇𝐻𝑅, correlated false positives 

𝐹𝑃𝐶𝑇𝐻𝑅 and uncorrelated false positives 𝐹𝑃𝑈𝑇𝐻𝑅 were also recorded.   

4.4.2. Threshold Tested in this Experiment 

In this experiment, the performance of various thresholds in maintaining the power and false 

positive rate were tested. Eight thresholds were tested in this experiment, with six of them 

being the variants of the optimal thresholds, and the others being based on the Bonferroni 

method and the Benjamini-Hochberg FDR method. The threshold for the Bonferroni method 

(𝑇𝐻𝑅𝐵𝑂𝑁) is defined as follows:  

𝑇𝐻𝑅𝐵𝑂𝑁 = − log10 (
𝑇𝑦𝑝𝑒 1 𝐸𝑟𝑟𝑜𝑟

𝑛𝑆𝑁𝑃
) [33] 

Given a set of ordered negative logarithmically transformed p-values 𝑙𝑜𝑔𝑝𝑣𝑎𝑙𝑠𝑜𝑟𝑡𝑒𝑑, the 

threshold for the Benjamini-Hochberg FDR is defined as the smallest 𝑙𝑜𝑔𝑝𝑣𝑎𝑙𝑠𝑜𝑟𝑡𝑒𝑑 that 

fulfil the following inequality (Simes, 1986):  

𝑙𝑜𝑔𝑝𝑣𝑎𝑙𝑠𝑜𝑟𝑡𝑒𝑑(𝑗)  ≤  − log10 (
𝑗 ∗ 𝑇𝑦𝑝𝑒 1 𝐸𝑟𝑟𝑜𝑟

𝑛𝑆𝑁𝑃
) [34] 

Where 𝑗 is the index of the sorted negative logarithmically transformed p-values.  

The notations used for the thresholds tested in this experiment, along with their associated 

equations, are provided in Table 4.1.  

For the optimal threshold testing that utilized QTL-null markers correlation as weighting 

factors (i.e., UWTR, WTER and WTQR), the vector 𝒓𝒂
𝟐∗ was built using the rule as defined in 

equation [26], with the weight 𝑤𝑡 = 1 and 𝑤𝑢 = −1. While for optimal thresholds that did 

not use correlation as a weighting factor (i.e., UWT, WTE and WTQ), the true positives, 
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correlated false positives and uncorrelated false positives were assigned weights as 𝑤𝑡 = 1, 

𝑤𝑐 = 0 and 𝑤𝑢 = −1, respectively.  

Besides the thresholds, two additional controls were employed. The first control involves 

randomly selected markers (henceforth denoted as “RND”) and that involves the calculation 

of the same score for all QTL (denoted as “ALQ”). To ensure the comparability of the 

controls with the thresholds, the number of markers utilized in both controls equated those 

obtained from the most lenient threshold (i.e., threshold that yielded the greatest number of 

positives). In the cases when there are more positives in the most lenient threshold than 

number of QTL, the ALQ is padded with loci that have the strongest LD with any non-trivial 

QTL.  

Table 4.1: Notations, description and equations of threshold tested in this experiment.  

Notations Description Equation 

UWT Unweighted ROC optimal threshold [21] 

WTE ROC optimal threshold weighted by effect size [24] 

WTQ ROC optimal threshold weighted by additive genetic variance explained [25] 

UWTR ROC optimal threshold weighted by weightage vector 𝒓𝒂
𝟐∗ [29] 

WTER ROC optimal threshold weighted by effect size and weightage vector 𝒓𝒂
𝟐∗ [30] 

WTQR ROC optimal threshold weighted by additive genetic variance explained 

and weightage vector 𝒓𝒂
𝟐∗ 

[31] 

BON Bonferroni correction [33] 

BHF Benjamini-Hochberg FDR [34] 

RND Random control NA 

ALQ All-QTL control, padded with null markers with strongest LD with QTL if 

needed 

NA 
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4.4.3. Parameter Tested in this Experiment 

The list of parameters tested, alongside with their default and alternative values, are provided 

in Table 4.2. When a parameter is tested under its alternative value, default values were used 

for other parameters.  

Table 4.2: Parameter tested in this experiment.  

Parameters Default Value Alternative Values 

Sample Size (𝑁) 2500 1000, 4000 

Number of Markers (𝑀) 40k 400k 

Number of QTL (𝑄) 1000 200, 4000 

QTL Effect Size Distribution (𝐴) Gamma(0.5,1) Gamma(0.2,1), Gamma(0.9,1) 

Pairwise Marker Correlation (𝐿) 0.8 0.1, 0.5 

Allele Frequency Distribution (𝑃) Beta(0.5,0.5) Beta(0.2,0.2), Beta(0.8,0.8) 

 

For the number of markers of 400k, two levels of pairwise marker correlations were also 

tested: 0.8 and 0.9779. The latter value was chosen as it is the expected pairwise marker 

correlation had the 400k marker density is applied onto a genome that would yield a 

correlation of 0.8 if genotyped on a 40k density. The 400k marker test with pairwise marker 

correlation of 0.8 will henceforth notated as “400k” and those with correlation of 0.9779 was 

denoted as “400k*”.  

4.4.4. Testing the Performance of a Threshold 

To test the performance of a threshold, two different measures were utilized. 

4.4.4.1. Matthews correlation coefficient (MCC) 

The first measure is the Matthews correlation coefficient (MCC), which has been used to test 

the performance of a threshold as a binary classifier (Boughorbel et al., 2017; Chicco and 

Jurman, 2020). The rationale of choosing MCC over other measures of performance is its 

insensitivity toward extreme class imbalance, which is important as the number of null 

markers in GWAS generally outweighed the number of QTL (Boughorbel et al., 2017). 

The MCC is defined as follow (Chicco and Jurman, 2020):  
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𝑀𝐶𝐶 =  
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 [35] 

Where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 are the number of true positives, true negatives, false positives 

and false negative respectively. For this experiment, only the uncorrelated null markers were 

included in the calculation of 𝑇𝑁 and 𝐹𝑃.  

The MCC score ranges between -1 and 1, which the extremes represent perfect 

misclassification and perfect classification respectively. For random classifier the expected 

score would be 0. If equation [35] is undefined due to the denominator being zero, a score of 

zero would be assigned as the MCC score (Chicco and Jurman, 2020; Gorodkin, 2004).  

It shall be noted that the maximum MCC score attained in this experiment may not 

necessarily be 1, even for ALQ. This is due to the fact that ALQ comprises not only all the 

QTL but also the neighbouring markers with the strongest LD with any of the non-trivial 

QTL. In such a case, the MCC scores for ALQ serves as the maximum score that can be 

attained by a threshold given a set number of positives. This also makes ALQ a more 

informative control as it is conditioned by the baseline feasibility of detecting a QTL in a 

GWAS.  

4.4.4.2. Genomic Prediction Accuracy 

The second measure utilized to test the performance of the threshold is the accuracy of 

genomic prediction with marker selection. Previous studies such as Moghaddar et al. (2019) 

suggested that causal loci made up only a small percentage of the genome, which 

theoretically allowed markers with low linkage with a QTL to be excluded without 

significant impact on the accuracy. For this test the thresholds were used to exclude markers 

with low linkage with a QTL.  

For this method, a new, unrelated population of the same sample size and genotyping density 

as in the test population was simulated. This population was generated using the same 

algorithm as in the test population for GWAS and threshold calculation. Using the previously 

generated QTL, the additive genetic component of the phenotype was calculated for the new 

population as follows:  

𝒚𝒏𝒆𝒘 = 𝑿𝒏𝒆𝒘𝒂 [36] 

This additive genetic component of the phenotype was treated as the true breeding value 

(TBV) of the new population.  



96 
 

From each of the thresholds, all the positive loci were obtained. To ensure the full coverage 

of the genome for the genomic prediction, and to minimize the variability in accuracy due to 

differing number of positives from each threshold, as well as to remove the confounding 

effects between the representativeness of selected markers toward kinship between 

individuals and the accuracy of genomic prediction, the positive loci were padded with a 

number of random markers up to a density of 10k. This is to test how much better a threshold 

is in differentiating causal loci from null loci when compared to pure random selection of the 

markers. Using the padded genotype array, a Genomic Relationship Matrix (GRM) was built 

using the method suggested by VanRaden (2008). With the assumption of the true ℎ2 being 

known, the GRM would then be used to calculate the estimated breeding value (EBV) of the 

new population, using method as suggested by Gondro (2015).  

With the true and estimated breeding values, the performance of the threshold was evaluated 

as the accuracy of the genomic prediction. The prediction accuracy is defined as the 

correlation between the true and estimated breeding value of the new population, with a 

higher accuracy indicating improved optimality of the threshold.  

For the two controls (i.e., “RND” and “ALQ”), the former involves the building of GRM and 

calculating of accuracy using 10k random markers (denoted as “RND”), and the latter 

involves the building of GRM using all the QTL, padded with their closest neighbouring null 

markers up to a density of 10k (denoted as “ALQ”). 

4.4.5. Statistical Test on Effects of Thresholds and Parameters 

To ensure the consistency of the results, steps from section 4.4.1 up to section 4.4.4 was 

repeated 100 times, and the results presented were the mean from all the repeats. To compare 

the significance of differences between thresholds tested, a pairwise t-test was utilized. To 

compare the significance of differences between parameter tested, a Welch’s independent t-

test was utilized. A comparison is deemed significantly different if the negative 

logarithmically transformed p-value (𝑙𝑜𝑔𝑝𝑡 = − log(𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑡−𝑡𝑒𝑠𝑡)) of the t-test is more 

than 3.  

4.5. Results 

4.5.1. Threshold Calculated 

The thresholds calculated from each of the parameter tested are provided in Figure 4.5. 
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Generally, the thresholds calculated from the ROC curve tend to be more lenient compared to 

the Bonferroni method, with the main exception from a trait with small number of QTL (i.e. 

𝑄 = 200) or with small sample size (𝑁 = 1000), where the threshold from unweighted ROC 

curve is more stringent than those of Bonferroni correction.  

Under the default conditions, the threshold from BHF is comparable to UWT (𝑙𝑜𝑔𝑝𝑡 = 4.01) 

and UWTR (𝑙𝑜𝑔𝑝𝑡 = 1.07), but is significantly more stringent than other variants of ROC 

curve-based thresholds (𝑙𝑜𝑔𝑝𝑡 from 15.67 for WTE to 41.58 for WTQR). This is not the case 

for other parameter values tested however; the threshold from BHF becomes significantly 

more lenient than some of the ROC-based thresholds when the markers are strongly 

correlated to one another (e.g. 𝐿 = 0.9779 at “400k*” dataset) (𝑙𝑜𝑔𝑝𝑡 from 0.03 for WTQ to 

21.20 for UWT), with large sample size (𝑁 = 4000) (𝑙𝑜𝑔𝑝𝑡 from 4.14 for WTE to 25.94 for 

WTQR), and with more leptokurtic QTL effect size distribution (𝐴 = 𝑔𝑎𝑚𝑚𝑎(0.2,1)) 

(𝑙𝑜𝑔𝑝𝑡 from 0.40 for WTQ to 20.56 for UWT), and become more stringent than ROC-based 

thresholds when the trait is oligogenic (𝑄 = 200) (𝑙𝑜𝑔𝑝𝑡 ranges from 9.46 for WTQR to 

16.22 for UWT).  

The use of weighting factors also has significant effects on the threshold calculated from the 

ROC curve. For all parameters tested, the thresholds unweighted by effect sizes or additive 

genetic variance (i.e., UWT, UWTR) are more stringent than their weighted counterparts 

(𝑙𝑜𝑔𝑝𝑡 from 13.04 between UWTR and WTER to 26.51 between UWT and WTQ under 

default set of parameters). The use of effect size as weighting factor in the ROC-based 

threshold (i.e., WTE and WTER) has yielded a more stringent threshold compared to those 

that utilized additive genetic variance (i.e., WTQ and WTQR) (𝑙𝑜𝑔𝑝𝑡 = 7.87 between WTE 

and WTQ; 𝑙𝑜𝑔𝑝𝑡 = 6.34 between WTWR and WTQR under default set of parameters). The 

use of QTL-null marker correlation as weighting factor (i.e., the vector 𝒓𝒂
𝟐∗) has generally 

yielded a slightly more lenient threshold than those unweighted by this weighting factor 

(𝑙𝑜𝑔𝑝𝑡 ranges from 0.27 between WTQ and WTQR to 1.22 between UWT and UWTQ).  

Besides the type of correction methods and weighting factors utilized, changing parameter 

values also have profound effects on the threshold calculated from each of the methods. With 

increased polygenicity of a trait, the thresholds calculated from the ROC decreased in 

stringency (𝑙𝑜𝑔𝑝𝑡 ranges from 8.66 for UWT to 16.38 for WTQR with the increase in 

number of QTL from 200 to 4000). The opposite trend is true for BHF however, with the 

threshold increased in stringency with polygenicity (𝑙𝑜𝑔𝑝𝑡 = 34.03). A similar trend is also 



98 
 

observed as the kurtosis of the effect size distribution decreases; by changing the effect size 

distribution from 𝐴 = 𝑔𝑎𝑚𝑚𝑎(0.2,1) to 𝐴 = 𝑔𝑎𝑚𝑚𝑎(0.9,1), which reduces the kurtosis of 

the distribution by 4.5-folds (Mun, 2012), the ROC-based thresholds significantly decreased 

in stringency (𝑙𝑜𝑔𝑝𝑡 from 10.54 for WTE to 24.07 for WTQR), whereas the BHF 

significantly increased in stringency (𝑙𝑜𝑔𝑝𝑡 = 24.44).  

Increasing the sample size also significantly decreases the stringency for both ROC-based 

threshold and BHF (𝑙𝑜𝑔𝑝𝑡 from 3.15 for WTQ to 13.18 for UWT with increase of sample 

sizes from 1000 to 4000, 𝑙𝑜𝑔𝑝𝑡 = 65.82 for BHF). Increased correlation between markers 

significantly decreases the stringency of threshold from BHF (𝑙𝑜𝑔𝑝𝑡 = 83.14), but no 

significant changes in ROC-based threshold was observed with changing correlation. The 

allele frequency distribution does not have a significant effect on the thresholds. With the 

exception of number of markers, the threshold for BON does not change significantly with 

varying parameter values. Increasing the number of markers from 40k to 400k increases the 

stringency of all ROC-based thresholds, as well as thresholds from BHF and BON. 

 

Figure 4.5: Threshold of GWAS obtained from simulation under varying parameter values. Thresholds featured in 

this figure include: Unweighted ROC-based threshold (UWT), ROC-based threshold weighted by effect size 

(WTE), ROC-based threshold weighted by additive genetic variance (WTQ), ROC-based threshold weighted by 

correlation weighting factor 𝒓𝒂
𝟐∗ (UWTR), ROC-based threshold weighted by effect size and correlation weighting 

factor (WTER) and ROC-based threshold weighted by correlation weighting factor and additive genetic variance 

(WTQR), alongside with threshold from the Bonferroni correction (BON) and Benjamini-Hochberg False 

Discovery Rate (BHF).  
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4.5.2. Matthews correlation coefficient (MCC) 

The effects of varying types of thresholds, weighting factors included, and parameter value 

tested are provided in Figure 4.6.  

Consistent with the previously published literature, the MCC score for randomly chosen 

markers (RND) is effectively zero, whereas maximal MCC scores were observed for all-QTL 

control (ALQ). Excluding the controls, for all the parameter tested, the MCC score from 

BON threshold is the lowest, and this is followed by those calculated from BHF, and the 

significant markers yielded from ROC-based threshold has the highest MCC score. The 

decline in MCC scores in BON and BHF could be attributed to the increased stringency of its 

threshold. Under default parameter values, the MCC scores from ROC-based threshold 

ranges from 48.8% to 54.9% higher than that of BON (𝑙𝑜𝑔𝑝𝑡 from 30.03 for UWT to 35.39 

for WTQR), and 7.0% to 11.0% higher than that of BHF (𝑙𝑜𝑔𝑝𝑡 from 1.71 for UWT to 2.77 

for WTE). Compared to BON, the MCC score from significant markers from BHF is in 

general more similar to those from ROC-based threshold. The main exception is when the 

trait is strongly polygenic or when the sample size is small, where in both cases positives 

from BHF yielded significantly less MCC score than those of ROC-based threshold (𝑙𝑜𝑔𝑝𝑡 

from 16.17 for UWT to 52.73 for WTQR).  

In general, the use of weights in the ROC-based threshold increases the MCC score. 

Unweighted optimal thresholds (i.e., UWT and UWTR) in general yielded the lowest MCC 

score, and this is followed by those weighted by proportion of variance explained (i.e., WTQ 

and WTQR) and finally by effect size (i.e., WTE and WTER), although the differences 

between the latter two are generally not considered to be significant. The only exception is 

when the trait is polygenic (i.e. 𝑄 = 4000) where those weighted by effect sizes have lower 

MCC scores than those weighted by proportion of variance explained (𝑙𝑜𝑔𝑝𝑡 = 4.48 between 

WTE and WTQ; 𝑙𝑜𝑔𝑝𝑡 = 4.67 between WTER and WTQR). The differences in MCC scores 

due to correlation weights 𝒓𝒂
𝟐∗ in the ROC-based threshold calculation are not significant.  

Increasing the sample size increases the MCC score for all threshold tested (𝑙𝑜𝑔𝑝𝑡 ranges 

from 80.27 for UWT to 102.73 for BHF with an increase in sample size from 1000 to 4000), 

while a high polygenicity decreases the score (𝑙𝑜𝑔𝑝𝑡 from 68.36 for WTQR to 75.93 for BHF 

with an increase in number of QTL from 200 to 4000). The MCC score also decreases 

significantly as the QTL effect size distribution changes from 𝑔𝑎𝑚𝑚𝑎(0.2,1) to 

𝑔𝑎𝑚𝑚𝑎(0.9,1) (𝑙𝑜𝑔𝑝𝑡 from 32.28 for UWT to 69.11 for BON), while increasing the 
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pairwise marker correlation from 𝐿 = 0.1 to 𝐿 = 0.8 increases the score (𝑙𝑜𝑔𝑝𝑡 from 2.08 for 

BON to 12.48 for BHF). Interestingly, increasing the genotyping density from 40k to 400k* 

significantly decreases the MCC score for the positives identified for all the threshold tested 

(𝑙𝑜𝑔𝑝𝑡 from 11.38 for BON to 31.23 for WTQR). Allele frequency distribution did not have 

significant effects on the MCC scores.  

 

Figure 4.6: MCC scores of the positives obtained through the thresholds under varying parameter values. 

Thresholds featured in this figure include: Unweighted ROC-based threshold (UWT), ROC-based threshold 

weighted by effect size (WTE), ROC-based threshold weighted by additive genetic variance (WTQ), ROC-based 

threshold weighted by correlation weightage factor 𝒓𝒂
𝟐∗ (UWTR), ROC-based threshold weighted by effect size 

and correlation weightage factor (WTER) and ROC-based threshold weighted by correlation weightage factor 

and additive genetic variance (WTQR), alongside with threshold from the Bonferroni correction (BON) and 

Benjamini-Hochberg False Discovery Rate (BHF). These scores were compared against random control (RND) 

and all-QTL control (ALQ).  

4.5.3. Genomic Prediction Accuracy 

The accuracies of truncated genomic prediction under varying types of thresholds, threshold 

weighting factors and parameter values were provided in Figure 4.7.  

In general, the accuracies of the truncated genomic prediction from ROC-based thresholds 

are significantly higher compared to both BON and BHF (𝑙𝑜𝑔𝑝𝑡 up to 28.63 between WTQR 

and BON; 𝑙𝑜𝑔𝑝𝑡 up to 6.35 between WTQR and BHF). The main exception was on an 

oligogenic trait (i.e. 𝑄 = 200), where the threshold from BHF yielded significantly higher 
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accuracy than all ROC-based thresholds tested (𝑙𝑜𝑔𝑝𝑡 up to 8.62 for UWT). Compared to 

BON, thresholds from BHF have yielded significantly increased accuracy in genomic 

prediction in all parameters tested, and is often comparable to unweighted ROC-based 

thresholds. The use of ROC-based threshold increases the accuracy by up to 16.8% higher 

than that of BON, and up to 7.0% higher than that of BHF. For all parameters tested, 

truncated genomic prediction from BON has the lowest accuracy.  

 

Figure 4.7: Accuracy of truncated genomic prediction calculated from positives obtained from each threshold 

under varying parameter values. Thresholds featured in this figure include: Unweighted ROC-based threshold 

(UWT), ROC-based threshold weighted by effect size (WTE), ROC-based threshold weighted by additive genetic 

variance (WTQ), ROC-based threshold weighted by correlation weightage factor 𝒓𝒂
𝟐∗ (UWTR), ROC-based 

threshold weighted by effect size and correlation weightage factor (WTER) and ROC-based threshold weighted 

by correlation weightage factor and additive genetic variance (WTQR), alongside with threshold from the 

Bonferroni correction (BON) and Benjamini-Hochberg False Discovery Rate (BHF). These scores were 

compared against random control (RND) and all-QTL control (ALQ).  

The use of weights in the calculation of ROC-based thresholds significantly increased the 

accuracy of the genomic prediction. For all the parameter tested, the accuracies are the lowest 

for unweighted optimal thresholds (i.e., UWT and UWTR), and this is followed by those 

weighted by effect size (i.e., WTE and WTER), and finally by proportion of variance 

explained (i.e., WTQ and WTQR). Compared to unweighted optimal thresholds, the use of 

thresholds weighted by proportion of variances led to an average of 5.90% increase in the 

accuracy of the genomic prediction under default set of parameters (𝑙𝑜𝑔𝑝𝑡 = 7.97 between 
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UWT and WTQ; 𝑙𝑜𝑔𝑝𝑡 = 8.36 between UWTR and WTQR). This trend was associated with 

a decline in threshold stringency with the use of these weightages. While a slight increase has 

been detected with the use of correlation weights 𝒓𝒂
𝟐∗, this increment is generally not 

considered to be significant.  

The accuracies of truncated genomic prediction decrease with increasing polygenicity of a 

trait, especially for BON and BHF which by 𝑄 = 4000 their accuracies are comparable to 

those observed in random control (𝑙𝑜𝑔𝑝𝑡 = 29.58 between 𝑄 = 200 and 𝑄 = 4000 for 

BON; 𝑙𝑜𝑔𝑝𝑡 = 59.45 for BHF). A similar observation was made for small sample size 

(𝑙𝑜𝑔𝑝𝑡 up to 114.96 for WTQ between 𝑁 = 1000 and 𝑁 = 4000). Pairwise marker 

correlations increase the accuracy of the genomic prediction for all threshold tested (𝑙𝑜𝑔𝑝𝑡 up 

to 141.86 for WTQR between 𝐿 = 0.1 and 𝐿 = 0.8), while decreases significantly as the 

QTL effect size distribution changes from 𝑔𝑎𝑚𝑚𝑎(0.2,1) to 𝑔𝑎𝑚𝑚𝑎(0.9,1) (𝑙𝑜𝑔𝑝𝑡 up to 

43.06 for BHF).  

4.6. Discussion 

In this study, the algorithm for the calculation of an optimal threshold was provided, and the 

performance of this new threshold and its variants were tested in the context of QTL 

detection in a GWAS and marker selection for genomic prediction. In both tests of threshold 

performance, the threshold from the Bonferroni method consistently had the highest 

stringency, and this is associated with the lowest scores for all performance criteria tested. 

This is in line with previous publications such as Fadista et al. (2016), Kaler and Purcell 

(2019) and Simes (1986), which stated the overconservativeness of the threshold calculated 

with the Bonferroni method, which leads to decreased power in GWAS. This is especially 

problematic for parameter values that reduce the 𝑙𝑜𝑔𝑝𝑣𝑎𝑙, which further reduces the number 

of QTL detected. This experiment further emphasized the previous notion on the unsuitability 

of the Bonferroni method as multiple testing correction method, and this called for a more 

lenient threshold such as those suggested by Benjamini-Hochberg FDR.  

While the threshold calculated from Benjamini-Hochberg FDR is less conservative than those 

by the Bonferroni method, the FDR method also has its own issues. One major issue is that 

while the threshold varies with the distribution of 𝑙𝑜𝑔𝑝𝑣𝑎𝑙, the way the threshold varies does 

not always line up with what is required for improved performance for said threshold. This is 

due to the fact that the calculation of Benjamini-Hochberg FDR does not take into account 
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the behaviour of the 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 under varying parameter values, thus causing the threshold to 

blindly follow the distribution of the 𝑙𝑜𝑔𝑝𝑣𝑎𝑙, resulting in a less optimal change. As an 

example, with a polygenic trait, the reduced 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 of the QTL decrease the value of index 

𝑗 in equation [34], and this would push the right-hand side of the inequality upward, thus 

resulting in a more stringent threshold. This has effectively decimated its performance in 

binary classification of the markers in a GWAS and truncation for genomic prediction for a 

polygenic trait. A similar phenomenon was also observed for the Bonferrroni method, where 

its insensitivity toward the effects of parameter changes has also resulted in a less optimal 

threshold. This, compounded with the extreme stringency of the threshold, reduces its 

performance in binary classification and truncated genomic prediction.  

For the calculation of the ROC-based thresholds however, it can and has successfully taken 

into account the effects of parameters such as genetic architecture and sample sizes on the 

𝑙𝑜𝑔𝑝𝑣𝑎𝑙, as the calculation is based on the empirical distribution of the 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 Taking the 

case of a polygenic trait as an example, as the large number of QTL has significantly reduced 

the 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 of the QTL, the threshold needs to be more lenient in order to detect the same 

number of QTL. This has been reflected in the reduced stringency of the threshold from the 

ROC-based thresholds, thus lessening the negative impact of increased polygenicity on the 

performance scores; by increasing the number of QTL from 200 to 4000, the MCC score 

from the ROC-based threshold decreases by 75.27% for WTQR up to 82.84% for UWT, 

compared to 95.90% for BON and 92.80% for BHF. In genomic prediction, the accuracy 

declined by 15.52% for UWT up to 17.67% for WTE, compared to 16.93% from BON and 

23.36% for BHF. This inclusion of the effects of parameters on the p-values means the ROC-

based threshold could make necessary changes to accommodate said effects to maintain its 

performance.  

The use of effect sizes or proportion of variable explained as weights have the effects of 

decreasing the stringency of the ROC-based threshold, often being more lenient than that 

suggested by the Bonferroni method or by Benjamini-Hochberg FDR. Despite this, these 

lenient thresholds were associated with an increase in both MCC score and the accuracy of 

truncated genomic prediction. This suggested that despite its apparent excessive leniency, the 

thresholds offered by the ROC algorithm a has higher optimality and performance than both 

multi-testing correction methods. This is especially true for the WTE threshold when tested 

using MCC score; while the WTE threshold has an intermediate stringency when compared 

with UWT and WTQ (threshold stringency 𝑊𝑇𝑄 < 𝑊𝑇𝐸 < 𝑈𝑊𝑇). In general, WTE 
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threshold had the highest MCC scores between the three. This suggested that the threshold 

suggested by WTE is the closest to the optimal threshold as defined by MCC score, thus 

being the optimal binary classifiers. Similar arguments can also be made for ROC-based 

thresholds that were weighted by correlation (threshold stringency 𝑊𝑇𝑄𝑅 < 𝑊𝑇𝐸𝑅 <

𝑈𝑊𝑇𝑅, but with WTER having the highest MCC score). 

The MCC score did not tell the full story however; when the accuracy of truncated genomic 

prediction is assessed, the WTE and WTER thresholds do not yield the highest accuracy, and 

instead maximal accuracies were achieved by the most lenient thresholds WTQ and WTQR, 

indicating the inequality of thresholds that optimize binary classification with those optimize 

accuracy of truncated genomic prediction. This alludes to the subjective nature of the concept 

of “optimal threshold” especially when they were asked in the context of differing ulterior 

purpose of said threshold. The concept of “optimal threshold” is essentially modelled based 

on certain mathematical functions. For example, just as one can define an optimal threshold 

based on ROC curve by calculating the point where the tangent of the curve is 1 (Kaivanto, 

2008), or maximizing the Youden’s Index (Habibzadeh et al., 2016), one can also define an 

optimal threshold based on MCC by maximizing the MCC score, or optimal threshold based 

on genomic accuracy by again finding a threshold that maximize such accuracy. In the end, 

one can define an optimal threshold by maximizing scores from any mathematical function 

that awards true positives while penalizing false positives, thus indicative to its subjectivity.  

Perhaps a more objective question that could be asked is “how much a false positive can be 

tolerated?” In the context of binary classification such as those of MCC score, as false 

positives can easily lead to misidentification, they were penalized in a more severe manner 

than in truncated genomic prediction, which could accept a level of false positives as long as 

the true positives remained the majority in the pool of positives included into the prediction. 

In the context of GWAS, if the aim is to increase the proportion of additive genetic variance 

explained by the positive markers, then a lenient threshold might not be deleterious after all. 

But if the aim is to maximize the accuracy of loci identified, then a more stringent threshold 

might be required (Chicco and Jurman, 2020). For the thresholds suggested in this study, the 

use of weighting factors 𝑤𝑡, 𝑤𝑐 and 𝑤𝑢 allow the users to set prioritizations for the true and 

false positives, with a larger 𝑤𝑡 promotes the detection of true positives through a more 

lenient threshold, and a larger 𝑤𝑢 increases the penalization of false positives by increasing 

the threshold’s stringency.  
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While this study has suggested an algorithm for calculation of an optimal threshold, one 

limitation for this study is that it assumed the homogeneity of the linkage disequilibrium 

structure, which might not be the case for a strongly inbred population with small effective 

population sizes (Gondro, 2015). This shortcoming could be easily overcome by identifying 

the effect of the QTL and their location however, and we believed this is an aspect worth 

further studying. Another aspect worth further studying is the estimation of genetic 

architecture parameters, such as number of QTL, distribution of QTL effect sizes and their 

location from real data, which can then be fed into this method and obtaining an optimal 

threshold.  

Another limitation for this methodology is the arbitrariness of the trivial effect size cut-off 

point and linkage disequilibrium threshold. This is unavoidable as there are no objective 

methods of determining these quantities, and these methods involve asking questions that 

have no objective answers. Determining the trivial effect size cut-off point involves the 

question of “should I consider a locus with effect size X be a detectable QTL?” which is an 

ill-defined question as it depends on how much should the detection of the QTL be 

prioritized, besides the numerous other factors such as genetic architecture of the trait, 

experiment designs, allele frequency of the marker and the QTL and linkage disequilibrium 

between QTL and marker. Whereas determining the linkage disequilibrium threshold 

involves asking the question “how strong the linkage disequilibrium a null marker should 

have with a QTL such that a positive on that marker be counted as a true positive?” which the 

only non-arbitrary answer are either exclusion of all null markers regardless how close the 

marker is to a QTL (i.e. linkage disequilibrium threshold of 1.0) or any markers with zero 

linkage disequilibrium with any of the QTL (i.e. linkage disequilibrium threshold of 0), both 

of which are impractical in a GWAS. Due to the lack of objectivity in these questions, the use 

of arbitrary trivial effect sizes cut-off point and linkage disequilibrium threshold is 

unavoidable.    

In conclusion, an algorithm for the calculation of optimal threshold based on ROC curve that 

could take into account the effects of genetic architecture and experiment design has been 

developed. Using the algorithm as well as its various generalizations, the calculated threshold 

has achieved increased performance in binary classification for identification of causal 

variants, and increased accuracy for truncated genomic prediction, when compared to the 

Bonferroni and Benjamini-Hochberg FDR under varying genetic architecture and experiment 

designs. By showing the inequality in optimal threshold in binary classification and genomic 
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prediction, this experiment had also revealed the arbitrary nature of the concept of optimal 

threshold, especially in the context of different use of such threshold. Despite this, the full 

application of such threshold requires information on the distribution of the QTL effect sizes, 

and while previous publications for its estimation are available, they suffered from numerous 

shortcomings. Further studies on the robust estimation of QTL effect size distribution would 

thus be desirable.  
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Chapter 5. A Flexible, Semi-Parametric Algorithm 

for Estimation of Genetic Architecture Parameter 

Zhi Loh, Julius H. J. van der Werf, Sam Clark 

 

5.1. Abstract 

While Genome-Wide Association Study has been used to identify the location and effect size 

of the QTL, it failed to detect large portion of the QTL and thus additive genetic variance. 

For this reason, alternative approaches that attempted to estimate the genetic architecture 

parameters have emerged. Previous methods that attempted such estimation exist, but they 

failed to take into account many of the assumptions and phenomenon that would be 

encountered if such approach is to be taken, such as reliance on previously published 

Genome-Wide Association Study results and effects of confounding factors such as allele 

frequency distributions and linkage disequilibrium structures. Thus, the aim of this study was 

to develop a method that could estimate the parameters of genetic architecture such as 

number of QTL with certain effect sizes, and the shape of QTL effect size distribution, while 

taking into account the effects from the aforementioned phenomenon. Using this method, the 

estimated number of QTL with effect size 0.1 𝜎𝑒 ranges from 69.9% to 167.0% (an average 

of 109.8%) of the true number of QTL, and for effect size 1.0 𝜎𝑒 the range was from 101.6% 

to 175.8% (an average of 123.6%). This method could also provide an estimate of marker 

effect sizes, but with consideration from the confounding factors such as allele frequency 

distributions, correlation between markers and heterogeneity in linkage disequilibrium 

structures. The algorithm would be important for gene discovery and estimation of location 

and effect size of the causal loci. 

5.2. Introduction 

Genome-Wide Association Study (GWAS) has successfully been used in identifying the 

causal loci for diseases in human (Pearson and Manolio, 2008; Tam et al., 2019) or 

production traits in livestock (Bedhane et al., 2019; Hay and Roberts, 2018). Despite this, 

GWAS is generally underpowered in detecting the large number of QTL with small effect 

sizes, which led to an underestimation of additive genetic variance explained by the QTL 

detected by GWAS compared to the genetic variance estimated from classical analysis of 
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variance (Hall et al., 2016). For individual QTL, the estimated effect size obtained through 

GWAS is generally overestimated, especially when the QTL has small effect size (Hall et al., 

2016; Xu et al., 2003). The power of GWAS is further burdened by the severe multiple 

testing from the sheer number of markers to be tested (Pearson and Manolio, 2008). The 

stringent threshold required to exclude the false positives would also mean that the signals 

from the QTL with small effect sizes would be buried in the sea of noise from the null 

markers, making them effectively undetectable (Tam et al., 2019; Zhang et al., 2018). This is 

especially true for a trait with low heritability, where the increased residual variance 

contributes into excessive noises for the null markers (Tam et al., 2019).  

Perhaps rather than relying on an arbitrary threshold to statistically test the association of the 

loci with the trait, an alternative method was estimating the distribution of the QTL effect 

sizes. Several previous publications have attempted this; Park et al. (2010) published an 

algorithm to estimate QTL effect size distribution by calculating the power of detected QTL 

from previously published GWAS. Cheng et al. (2020) and Zhang et al. (2018) utilized an 

expectation-maximization (EM) algorithm on summary statistics of GWAS to estimate the 

parameters for the mixture model of the proportion of null and non-null markers, while using 

an empirical Bayesian approach to estimate the threshold that classifies the markers as null or 

non-null. Hall et al. (2016) utilized the proportion of additive genetic variance explained and 

detection threshold as a method to estimate the number of QTL associated with a trait. In an 

attempt to improve the flexibility of the model used, Zeng and Zhou (2017) specify a 

nonparametric prior on the variance in the normal distributions, which in turn used to model 

the QTL effect size distribution.  

Despite these attempts, there were numerous assumptions being utilized in these methods, 

many of which could impact their reliability of the estimation. As an example, the algorithm 

suggested by Cheng et al. (2020) relies on user-defined cut-off points between null and non-

null markers, which might not be optimal for varying genetic architectures. Park et al. (2010) 

relies on previously published GWAS results, which might not be available. There are also 

many aspects and issues worth considering during the estimation of the QTL effect size 

distribution, such as the confounding effects of linkage disequilibrium structures that alters 

the distribution of estimated marker effect sizes and test statistics of a GWAS, and the 

changing allele frequency distributions which affects the error in estimated effect sizes of 

GWAS, and these were generally not discussed in previous work. An algorithm that could 

take these aspects into account is currently lacking.  
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With this in mind, the aim of this study is to propose a method for estimation of parameters 

for a genetic architecture, such as number of QTL and the shape and scale parameter for the 

QTL effect size distribution. The method was tested using simulated dataset with varying 

underlying genetic architectures. It is anticipated this algorithm could provide an estimate of 

genetic architecture parameters, which could then be used to estimate the QTL effect sizes of 

a marker, a genomic region, or an animal. The strengths, assumptions and weaknesses of this 

algorithm would also be evaluated and discussed in this study. 

5.3. Preliminary Concepts and Notations 

While GWAS is usually used in identifying causal loci, their statistical properties often 

revealed more information than just the location and strength of the loci. One such piece of 

information is the distribution of the output of the GWAS, which can provide tell-tale 

signatures on the underlying distribution of the QTL effect sizes. Indeed, if there are no errors 

in the estimation of the effect sizes of each marker, and these markers can accurately reflect 

the QTL effect size, then the expected distribution of estimated effect size from a GWAS 

would correspond with the underlying QTL effect size distribution. Due to various 

confounding factors, such as allele frequency distribution and correlation between markers, 

such idealized situation would almost certainly never be achieved. The effects of the 

underlying QTL effect size distribution, as well as the effects from these confounding factors, 

are discussed in Appendix B.  

In many instances in this chapter, there would be discussions on the properties of distribution, 

and in a loose sense, treating a sequence of distributions as if it is a sequence of random 

variables. Thus, one could discuss concepts such as the distributions of the distributions (i.e., 

how the distributions distribute along the axes) and the test statistics for their equality. For 

this chapter, the level of distribution was denoted using the notation 𝕕𝑛, where the superscript 

denotes the level of distribution. For example, given a sequence of random variables, the 

distribution of the random variables was denoted as 𝕕1, while the distribution from a 

sequence of 𝕕1 distributions be denoted as 𝕕2, and so forth. An illustration of levels of 

distribution is provided in Figure 5.1.  

There are parallelisms between the concepts from a sequence of distributions with those from 

a sequence of random variables; just like a large sequence of random variables allows the 

determination of average of their distribution, one can also discuss the concept of “expected 

distribution” (denoted as 𝐸(𝕕)). The “dispersion of distribution” (denoted as 𝑉(𝕕)) can be 
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thought of as the distribution version of “variance” in random variables and is defined as the 

variability in the form or shape of the distribution around the expected distribution. As in test 

statistics in 𝕕1 can be used in testing the significance of differences of an observed random 

variable compared to expected 𝕕1 (as in test statistics for t-test for hypothesis testing), test 

statistics can also be applied to 𝕕2 which can then be used to test the significance of 

differences of an observed distribution 𝕕1 compared to expected 𝕕2.  

 

Figure 5.1: The different levels of distributions, with (a) showing the individual random variables. The density of 

the random variable can then be used to build a histogram that shows the density of the random variable as 

featured in Figure (b), which in this paper be denoted as 𝕕1. With a sequence of 𝕕1s, they can be used to build 

a distribution of 𝕕1s as featured in Figure (c), which be denoted as 𝕕2 in this study. The red line in Figure (c) is 

the expected distribution across the sequence of 𝕕1s, and the dispersion of distributions across the sequence of 

𝕕1s be manifested as the multi-coloured edge around the red line.  

There are several emergent properties in distributions that do not present in singular random 

variables. One such examples is the shape of 𝕕1, which provides insights on the moments of 

the random variables that build the 𝕕1. While it might not be meaningful in discussing the 

mean and variance of each individual value in the random variables that make up a 𝕕1, it is 

meaningful to discuss these quantities for each 𝕕1 that make up a 𝕕2. Unlike random 

variables, one can also perform calculus operations in each element in 𝕕2; as an example, one 

can integrate the probability density function of 𝕕1 to yield its corresponding cumulative 

distribution function (CDF), which was denoted as 𝔻1. Finally, while there is only one 

operation for testing the equality of two random variables (i.e., subtracting the value of two 

random variables), there are multiple operations that could be done in testing the equality 

between two distributions, such as maximal distance between two distribution or area 

between curves between them (Dowd, 2020). Examples of these tests are provided in 

Appendix C.  

Perhaps the most familiar analogy for these levels of distributions can be found in the context 

of two-sample Kolmogorov-Smirnov test, which aimed to test the equality of distributions 
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from two sets of random variables (i.e., two 𝕕1s). The 𝕕1s can be integrated into their 

empirical cumulative distribution function (ECDF), both of which will be denoted as 𝔻1. The 

test statistic for the Kolmogorov-Smirnov test (𝑡𝐾𝑆) is defined as the supremum distance 

between the ECDF of the test distribution (𝔻𝐴
1) and the ECDF of theoretical distribution 

(𝔻𝐻0

1 ) (Naaman, 2021; Simard and L’Ecuyer, 2011):  

𝑡𝐾𝑆 = sup|𝔻𝐴
1 − 𝔻𝐻0

1 |  [1] 

Hypothetically if we can sample the ECDF of the theoretical distribution 𝔻𝐻0

1  𝑚 number of 

times, we can get a sequence of length 𝑚 containing the theoretical distributions, which was 

denoted as 𝔻𝐻0

2 . Similarly, 𝔻𝐴
1  can also be sampled 𝑛 number of times, with the resulting 

sequence denoted as 𝔻𝐴
2. The Kolmogorov-Smirnov test can then be applied to each of the 

𝔻𝐻0

1  in 𝔻𝐻0

2  with each of the 𝔻𝐴
1  in 𝔻𝐴

2, which produces an 𝑚 × 𝑛 array containing the 𝑡𝐾𝑆 

from each combination of 𝔻𝐻0

1  and 𝔻𝐴
1 . This 2-dimensional array was denoted under the 

notation 𝑡𝔻2 in this chapter. Additional subscripts might be appended to indicate the test from 

which 𝑡𝔻2 originated from, such as in this example 𝑡𝔻𝐾𝑆
2  where the subscript 𝐾𝑆 denotes this 

is a 𝑡𝔻2 from a Kolmogorov-Smirnov test between two 𝔻2s.  

This chapter will utilize and perform mathematical operations on multidimensional arrays 

(i.e., arrays with more than two dimensions). Thus, the following notations will be used: 

scalar values will be denoted using regular scripts, which could be in capital or small letters 

(as an example, 𝑥); 1-dimensional vectors were denoted as bold small letter (as example, 𝒙) 

or with one bolded subscript (as example, 𝒙𝒂); for a two dimensional matrices they were 

denoted with a bold capital letter (as example, 𝑿) or with one bolded subscript (as example, 

𝑿𝒂); and for arrays with three or more dimensions, bolded subscripts were appended to the 

bold capital letter to denote the nature of the axes. As an example, the 𝑿𝒂,𝒃,𝒄,𝒅,𝒆 would be a 5-

dimensional array, with the 𝒂 in the subscript be denoting the first axis of the array, 𝒃 be the 

second axis of the array, and so on.  

5.4. Phenotype Model Assumed in this Method 

For this study, the phenotype is assumed to follow a purely additive polygenic model. Given 

𝑁 number of animals and 𝕜 number of QTL, the phenotype is defined as follows:  

𝒚 = 𝑿𝒂 + 𝒆 [2] 
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Where 𝒚 is a column vector of length 𝑁 containing the phenotypes of the animals; 𝑿 being a 

matrix of size 𝑁 × 𝕜 containing the genotypic states of the QTL; 𝒂 being column vector of 

length 𝕜 containing the QTL effect sizes; and 𝒆 being a column vector of length 𝑁 containing 

the residual component of the phenotype. The 𝒂 in this study is assumed to follow a gamma 

distribution, and is parametrized as follows:  

𝒂 ~ 𝛤(𝕒, 𝕓) [3] 

Where 𝕒 and 𝕓 are the shape and scale parameters of the gamma distribution. The 

distribution of QTL effect size will be denoted as 𝕕𝑄𝑇𝐿 in this study.  

The residual component will be modelled using a normal distribution, and is defined as:  

𝒆 ~ 𝒩 (0,
(1 − ℎ2) ∗ 𝑣𝑎𝑟(𝑿𝒂)

ℎ2
) [4] 

Where ℎ2 is the narrow sense heritability of the phenotype. For this chapter, the value of 𝕜, 𝕒 

and 𝕓 will be the target of estimation, and the true genetic architecture will be denoted as 

follows: 𝑄(𝕜, 𝕒, 𝕓).  

5.5. The Method 

The method of estimation of genetic architecture parameters proposed in this study relies on 

the internal consistency of the distributions of the marker test statistics from a GWAS. This 

internal consistency means, given a set of genotypic data, if there are two sets of phenotypes 

with the same underlying genetic architectures, both sets would produce similar marker test 

statistics distributions when GWAS is conducted on them (more information provided in 

Appendix B). Therefore, if we could propose a set of genetic architecture parameters, one 

could use said parameters to simulate a set of QTL and phenotypes, and from which 

conducting a GWAS on the simulated phenotypes. If there is another set of observed 

phenotypes (with unknown underlying genetic architectures) that when GWAS-tested 

produces a set of marker test statistics with a similar distribution with that obtained from the 

simulated phenotypes, one could infer that the observed phenotypes have the same genetic 

architectures as that from the simulated phenotypes. This observation would become the basis 

for the genetic architecture estimation method proposed in this study.  

This method uses two sequences of distributions: a sequence of ECDF test statistics derived 

from multiple GWAS on observed phenotypes (henceforth denoted as 𝔻𝐹𝑇𝑜𝑏𝑠

2 ), and a 
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sequence of ECDF of test statistics derived from multiple GWAS with simulated phenotypes 

(denoted as 𝔻𝐹𝑇𝑠𝑖𝑚

2 ). The simulated phenotypes will be generated using a set of proposed 

genetic architecture models (denoted with a square bracket [𝕜, 𝕒, 𝕓]). The aim is to minimize 

the differences between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 , with the [𝕜, 𝕒, 𝕓] that minimizes said differences 

will be denoted as [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

. The objective function associated with the minimization will 

be the 𝑡𝔻2 test statistics between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 , which is described in Appendix C.  

5.5.1. The Layout of the Method 

The algorithm requires three inputs to estimate the 𝑄(𝕜, 𝕒, 𝕓): the 𝑁 × 𝑀 genotype array of 

size (denoted as 𝑿𝒇𝒖𝒍𝒍), where 𝑁 is the sample size and 𝑀 is the number of SNP markers, 

encoded in {0,1,2} or (-1,0,1} form, a 𝑁 × 1 phenotype array (denoted as 𝒚𝒇𝒖𝒍𝒍) and the 

additive genetic variance or narrow sense heritability of the trait. An overview schematic for 

this method was provided in Figure 5.2.  

 

Figure 5.2: An overview schematic for the algorithm. The inputs for this algorithm are presented as light grey 

rounded rectangles, and the output as the dark grey rounded rectangle at bottom right corner.  

5.5.1.1. Estimation the Rank of Significance of Association of a 

Genomic Region with Phenotype 

The first step in this algorithm is to estimate the rankings for the significance of association 

between a genomic region and the phenotype (i.e., how strong a region is associated with the 
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phenotype). The ranking would be used to assign the location of the QTL generated from the 

proposed model [𝕜, 𝕒, 𝕓] (further details in section 5.5.1.4). This QTL location assignment 

step is done to improve the reliability of the algorithm toward a genotype array with 

heterogeneous linkage disequilibrium structures (as an example, in an inbred population 

(Gondro, 2015)).  

The estimation of rank of significance of association of genomic regions starts obtaining 

marker-wise significance of association, which is done by conducting a single SNP linear 

regression using the full genotype array 𝑿𝒇𝒖𝒍𝒍 and full phenotype vector 𝒚𝒇𝒖𝒍𝒍. As extreme 

allele frequencies reduce the reliability of estimated effect sizes, markers with minor allele 

frequency (MAF) less than 0.05 will be excluded from the GWAS, with the number of 

retained markers denoted as 𝑀𝑚𝑎𝑓. The estimated effect sizes 𝑒𝑠𝑖 and test statistics 𝑓𝑡𝑖 of 

locus 𝑖 defined as follows (Gondro, 2015; Kremelberg, 2011):  

𝑒𝑠𝑖 = 
𝑐𝑜𝑣(𝒙𝒇𝒖𝒍𝒍∗,𝑖

, 𝒚𝒇𝒖𝒍𝒍)

𝑣𝑎𝑟(𝒙𝒇𝒖𝒍𝒍∗,𝑖
)

 [5] 

𝑓𝑡𝑖 = 
𝑒𝑠𝑖

2 ∗ 𝑣𝑎𝑟(𝒙𝒇𝒖𝒍𝒍∗,𝑖
) ∗ (𝑁 − 2)

𝑣𝑎𝑟(𝒚𝒇𝒖𝒍𝒍) − 𝑒𝑠𝑖
2 ∗ 𝑣𝑎𝑟(𝒙𝒇𝒖𝒍𝒍∗,𝑖

)
 [6] 

Where 𝑣𝑎𝑟(𝒙𝒇𝒖𝒍𝒍∗,𝑖
) is the genotypic variance for locus 𝑖 from the full genotype array, 

𝑣𝑎𝑟(𝒚𝒇𝒖𝒍𝒍) is the phenotypic variance from the full phenotype vector, and 𝑐𝑜𝑣(𝒙𝒇𝒖𝒍𝒍∗,𝑖
,

𝒚𝒇𝒖𝒍𝒍) is the genotypic-phenotypic covariance from both full genotype array and phenotype 

vector.  

From this operation, two vectors of length 𝑀𝑚𝑎𝑓 containing the estimated effect sizes and test 

statistics from all filtered markers across full sample size, denoted as 𝒆𝒔𝒇𝒖𝒍𝒍 and 𝒇𝒕𝒇𝒖𝒍𝒍, will 

be generated. The vectors that will be used rank the significance of association of a region of 

a genome with the phenotype.  

To take into account the bleeding effects from the correlation on the ranking of significance 

of genomic regions, the vectors 𝒆𝒔𝒇𝒖𝒍𝒍 and 𝒇𝒕𝒇𝒖𝒍𝒍 were deconvolved using an iterative 

method. Although developed independently, this deconvolution method is similar to 

Högbom’s CLEAN algorithm (Högbom, 1974), but with modifications to take into account 

the effects of various phenomenon commonly encountered in a GWAS experiment, such as 
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the effects of extreme allele frequencies on increasing the error of the estimated marker effect 

sizes.  

The deconvolution starts by calculating the pairwise marker correlation between each of the 

marker pairs, with the resulting array of size 𝑀𝑚𝑎𝑓 × 𝑀𝑚𝑎𝑓 denoted as 𝑹, which each of the 

element calculated as follows:  

𝑟𝑖,𝑗 = 
𝑐𝑜𝑣 (𝒙𝒇𝒖𝒍𝒍∗,𝑖

 , 𝒙𝒇𝒖𝒍𝒍∗,𝑗
)

√𝑣𝑎𝑟(𝒙𝒇𝒖𝒍𝒍∗,𝑖
) ∗ 𝑣𝑎𝑟 (𝒙𝒇𝒖𝒍𝒍∗,𝑗

)

 [7] 

The top marker within 𝒇𝒕𝒇𝒖𝒍𝒍 were the identified, from which the locus of the peak, 𝑖, was 

identified. The estimated marker effect size at locus 𝑖, �̃�𝑖,  were then kept in a new vector 

denoted as 𝒆𝒔𝒅𝒆𝒄𝒐𝒏𝒗𝒐𝒍𝒗𝒆𝒅. 

Using the matrix 𝑹, the contribution of �̃�𝑖 onto the estimated effect sizes for all markers, 

denoted as �̃�𝒓𝒊
 were calculated as follows:  

�̃�𝒓𝒊
= �̃�𝑖 ∗ 𝑹𝑖,∗ [8] 

Where 𝑹𝑖,∗ denotes row 𝑖 of matrix 𝑹. The 𝒆𝒔𝒇𝒖𝒍𝒍 would then be adjusted with �̃�𝒓𝒊
 as follows:  

𝒆𝒔𝒇𝒖𝒍𝒍 = 𝒆𝒔𝒇𝒖𝒍𝒍 − �̃�𝒓𝒊
 [9] 

while the locus 𝑖 in 𝒆𝒔𝒇𝒖𝒍𝒍 be “muted” by assigning it as “NAN” and would no longer 

involved in further calculations. This is to prevent overcorrection of estimated effect size for 

the locus, which could lead to numerical instability of solution in the deconvolved estimated 

effect sizes.  

Using the adjusted 𝒆𝒔𝒇𝒖𝒍𝒍, the corresponding adjusted 𝒇𝒕𝒇𝒖𝒍𝒍 was calculated as follows:  

𝒇𝒕𝒇𝒖𝒍𝒍 = 
(𝒆𝒔𝒇𝒖𝒍𝒍)

2
∗ 𝑣𝑎𝑟𝑁(𝑿𝒇𝒖𝒍𝒍) ∗ (𝑁 − 2)

𝑣𝑎𝑟(𝒚𝒇𝒖𝒍𝒍) − (𝒆𝒔𝒇𝒖𝒍𝒍)
2
∗ 𝑣𝑎𝑟𝑁(𝑿𝒇𝒖𝒍𝒍)

 [10] 

Where 𝑣𝑎𝑟𝑁(𝑿𝒇𝒖𝒍𝒍) is defined as taking the variance of 𝑿𝒇𝒖𝒍𝒍 along 𝑁 (i.e., column-wise) 

axis.  

The new top marker in this 𝒇𝒕𝒇𝒖𝒍𝒍 and the corresponding �̃�𝑖 was identified. The process was 

then iterated until all the markers in 𝒆𝒔𝒇𝒖𝒍𝒍 were assigned as “NAN,” and all the deconvolved 

estimated effect sizes were allocated to 𝒆𝒔𝒅𝒆𝒄𝒐𝒏𝒗𝒐𝒍𝒗𝒆𝒅. The deconvolved test statistics for the 
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markers, denoted as 𝒇𝒕𝒅𝒆𝒄𝒐𝒏𝒗𝒐𝒍𝒗𝒆𝒅, were calculated using equation [8], with 𝒆𝒔𝒅𝒆𝒄𝒐𝒏𝒗𝒐𝒍𝒗𝒆𝒅 

being used in place of 𝒆𝒔𝒇𝒖𝒍𝒍. Loci that have their MAF less than 0.05 were assigned with 

“NAN” in 𝒆𝒔𝒅𝒆𝒄𝒐𝒏𝒗𝒐𝒍𝒗𝒆𝒅 and 𝒇𝒕𝒅𝒆𝒄𝒐𝒏𝒗𝒐𝒍𝒗𝒆𝒅.  

An illustrative pseudocode for the deconvolution process was provided as follows: 

 

The deconvolved SNP markers were then pruned, which was done by slicing 𝒇𝒕𝒅𝒆𝒄𝒐𝒏𝒗𝒐𝒍𝒗𝒆𝒅 

were then sliced into segments of contiguous SNPs of equal length. Any arbitrary number of 

SNPs per segments could be chosen for this method, although the choice would affect the 

performance of the ranking process; a segment with a large number of SNPs reduces the 

precision of location that would be assigned as QTL from the proposed models, while a 

segment with a small number of SNPs increases the method’s vulnerability toward 

heterogeneous linkage disequilibrium structures. For this study, 10 SNPs per segments was 

chosen for this study. Within each slice, the top test statistics within the slice, excluding the 

“NAN,” were recorded into a vector with size 1 × ⌈𝑀/10⌉, denoted as 𝒇𝒕𝒔𝒍𝒊𝒄𝒆𝒅.  

## Input data 
X_full # full genotypes 
y_full # full phenotypes 
M = ncol(X_full) 
 
X_full = MAF_filter(X_full, 0.05) ## remove markers with MAF < 0.05 
 
N, Mmaf = nrow(X_full), ncol(X_full) 
var_X = var(X_full, axis=1)                 # column-wise variance (i.e. genotypic variance) 
var_y = var(y_full)                         # phenotypic variance 
 
## Single SNP Linear Regression (SSR) GWAS to obtain marker-wise significance 
es_full, ft_full = SSR_GWAS(X_full, y_full) # estimated effect sizes, F-test statistics 
 
#### deconvolute (de-correlate) the marker effect sizes 
## Obtaining pairwise marker correlation matrix (R) 
 
R = matrix(shape=(Mmaf, Mmaf)) 
for m1 in range(Mmaf): 
 for m2 in range(Mmaf): 
  r_ij = cov(X_full[:,m1], X_full[:,m2]) / sqrt(var(X_full[:,m1])*var(X_full[:,m2]))# eqn[7] 
  R[m1,m2] = r_ij 
 
## de-correlate the markers using matrix R 
es_deconvolved = vector(length=Mmaf) 
for i in range(Mmaf): 
 i = which(ft_full == max(ft_full))   # which loci (i) has the highest F-stats 
 a_i_tilde = es_full[i]  
 es_deconvolved[i] = a_i_tilde 
 es_full[i] = NAN # mute the locus to prevent instability in decorrelated solution 
  
 R_istar = R[i,:] 
 a_ri_tilde = R_istar * a_i_tilde     # eqn [8] 
  
 es_full = es_full - a_ri_tilde # eqn [9] 
 ft_full = es_full^2 * var_X * (N-2) / (var_y - es_full^2 * var_X) # eqn [10] 
 
es_deconvolved = pad_by_MAF(es_deconvolved, M, NAN) # pad es_deconvolved with NAN for locus with MAF < 0.05 
## at this point the length of es_deconvolved is M (not Mmaf) 
 
ft_deconvolved = es_deconvolved^2 * var_X * (N-2) / (var_y - es_deconvolved^2 * var_X) 
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Finally, the rank of the significance of association of a genomic region, defined as 𝒓𝒂𝒏𝒌, will 

be defined as a vector of indices that would sort 𝒇𝒕𝒔𝒍𝒊𝒄𝒆𝒅, with 1 being the region of least 

significance with the phenotype, and maximum value being region of most significance. 

Slices with all “NAN” were assigned with an index of 0 in 𝒓𝒂𝒏𝒌.  

A simplified example of the ranking process was illustrated in Figure 5.3. 

 

Figure 5.3: A simplified example of the ranking of significance of genomic region. The raw test statistics in the left 

panel was first deconvolved and have the effects of correlation and LD structures removed. The resulting test 

statistics (in the right panel) were subsequently sliced (red dotted lines demarcate the slicing points) and having 

the test statistics of the top loci (green crosses) recorded in 𝒇𝒕𝒔𝒍𝒊𝒄𝒆𝒅. Each element in 𝒇𝒕𝒔𝒍𝒊𝒄𝒆𝒅 were then 

assigned a rank in term of their significance, which were kept in 𝒓𝒂𝒏𝒌. In this example, 1000 SNPs were 

chosen per slice for clarity; 10 SNPs per slice were used in the actual algorithm.  

5.5.1.2. Obtaining 𝔻𝐹𝑇
2  from Observed Phenotypes (𝔻𝐹𝑇𝑜𝑏𝑠

2 ) 

The aim for this step is to obtain a sequence of ECDFs of test statistics from the GWAS 

between input genotype and phenotype (𝔻𝐹𝑇𝑜𝑏𝑠

2 ). These distributions serve as reference 

distributions which the algorithm would attempt to fit, with the fitting model parameterized in 

term of [𝕜, 𝕒, 𝕓]. An illustrative figure for this step was provided in Figure 5.4. 

This step starts by calculating the distribution of GWAS test statistics 𝔻𝐹𝑇𝑜𝑏𝑠

1  using the 

association between genotype array and the observed phenotypes, which was conducted 

through single SNP regression. The rationale behind single SNP regression is its simplicity, 

speed of calculation and the capability of being parallelized. As in the previous step, markers 

with MAF less than 0.05 were excluded from this GWAS.  

Changing the genetic architecture would only produce minute changes in the 𝔻𝐹𝑇
1 , with such 

changes strongly concentrated at the tail region of the distribution (details provided in 



118 
 

Appendix B). Despite this, it is also noted that 𝔻𝐹𝑇𝑜𝑏𝑠

1  is a noisy distribution; even with the 

same underlying parameters (i.e., genetic architecture, allele frequency distribution or 

correlation structures), the 𝔻𝐹𝑇𝑜𝑏𝑠

1  can vary substantially between each replication. This can 

cause problems in the detection of signals from the changing genetic architecture, where the 

small amount of data available can be easily overwhelmed by noise. Thus, rather than relying 

on one 𝔻𝐹𝑇𝑜𝑏𝑠

1 , a sequence of 𝔻𝐹𝑇𝑜𝑏𝑠

1  will be generated. This is achieved by resampling a 

number of individuals (denoted as 𝑁𝑟𝑠𝑎𝑚𝑝) from 𝑿𝒇𝒖𝒍𝒍 and 𝒚𝒇𝒖𝒍𝒍 without replacement, with 

number of resamples denoted as 𝑛𝑜𝑏𝑠. The resampled genotype array is denoted as 𝑿𝒐,𝒓,𝒎, 

where subscript 𝑜, 𝑟 and 𝑚 denote the index for resamples, index of resampled individuals 

and index of SNP markers respectively, and X would have the size 𝑛𝑜𝑏𝑠 × 𝑁𝑟𝑠𝑎𝑚𝑝 × 𝑀, and 

the resampled phenotype is denoted as 𝒀𝒓, and would have size 𝑛𝑜𝑏𝑠 × 𝑁𝑟𝑠𝑎𝑚𝑝.  

The marker test statistics from each of the resamples of genotype and phenotypes were 

calculated using equations [5] and [6], but with the 𝑿𝒐,∗,𝒎 and 𝒚𝒐 being used in place of 

𝑿𝒇𝒖𝒍𝒍𝑖
 and 𝒚𝒇𝒖𝒍𝒍, where 𝑿𝒐,∗,𝒎 is a vector of length 𝑁𝑟𝑠𝑎𝑚𝑝 containing the resampled 

genotypes and 𝒚𝒐 is a vector of length 𝑁𝑟𝑠𝑎𝑚𝑝 extracted from 𝒀𝒓 that containing the 

resampled phenotype. The resulting test statistics were recorded in a 2-dimensional array, 

denoted as 𝑭𝑻𝒐𝒃𝒔, of size 𝑛𝑜𝑏𝑠 × 𝑀𝑚𝑎𝑓.  

The 𝑭𝑻𝒐𝒃𝒔 array is used to build a scaled complement of the empirical distribution function 

(𝑀𝐸𝐶𝐷𝐹). Given a vector 𝒙 the 𝑀𝐸𝐶𝐷𝐹 is defined as follows (Singer and Andrade, 2010): 

𝑀𝐸𝐶𝐷𝐹(𝑥) =  ∑ 1(𝑥𝑖 ≥ 𝑥)

𝑀𝑚𝑎𝑓

𝑖=1

[11] 

Where 1(𝑥) is the indicator function defined as follows:  

1(𝑥) =  {
1; 𝑖𝑓 𝑥𝑖  ∈ 𝒙
0; 𝑖𝑓 𝑥𝑖  ∉ 𝒙

 [12] 

Where 𝒙 is a vector of random variables which may or may not have 𝑥𝑖 as its element. In 

essence the 𝑀𝐸𝐶𝐷𝐹 at 𝑥 is the number of elements in vector 𝒙 that have their values equal to 

or larger than 𝑥.  
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Using the equation [11], the 𝑀𝐸𝐶𝐷𝐹 was calculated along 𝑛𝑜𝑏𝑠 margin of 𝑭𝑻𝒐𝒃𝒔, and this 

resulted in a sequence of 𝔻𝐹𝑇𝑜𝑏𝑠

1  with length 𝑛𝑜𝑏𝑠, which collectively become 𝔻𝐹𝑇𝑜𝑏𝑠

2 . The 

𝑭𝑻𝒐𝒃𝒔 and 𝔻𝐹𝑇𝑜𝑏𝑠

2 , as well as 𝑿𝒐,𝒓,𝒎 were kept for the subsequent steps. 

 

Figure 5.4: Illustration on the generation of “observed distributions” 𝔻𝐹𝑇𝑜𝑏𝑠

2 . The base (input) genotypes and 

phenotypes were first resampled, with 𝑁𝑟𝑠𝑎𝑚𝑝 individuals chosen per resamples. GWASes were then 

conducted for each pair of genotype-phenotype resamples, from which the scaled empirical cumulative 

distribution function (MECDF, which represents the 𝔻𝐹𝑇𝑜𝑏𝑠

1  for the algorithm) were generated. The 𝔻𝐹𝑇𝑜𝑏𝑠

1 s 

were then collated into the sequence of observed distributions 𝔻𝐹𝑇𝑜𝑏𝑠

2 . 

5.5.1.3. Sampling for Combinations of 𝕜s and 𝕒s Tested 

For the calculation of ECDF for the proposed model, a number of QTL 𝕜 and shape 

parameter for QTL effect size distribution 𝕒s were sampled. In total 𝑛𝑘𝑖𝑥 number of 𝕜s and 

𝑛𝑎𝑖𝑥 number of 𝕒s were sampled. From these sampled values, a grid of size 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥 that 

contains all possible combinations of [𝕜, 𝕒] were generated, which will be evaluated by the 

method.  

As the parameter 𝕜 can range between 0 and 𝑀, this introduces a large parameter space that 

needs to be tested, which could impede the feasibility of the method. This however can be 

resolved by choosing some of the values of 𝕜 that would be tested by the method. For this 

study, a “geom-linear sequence” of length 𝑛𝑘𝑖𝑥 will be used. This sequence starts by initially 

building a geometric progression that ranges from a starting value up to 𝑀, and this is 



120 
 

followed by linear interpolation between each consecutive pair within the geometric 

sequence. A detailed example for the generation of this sequence is provided in Appendix D. 

For a shape parameter 𝕒, a linear sequence of length 𝑛𝑎𝑖𝑥 with values in the range 0 < 𝕒 ≤ 1 

will be utilized. This is based on the observation that these are the 𝕒s that produce the correct 

shape for the gamma distribution. A more mathematically in-depth explanation is provided in 

Appendix D.  

5.5.1.4. Generation of Simulated QTL Effect Sizes Random Variates 

For each parameter combinations [𝕜, 𝕒], a vector of random variates of length 𝕜 is generated 

(denoted as 𝒒𝒔𝒊𝒎), with the random variates following a gamma distribution 𝛤(𝕒, 1). These 

random variates represent the QTL effect sizes from the proposed parameter combinations. 

This vector will be padded with 𝑀 −  𝕜 zeros, which represents the effect sizes for null 

markers. This results in a 𝒒𝒔𝒊𝒎 vector of length 𝑀 that contains the effect sizes for all the 

markers.  

To handle the effects of heterogeneous linkage disequilibrium structures, the 𝒒𝒔𝒊𝒎 was 

rearranged using the vector 𝒓𝒂𝒏𝒌. The vector is first sliced into segments of equal length, 

with the same number of SNP per slice as in the calculation of vector 𝒓𝒂𝒏𝒌 (i.e., 10 SNPs 

per segment for this study). For each slice of 𝒒𝒔𝒊𝒎, the effect sizes were summed and, using 

these sums, these slices were rearranged based on the indices from the vector 𝒓𝒂𝒏𝒌.  

The rearrangement was conducted as follows: the slice of 𝒒𝒔𝒊𝒎 with the largest sum of effect 

sizes is assigned to the region that ranked at the maximum value (i.e., region with the 

strongest significance of association, or region with maximum 𝒓𝒂𝒏𝒌 value). The slice with 

second largest sum is allocated to the second most significant region, and slice with third 

largest sum to the third most significant, and so on. This step is to construct a new 𝒒𝒔𝒊𝒎 that 

best describes the Manhattan plot from the GWAS with observed phenotype (i.e., aligning the 

slices of 𝒒𝒔𝒊𝒎 in accordance with the peaks from the Manhattan plot while ranking the slices 

in accordance with the magnitude of the peaks). A simplified example of generation and 

rearrangement were provided in Figure 5.5.   

To alleviate potential issues caused by noises in the distributions, a sequence of 𝒒𝒔𝒊𝒎 were 

generated and rearranged, with the number of 𝒒𝒔𝒊𝒎 generated denoted as 𝑛𝑠𝑖𝑚. These 𝒒𝒔𝒊𝒎s 

are then compiled into an array of size 𝑛𝑠𝑖𝑚 × 𝑀, which was denoted as 𝑸𝒔𝒊𝒎. To ensure the 
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compatibility in size between the resampled genotype 𝑿𝒐,𝒓,𝒎 and 𝑸𝒔𝒊𝒎, the 𝑛𝑠𝑖𝑚 was set 

equal to 𝑛𝑜𝑏𝑠.  

 

Figure 5.5: A simplified example of generation and reranking of simulated QTL effect sizes. Using a proposed 

values of [𝕜, 𝕒] (as example in this case, 𝕜 = 700 and 𝕒 = 0.8), a set of QTL effect sizes 𝒒𝒔𝒊𝒎 were 

simulated. At this point, the scale parameter 𝕓 was kept at 1. Using the same slicing schemes as in Figure 5.3, 

the 𝒒𝒔𝒊𝒎 was sliced and the effect sizes were summed, and the total effect sizes per slices were ranked. Using 

the 𝒓𝒂𝒏𝒌 calculated from Figure 5.3, the slices of 𝒒𝒔𝒊𝒎 were rearranged such that resulting ranks correspond 

to that of 𝒓𝒂𝒏𝒌. This process was then repeated 𝑛𝑠𝑖𝑚 number of times, from which 𝑛𝑠𝑖𝑚 number of rearranged 

𝒒𝒔𝒊𝒎 were produced before being compiled into 𝑸𝒔𝒊𝒎. In this example 1000 SNPs were chosen per slice for 

clarity, 10 SNPs per slices was used in the actual algorithm.  

5.5.1.5. The Calculation of Simulated Phenotypes 

The simulated phenotype 𝒀𝒔𝒊𝒎 was calculated using the resampled genotype 𝑿𝒐,𝒓,𝒎, the effect 

sizes of the simulated QTL 𝑸𝒔𝒊𝒎, as well as the full observed phenotype 𝒚𝒇𝒖𝒍𝒍 and additive 
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genetic variance 𝑣𝐴𝑜𝑏𝑠
. The simulated phenotype 𝒀𝒔𝒊𝒎 is a 𝑛𝑠𝑖𝑚  × 𝑁𝑟𝑠𝑎𝑚𝑝 2-dimensional 

array. A flowchart for this step was provided in Figure 5.6.  

The additive genetic component of 𝒀𝒔𝒊𝒎, denoted as 𝒀𝒔𝒊𝒎𝑨[𝕓=1], is calculated through the 

following multidimensional array multiplication:  

𝒀𝒔𝒊𝒎𝑨[𝕓=1]𝑠,𝑟 = ∑𝑿𝑠,𝑟,𝑖 ∗ 𝑸𝒔𝒊𝒎𝑠,𝑖

𝑀

𝑖=1

 [13] 

Where the subscript 𝑠 and 𝑟 are the index of 𝑛𝑠𝑖𝑚 and 𝑁𝑟𝑠𝑎𝑚𝑝 respectively. The additive 

genetic variance of the simulated phenotype (denoted as 𝒗𝑨[𝕜,𝕒,𝕓=1]
) was calculated as follows:  

𝒗𝑨[𝕜,𝕒,𝕓=1]𝑠
= 𝑣𝑎𝑟(𝒚𝒔𝒊𝒎𝑨[𝕓=1]𝑠,∗) [14] 

The resulting 𝒗𝑨[𝕜,𝕒,𝕓=1]
 is a vector of length 𝑛𝑠𝑖𝑚.  

It’s worth noting that up to this point the simulated QTL effect sizes in 𝑸𝒔𝒊𝒎 still have their 

scale parameter set at 𝕓 = 1, which might not be the case for the 𝕕𝑄𝑇𝐿 that need to be 

estimated. It has been noted however that the sole effect of scale parameter 𝕓 is that it scales 

the random variates of the 𝕕𝑄𝑇𝐿 by a fixed amount (Mun, 2012):  

𝛤(𝕒, 𝕓) =  𝕓 ∗ 𝛤(𝕒, 1) [15] 

Using this scaling property, one can calculate the expected additive genetic variance of the 

phenotype if the 𝕕𝑄𝑇𝐿 follows a 𝕓 other than 1 by simply multiplying it with 𝕓2. A vector of 

length 𝑛𝑠𝑖𝑚 containing estimated 𝕓s (denoted as �̂�) could thus be calculated, with the 𝑠th 

entry of �̂� (denoted as 𝔟�̂�) defined as follows:  

𝔟�̂� = √
𝑣𝐴𝑜𝑏𝑠

𝑣𝐴[𝕜,𝕒,𝕓=1]𝑠

 [16] 

Where 𝑣𝐴𝑜𝑏𝑠
 is the observed additive genetic variance. This operation has the implication of 

reducing the number of parameters that need to be estimated, hence simplifying the method. 

From this point onward, only 𝕜 and 𝕒 remained that need to be estimated.  
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Figure 5.6: Flowchart for the calculation of simulated phenotypes 𝒀𝒔𝒊𝒎. Starting from the resampled genotypes 

𝑿𝒐,𝒓,𝒎 and 𝑸𝒔𝒊𝒎, the unscaled simulated additive phenotypes 𝒀𝒔𝒊𝒎𝑨[𝕓=1] were calculated. The scaling factor 

�̂� was calculated using the variance of 𝒀𝒔𝒊𝒎𝑨[𝕓=1] and observed additive genetic variance 𝑣𝐴𝑜𝑏𝑠
, which then be 

used to rescale 𝒀𝒔𝒊𝒎𝑨[𝕓=1] into 𝒀𝒔𝒊𝒎𝑨. The median of �̂� serves as the estimate for 𝕓. The residual component 

(𝒀𝒔𝒊𝒎𝑬, generated using normal distribution with zero mean and observed residual variance) were finally added 

into the 𝒀𝒔𝒊𝒎𝑨, producing the final 𝒀𝒔𝒊𝒎. 

The vector �̂� would then be used to scale the vector of additive genetic component of the 

simulated phenotype, with the scaled vector denoted as 𝒀𝒔𝒊𝒎𝑨. The 𝑠th row of 𝒀𝒔𝒊𝒎𝑨 (denoted 

as 𝒀𝒔𝒊𝒎𝑨𝑠
) was scaled as follows:  

𝒀𝒔𝒊𝒎𝑨𝑠
= 𝒀𝒔𝒊𝒎𝑨[𝕓=1]𝑠 ∗ 𝔟�̂� [17] 

Where 𝒀𝒔𝒊𝒎𝑨[𝕓=1]𝑠 is the 𝑠th row of 𝒀𝒔𝒊𝒎𝑨[𝕓=1]. 

The residual component for the simulated phenotypes (denoted as 𝒀𝒔𝒊𝒎𝑬 with size 𝑛𝑠𝑖𝑚  ×

𝑁𝑟𝑠𝑎𝑚𝑝) is generated using the following normal distribution:  

𝒀𝒔𝒊𝒎𝑬 ~ 𝒩 (0, (𝑣𝑎𝑟(𝒚𝒇𝒖𝒍𝒍) − 𝑣𝐴𝑜𝑏𝑠
)) [18] 

And finally, the 𝒚𝒔𝒊𝒎 is calculated by summing 𝒀𝒔𝒊𝒎𝑨 and 𝒀𝒔𝒊𝒎𝑬:  

𝒀𝒔𝒊𝒎 = 𝒀𝒔𝒊𝒎𝑨 + 𝒀𝒔𝒊𝒎𝑬 [19] 
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The simulated phenotype 𝒀𝒔𝒊𝒎 was utilized in the calculation of 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑠𝑖𝑚

2 . For the 

vector of the estimated scale parameters �̂�, the median of the vector (denoted as �̂�) was 

calculated and kept for section 5.5.1.8.  

5.5.1.6. Obtaining 𝔻𝐹𝑇
2  from Simulated Phenotype (𝔻𝐹𝑇𝑠𝑖𝑚

2 ) 

As in the calculation of 𝔻𝐹𝑇𝑜𝑏𝑠

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  from the observed phenotype, the distributions 

from the proposed model, 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑠𝑖𝑚

2 , were calculated using single SNP regression of 

the simulated phenotype 𝒀𝒔𝒊𝒎 on the resampled genotype 𝑿𝒐,𝒓,𝒎 and from which an array of 

test statistics 𝑭𝑻𝒔𝒊𝒎 with size 𝑛𝑠𝑖𝑚  × 𝑀𝑚𝑎𝑓 was generated. The steps taken for the 

calculation of 𝑭𝑻𝒔𝒊𝒎, 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑠𝑖𝑚

2  is identical to those utilized for the calculation of 

𝑭𝑻𝒐𝒃𝒔, 𝔻𝐹𝑇𝑜𝑏𝑠

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  in section 5.5.1.2 to ensure the consistency and validity during the 

comparison of the distributions. The resulting 𝔻𝐹𝑇𝑠𝑖𝑚

2  is a sequence of 𝔻𝐹𝑇
1  distributions with 

length 𝑛𝑠𝑖𝑚, and was used in equality testing with 𝔻𝐹𝑇𝑜𝑏𝑠

1 . An illustrative figure for this step 

was provided in Figure 5.7. 

 

Figure 5.7: The generation of a sequence of “simulated distribution” 𝔻𝐹𝑇𝑠𝑖𝑚

2 . For each resamples of genotypes 

𝑿𝒐,𝒓,𝒎 and their corresponding simulated phenotypes 𝒀𝒔𝒊𝒎, GWASes were conducted between each genotype-

phenotype pairs, from which the simulated distribution 𝔻𝐹𝑇𝑠𝑖𝑚

1  was generated. The 𝔻𝐹𝑇𝑠𝑖𝑚

1  from all the 

resamples were collated into simulated distribution sequence 𝔻𝐹𝑇𝑠𝑖𝑚

2 .  
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5.5.1.7. Testing the Equality between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  

In this study, the equality between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  is defined as the goodness of fit 

between the each of the 𝔻𝐹𝑇
1  in 𝔻𝐹𝑇𝑠𝑖𝑚

2  and each of 𝔻𝐹𝑇
1  in 𝔻𝐹𝑇𝑜𝑏𝑠

2 . This involves the 

calculation of amount of discrepancy between each of the 𝔻𝐹𝑇
1 s in 𝔻𝐹𝑇𝑠𝑖𝑚

2 and those in 

𝔻𝐹𝑇𝑜𝑏𝑠

2 . As there are 𝑛𝑠𝑖𝑚 number of 𝔻𝐹𝑇
1  in 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝑛𝑜𝑏𝑠 number of 𝔻𝐹𝑇
1  in 𝔻𝐹𝑇𝑜𝑏𝑠

2 , the 

resulting 𝔻2 test statistic 𝑡𝔻2 that describes the equality between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  is a 

𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 2-dimensional array that contains the pairwise goodness of fit between each of 

the 𝔻𝐹𝑇
1 s within 𝔻𝐹𝑇𝑠𝑖𝑚

2  and that of 𝔻𝐹𝑇𝑜𝑏𝑠

2 . An example for the calculation of 𝔻2 

Kolmogorov-Smirnov test statistic 𝑡𝔻2
𝐾𝑆

 was provided in Figure 5.8.  

Previous publications such as Cirrone et al. (2004) commented the lack of power of some of 

the statistical tests such as Kolmogorov-Smirnov test in detecting discrepancies at the tail 

region of 𝔻𝐹𝑇
1 , where the effect of changing genetic architecture is the most observable. This 

is further burdened by the reduced amount of data at the tail region, which reduces the 

reliability of any statistical test. Another complication on testing the equality of distributions 

arises from the fact that 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  are mixtures of F-distribution and non-central F-

distribution. By Fisher-Darmois-Pitman-Koopman theorem which, loosely stated, given a set 

of independent and identically distributed random variables, this set of random variable 

would have a sufficient summary statistics that can fully capture all the information 

pertaining to said set if and only if the variables follow an exponential family distribution, 

provided the support of the distribution do not changes with the parameters (Barankin and 

Maitra, 1963; Koopman, 1936). As F-distributions and non-central F-distributions are not 

exponential family distribution and yet with fixed supports (i.e. the mixture distributions 

range from zero to positive infinity, regardless the parameters), in addition with the lack of 

independence between the marker test statistics, all these break the assumption needed for the 

Fisher-Darmois-Pitman-Koopman theorem. This means for any summary statistics used on 

𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  there would be a loss of information on these distributions, as these 

summary statistics failed to capture all the information from these distribution. This in turn 

led to a loss of power in detecting the discrepancies between the distribution and increases 

the signals’ vulnerability to be drown by noises in the test of equality between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 

𝔻𝐹𝑇𝑜𝑏𝑠

2 .  
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To improve the power and reliability of detection, and to capture as much information 

pertaining to these distributions as possible, a battery of 703 nonparametric statistical tests 

were employed to test the goodness of fit between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 . Some of the test 

statistics used include truncated Kolmogorov-Smirnov Test, Wasserstein’s statistics, DTS 

statistics and quantile-based statistics as well as their generalizations. A description for the 

battery of statistics is provided in Appendix C.  

 

Figure 5.8: A simplified example of calculation of pairwise goodness of fit Kolmogorov-Smirnov (KS) test 

statistics between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  (denoted as 𝑡𝔻2
𝐾𝑆

). For this simplified example, 𝑛𝑠𝑖𝑚 = 𝑛𝑜𝑏𝑠 = 3 

distributions were tested. To conduct the KS test between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 , the KS test was conducted 

between each of the 𝔻𝐹𝑇𝑜𝑏𝑠

1  in 𝔻𝐹𝑇𝑜𝑏𝑠

2  (blue distributions column-wise) and each of the 𝔻𝐹𝑇𝑠𝑖𝑚

1  in 𝔻𝐹𝑇𝑠𝑖𝑚

2  (red 

distributions row-wise), from which their test statistics were recorded (numbers at the top right corner for each 

subplots). These number were then collated into a matrix of size 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠, which become the test statistics 

for KS test between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 , 𝑡𝔻2
𝐾𝑆

. This process was then repeated for all the statistics within the 

battery.  

From this battery of statistics, a 3-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑛𝑡𝑠𝑡  × 𝑛𝑜𝑏𝑠 (denoted as 

𝑻[𝕜,𝕒]𝒔,𝒕,𝒐) containing the test statistics from all 703 tests was compiled, with 𝑛𝑡𝑠𝑡 denoting the 

number of test statistics used in this experiment (𝑛𝑡𝑠𝑡 = 703 in this study). This array was 

then used to compare the goodness of fit of the distribution from all the proposed models and 

the observed phenotypes. These test statistics can vary significantly in their scale, thus would 

need to be normalized in the filtering step in section 5.5.1.9.1.1. 
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5.5.1.8. Brute Force Searching the Problem 

The procedures from the Step 5.5.1.4 down to Step 5.5.1.7 are repeated for each of the [𝕜, 𝕒] 

using a brute-force search method. This search method is chosen for its robustness against 

noisy statistics and its guarantee in finding a solution if one exists.  

For each [𝕜, 𝕒] evaluated, a block of test statistics 𝑻[𝕜,𝕒]𝒔,𝒕,𝒐  was calculated, and in total 𝑛𝑘𝑖𝑥 ×

𝑛𝑎𝑖𝑥 blocks of 𝑻[𝕜,𝕒]𝒔,𝒕,𝒐  were generated. These blocks of test statistics were compiled into a 5-

dimensional array of size 𝑛𝑜𝑏𝑠 × 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥 × 𝑛𝑡𝑠𝑡 × 𝑛𝑠𝑖𝑚, where 𝑛𝑘𝑖𝑥 and 𝑛𝑎𝑖𝑥 are the 

numbers of 𝕜s and 𝕒s tested in the method. This array was denoted as 𝑺𝒐,𝒌,𝒂,𝒕,𝒔, with the 

subscript 𝒐 being the index of 𝑛𝑜𝑏𝑠, 𝒌 being the index of 𝑛𝑘𝑖𝑥, 𝒂 being the index of 𝑛𝑎𝑖𝑥, 𝒕 

being the index of 𝑛𝑡𝑠𝑡 and 𝒔 being the index of 𝑛𝑠𝑖𝑚. The 𝑺𝒐,𝒌,𝒂,𝒕,𝒔 array was then used to 

determine the goodness of fit of the distributions generated from a [𝕜, 𝕒], with the aim of 

finding a [𝕜, 𝕒] that best fit the observed distribution 𝔻𝐹𝑇𝑜𝑏𝑠

2 . 

To feature the patterns observable through the 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥 slices of 𝑺𝒐,𝒌,𝒂,𝒕,𝒔, as well as the 

results from subsequent processing, a 2-dimensional raster plot termed “K-a” plot were used 

to visualise the goodness of fit. This type of plot has a vertical axis denoting the value of 𝕒s 

(shape parameter for QTL effect size distribution) and the horizontal axis the value of 𝕜s 

(number of QTL), and the colour of each of the pixels in this plot represent the goodness of 

fits between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  of each of the models. An example of this plot is featured in 

Figure 5.9.  

Besides the test statistics, the estimates of the scale parameter �̂� were compiled into a 2-

dimensional array of size 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥, which was denoted as �̂�. 

5.5.1.9. Filtering the Statistics 

While brute force search is one of the most robust methods available, the results from any 

given statistic could still be unreliable. This is due to the weak signals from the changing 

genetic architectures (Figure 5.10). To further improve the reliability of the method, the test 

statistics need to be filtered.  

5.5.1.9.1. Types of Filters 

Two types of filters were employed for this method: Quantile filter and Median-mode filter.  
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5.5.1.9.1.1. Quantile Filter 

In a similar vein as in the detection of significant markers in a GWAS experiment, the test 

statistics within 𝑺𝒐,𝒌,𝒂,𝒕,𝒔 was filtered using a quantile threshold. The aims of this process are 

to amplify the signals from the [𝕜, 𝕒] array that minimized the test statistics by nullifying 

those that failed the minimization, normalizing the scale of the test statistics, and to improve 

the reliability of the statistics caused by the small amount of data at the tail of the distribution.   

 

Figure 5.9: An example of the “K-a” plot. The colour of pixels featured in this plot signifies the magnitude of test 

statistics that test the goodness of fit between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  for each of the tested model [𝕜, 𝕒], with 

brighter pixels indicated lower test statistics (i.e., better goodness of fit). The horizontal axis denotes the values 

of 𝕜 (number of QTL) and the vertical axis the value of 𝕒 (shape parameter for QTL effect size distribution).  

 

Figure 5.10: The differing performances of the test statistics. Each of the pixels in these 2-dimensional raster 

plots represent the goodness of fits between the distribution from observed phenotypes 𝔻𝐹𝑇𝑜𝑏𝑠

2  and distributions 

from simulated phenotypes 𝔻𝐹𝑇𝑠𝑖𝑚

2  for each of the parameter combination [𝕜, 𝕒], with lighter pixel indicates a 

higher goodness of fit (i.e., lower test statistics). The red dot on the plots indicated to the true parameter 

combinations.  



129 
 

This quantile filtering would operate along the sheets of 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥 in 𝑺𝒐,𝒌,𝒂,𝒕,𝒔, which is 

denoted as 𝑺𝒌,𝒂. Using a quantile threshold 𝑞𝑐𝑢𝑡 = 0.05, the critical values of the test 

statistics (denoted as 𝑠𝑐𝑟𝑖𝑡) are obtained by defining as the bottom 5% of all test statistics 

recorded within the sheet 𝑺𝒌,𝒂:  

Pr(𝑺𝒌,𝒂  ≤ 𝑠𝑐𝑟𝑖𝑡) = 0.05 [20] 

The critical value 𝑠𝑐𝑟𝑖𝑡 was used as the filter for the test statistics. From this critical value and 

𝑺𝒌,𝒂, a 2-dimensional array of the size 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥 was calculated, containing the scores of 

acceptance-rejection of the test statistics based on the critical value. Test statistics that have a 

value smaller than 𝑠𝑐𝑟𝑖𝑡 were marked with “1” and they were marked as “0” otherwise. These 

2-dimensional arrays were then recompiled into another 5-dimensional array (denoted as 

𝑽𝒐,𝒌,𝒂,𝒕,𝒔) containing all the “votes” (i.e., “1” s) from each of the 𝑺𝒌,𝒂. An example of this 

filtering process is provided in Figure 5.11.  

To amplify the signals, the 𝑽𝒐,𝒌,𝒂,𝒕,𝒔 were then summed along the 𝑛𝑠𝑖𝑚 and 𝑛𝑜𝑏𝑠 axes, 

producing a 3-dimensional array of size 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥 × 𝑛𝑡𝑠𝑡 denoted as (𝑽𝒌,𝒂,𝒕):  

𝑽𝒌,𝒂,𝒕 = ∑ ∑ 𝑽𝒐,𝒌,𝒂,𝒕,𝒔

𝑛𝑜𝑏𝑠

𝑜=1

𝑛𝑠𝑖𝑚

𝑠=1

 [21] 

The 𝑽𝒌,𝒂,𝒕 array contains a tally of votes for each of the model [𝕜, 𝕒] from each of the test 

statistics across the replicates. An example of the 𝑽𝒌,𝒂,𝒕 is provided in the K-a plots in 5.12.  

 

Figure 5.11: An example of quantile filtering in operation. The plots in the left contained the raw test statistics 

sliced from the 𝑽𝒐,𝒌,𝒂,𝒕,𝒔, while the plots on the right contained the filtered array, with yellow pixels denoted as “1” 

(i.e., test statistics at the bottom 5%) and dark blue as “0”.  
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Figure 5.12: The building of the 3-dimensional array 𝑽𝒌,𝒂,𝒕 through the summation of 𝑽𝒐,𝒌,𝒂,𝒕,𝒔. Note that only a 

slice of 𝑽𝒌,𝒂,𝒕 was featured in this figure.  

The steps within the quantile filtering can also be expressed in the form of the following 

pseudocode:  

 

## Input for this step : S_okats (5-dimensional array containing all the test statistics from [k, a] 

## k is number of QTL, a is shape parameter for the QTL effect sizes 

 

n_obs, n_kix, n_aix, n_tst, n_sim = S_okats.shape 

 

## n_obs: number of observed distribution from input genotype and phenotype  

#### (i.e. number of D1_FT_obs in D2-FT_obs) 

## n_kix: number of levels of [k] tested  

## n_aix: number of levels of [a] tested 

## n_tst: number of statistical test on equality of distribution conducted 

## n_sim: number of simulated distribution from resampled genotypes and simulated phenotype 

#### (i.e. number of D1_FT_sim in D2_FT_sim) 

#### simulated phenotypes calculated from simulated QTL generated from [k,a] and scaled by [b] 

 

V_okats = matrix(0, S_okats.shape) # initialize a 5-d array to contain all the votes, starting values 

set at 0 

 

for ox in range(n_obs): 

 for tx in range(n_tst): 

  for sx in range(n_sim): 

   S_ka = S_okats[ox,:,:,tx,sx] 

 

# calculating the bottom 5% quantile within S_ka  

   S_ka_quantile_05 = quantile(S_ka, 0.05)  

 

   ## for each of the S_ka, a vote is casted to the [k,a] that has its test  

   ## statistics below the 5% quantile (i.e. [k,a] with minimal test statistics) 

    

   which_ka_has_minimal_teststats = where(S_ka <= S_ka_quantile_05) 

   V_okats[ox,:,:,tx,sx][which_S_ka_has_minimal_teststats] = 1 

    

## sum V_okats across n_obs and n_sim axis -> V_kat 

V_kat = sum(sum(V_okats, axis=0), axis=4) 
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5.5.1.9.1.2. Median-mode Consensus Filter 

While quantile filtering could amplify the signals, on some occasion the statistics can still be 

noisy, and this can be attributed to the dispersion of the distribution, which might cause some 

of the statistics to converge toward an outlying result. This is especially problematic for a 

polygenic trait, for which the signals from the changing [𝕜, 𝕒]s are sufficiently weak that 

noises from the dispersion can easily overwhelm the signal, producing a characteristic “lower 

right quadrant solutions” where an entire lower right region of the plot is marked as positive 

with poor differentiation between the band of solutions and the lower right quadrant (Figure 

5.13). For this reason, a “median-mode consensus filter” was employed. This filtering method 

is designed in attempt to find a “consensus” among the test statistics.  

 

Figure 5.13: An example of the “lower right quadrant solutions” where the entire region in the lower right was 

marked as positive, causing poor differentiation in the band of solution and the lower right quadrant. 

The median-mode consensus aimed to filter the test statistics based on their empirical 

distribution and attempt to achieve a consensus among the statistics by accepting those that 

located close to the mode of their empirical distribution. Through this filter, outlying 

statistics, which are the major contributor of noise in the solutions, could be weeded out.  

5.5.1.9.1.2.1. The Median Phase: Calculation of Median 𝕜 Given a Test Statistics and 𝕒 

This filter starts by slicing the vote tally array 𝑽𝒌,𝒂,𝒕 array along the second (i.e. 𝒂) axis, 

produces a 2-dimensional array of size 𝑛𝑘𝑖𝑥 × 𝑛𝑡𝑠𝑡  denoted as 𝑽𝒌,𝒕. The filter was then 

applied for each individual 𝑽𝒌,𝒕 slices.  

For the initiation of the median phase, the 𝑽𝒌,𝒕 was further sliced along the column axis (i.e. 𝒕 

axis). This produces a vector of length 𝑛𝑘𝑖𝑥 denoted as 𝒗𝒌,𝒂𝒙,𝒕𝒙 containing the tally of votes 
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for each of the 𝕜s for the shape parameter 𝕒 at index 𝑎𝑥, tested using the test statistics 

indexed at 𝑡𝑥. From this vector, the empirical CDF (denoted as 𝐹𝑣,𝑎𝑥,𝑡𝑥) was constructed using 

the following equation:  

𝐹𝑣,𝑎𝑥,𝑡𝑥
(𝑘𝑥) =  

∑ (𝒗𝒌≤𝒊 ,𝒂𝒙,𝒕𝒙)
𝑛𝑘𝑖𝑥
𝑖=1

∑ 𝒗𝒌,𝒂𝒙,𝒕𝒙
𝑛𝑘𝑖𝑥

𝑖=1

 [22] 

Where the 𝑘𝑥 is the index of 𝕜s tested in the method. The “arg-median” of this empirical 

CDF, defined as the argument for a distribution function that produces the median of the 

distribution, is obtained by finding 𝑘𝑥 that fulfil this equation:  

𝐹𝑣,𝑎𝑥,𝑡𝑥
(𝑘𝑥) = 0.5 [23] 

This calculation was conducted across all 𝑛𝑡𝑠𝑡 columns of 𝑽𝒌,𝒕, from which their arg-medians 

𝑘𝑥 were obtained. These 𝑘𝑥s were collected in a vector of length 𝑛𝑡𝑠𝑡 denoted as 𝒌𝒎𝒆𝒅𝒕
. An 

example of 𝒗𝒌,𝒂𝒙,𝒕𝒙 and 𝐹𝑣,𝑎𝑥,𝑡𝑥 is provided in Figure 5.14.  

The use of median here served two purposes: to estimate the location of the peak of the 

empirical distribution and, in a way, “tag” the distribution. The mean does not serve as a 

reliable indicator of the peak of the distribution as it is easily influenced by outliers, whereas 

the mode is easily influenced by the noise in the distribution. If the distributions are similar in 

shape and central tendency, then the median tend to be close together. Using this property, we 

can “tag” and classify the distribution based on its medians, thus allowing the identification 

of the “consensus” among the test statistics.  

 

Figure 5.14: The calculation of median of the 𝒗𝑘,𝑎𝑥,𝑡𝑥  vector. In Figure (a) the 𝑽𝒌,𝒂,𝒕 array is first sliced along 

𝑛𝑎𝑖𝑥 and 𝑛𝑡𝑠𝑡 (denoted as the red box), which the resulting vector is 𝒗𝒌,𝒂𝒙,𝒕𝒙, as featured in Figure (b). The 

empirical CDF of (b) is then calculated, and the resulting distribution 𝐹𝑣,𝑎𝑥,𝑡𝑥 are featured in Figure (c). The red 

lines in (c) defines the median of the empirical CDF, and the intersection point of the red line with the x-axis 

defines the “arg-median” (𝑘𝑥) of the distribution. 
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5.5.1.9.1.2.2. The Mode Phase: Finding the Consensus (Modal) 𝕜 across all Test Statistics 

Given an 𝕒 

In this phase, the mode of the vector arg-medians of 𝕜s, 𝒌𝒎𝒆𝒅𝒕
, was determined, with the 

modal 𝕜 value be denoted as 𝕜𝑚𝑜𝑑𝑒. The 𝕜𝑚𝑜𝑑𝑒 was assigned to be the consensus 𝕜 value 

among all the test statistics for the value 𝕒, and any test statistics that suggested a 𝕜 that is 

proximal with 𝕜𝑚𝑜𝑑𝑒 would be selected. 

The arg-medians of 𝕜s are not discrete values however, thus the traditional notion of mode is 

not applicable. Thus, the 𝕜𝑚𝑜𝑑𝑒 were determined using a method based on averaged shifted 

histograms proposed by Scott (1985). This involves plotting the histograms of 𝒌𝒎𝒆𝒅𝒕
 under 

varying bin sizes, and from each of the histograms the 𝕜s from a few of the top peaks were 

selected (Figure 5.15). These 𝕜s were collected into a pool of peak 𝕜s denoted as {𝕜}𝑝𝑒𝑎𝑘, 

and the 𝕜𝑚𝑜𝑑𝑒 was defined as the median of {𝕜}𝑝𝑒𝑎𝑘.  

 

Figure 5.15: Examples of a series of histograms built from the same 𝒌𝒎𝒆𝒅𝒕
 under varying number of bins. The 

𝕜s from the top few peaks from each of the histogram, demarcated with the red boxes, are then being collected 

into a pool denoted as {𝕜}𝑝𝑒𝑎𝑘. 

The proximity of 𝕜 suggested by a statistical test 𝑡 (denoted as 𝕜(𝑡)) with 𝕜𝑚𝑜𝑑𝑒 is first 

calculated as the absolute deviation of 𝕜 from 𝕜𝑚𝑜𝑑𝑒: 

𝑘𝑑𝑒𝑣(𝑡) = |𝕜(𝑡) − 𝕜𝑚𝑜𝑑𝑒| [24] 

The deviation 𝑘𝑑𝑒𝑣(𝑡) is stored in a vector of length 𝑛𝑡𝑠𝑡 denoted as 𝒌𝒅𝒆𝒗. Quantile filtering 

was then applied onto 𝒌𝒅𝒆𝒗, with the indices of test statistics that has its 𝑘𝑑𝑒𝑣 located at the 

bottom 5% of 𝒌𝒅𝒆𝒗 (i.e., most proximal from 𝕜𝑚𝑜𝑑𝑒) being selected. The indices of the 

chosen test statistics were used to trim 𝑽𝒌,𝒕 array. 
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5.5.1.9.1.2.3. The Filtering Phase: Filtering the Test Statistics For an 𝕒 

Using the indices of the chosen test statistics, the 𝑽𝒌,𝒕 was trimmed along the column (i.e., 

test statistic 𝑛𝑡𝑠𝑡). This is done by removing columns with outlying test statistics while 

retaining columns with indices of the chosen test statistics. The resulting array is a trimmed 

vote tally array, a 2-dimensional array of size 𝑛𝑘𝑖𝑥 × 𝑛𝑡𝑠𝑡𝑓𝑖𝑙𝑡
, where 𝑛𝑡𝑠𝑡𝑓𝑖𝑙𝑡

 is the number of 

chosen test statistics, denoted as 𝑽𝒌,𝒕𝒇.  

This process from Section 5.5.1.9.1.2.1 up to 5.5.1.9.1.2.3 was repeated for all 𝑛𝑎𝑖𝑥 slices of 

𝑽𝒌,𝒕. The resulting 𝑽𝒌,𝒕𝒇s from all slices were recompiled into a 3-dimensional array of size 

𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥 × 𝑛𝑡𝑠𝑡𝑓𝑖𝑙𝑡
 denoted as 𝑽𝒌,𝒂,𝒕𝒇, and this is the end result of the median-mode 

consensus filter.  

The methodology for the median-mode consensus filter can also be expressed in the 

following pseudocode:  

## Input for median-mode consensus filter: V_kat 

n_kix, n_aix, n_tst = V_kat.shape 

## n_kix: number of levels of [k] tested  

## n_aix: number of levels of [a] tested 

## n_tst: number of statistical test on equality of distribution conducted 

 

temp_V_ktf_storage = [] 

 

for ax in range(n_aix): 

 ## MEDIAN PHASE: calculation of median [k] given a test statistics and [a] 

 V_kt = V_kat[:,ax,:] ## shape of V_kt: n_kix * n_tst 

  

 # calculating the median [k] value across all test statistics given an [a] value 

 k_med_t = zeros(n_tst) 

 for tx in range(n_tst): 

  v_k_ax_tx = V_kt[:,tx] 

   

  ## calculation of empirical CDF for v_k_ax_tx across [k] 

  F_v_ax_tx = cumsum(v_k_ax_tx) / sum(v_k_ax_tx) # eqn [22] 

  list_of_all_possible_kx = 1:n_kix 

  median_kx = list_of_all_possible_kx[where(F_v_ax_tx == 0.5)] # eqn[23] 

  ## median_kx can be non-integer; this expression is used here for clarity 

  k_med_t[tx] = median_kx  

   

 # MODE PHASE: Finding the consensus (i.e. modal) [k] across all test statistics 

 k_peak = ASH_mode(k_med_t) # mode calculated using averaged shifted histogram (ASH) by Scott  

 ## (1985) 

 k_mode = median(k_peak)  

  

 ## calculating the deviation of [k] suggested by each test statistics with that of k_mode 

 k_dev = abs(k_med_t - k_mode) # eqn [24] 

 k_dev_quantile05 = quantile(k_dev, 0.05) # fine the 5% quantile within k_dev_t  

 k_dev_which_has_minimal_deviation = where(k_dev <= k_dev_quantile05) 

  

 ## FILTERING PHASE: Filtering the test statistics given an [a] 

 V_ktf = V_kt[:,k_dev_which_has_minimal_deviation] 

 temp_V_ktf_storage = temp_V_ktf_storage + [V_ktf] # store the filtered V_kt as temporary list 

 

V_katf = as.array(temp_V_ktf_storage) # recompile the temporary list into 3-d array V_katf 
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5.5.1.10. Extracting the Solutions for Estimated Parameters of 

Genetic Architecture 

For the preparation of extraction of solutions of estimated parameters of genetic architecture, 

the 𝑽𝒌,𝒂,𝒕𝒇 was summed across the third axis (i.e. 𝒕𝒇 axis), producing a 2-dimensional array of 

size 𝑛𝑘𝑖𝑥 × 𝑛𝑎𝑖𝑥, which was denoted as 𝑽𝒌,𝒂. 

𝑽𝒌,𝒂 = ∑ 𝑽𝒌,𝒂,𝒕𝒇𝑖

𝑛𝑡𝑠𝑡𝑓𝑖𝑙𝑡

𝑖=1

 [25] 

The 𝑽𝒌,𝒂 array was used in the extraction of solution for the estimation of the parameters 

associated with the genetic architecture.  

Using the summed vote tally array 𝑽𝒌,𝒂, the most likely solutions of 𝕜s for each of the 𝕒 

tested was extracted via a consensus approaches. Theoretically the most likely solutions can 

be defined as follows: Given a value for parameter 𝕒, which 𝕜s have successfully minimized 

the most test statistics (i.e., column-wise mode of the 𝑽𝒌,𝒂 array). In practice however, 

directly applying the maximum value on the 𝑽𝒌,𝒂 array has its own issue, as the dispersion of 

𝔻𝐹𝑇
2  reduces the stability of vote counts in 𝑽𝒌,𝒂 and a solution’s reliability (Figure 5.16). For 

this reason, further processing on the 𝑽𝒌,𝒂 is still required.  

For this step, smoothing algorithms were employed. A two-dimensional cubic spline was 

utilized on the 𝑽𝒌,𝒂. From this smoothed array, the arguments of the maximum (i.e., the 

modal 𝕜 values) for each column of 𝑽𝒌,𝒂 were recorded into a vector of length 𝑛𝑎𝑖𝑥 denoted 

as �̂�𝒓𝒂𝒘. The index of modal 𝕜, denoted as 𝑘𝑥𝑚𝑜𝑑𝑒
, were also recorded for further indexing 

purposes. An example of the implementation of the two-dimensional spline is illustrated in 

Figure 5.17.  

To further smoothen �̂�𝒓𝒂𝒘, a Savitsky-Golay filter was utilized (Savitzky and Golay, 1964). 

There are several advantages of the Savitsky-Golay filter compared to cubic splines; the 

Savitsky-Golay filter preserves many of the essential properties of a distribution such as the 

moments, width and height of the curve, area under the curve, central tendencies, derivatives 

and symmetries of the curve while maintaining a least squared fitting, which made it 

preferable over cubic splines for this purpose (Schafer, 2011; Ziegler, 1981). For this reason, 

the Savitzky-Golay filter was used to smooth �̂�𝒓𝒂𝒘, and the resulting vector (denoted as 
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�̂�𝒔𝒎𝒐𝒐𝒕𝒉𝒆𝒅) would become the solution of the estimated number of QTL �̂� for a value of 𝕒. 

An example of application of cubic spline and Savitzky-Golay filter onto the 𝑽𝒌,𝒂 array is 

provided in Figure 5.18.  

For each of the �̂�s in �̂�𝒔𝒎𝒐𝒐𝒕𝒉𝒆𝒅, they were paired with its corresponding shape parameter for 

the QTL effect size distribution 𝕒, producing a parameter pair [�̂�, 𝕒]. Using the index of 𝕒, 

𝑎𝑥, and the index for the corresponding modal 𝕜, 𝑘𝑥𝑚𝑜𝑑𝑒
, the estimated scale parameter �̂� 

was indexed from �̂�, from row 𝑘𝑥𝑚𝑜𝑑𝑒
 and column 𝑎𝑥. This �̂� was paired with [�̂�, 𝕒], and 

this produced a triplet of estimated parameter values [�̂�, 𝕒, �̂�], comprises of estimated number 

of QTL, shape parameter and scale parameter of the QTL effect size distribution. As there are 

𝑛𝑎𝑖𝑥 number of 𝕒s tested, there would be same number of triplets, which were compiled into 

a 2-dimensional array of size 𝑛𝑎𝑖𝑥 × 3 denoted as [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

, with each of the columns 

containing the estimated number of QTL, shape parameter and scale parameter of the QTL 

effect size distribution respectively. This is then the final solution for the estimation of the 

genetic architecture parameters.  

This proposed method does not attempt to simplify the [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

 any further. This is due to 

the non-uniqueness in the solution; there are only two equations available (i.e., the test 

statistic distribution 𝕕𝐹𝑇
1  and the additive genetic variance 𝑣𝐴𝑜𝑏𝑠

) but with three unknowns 

that need to be estimated (i.e. 𝕜, 𝕒 and 𝕓 for number of QTL, and shape and scale parameter 

for QTL effect size distribution respectively). This causes the phenomenon that for each 𝕒 

provided, there would be a corresponding 𝕓 and 𝕜 that can be assigned that would produce a 

set of indistinguishable results (details are provided in Appendix B). Given that any one of 

the triplets in the [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

 could be the true underlying set of parameters for the genetic 

architecture but with no additional constraints, it might not be appropriate to further restrict 

the solutions. Thus, the solution array [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

 was the final output of this algorithm.  
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An example pseudocode for this step can be expressed as follows:  

 

 

Figure 5.16: The K-a plot showing the filtered 𝑽𝒌,𝒂 array from Figure 5.15, with the overlying red line connecting 

the 𝕜s that have successfully minimize the most statistics for each of the 𝕒s. The red dot signifies the true 

genetic architecture parameters 𝑄(2000, 0.3, 1) in this example.  

## Extracting the solution from estimated parameters of genetic architecture 

## input for this step: V_katf, B_hat, list_of_k, list_of_a 

## V_katf : 3-d array that contained filtered number of votes each [k,a] has received 

### the more votes the [k,a] had received, the more test statistics that [k,a] has successfully 

minimized, this implied a better fit distribution, and more likely being the solution 

## B_hat : a 2-d array that contains estimated scale parameter (b_hat) across all [k,a] values  

#### b_hat estimated in step 5.5.1.5 and collected across brute-force search in 5.5.1.8 

## list_of_k : list of values of [k] tested by the method 

## list_of_a : list of values of [a] tested by the method 

 

n_kix, n_aix, n_tstf = V_katf.shape 

 

V_ka = sum(V_katf, axis=2) # shape of V_ka : n_kix * n_aix 

V_ka = 2d_spline(V_ka, 11) ## 2-spline with smoothing parameter set at 11; any value could be used. 

 

k_x_mode = numeric(length = n_aix) 

K_fraktur_raw = numeric(length = n_aix) 

for ax in range(n_aix): 

 k_x_mode[ax] = where(V_ka[:,ax] == max(V_ka[:,ax])) # index of the modal k value 

 K_fraktur_raw[ax] = list_of_k[k_x_mode[ax]] 

 

K_fraktur_smoothed = savitzky_golay(K_fraktur_raw, 11) ## Savitzky-Golay filter  

## with degree of polynomial set at 11; any value could be used for smoothing parameter  

 

## extract the [b] from B_hat 

b_fraktur = numeric(length = n_aix) 

for ax in range(n_aix): 

 b_fraktur[ax] = B_hat[ax,k_x_mode[ax]] 

 

## final solution of estimated parameters 

kab_sln = matrix(0, nrow=length(K_fraktur_smoothed), ncol=3) 

kab_sln[:,0] = K_fraktur_smoothed 

kab_sln[:,1] = list_of_a  

kab_sln[:,2] = b_fraktur 
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Figure 5.17: The implementation of two-dimensional spline on the 𝑽𝒌,𝒂 array. Featured in figure (a) is the raw 

𝑽𝒌,𝒂 array that was featured in Figure 5.16, and in figure (b) is the 𝑽𝒌,𝒂 array that was smoothened. Figure (c) 

illustrated the histogram obtained by slicing the 𝑽𝒌,𝒂 array along the 𝑛𝑎𝑖𝑥 axis (in this example, 𝑛𝑎𝑖𝑥 = 17, 

which correspond to 𝕒 = 0.68), with the blue line obtained by slicing the blue box in the raw 𝑽𝒌,𝒂 array in (a), 

and the orange line obtained by slicing the orange box in the smoothened 𝑽𝒌,𝒂 array in (b). The red line in (b) 

denotes the �̂�𝒓𝒂𝒘, and the index of modal 𝕜, denoted as 𝑘𝑥𝑚𝑜𝑑𝑒
, is defined the red cross in (c), and the 

solution of 𝕜, 𝕜𝑆, was defined using the black cross in the “Value of [K]” axis in (b). The red dots in (a) and (b) 

signifies the true genetic parameter architecture 𝑄(2000, 0.3, 1).  

 

Figure 5.18: The applications of the smoothing methods on the 𝑽𝒌,𝒂 array, with Figure (a) showing the raw 𝑽𝒌,𝒂 

and the associated estimated solutions. Figure (b) shows the 𝑽𝒌,𝒂 array that was smoothened by the two-

dimensional cubic splines, with the red line containing �̂�𝒓𝒂𝒘. Figure (c) shows the smoothened 𝑽𝒌,𝒂 array along 

with the red line containing the �̂� solutions smoothened by Savitzky-Golay filter �̂�𝒔𝒎𝒐𝒐𝒕𝒉𝒆𝒅.  
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5.6. Simulation Study for Testing of the Algorithm  

5.6.1. Layout of the Experiment 

The method was tested through simulation using Python (version 3.9.7, released 30 August 

2021) and R (version 3.6.1, released 5 July 2019). The experiment was conducted using 

genotypic array encoded in the format of {0,1,2}, phenotypes and narrow sense heritability, 

which the last was assumed to have been estimated using methods outside this chapter. This 

experiment was conducted on a PC with the following specification: 8-core Intel i7-8665U at 

1.90 GHz with 16 GB RAM, with all 8 cores being used.  

For this experiment, genotype arrays of sample size of 𝑁 = 3000 and 𝑀 = 50,000 markers 

were utilized. Two genotype arrays were used for this test. The first genotype array tested 

(denoted as 𝑿𝟏) is simulated with homogenous linkage disequilibrium structures, with the 

allele frequency distribution following a Beta distribution. Correlations between markers 

were generated by copying part of the genotype from a marker to the adjacent markers, with 

amount of copying was determined through the level of correlation (denoted as 𝑅𝑡𝑒𝑠𝑡𝑒𝑑
2 ). For 

this study the 𝑅𝑡𝑒𝑠𝑡𝑒𝑑
2  was set at 0.9. The second genotype array (denoted as 𝑿𝟐) is generated 

through coalescence using the R package “AlphaSimR” (Gaynor et al., 2021). For this 

simulation, the command “RunMac2” was used, with effective population size set at 100, and 

the mutation rate at 2.5 × 10−8 per base pair per generation. The small effective population 

size produces heterogeneous linkage disequilibrium structures for this genotype array 

(Gondro, 2015), and was used to test the vulnerability of this method toward such 

heterogeneity. 

At the same time, a number of markers were nominated as the QTL of the phenotype. For 

each of these markers a QTL effect size was associated, with the effect sizes follow a gamma 

distribution with a shape and scale parameters. The genetic architecture parameters tested 

𝑄(𝕜, 𝕒, 𝕓) are provided in Table 5.1. These parameter values were designated as the “true 

parameter values,” and they were the target of estimation for this method. A vector of effect 

sizes of all markers in 𝑿𝒇𝒖𝒍𝒍, denoted as 𝒒𝒕𝒓𝒖𝒆, was also generated.  

Using the genotype arrays 𝑿𝒇𝒖𝒍𝒍 and the marker effect sizes 𝒒𝒕𝒓𝒖𝒆, a vector of phenotypes 

(𝒚𝒇𝒖𝒍𝒍) was generated. The phenotypes are assumed to follow a purely additive model, and is 

calculated as follows:  
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𝒚𝒇𝒖𝒍𝒍 = 𝑿𝒇𝒖𝒍𝒍𝒒𝒕𝒓𝒖𝒆 + 𝒚𝒇𝒖𝒍𝒍𝑬  [26] 

where the residual component 𝒚𝒇𝒖𝒍𝒍𝑬 is generated using the following normal distribution:  

𝒚𝒇𝒖𝒍𝒍𝑬  ~ 𝒩 (0,
𝑣𝑎𝑟(𝑿𝒇𝒖𝒍𝒍𝒒𝒕𝒓𝒖𝒆) ∗ (1 − ℎ2)

ℎ2
) [27] 

For this experiment, the ℎ2 was set at 0.3 for all the parameters tested. The 𝒚𝒇𝒖𝒍𝒍 would 

become the “observed phenotypes” mentioned in the previous sections.  

The 𝑿𝒇𝒖𝒍𝒍, 𝒚𝒇𝒖𝒍𝒍 and ℎ2 were utilized in this method. The genotype array was resampled 27 

times (i.e. 𝑛𝑠𝑖𝑚 = 𝑛𝑜𝑏𝑠 = 27) for this study, and the number of individuals resampled was set 

at 𝑁𝑟𝑠𝑎𝑚𝑝 = 2000. For the number of QTL 𝕜 tested, the following geom-linear progression 

was used:  

𝕜 ∈ {5,10,16,…94,100,160,…940,1000,1600,… 9400,10000,16000,…40000,46000,50000} [29] 

In total 54 values of 𝕜 were tested. For the shape parameter of QTL effect size distribution 𝕒 

tested, linear progression was used, starting from 𝕒 = 0.04, and the common differences for 

𝕒 set at 0.04. In total 25 𝕒s were tested. This represents a total of 54*25 = 1350 combinations 

of [𝕜, 𝕒] being tested. From this method an array of estimated values of the genetic 

architecture parameter, [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

, was generated.  

5.6.2. Genetic Architecture Parameter Tested 

For each of the genotype arrays, the method was tested under varying genetic architecture 

parameters, with the default and alternative values of the number of QTL (𝕜), shape (𝕒) and 

scale parameter (𝕓) of 𝕕𝑄𝑇𝐿 provided in Table 5.1. In total, four combinations of genetic 

architecture parameters were used.  

For each genetic architecture and genotype tested, three replications of the experiment were 

done. In total 24 (4*2*3 = 24) tests were conducted in this study.  
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Table 5.1: Genetic architecture parameters tested in this experiment, with the first value in 𝑄(𝕜, 𝕒, 𝕓) denotes 

the number of QTL, the second and third values denote the shape and scale parameter of the true QTL effect 

size distribution. 

Genetic Architectures Parameter Value Tested 

Defaults 𝑄(300, 0.3, 1) 

Alternatives 𝑄(2000, 0.3, 1) 

𝑄(300, 0.8, 1) 

𝑄(300, 0.3, 3) 

 

5.6.3. Testing the Performance of the Algorithm 

In this study, the performance of the method is defined as the method’s capability of 

estimating the true 𝕕𝑄𝑇𝐿 by producing a solution of [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

 that their distributions 

accurately reflect said true 𝕕𝑄𝑇𝐿. The closer the estimated distributions (denoted as �̂�𝑄𝑇𝐿) are 

to the true 𝕕𝑄𝑇𝐿, the higher the performance of the method.  

Three measures were employed to test the performance of the method. The first measure is a 

modified version of Wasserstein’s statistic, which is defined as the area between the 1 − 𝐶𝐷𝐹 

of the �̂�𝑄𝑇𝐿 and 𝕕𝑄𝑇𝐿 (denoted as �̂�𝑄𝑇𝐿 and 𝔻𝑄𝑇𝐿 respectively).  

For this experiment, the area under the curves of �̂�𝑄𝑇𝐿 and 𝔻𝑄𝑇𝐿 (denoted as 𝐴�̂� and 𝐴𝔻) 

were defined as follows:  

𝐴�̂�𝑖
=  50000 ∗ ∫ �̂�𝑄𝑇𝐿𝑖

 𝑑(𝑄𝑇𝐿 𝑠𝑖𝑧𝑒)
∞

−∞

 [28] 

𝐴𝔻 =  50000 ∗ ∫ 𝔻𝑄𝑇𝐿 𝑑(𝑄𝑇𝐿 𝑠𝑖𝑧𝑒)
∞

−∞

 [29] 

And the performance of the method in term of the modified Wasserstein’s statistic is defined 

as follows:  

𝒑𝑾𝑨𝑺𝑖
= 1 +

[50000 ∗ ∫ �̂�𝑄𝑇𝐿𝑖
 −  𝔻𝑄𝑇𝐿 𝑑(𝑄𝑇𝐿 𝑠𝑖𝑧𝑒)

∞

−∞
]

[50000 ∗ ∫ 𝔻𝑄𝑇𝐿
∞

−∞
 𝑑(𝑄𝑇𝐿 𝑠𝑖𝑧𝑒)]

 [30] 

where the square brackets [𝑥] mean “round the numbers to the nearest integers.”  
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Rather than the absolutize differences between �̂�𝑄𝑇𝐿 and 𝔻𝑄𝑇𝐿 as in the usual Wasserstein’s 

statistic, the raw differences were taken for this statistic. This is to test the level of 

overestimation or underestimation of the number of QTL by the method: if the �̂�𝑄𝑇𝐿 matches 

perfectly with 𝔻𝑄𝑇𝐿, the 𝒑𝑾𝑨𝑺 would be 1. If 𝒑𝑾𝑨𝑺 is more than 1, the method has 

overestimated the number of QTL, and vice versa. This measure can range from 0, when 

�̂�𝑄𝑇𝐿 is a constant value of 0, up to infinity. The proportionality of this statistics is to 

standardize the areas under the curves under varying parameter values.  

It is also noted that if the area under the curves of �̂�𝑄𝑇𝐿 and 𝔻𝑄𝑇𝐿 are the same, the measures 

would be 1, regardless of how severe the actual discrepancies between the two distributions. 

This is the reason for employing the second and third measurements for the performance of 

this method, which are the number of QTL with certain effect sizes.  

Let the effect size tested be denoted as 𝑎𝑐𝑢𝑡, and the 𝔻𝑄𝑇𝐿(𝑎𝑐𝑢𝑡) and �̂�𝑄𝑇𝐿(𝑎𝑐𝑢𝑡) be defined 

as the true and estimated number of QTL with effect size of 𝑎𝑐𝑢𝑡. The performance of the 

method in term of number of QTL was defined as follows:  

𝒑𝑸𝑻𝑳=𝑎𝑐𝑢𝑡
= 1 +

�̂�𝑄𝑇𝐿𝑖
(𝑎𝑐𝑢𝑡) − 𝔻𝑄𝑇𝐿(𝑎𝑐𝑢𝑡)

𝔻𝑄𝑇𝐿(𝑎𝑐𝑢𝑡)
 [31] 

As in 𝒑𝑾𝑨𝑺, the 𝒑𝑸𝑻𝑳=𝑎𝑐𝑢𝑡
 could ranges from 0, when �̂�𝑄𝑇𝐿𝑖

(𝑎𝑐𝑢𝑡) = 0, up to infinity, when 

𝔻𝑄𝑇𝐿(𝑎𝑐𝑢𝑡) = 0. If the statistic is greater than 1, the method has overestimated the number of 

QTL with effect size 𝑎𝑐𝑢𝑡, and vice versa. In this study, the second measurement would have 

𝑎𝑐𝑢𝑡 = 0.1 𝜎𝑒 and the third measurement with 𝑎𝑐𝑢𝑡 = 1.0 𝜎𝑒.  

As there are 𝑛𝑎𝑖𝑥 number of solution triplets in [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

, the 𝒑𝑾𝑨𝑺 and 𝒑𝑸𝑻𝑳=𝑎𝑐𝑢𝑡
 would 

also be a vector of length 𝑛𝑎𝑖𝑥. For this reason, the performance scores were represented by 

their median. From each of the replicates, the median of 𝒑𝑾𝑨𝑺 as well as 𝒑𝑸𝑻𝑳=𝑎𝑐𝑢𝑡
 with 

𝑎𝑐𝑢𝑡 = 0.1 𝜎𝑒 and 𝑎𝑐𝑢𝑡 = 1.0 𝜎𝑒. The overall performance for each measurement was defined 

as the mean of the medians across all replicates.  

5.7. Results  

5.7.1. The Performance of the Algorithm 

The area under the curve for the 1 − 𝐶𝐷𝐹 of the true QTL effect size distribution, denoted as 

𝐴𝔻, and the median of the area under the curve for those of estimated QTL effect size 
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distribution, denoted as 𝐴�̂�, for genotype array 𝑿𝟏, as well as the true and estimated number 

of QTL with effect size of 0.1 𝜎𝑒 and 1.0 𝜎𝑒, are provided in Table 5.2. The performance of 

the method to estimate the parameters of the genetic architecture, measured in terms of areas 

between curves and number of QTLs, for genotype array 1, is provided in Table 5.3. For 

genotype array 𝑿𝟐, the area under the curves for the 1 − 𝐶𝐷𝐹 of the true and estimated QTL 

effect size distribution, as well as the true and estimated number of QTL with effect sizes of 

0.1 𝜎𝑒 and 1.0 𝜎𝑒, are provided in Table 5.4, and the performance of the method in terms of 

these measures is provided in Table 5.5.  

In general, the method successfully provided an estimate for the number of QTL and the 

distribution of its effect sizes. This is evident from the proximity of estimated QTL effect size 

distributions with those of true QTL effect size distributions in all genetic architecture tested 

for both genotype arrays (Figure 5.19 – 20).  

Under default parameters the number of QTL with effect size 0.1 𝜎𝑒 estimated by the method 

is 148.8% of the true number of QTL for genotype array 𝑿𝟏, and for genotype array 𝑿𝟐 it is 

133.7% of the true number of QTL. Whereas for QTL with effect size 1.0 𝜎𝑒, the number of 

QTL estimated for genotype array 𝑿𝟏 was 132.4% of the true number of QTL, and for 

genotype array 𝑿𝟐 it was 106.8% of the true number of QTL. Across all genetic architecture 

parameters and genotype arrays tested, the estimated number of QTL with effect size 0.1 𝜎𝑒 

ranges from 69.9% to 167.0%, with an average of 109.8% of the true number of QTL, and for 

estimated number of QTL with effect size 1.0 𝜎𝑒 ranges from 101.6% to 175.8%, with an 

average of 123.6% of the true number of QTL (Table 5.2 – 5).  

5.7.2. Overviews on the Trends of the Outputs 

While the method is able to provide an estimate of QTL effect size distribution, the non-

uniqueness in the solution of the estimated parameter values has introduced ambiguity in the 

proposed models, which manifested as a thick band of estimated distributions (in red) rather 

than one singular distribution (Figures 5.12-5.13). The effects of non-uniqueness in the 

solution can also where the solution manifested itself as a band of solutions (in yellow) rather 

than one singular spot on the plot, with the width of the band as the distribution around the 

estimated parameter values, analogous to a confidence interval (Figure 5.21). This band of 

solutions contains combinations of [𝕜, 𝕒]s that produces similar QTL effect size distributions.  
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Table 5.2: The medians of measures for various genetic architecture parameter tested with Genotype Array 𝑿𝟏. 

The measures were defined in terms of area under the curves of true and estimated QTL effect size distribution 

(𝐴𝔻 and 𝐴�̂� respectively), as well as the true and estimated number of QTL (𝔻𝑄𝑇𝐿 and �̂�𝑄𝑇𝐿 respectively) with 

effect size of 0.1 𝜎𝑒 and 1.0 𝜎𝑒.  

Genetic Architecture 

Parameters 

Representative Medians of Measures 

Area Under the 

Curves 

Number of QTL 

with 0.1 𝜎𝑒 

Number of QTL 

with 1.0 𝜎𝑒 

𝐴𝔻 𝐴�̂� 𝔻𝑄𝑇𝐿 �̂�𝑄𝑇𝐿 𝔻𝑄𝑇𝐿 �̂�𝑄𝑇𝐿 

Default 𝑄(300, 0.3, 1) 98.32 134.77 142.67 211.67 27.56 35.77 

Alternative 𝑄(2000, 0.3, 1) 601.69 662.03 898.78 626.23 159.33 220.23 

𝑄(300, 0.8, 1) 241.35 335.95 252.00 406.52 86.33 108.64 

𝑄(300, 0.3, 3) 253.63 398.29 181.89 294.26 70.67 123.61 

 

Table 5.3: The performance of the method in the estimation of genetic parameter architectures in Genotype 

Array 𝑿𝟏, evaluated in term of Wasserstein’s statistics and number of QTL with effect size of 0.1 𝜎𝑒 and 1.0 𝜎𝑒.  

Genetic Architecture 

Parameters 

Performance 

Wasserstein’s 

Statistics 

Number of QTL 

with 0.1 𝜎𝑒 

Number of QTL 

with 1.0 𝜎𝑒 

Default 𝑄(300, 0.3, 1) 1.374 1.488 1.324 

Alternative 𝑄(2000, 0.3, 1) 1.101 0.699 1.380 

𝑄(300, 0.8, 1) 1.400 1.613 1.264 

𝑄(300, 0.3, 3) 1.571 1.609 1.758 
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Table 5.4: The medians of measures for various genetic architecture parameter tested with Genotype Array 𝑿𝟐. 

The measures were defined in terms of area under the curves of true and estimated QTL effect size distribution 

(𝐴𝔻 and 𝐴�̂� respectively), as well as the true and estimated number of QTL (𝔻𝑄𝑇𝐿 and �̂�𝑄𝑇𝐿 respectively) with 

effect size of 0.1 𝜎𝑒 and 1.0 𝜎𝑒.  

Genetic Architecture 

Parameters 

Representative Medians of Measures 

Area Under the 

Curves 

Number of QTL 

with 0.1𝜎𝑒 

Number of QTL 

with 1.0𝜎𝑒 

𝐴𝔻 𝐴�̂� 𝔻𝑄𝑇𝐿 �̂�𝑄𝑇𝐿 𝔻𝑄𝑇𝐿 �̂�𝑄𝑇𝐿 

Default 𝑄(300, 0.3, 1) 100.19 127.62 142.78 193.42 30.33 32.46 

Alternative 𝑄(2000, 0.3, 1) 569.79 592.37 866.67 869.39 156.78 169.89 

𝑄(300, 0.8, 1) 242.68 300.10 252.67 429.99 88.78 89.01 

𝑄(300, 0.3, 3) 274.29 293.90 173.89 164.78 77.67 82.32 

 

Table 5.5: The performance of the method in the estimation of genetic parameter architectures in Genotype 

Array 𝑿𝟐, evaluated in terms of Wasserstein’s statistics and number of QTL with effect size of 0.1 𝜎𝑒 and 1.0 𝜎𝑒.  

Genetic Architecture 

Parameters 

Performance 

Wasserstein 

Statistics 

Number of QTL 

with 0.1 𝜎𝑒 

Number of QTL 

with 1.0 𝜎𝑒 

Default 𝑄(300, 0.3, 1) 1.293 1.337 1.068 

Alternative 𝑄(2000, 0.3, 1) 1.052 1.018 1.089 

𝑄(300, 0.8, 1) 1.253 1.670 1.016 

𝑄(300, 0.3, 3) 1.076 0.932 1.090 
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Figure 5.19: The comparison plots between the true QTL effect size distribution (black line) and the estimated 

QTL effect size distribution (red lines) for each of the parameter combination tested in Genotype Array 𝑿𝟏. The 

genetic architecture parameters tested is as follows: (a) 𝑄(300, 0.3, 1); (b) 𝑄(2000, 0.3, 1); (c) 

𝑄(300, 0.8, 1) and (d) 𝑄(300, 0.3, 3).  

 

Figure 5.20: The comparison plots between the true QTL effect size distribution (black line) and the estimated 

QTL effect size distribution (red lines) for each of the parameter combination tested in Genotype Array 𝑿𝟐. The 

genetic architecture parameters tested is as follows: (a) 𝑄(300, 0.3, 1); (b) 𝑄(2000, 0.3, 1); (c) 

𝑄(300, 0.8, 1) and (d) 𝑄(300, 0.3, 3).  
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Figure 5.21: An example of the K-a plot, showing a yellow band of solutions that cut across all values of 𝕒s. This 

plot is generated using genetic architecture parameters 𝑄(300, 0.3, 1) on Genotype Array 𝑿𝟏.  

The value of shape parameter 𝕒 also influences the estimated number of QTL �̂�; when the 𝕒 

is small, the estimated value of �̂� would also be large, and vice versa. This relationship of �̂� 

and 𝕒 can also be observed in the K-a plots, where the solutions produced by the method 

have large �̂� when the 𝕒 is small, and as 𝕒 increases the corresponding �̂� decreases, reaching 

a minimum with 𝕒 = 1 (Figure 5.22). 

Another notable observation from the output of this method is that the global maxima across 

all [𝕜, 𝕒]s in the K-a plot do not necessarily correspond to the true combinations of the 

underlying genetic architecture parameters. This is true even if the global maxima are located 

in the band of solution, which in this case only represent one of the infinite possible solutions. 

This can be observed as a mismatch between the global maximum and the true QTL effect 

size parameters in the K-a plot (Figure 5.23).  

Heterogeneity in linkage disequilibrium structures also has significant effects on the 

estimated distribution from the method. A heterogeneous linkage disequilibrium structure 

was associated with an increased dispersion of the distribution of the vote tally from vector 

𝒗𝑘,𝑎𝑥,𝑡𝑥 (Figure 5.24). This in turn causes an increased error of estimation of 𝕜s for a value of 

𝕒, which can be seen by the increased width and reduced regularity of the solution band in 

the K-a plots (Figure 5.25). Despite this, even with heterogeneity in the linkage 

disequilibrium structures, the proximity of the estimated QTL effect size distribution from 

those from true QTL effect size distribution for both genotypic arrays in Figure 5.19 – 20 

suggested this method is able to handle the effects from heterogeneity of linkage 

disequilibrium structures.  
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Generally, the error of estimation is greater for smaller QTL effect sizes. This error can 

manifest itself in several ways, such as differing estimated number of QTL with small effect 

sizes compared to true number of QTL) (Figure 5.26(a)), and the increased dispersion of 

estimated number of QTL across the solutions (Figure 5.26(b)). The dispersion effect is 

especially severe for large 𝕓 in Genotype Array 𝑿𝟐, where the distributions from the solution 

spread out near the left side of the plot (Figure 5.26(b-c)). These errors of estimation became 

less apparent for QTL with larger effect sizes, and this observation is more obvious for 

Genotype Array 𝑿𝟐, where the estimations are less than 10% away from the true number of 

QTL.  

 

Figure 5.22: Plot of estimated value of �̂� over varying values of 𝕒. The true genetic architecture for this plot is 

𝑄(300, 0.3, 1) and is conducted on Genotype Array 𝑿𝟏.  

 

Figure 5.23: A K-a plot showing the goodness of fit between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  for each of the proposed 

[𝕜, 𝕒] models, showing a band of solutions that successfully maximized the goodness of fit. The lighter the pixel 

the greater the goodness of fit is. The red line denotes the solution [𝕜, 𝕒] models estimated by the method. The 

red dot denotes the true parameter combinations for the underlying genetic architecture (i.e. 𝑄(300, 0.3, 3) in 

this plot), while the red cross denotes the global maximum of the K-a plot. This plot is generated from Genotype 

Array 𝑿𝟏. 
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Figure 5.24: The distribution of the vote tally of 𝒗𝑘,𝑎𝑥,𝑡𝑥
 across the index of 𝕜s from (a) Genotype Array 𝑿𝟏 with 

homogenous linkage disequilibrium structures, and (b) Genotype Array 𝑿𝟐 with heterogeneous linkage 

disequilibrium structures. Raw distribution is show in blue, and smoothed distributions in orange.  

 

Figure 5.25: The effects of heterogeneity in linkage disequilibrium structures on the estimated QTL effect size 

distribution from the method. The K-a plot in (a) is generated with Genotype Array 𝑿𝟏 with homogenous linkage 

disequilibrium structures, while those in (b-d) are generated from Genotype Array 𝑿𝟐 with heterogeneous 

structures. Both figures are generated from the genetic architecture parameter of 𝑄(2000, 0.3, 1).  

 

Figure 5.26: Comparison plots showing the error of estimation near regions of small effect sizes between the true 

QTL effect size distribution (black lines) and estimated QTL effect size distributions (red lines). Figure (a) shows 

the biased estimated number of QTL of small effect size and the correspondingly decreased estimated number 

of QTL with large effects. Figure (b) and (c) shows the increased dispersion of estimated number of QTL with 

small effect sizes. Both Figure (a) and (b) are generated from genetic architecture parameters 𝑄(300, 0.3, 1) 

while (c) is generated from 𝑄(300, 0.3, 3). Genotype Array 𝑿𝟐 was utilized for all of these graphs.  
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5.8. Discussion 

In this study a method that estimates the number of QTL associated with a trait, as well as the 

parameters associated with the distribution of the QTL effect sizes, has been proposed. 

Despite the non-uniqueness in the solution proposed, in general this method has successfully 

estimated the number of QTL and its distribution. Rather than attempting to estimate the 

genetic architecture parameters such as number of QTL using GWAS results that could be 

affected by various confounding factors such as allele frequencies and their distribution and 

correlations between markers, this method takes into account their effects by modelling the 

expected distribution of the test statistics of the GWAS with the effects of these confounding 

factors included. This reduces the severity of their impacts on the estimation of genetic 

architecture parameters. As an example, linkage disequilibrium structures affect the false 

positive rates of a GWAS (Kaler and Purcell, 2019), which in turn could affect the estimation 

of genetic architecture parameters. Despite this, this method has successfully estimated 

genetic architecture parameters using two genotypic arrays with differing linkage 

disequilibrium structures, which suggested its robustness against the effects of the linkage 

disequilibrium structures.  

There are numerous prospective uses for this method. The main utility of this method is to 

estimate the number and distribution of the QTL effect size. While methods of similar nature 

have been published in previous work (Cheng et al., 2020; Park et al., 2010; Zhang et al., 

2018), as well as several Bayesian-based methods (as example, Habier et al., 2011; 

Meuwissen et al., 2001; Moser et al., 2015), this method is different such that it attempts to 

achieve such aim while considering the effects from varying confounding factors such as 

correlation between markers, which increases the dispersion of the distribution of the GWAS 

test statistics, and heterogeneity in linkage disequilibrium, which could affect the number of 

QTL estimated. Unlike Park et al. (2010), this method also does not require previously 

published GWAS results, which can be used in studying the genetic architectures of a new 

trait. This method also not requiring a user-defined cut-off point between null and non-null 

markers as in Cheng et al. (2020), thus would not be affected by the optimality of the cut-off 

point. While simulated data were used to test the performance of this method, it can also be 

used in real-life scenarios since the method requires only genotype, phenotype and narrow 

sense heritability for the estimation. Further study can be done to test this method with real 

data. 
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With these advantages, this method would be suited to populations with small effective 

population sizes, such as that in a livestock production system (Gondro, 2015; Toro Ospina et 

al., 2019). Small effective population sizes increase the linkage disequilibrium between the 

markers (Sved, 1971; Waples et al., 2016), which in turn affects the estimation of genetic 

architecture parameters by altering the distribution of the estimated marker effect sizes and 

test statistics from a GWAS (detailed in Appendix B). Besides this, selection processes in a 

livestock production system induce the formation of haplotype blocks due to heterogeneous 

rate of recombination across the genome, which produces heterogeneity in the linkage 

disequilibrium structures (Ardlie et al., 2002). Such structures also affect the distributions of 

estimated effect sizes and test statistics, which in principle would also affects the estimation 

of the genetic architecture parameters. By taking the effects of linkage disequilibrium into 

account. Indeed, Lloyd-Jones et al. (2019) commented on the negative effects of linkage 

disequilibrium on the convergence of their model. By taking the effects of these linkage 

disequilibrium into account, it is anticipated this method could provide a more accurate 

picture of the genetic architecture of a trait.  

The proposed method can also be used to estimate the effect sizes of the markers, as in a 

GWAS experiment. This could be done by feeding the [�̂�, 𝕒, �̂�]
𝒔𝒍𝒏

 back into the Step 5.5.1.4 

in this method and extracting the resulting 𝒒𝒔𝒊𝒎. Unlike GWAS however, rather than 

returning an estimated effect sizes that could be confounded by other factors, it returned an 

estimate of marker effect sizes while considering those confounding factors (i.e., what is the 

expected effect sizes if such confounding factor exists in the dataset). The output from this 

method can be directly used to estimate the additive effect size of a QTL, a genomic region, 

or an animal. Using a modest sample size of a few thousand (e.g., 3000 in this study), this 

method can also be used to model the distribution of the QTL with effect sizes generally 

undetectable across the genomic sequence using a conventional GWAS. By doing so, this 

method will provide an insight into the statistical behaviour of a GWAS experiment, which 

could also serve as a stepping stone for solving the missing heritability problem (Hall et al., 

2016; Maher, 2008; Manolio et al., 2009). 

Another feature for this method is the flexibility of distribution assumed by the method. 

Unlike previous publications such as Cheng et al. (2020); Moser et al. (2015) and Zhang et al. 

(2018), this method did not force one specific distribution for the QTL effect sizes. While the 

method in this study utilized a gamma distribution, any one or two parameter distributions 
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that its range of parameters can be discretised into a finite number of steps can be used for 

this method. One such distribution is Weibull distribution, defined as follows (Mun, 2012):  

𝑓(𝑥; 𝑎, 𝑏) =  
𝑎

𝑏
(
𝑥

𝑏
)
𝑎−1

𝑒−(
𝑥
𝑏
)
𝑎

 [34] 

where 𝑎 and 𝑏 are the shape and rate parameters for the Weibull distribution respectively. 

Similar to gamma distribution, a Weibull distribution has the “large number of small QTL, 

small number of large QTL” shape if 0 < 𝑎 ≤ 1, which means the 𝑎 in this distribution can 

be discretised into a finite number of steps. The 𝑏 can be treated in a similar fashion as in 𝕓 

in this study. Thus, a Weibull distribution can also be used in this modelling.  

Another distribution that could be considered is the q-exponential distribution, which its 

normalized form is defined as follow (Picoli et al., 2009): 

𝑓(𝑥; 𝑞, 𝑏) =  
2 − 𝑞

𝑏
(1 −

(1 − 𝑞)𝑥

𝑏
)

1
1−𝑞

 [35] 

If 𝑞 = 1 then the distribution reduces to standard exponential distribution (Picoli et al., 2009). 

This particular distribution is only defined if 0 < 𝑞 ≤ 2, thus can be discretised into finite 

number of 𝑞s, and the 𝑏 in the same way as in the gamma or Weibull distributions 

counterparts. This means q-exponential distribution could also be used for this method.  

The advantage for allowing a flexible choice of distribution lies in its improved performance 

in detecting varying genetic architecture for a trait (Zeng and Zhou, 2017). Previously 

published methods such as Moser et al. (2015) and Habier et al. (2011) assumed the QTL 

effect sizes to be distributed according to a normal or a mixture of normal distributions, 

which might fail to properly capture the tail of the effect size distribution due to the fixed 

kurtosis of these distribution, especially if large causal variants are present (Mun, 2012; Zeng 

and Zhou, 2017). While the true underlying distribution effect sizes of a trait is usually 

unknown (Moser et al., 2015), the flexibility of this method means we can test the genetic 

architecture of a trait using multiple types of distribution, which could potentially lead to a 

clearer picture on the true underlying distribution of a trait. This flexibility in choice of 

distribution would also mean this method can be used in a wide range of traits, be it an 

oligogenic trait, such as horned/polled phenotypes in goats (Guo et al., 2021), as well as in 

polygenic traits, such as milk yield in cattle (Nayeri et al., 2016), thus allowing the dissection 

of their genetic architectures.  
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From a pure mathematical point of view, the proposed method has also introduced several 

new classes of nonparametric statistical tests that are powerful in detection of discrepancies 

near the tail of the distribution and yet insensitive toward discrepancies at the head of the 

distribution, which is useful in testing discrepancy at the tail of the distribution. This could be 

important in modelling extreme events in ecology (Batt et al., 2017), disaster management 

(Alvarado et al., 1998; Tippett et al., 2016), engineering (Fortin and Clusel, 2015; Orsini et 

al., 2019) and finances (Chavez-Demoulin and Embrechts, 2004). This study has also 

introduced several techniques available to amplify a weak signal that could not be easily 

detected, especially from a noisy dataset. This study has also introduced the concept of multi-

level distributions and its application in statistical testing, which could be useful in testing the 

replicability of an experiment, and the expected distribution from data from an experiment. In 

term of quantitative genetics and genomics, this study could provide insights into the 

distribution of QTL effects based on a GWAS under varying confounding factors and genetic 

architecture, which can be useful in optimizing the power and false positive rate of a GWAS.  

There are several aspects in this method that could be further improved. One such aspect is 

the speed of the method; the brute force search of this method means all the parameter 

combinations have to be evaluated, which reduces the speed of running the method (Bergstra 

and Bengio, 2012). This could be problematic for high density genetic markers or Whole 

Genome Sequence (WGS). For this reason, faster methods that could cover the parameter 

spaces could be considered, such as successive halving method (SHA) that weeds out 

parameter combinations that produces poor results (Jamieson and Talwalkar, 2015).  

The unbalanced number of equations and variables has introduced non-uniqueness into the 

solutions, which causes global maxima in the 𝑽𝒌,𝒂 array that no longer correspond to the true 

underlying parameters [𝕜, 𝕒]. There are several potential methods to resolve this issue, all of 

which involve the removal of the excessive degree of freedom. The most straightforward but 

not necessarily simplest method is to find the third independent equation that can further 

constrain the solutions. The third independent equation should have its output variable 

alongside the genetic architecture parameters. A shortcoming for this method is the fact that 

the independent equation might not exist. The distribution for the estimated effect sizes 𝕕𝐸𝑆
1  

cannot be used as the third equation as 𝕕𝐸𝑆
1  is not independent from 𝕕𝐹𝑇

1 ; one can derive the 

𝕕𝐹𝑇
1  using the 𝕕𝐸𝑆

1 , rendering it non-independent (as suggested in equation [6]). Another 

method is to constrain the value of one of the parameters, such as the scale parameter 𝕓. This 

however came with the cost of compromising the flexibility of the method, and this could 
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compromise the accuracy of the estimated genetic architectures. An alternative method is to 

model the genetic architecture with a distribution that require less parameters, but such 

distributions tend to have fewer flexible shapes. Methods to resolve this issue could warrant 

further study. 

It is also noted that as the value of 𝕜s increases, the effects of changing a fixed amount of 

values diminishes, and this resulted in a weakening of signals as the 𝕜 increases. This 

increases the chance of having signals from the changing 𝕜s swamped by the noises, thus 

suggesting a potential weakness in this method in estimating the QTL effect size distribution 

for a strongly polygenic trait. There are several methods of mitigating such issue, with one 

obvious way to increase the resampled sample size 𝑁𝑟𝑠𝑎𝑚𝑝, which might improve the signal 

of changing genetic architecture while reducing the amount of noises but would come at the 

cost of reducing the speed and feasibility of the method.  

As this method utilized GWAS as part of its operations, it would also suffer from the same 

inherent issues that plague a GWAS. For example, extreme allele frequencies are known to 

reduces the test statistics of a GWAS (Spencer et al., 2009). This means that if the QTL is 

located near a locus with extreme allele frequencies, this method might not be able to detect 

it. Population stratification could produce false positives in a GWAS experiment (Panagiotou 

and Ioannidis, 2012), and this method would also suffer from these issues. Further studies 

could also be conducted to improve the method over these shortcomings.  

In conclusion, a method that estimates the genetic architecture parameters such as number of 

QTL and shape of QTL effect size distribution with consideration on the effects of 

confounding factors of heterogeneity in linkage disequilibrium structure, allele frequencies 

and their distribution and correlation between markers has been proposed in this study. Using 

a modest sample size, this method successfully detected the number of QTL and the 

distribution of the effect sizes that is associated with a trait. In the process this method has 

also introduced new techniques and classes of statistics that is powerful at the tail of the 

distribution. Despite this, further studies could be done to improve the speed of the method, 

as well as improving the power of this method to estimate the distribution of QTL effect sizes 

in a strongly polygenic trait. Finally, further studies could also be conducted on the statistics 

to improve their power while reducing their false positives, thereby improving the robustness 

of the method.  
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Chapter 6. An Optimal Contribution Selection 

Algorithm that Utilizes Non-additive Genetic 

Effects  

Zhi Loh, Julius H. J. van der Werf, Sam Clark 

 

6.1. Abstract 

The aim of this study is to propose an Optimal Contribution Selection (OCS) algorithm that 

utilizes both additive and dominance genetic variance while constraining inbreeding. Using a 

genetic algorithm, the contribution of sires and dams to the next generation, as well as their 

mate allocation, was optimised. EBVs and expected progeny heterozygosity were used as 

scores of optimizations for additive and dominance genetic components, respectively. Under 

the same constrained inbreeding rate of 1%, narrow sense heritability of 0.3, dominance to 

additive genetic variance ratio of 15% and 500 sires and dams, the OCS algorithm increased 

the genetic gain compared to truncation selection, with the additive genetic component up by 

87.0% from +1.34 to +2.59 while the increase in genetic merit due to the dominance genetic 

component improved from -0.36 in truncation selection to +4.98 in the first generation, with 

the corresponding total genetic merit increasing from +0.98 to +7.57. Therefore, the genetic 

lift in the first generation is approximately equal to two generations of additive genetic gain 

when dominance variance was 15% of the additive genetic variance. By including dominance 

genetic component optimization in an OCS, the total genetic merit improved from +2.55 to 

+7.57 in the first generation. The optimization of the dominance genetic component result in 

additional genetic merit only in the first generation, with additional merits from this 

component not increasing after the first generation despite continued optimization. In 

conclusion, the inclusion of dominance genetic component in an OCS significantly improved 

the genetic merit of the offspring. While simulated data was used in this study, it is 

anticipated this method can be used with real data in a selective breeding program in a 

livestock production system.  
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6.2. Introduction  

While selective breeding has played a major role in livestock production systems, the 

selection process has also been associated with an increased level of inbreeding, which can 

lead to inbreeding depression and a loss of genetic variation (Falconer, 1989). Inbreeding 

depression could manifest in a multitude of manners such as genetic defects and reduced 

fertility in breeding animals, which could incur significant economic loss in animal 

production, compromises the welfare of the animals, and in extreme cases causes extinction 

of the entire breed, population or species (Ryder and Wedemeyer, 1982; Schlie, 1967; 

Sevinga et al., 2004). For this reason, the inbreeding level should be managed when 

conducting a breeding program.  

The need to constrain the level of inbreeding while maximizing the genetic gain from a 

selective breeding program has given rise to the optimal contribution selection (OCS) theory. 

First introduced by Wray and Goddard (1994) and further developed by Meuwissen (1997), 

this method seeks to optimize the contributions from each selection candidate to be 

propagated into the next generation by attempting to maximize the genetic gain to the next 

generation while constraining the increase in the inbreeding level so that the selection 

response could be maintained in the long term. The OCS method uses the estimated breeding 

values of the selection candidates and a matrix with relationships between them and various 

algorithms can be used to find an optimal solution (Clark et al., 2013). Compared with 

truncation selection and with the constraint of inbreeding rate ∆𝐹 = 0.01, previous studies 

have suggested an improvement of genetic gain ranging from 16% to 81% per generation 

(Clark et al., 2013; Meuwissen, 1997; Nielsen et al., 2011).  

While OCS allows the maximization of genetic gain given a constraint in the changes in 

inbreeding level in a selective breeding program, it uses estimates of breeding values, i.e., 

additive genetic effects, and the method would usually not optimize the non-additive genetic 

components of a trait, such as its dominance effect. While not heritable, these non-additive 

genetic components could significantly lift the mean genetic merit in a population. 

Dominance effects are typically exploited in crossbreeding where heterosis is observed when 

mating individuals of two different lines or populations, e.g., such as in crossbred maize 

(Brieger, 1950) and poultry (Goto and Nordskog, 1959). Attempts to utilize them in an OCS 

method remain lacking, however.  
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Until recently, utilizing dominance genetic effects in mating designs has been difficult as its 

effects within the population are difficult to estimate accurately. The dominance effects are 

mating-specific and are not easily replicable unless a large litter size is available (de Boer and 

Hoeschele, 1993). With the advent of genomic information however, a more direct prediction 

of level of genome-wide heterozygosity in the offspring has become feasible, which allows 

the optimization of dominance effects especially in polygenic traits. Using predicted 

heterozygosity could be a practical method to utilize dominance effects in OCS and 

optimized individual mating.  

With this in mind, the aim of this study is to develop a framework for the optimal 

contribution selection that considers the dominance genetic component. This framework 

would maximize both additive and dominance genetic effects on the phenotypes in the next 

generation while constraining the increase in inbreeding level. The usability of genomic-

based data on additive and dominance component was also tested in this study. It is 

anticipated that this algorithm could successfully maximize the additive and dominance 

genetic component, although the performance might depend on the genetic architecture, 

population size and quality of information, which was tested through simulation under 

varying parameters across multiple generations.  

6.3. Definitions and Model Assumed by the Algorithm 

In this study, given 𝑁 individuals and 𝑀 genetic markers, the phenotypes are based on the 

model by Duenk (2020):  

𝒚 = 𝑿𝒂𝜶 + 𝑿𝒅𝜹 + 𝒆 [1] 

Where 𝒚 is a vector of length 𝑁 containing the phenotype of N individuals; 𝑿𝒂 being a matrix 

of size 𝑁 × 𝑀 containing the scores of the M additive loci in the form of {0, 1, 2}, where the 

values denote the number of alleles with nonzero effect sizes possessed by an individual; 𝜶 

being a vector of length 𝑀 containing the additive effect sizes of each of the markers, 𝑿𝒅 

being a matrix of size 𝑁 × 𝑀 containing the scores for the dominance loci in the form of 

{0, 1, 0}, where the values denote whether the marker is in a heterozygous state; 𝜹 being a 

vector of length 𝑀 containing the dominance effect sizes of each of the markers, and 𝒆 being 

a vector of length 𝑁 containing the residual component of the phenotypes.  

The additive genetic component of the phenotypes is defined as the genetic component that 

contributed additively to the phenotypes, be it additive from number of copies of non-null 
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alleles within a locus, or a multitude of loci that contributed additively to a trait (Falconer, 

1989). It is represented by the 𝑿𝒂𝜶 component in equation [1].  

The dominance genetic component of the phenotypes is defined as the sum over loci of the 

dominance deviation at each locus (denoted as 𝛿), which is defined as the deviation of the 

phenotypic values of the heterozygotes (f1) from the expected mid-homozygote values (f0 and 

f2) (Falconer, 1989):  

𝛿 = 𝑓1 − 
𝑓2 − 𝑓0

2
 [2] 

6.4. The Basics of Optimal Contribution Selection 

(OCS) and Genetic Algorithm 

The aim of the optimal contribution selection (OCS) is to maximize the genetic gain in the 

next generation while constraining the increase in the inbreeding level. If the dominance 

genetic component is not being considered, the algorithm achieved said aim by finding the 

balance between the increase in the additive genetic gain and the weighted increase in the 

inbreeding level (Meuwissen, 1997; Clark et al., 2013). For the algorithm proposed in this 

study, it is assumed that only sires are subjected to selection, and all the dams would be 

utilized in a breeding program.  

6.4.1. The Basics of Additive-only OCS 

Given a number of candidate sires 𝑁𝑚, the objective function for an additive-only OCS 

(denoted as 𝑓𝑂𝐶𝑆) is defined as follows:  

𝑓𝑂𝐶𝑆(𝒙) = 𝒙𝑇𝒃 −  𝜆𝒙𝑇𝑮𝒙 [3] 

Where 𝒙 is a column vector of length 𝑁𝑚 containing the proportion of contribution of each of 

the sires toward the next generation; 𝒙𝑇 be the transpose of 𝒙; 𝒃 being a column vector of 

length 𝑁𝑚 containing the true or estimated additive breeding values of each of the sires. 𝑮 is 

a matrix of size 𝑁𝑚 × 𝑁𝑚 containing the pedigree or genomic based relationship matrix 

between each of the sires in the current generation and 𝜆 is a scalar value that serves as a 

penalty for an increment in the inbreeding. In effect the algorithm calculates the expected 

genetic gain (denoted by the 𝒙𝑇𝒃 component in equation [3]) and increase in inbreeding level 

scaled by 𝜆 (denoted by 𝜆𝒙𝑇𝑮𝒙 component in equation [3]) from a combination of sires to be 
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used in the propagation of the next generation (Meuwissen, 1997). While the ideal source of 

information for 𝒃 is the true breeding values or QTL effect sizes, in practice such information 

is not attainable, thus the estimates �̂� would be used.  

The maximizing of genetic gains under constrained increase in inbreeding level can be 

achieved through genetic algorithm (Srinivas and Patnaik, 1994). Inspired by genetic 

processes observed in selection, genetic algorithms are iterative algorithms aimed at finding 

an optimal solution among the pool of candidate solutions by maximizing the objective 

function associated with the solution. Unlike other optimization algorithms such as gradient 

descent, this method is capable of finding optimal solutions in a large multimodal landscape 

(Srinivas and Patnaik, 1994; Taherdangkoo et al., 2012). Using [3] as example, the genetic 

algorithm attempts to find 𝒙 that would maximize 𝑓𝑂𝐶𝑆(𝒙) (Clark et al., 2013).  

The simplest genetic algorithm starts by randomly initializing a population of candidate 

solutions. Using example in [3], each member of the population is a vector of proportion of 

contribution from each sires 𝒙. The objective function 𝑓𝑂𝐶𝑆(𝒙) for each of the 𝒙s in the 

population is evaluated, and from the pool of 𝒙s, those with highest values of 𝑓𝑂𝐶𝑆(𝒙)s were 

selected to be propagated into the next generation. For the next generation population, the 𝒙s 

were subjected to various genetic operators such as mutation, where parts of the solution 

were substituted with new values, crossover where parts of the solutions were exchanged, and 

inversion where the sequence is inverted. The resulting population would have new 

combinations of sires' contributions. This process was iterated until convergence, when the 

operators no longer producing a more optimal solution (Srinivas and Patnaik, 1994; 

Taherdangkoo et al., 2012).  

6.4.2. Modifications Needed for Additive-Dominance OCS 

For OCS involving dominance genetic components, given the number of sires 𝑁𝑚 and 

number of dams 𝑁𝑓, a generalized model for the OCS could be defined as follows:  

𝑓𝑂𝐶𝑆(𝒙) = 𝒙𝑇𝒃 + 𝜆𝑑 ∑𝒅𝒊

𝑁𝑓

𝑖=1

− 𝜆𝑏𝒙
𝑇𝑮𝒙 [4] 

Where the 𝒅𝒊 is the 𝑖th element of the vector 𝒅, which defines the dominance scores for each 

of the sires when aired with the 𝑖th dam. The dominance scores can be calculated from true or 

estimated dominance effects depending on the sources of information, and 𝜆𝑑 and 𝜆𝑏 are 
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weights for the dominance term and a penalty on inbreeding, respectively. The calculation of 

𝒅 will be detailed in Section 6.5.6.  

While theoretically optimizing the additive and dominance components while constraining 

the increase in the level of inbreeding can be achieved by optimizing [4] using genetic 

algorithm, in practice optimizing the 𝑓𝑂𝐶𝑆(𝒙) in equation [4] directly would not yield the 

optimal solution. One such reasons is the competition between the additive and dominance 

genetic components, which causes the optimization to favour the component with larger 

variance at the expense of the component with smaller variance. Another more practical 

aspect in the optimization of all three component simultaneously is the computational 

intensity and time required for the convergence of solution. With the increased number of 

components that need to be optimized, this increases the sample space that need to be tested, 

which increases the chance of convergence toward a local optimum. Additionally, unlike 

additive and inbreeding calculation, in which the exact ordering of the sires does not matter, 

the dominance genetic components depend on the exact permutation of the sires, which 

significantly increases the solution space. The search space and the number of solutions is 

detailed provided in Appendix E. To worsen the situation, the exact sire permutation is not 

expressible through vector 𝒙, thus precluding its use in the optimization of dominance genetic 

component.  

Due to these challenges, modification of the original algorithm might be required. One 

applicable modification is by separating the optimization of the additive from the dominance 

genetic component. This setup would have optimization on the additive genetic component 

and inbreeding level in the first phase, and the results from this phase would become the 

input for the second phase where the dominance genetic component was optimized. In this 

setup, the objective function for the first phase (denoted as 𝑓𝑂𝐶𝑆𝐴𝐼
) was as defined in equation 

[3], and the second phase (denoted as 𝑓𝑂𝐶𝑆𝐷
) was as follows:  

𝑓𝑂𝐶𝑆𝐷
(𝒔) = ∑𝒅𝒊

𝑁𝑓

𝑖=1

[5] 

Where 𝒔 is a vector of length 𝑁𝑓 termed the “sire index vector”, and is defined such that the 𝑖-

th element of this vector contains which sire that would be mated with dam 𝑖. This formatting 

is needed due to the fact that the dominance component varies with sire-dam mating 

configurations. For this reason, the exact configurations of sire-dam mating need to be 
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specified, hence the use of vector 𝒔. The aforementioned vector 𝒙 would in turn be referred as 

“sire proportion vector.” A sire index vector can be translated into its corresponding sire 

proportion vector using the following method: 

𝒙𝒊 = 
#{𝒔: 𝒔 = 𝑖}

𝑁𝑓

[6] 

where 𝒙𝒊 is the 𝑖-th elements of vector 𝒙, and #{𝒔: 𝒔 = 𝑖} is defined as “the number of 

occurrence of value 𝑖 in vector 𝒔. Equation [6] can also be expressed in the following 

pseudocode (as the function “s_to_x”):  

 

This separation of optimization phases bypasses the competition between the additive and 

dominance genetic components.  To ensure a balance between the additive genetic and the 

dominance effects, the 𝑓𝑂𝐶𝑆𝐴𝐼
 and 𝑓𝑂𝐶𝑆𝐷

 were combined in the third phase, yielding the final 

objective function as defined in equation [4].  

It should be noted that such cascading genetic algorithm design is not possible for all 

problems, as in some problems the optimization at the second phase would disrupt the 

already optimal solutions in the first phase, losing the progress from the optimization in the 

first phase. This setup is possible for this problem however as some genetic operators such as 

vertical recombination and horizontal inversion only affect 𝑓𝑂𝐶𝑆𝐷
; they have no effects on 

𝑓𝑂𝐶𝑆𝐴𝐼
. This is due to the fact that 𝑓𝑂𝐶𝑆𝐷

 depends on both proportion and permutation of sires, 

whereas 𝑓𝑂𝐶𝑆𝐴𝐼
 only depends on the proportion of sires. Thus, any genetic operators that only 

affect the sire permutation would only affect 𝑓𝑂𝐶𝑆𝐷
, with no effects on 𝑓𝑂𝐶𝑆𝐴𝐼

. Therefore, by 

applying these genetic operators at the second phase of the algorithm, the 𝑓𝑂𝐶𝑆𝐷
 can be 

optimized while preserving the 𝑓𝑂𝐶𝑆𝐴𝐼
 from the first phase, allowing the use of cascading 

genetic algorithm for this problem.  

## converting sire index vector to sire proportion vector  

## INPUT: s, nmal 

### s: sire index vector, containing the indices of which sires to be mated with a dam 

### nmal: number of males  

 

def s_to_x(s, nmal): 

 nfem = length(s) 

 x = numeric(length = nmal) 

 for nm in range(nmal): 

  x[nm] = length(which(s == nm)) / nmal  

  ## assuming the sires are indexed 1 to nmal 

 return x 
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One caveat for cascading genetic algorithm is the constriction of diversity in the solution pool 

from the first phase optimization, which could be mitigated through parallelization of the first 

phase optimization. This involves running the first phase multitude of times, rather than once, 

and the pool of solutions collected from the several first phase optimizations would become 

the input for the second phase optimization. By increasing the number of reruns for the first 

phase of optimization, the diversity in the input for the second phase would be increased, thus 

improving the chance of finding the global optimum for this phase while reducing the chance 

of missing out sires that benefit the second phase optimization (Baluja and Caruana, 1995). 

For this reason, parallelization has been used in this algorithm.  

Due to its stochasticity of the genetic operators, the genetic algorithm also tends to disrupt an 

already optimal solution during the process of optimization, which causes the algorithm to 

miss out the global optimum. For this reason, an elitist genetic algorithm strategy can be 

employed. Rather than having the entirety of the population replaced by the mutant and 

recombinants, an elitist genetic algorithm ensures the top solutions be propagated into the 

next generation unaltered. This way, if the top solutions are indeed the global optimum, their 

survival into the subsequent generations was guaranteed as any mutants and recombinants 

would not have a fitness score greater than them, thus preserving the potential global 

optimum (Baluja and Caruana, 1995). For this reason, elitism was employed for this 

algorithm.  

6.4.3. Genetic Operators and Their Hyperparameters 

For this genetic algorithm in this OCS, five genetic operators were employed: (1) mutation; 

(2) horizontal recombination; (3) vertical recombination; (4) horizontal inversion and; (5) 

vertical inversion. These genetic operators were employed on a population of sire index 

vectors, which would be compiled into a sire index array (denoted as 𝑺). This array is of size 

𝑁𝑠 × 𝑁𝑓, where 𝑁𝑠 is the number of sire index vectors passed into the genetic algorithm.  

In mutation some of the sires in 𝒔s are replaced with new sires. In horizontal recombination, 

part of the rows in 𝑺 are exchanged, whereas in vertical recombination, part of the columns in 

𝑺 are exchanged. For horizontal inversion, part of the sequence within a row of 𝑺 is inverted, 

and for vertical recombination, part of the sequence within a column of 𝑺 is inverted. The 

hyperparameters associated with these genetic operators is provided in Table 6.1.  
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Table 6.1: Hyperparameters used for the genetic operators and number of solutions 

Genetic Operators Phase 1 Values Phase 2 Values 

Mutation    

Mutation Rate (𝑝𝑚) 0.05 - 

Horizontal 

Recombination 

   

Recombination Rate (𝑝ℎ𝑐𝑟) 0.3 - 

Average Recombination Block Size (𝑝ℎ𝑐𝑟) 0.1 - 

Vertical 

Recombination 

   

Recombination Rate (𝑝𝑣𝑐𝑟) 0.3 0.4 

Average Recombination Block Size (𝑝𝑣𝑐𝑏) 0.1 0.1 

Horizontal 

Inversion 

   

Inversion Rate (𝑝ℎ𝑖𝑟) 0.3 0.4 

Average Inversion Block Size (𝑝ℎ𝑖𝑏) 0.1 0.1 

Vertical 

Inversion 

   

Inversion Rate (𝑝𝑣𝑖𝑟) 0.3 - 

Average Inversion Block Size (𝑝𝑣𝑖𝑏) 0.1 - 

Number of Solutions   

Number of 

Solutions 

Number of Solution Tested per Iteration (𝑁𝑠) 1500 3000 

Number of Solution Selected per Iteration 

(𝑁𝑡𝑜𝑝) 

2 2 

Number of Parallelization Threads (𝑁𝑝𝑎𝑟) 8 8 

 

For the first phase optimization, all five genetic operators were utilized, whereas for the 

second phase only vertical recombination and horizontal inversion were utilized. The 

hyperparameters associated with these operators are provided in Table 6.1. For each of these 

hyperparameter values, an adaptive scaling factor was employed, which is calculated based 

on the population performance of the solutions. This scaling factor was multiplied into the 

hyperparameter values within each iteration of optimization. This adaptive scaling factor is 

based on Srinivas and Patnaik (1994), and is defined as follows: 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑒𝑎𝑛 

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
 [6] 

Where 𝑓𝑚𝑎𝑥 is the maximum 𝑓𝑂𝐶𝑆 score within the population; 𝑓𝑚𝑒𝑎𝑛 is the average value of 

all 𝑓𝑂𝐶𝑆 scores within the population, and 𝑓𝑚𝑖𝑛 being the minimum 𝑓𝑂𝐶𝑆 score within the 
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population. This scaling factor is to preserve the already highly optimal solution from being 

disrupted by the operators as the population performance converges (Srinivas and Patnaik, 

1994). The more optimized the population is, the smaller the range of 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑒𝑎𝑛, and a 

smaller scaling factor being imposed onto the hyperparameters, thus reducing the likelihood 

of disrupting an optimal solution.  

Besides the genetic operators, the number of solutions tested per iteration, as well as the 

number of top solutions chosen per iterations, is provided in Table 6.1.  

6.5. Layout of the Algorithm 

For the purpose of this study, the algorithm requires several inputs: sire genotype array of 

size 𝑁𝑚 × 𝑀 in {0, 1, 2} format (denoted as 𝒁𝒎), where 𝑀 is the number of markers; dam 

genotype array of the same format of size 𝑁𝑓 × 𝑀 (denoted as 𝒁𝒇); as well as information on 

the additive genetic components, which could be genomic (as an example, solutions for 

marker effects or test statistics from GWAS) or animal-based (as example, estimated 

breeding values (EBVs) of the animals). For optimization of the dominance genetic 

component, only genomic information can be used as it depends on the parental genotypic 

configuration (de Boer and Hoeschele, 1993). Therefor the genotype arrays are needed for the 

optimization of the dominance genetic component. 

A targeted average coancestry among the selection candidates ∆𝐼𝑡 would need to be specified. 

This is the acceptable increment of inbreeding level that the algorithm needs to constrain at. 

In our study, the selection was conducted on sires only, and all the dams were used in the 

selective breeding. 

6.5.1. The Building of Sire’s Relationship Matrix (NRM or 

GRM) 

This algorithm starts by building the relationship matrix among the sires, which was used in 

the calculation of expected ∆𝐼. This algorithm could utilize either a Numerator Relationship 

Matrix (NRM) based on pedigree, or a Genomic Relationship Matrix (GRM) based on 

genomic data. The latter will be used in this study.  

The sire GRM (denoted as 𝑮𝑮𝑹𝑴) was built using the first method as proposed by VanRaden 

(2008). While the GRM is advantageous compared to the NRM in that it could reveal 

information on the relationship of an individual that has appeared to have no pedigree 
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relationship with other individuals within the population, thus improving the accuracy of 

predicting the coefficient of consanguinity with said individual (Gondro, 2015), it has several 

less desirable properties. One notable property is that, with the assumption of sires being non-

inbred and without consanguinity with each other, the column-wise expected values of GRM 

is zero, which produces discrepancies if GRM is utilized in place of the NRM (a simplified 

example along with mathematical explanation is provided in Appendix F).  

To alleviate these problems, some adjustments could be made onto the GRM. One applicable 

adjustment was the addition of a constant to the off-diagonal value of the GRM. As observed 

in the column-wise averages of an NRM, the constant should shift the column-wise average 

toward 
1

𝑁𝑚
 for unrelated, non-inbred sires. With some algebraic manipulation, provide the 

number of sires is large (𝑁𝑚 ≥ 50), the constant that should be added to the off-diagonals of 

GRM could be approximated to be 
1

𝑁𝑚−1
 (a mathematical derivation of this constant, as well 

as a more precise but elaborated expression, is provided in Appendix F). With this constant, 

the adjusted GRM (denoted as 𝑮𝑮𝑹𝑴
∗ ) that shall be employed for the calculation of ∆𝐼 can be 

defined as follows:  

𝑮𝑮𝑹𝑴
∗ = 𝑮𝑮𝑹𝑴 +

1

𝑁𝑚 − 1
(𝟏𝑁𝑚

− 𝑰𝑁𝑚
) [7]  

where 𝟏𝑁𝑚
 is a matrix of ones of size 𝑁𝑚 × 𝑁𝑚, and 𝑰𝑚 is an identity matrix of size 𝑁𝑚 ×

𝑁𝑚. The 𝑮𝑮𝑹𝑴
∗  would provide additional weight to the ∆𝐼 based on the number of sires 

available for selection. For these reasons, 𝑮𝑮𝑹𝑴
∗  was used in place of 𝑮𝑮𝑹𝑴 in the calculation 

of ∆𝐼 for this algorithm. 

6.5.2. Calculation of Additive Genetic Values  

The additive genetic values can be predicted using various sources of information such as 

EBVs of each individual, or from genomic information. The methods and calculations used 

for these predictions are detailed below.  

6.5.2.1. Estimated Breeding Values (EBVs) 

One commonly described method of obtaining additive genetic values for an OCS is the 

sires’ EBVs (Kinghorn, 2000). For this study the EBVs (denoted as �̂�𝒎) was calculated using 

the methods detailed in Gondro (2015) using the aforementioned sires’ GRM (denoted as 

𝑮𝑮𝑹𝑴𝒎
):  
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�̂�𝒎 = [𝑰𝑁𝑚
+ (

1 − ℎ2

ℎ2
) ∗ 𝑮𝑮𝑹𝑴𝒎

−𝟏 ]

−𝟏

∗ 𝒚𝒎 [8] 

where 𝒚𝒎 is a column vector of length 𝑁𝑚 containing the mean-centred sires’ phenotypes. 

Besides GRMs, NRMs can also be used in equation [8] for prediction of EBVs.  

6.5.2.2. Marker-based Information 

Besides the EBVs, marker-based information from a Genome-Wide Association Study 

(GWAS) such as the marker test statistics can also be used as the additive genetic component 

of the OCS. For this example, the t-test statistics of the markers would be used.  

Given a column vector of t-test statistics for each of the 𝑀 markers 𝜣 = [𝑡1, 𝑡2, 𝑡3 …𝑡𝑀]𝑇, the 

test statistics based additive score of the sires (denoted as �̂�𝒎) was calculated as follows:  

�̂�𝒎 = 𝒁𝒎𝜣 [9] 

The �̂�𝒎 can then be used in place of �̂�𝒎, and the remaining calculation remained unchanged.  

6.5.3. Calculation of Dominance Genetic Values  

The dominance score between a sire and a dam is defined as the sum of dominance effects 

over all loci. As in the additive genetic component, predicting the dominance scores in 

offspring can also be done using various sources of information. While knowledge of true 

dominance effect sizes at the QTL would be ideal, estimation of these effects is difficult 

unless there is data on large full sib families. With the availability of genomic data, genome-

wide heterozygosity can now be used as a more practical way to predict dominance effects in 

future phenotypes and in this study, we will test this alternative approach. We will compare 

this approach with using known dominance effects to measure its effectiveness. 

Unlike the additive genetic values, which can be represented using vectors of parental values, 

the dominance genetic values depend on the sire-dam pairings. For this reason, a dominance 

score array of size 𝑁𝑚 × 𝑁𝑓 is needed.  

6.5.3.1. Dominance Effect Sizes 

The dominance effect sizes could be used to construct the score array for the dominance 

genetic component. Using the dominance effect size of a marker of locus 𝑘, denoted as 𝛿𝑘, 

the dominance score for the offspring of each combination of sires of index 𝑖 and dams of 

index 𝑗 (denoted as 𝑑𝑖,𝑗) could thus be calculated as follows:  
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𝑑𝑖,𝑗 =
1

𝑀
∑ 𝑢𝑖𝑘𝑗𝑘

𝛿𝑘

𝑀

𝑘=1

[10] 

Where 𝑢𝑖𝑘𝑗𝑘
 is a scalar value in a 3 × 3 incidence matrix 𝑼 describing the likelihood of 

producing heterozygous offspring for each genotype combinations at locus 𝑘 between sire 𝑖 

and dam 𝑗. The matrix 𝑼 is defined as follows:  

𝑼 = [
0 0.5 1

0.5 0.5 0.5
1 0.5 0

] [11] 

and is indexed at first, second and third rows for sire with genotypic state of {0,1,2} 

respectively, and first, second and third column for dam with genotypic state of {0,1,2} 

respectively. As an example, if a sire has a genotypic state of 2 and the dam has a 0 state, the 

𝑢𝑖𝑘𝑗𝑘
 would be the third row, first column of 𝑼, and 𝑢𝑖𝑘𝑗𝑘

= 1.  

The 𝑑𝑖,𝑗 can then be stored in dominance score array of size 𝑁𝑚 × 𝑁𝑓 denoted as 𝑫, which 

was defined as follows: 

𝑫 =

[
 
 
 
 

𝑑1,1 𝑑1,2 ⋯ 𝑑1,𝑁𝑓

𝑑2,1 𝑑2,2 ⋯ 𝑑2,𝑁𝑓

⋮ ⋮ ⋱ ⋮
𝑑𝑁𝑚,1 𝑑𝑁𝑚,2 ⋯ 𝑑𝑁𝑚,𝑁𝑓]

 
 
 
 

 [12] 

6.5.3.2. Heterozygosity 

Due to the difficulty of estimation of effect sizes, obtaining the idealized input of true 

dominance effect sizes is not a trivial problem. For this reason, an estimate for the dominance 

genetic component would be desirable, with one such estimates being the expected 

heterozygosity of the offspring.  

Given a sire of index 𝑖 and dam of index 𝑗, the heterozygosity score (denoted as ℎ𝑖,𝑗) was 

defined as follows:  

ℎ𝑖,𝑗 = ∑ 𝑢𝑖𝑘𝑗𝑘

𝑀

𝑘=1

 [13] 

The ℎ𝑖,𝑗 can then be stored in a heterozygosity score array of size 𝑁𝑚 × 𝑁𝑓 (denoted as 𝑯), 

which is defined as in 𝑫 from equation [12], but with ℎ𝑖,𝑗 in place of 𝑑𝑖,𝑗.  
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One major advantage of using 𝑯 compared to 𝑫 is that 𝑯 can be used without knowing the 

dominance effect size of the QTL. This is advantageous in cases when accurate estimates for 

dominance effect sizes or dominance genetic variance are unavailable. For this study it is 

assumed that dominance variance is unavailable, and the heterozygosity is the only practical 

proxy for the optimization of dominance component.  

One downside for using heterozygosity is that the realized benefit of optimization depends on 

dominance effects 𝛿𝑘; if there exist some negative 𝛿𝑘, maximizing the heterozygosity would 

not yield a maximal dominance effect. This would be the case for underdominance where 

heterozygotes have lower phenotypic value than both homozygotes (Magori and Gould, 

2006; Nehrenberg et al., 2010; Newberry et al., 2016). Thus, if underdominance is present, 

maximizing heterozygosity would not maximize the dominance effects. For this phenotypic 

model, it is assumed that underdominance is uncommon and has negligible impact on the 

optimization. Further studies on improving the estimates of the marker-wise dominance effect 

sizes is desirable.  

6.5.4. Initialization of Solution Pool 

For the initialization of the solution, a number of 𝑁𝑓 sires were randomly chosen with 

replacement, which their indices were kept as sire index vector 𝒔. To initialize a pool of 

solutions, an 𝑁𝑠 number of vectors 𝒔s was initialized, which was compiled into sire index 

array 𝑺. This solution pool was used in the genetic algorithm. 

6.5.5. Phase 1: Optimization of Additive and Inbreeding 

Scores 

The aim of this phase is to maximize the additive genetic of the solutions while constraining 

the changes of inbreeding coefficient within the ∆𝐼𝑡. This involves the calculation of 𝑓𝑂𝐶𝑆𝐴𝐼
 of 

each of the rows of sire index array 𝑺. A pseudocode for this phase of genetic algorithm is 

provided in Appendix G.  

This phase starts by converting the sire index array 𝑺 into sire proportion array 𝑿. This is 

done by converting each rows of 𝑺 into its corresponding sire proportion vectors using [6], 

before compiling the 𝑁𝑠 sire proportion vectors into the sire proportion array that would have 

a size of 𝑁𝑠 × 𝑁𝑚.   
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If the sires’ EBVs are used in the calculation, the additive score of each row of 𝑿 (denoted as 

𝒂𝒔) is a vector of length 𝑁𝑠 defined as follows:  

𝒂𝒔 = 𝑿�̂�𝒎 [15] 

Whereas if test statistics based additive scores had been used, the �̂�𝒎 was used in place of �̂�𝒎 

for equation [15], and the subsequent calculations would remain unchanged.  

Using the matrix 𝑿, the expected changes in average coancestry of the selection candidates 

for each row of matrix 𝑿 (denoted as ∆𝒊𝒔) is a vector of length 𝑁𝑠 defined as follows:  

∆𝒊𝒔 = 𝑑𝑖𝑎𝑔(𝑿𝑮𝑮𝑹𝑴
∗ 𝑿𝑻) [16] 

Finally, the vector of size 𝑁𝑠 containing the 𝑓𝑂𝐶𝑆𝐴𝐼
(𝒙)s of each of the rows of 𝑿 (denoted as 

𝒇𝑶𝑪𝑺𝑨𝑰
) is defined as the weighted sum of 𝒂𝒔 and ∆𝒊𝒔: 

𝒇𝑶𝑪𝑺𝑨𝑰
= 𝒂𝒔 + 𝜆∆𝒊𝒔 [17] 

With the 𝜆 being the penalty factor the inbreeding coefficient, which was used to penalize 

solutions with overly high inbreeding coefficient. The initial 𝜆 was set at zero, and can range 

from negative infinity (although realistically a large but finite negative number), where the 

model would attempt to constrain the increment in inbreeding level while disregarding its 

impact on the additive genetic gains, up to zero, where the additive genetic gains was 

maximized while ignoring its impacts on the increment of level of inbreeding. To consider a 

potentially wide range of values of 𝒂𝒔 and ∆𝒊𝒔, an adaptive approach was utilized to calculate 

𝜆; for each iteration, the value of 𝜆 was updated based on the inbreeding coefficients of the 

solutions.  

Let 𝜆𝑖 be the 𝜆 value at iteration 𝑖, with ∆𝐼𝑎𝑣𝑔 being the average of vector ∆𝒊𝒔 (i.e. ∆𝐼𝑎𝑣𝑔 =

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑑𝑖𝑎𝑔(𝑿𝑮𝑮𝑹𝑴
∗ 𝑿𝑻))), and ∆𝐼𝑡 being the user-specified targeted average coancestry 

of the selection candidates. For each iteration, the updated value of 𝜆 (denoted as 𝜆𝑖+1) was 

calculated as follows:  

𝜆𝑖+1 = 𝜆𝑖 + 𝑧𝜆 ∗ (∆𝐼𝑎𝑣𝑔 − ∆𝐼𝑡) [18] 

Where 𝑧𝜆 is a scaling factor that translates the discrepancy between average inbreeding 

coefficient from the targeted inbreeding coefficient to the penalty weight 𝜆. For this study, 

the 𝑧𝜆 is set at 100.0 per 1 unit of ∆𝐼𝑎𝑣𝑔 − ∆𝐼𝑡 discrepancy. Using this updating system, if the 
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average ∆𝐼 in the solution pool is overly high (i.e. ∆𝐼𝑎𝑣𝑔 > ∆𝐼𝑡) additional weightage was 

added onto 𝜆, increasing the penalty of inbreeding. Conversely if the average ∆𝐼 is overly 

low, the 𝜆 was reduced in attempt to exploit additional genetic gains by allowing solutions 

with greater inbreeding coefficient. This produces a self-stabilizing system; with sufficiently 

large number of iterations, the ∆𝐼𝑎𝑣𝑔 would eventually converge toward ∆𝐼𝑡, achieving the 

targeted average coancestry (i.e. ∆𝐼𝑎𝑣𝑔 = ∆𝐼𝑡).  

From the vector 𝒇𝑶𝑪𝑺𝑨𝑰
, indices for the maximal values in this vector was recorded. These 

indices were used to subset the sire index array 𝑺, and the resulting matrix of size 𝑁𝑡𝑜𝑝 × 𝑁𝑓, 

denoted as 𝑺𝑡𝑜𝑝, would become the seed for propagation into the next iteration. The rows of 

𝑺𝑡𝑜𝑝 were sampled 𝑁𝑠 − 𝑁𝑡𝑜𝑝 times, and the resulting sampled matrix, denoted as 𝑺𝑜𝑓𝑓, was 

subjected to the Phase 1 genetic operators. The altered 𝑺𝑜𝑓𝑓 was then combined with 

unaltered 𝑺𝑡𝑜𝑝 to produce a new sire index array, which was used in the next iteration. The 

process in Phase 1 was repeated until convergence of 𝑓𝑂𝐶𝑆𝐴𝐼
. 

In this algorithm, the point of convergence of 𝑓𝑂𝐶𝑆𝐴𝐼
 in the solution array is defined as the 

point where the 𝒂𝒔 no longer significantly improves with each iteration, and ∆𝒊𝒔 has largely 

stabilized at ∆𝐼𝑡 (or, if such ∆𝐼𝑡 is impossible to achieve, no longer fluctuates with each 

iteration). This is determined using the slope of the tangent of the additive scores and 

inbreeding coefficient from the last 50 iterations, and is considered to have converged if 

𝑓𝑂𝐶𝑆𝐴𝐼
(𝒙) reaches a slope of less than 5 × 10−3 across the last 50 iterations. The end result of 

this convergence was the 𝑺𝑡𝑜𝑝 from the last iteration of the genetic algorithm. For each of the 

convergence event, the 𝜆 from the last iteration (denoted as 𝜆𝑓𝑖𝑛) was also recorded.  

To preserve the diversity in the solution array for Phase 2 of the algorithm, the Phase 1 

genetic algorithm was parallelized 𝑁𝑝𝑎𝑟 number of times, with the 𝑺𝑡𝑜𝑝 from each repeat 

being collated into a new 2 dim-array of size (𝑁𝑝𝑎𝑟 ∗ 𝑁𝑡𝑜𝑝) × 𝑁𝑓 which was denoted as 

𝑺𝑎𝑙𝑙𝑃1. The average of 𝜆𝑓𝑖𝑛s from all the repeats (denoted as 𝜆𝑎𝑣𝑔) was also calculated, to be 

used in Phase 3 of the algorithm. The 𝑺𝑎𝑙𝑙𝑃1 would become the input for the Phase 2 of the 

algorithm.  
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6.5.6. Phase 2: Optimization of Dominance Scores 

The aim of this phase is to optimize the dominance genetic component from the solution pool 

𝑺𝑎𝑙𝑙𝑃1. This involves the calculation of 𝑓𝑂𝐶𝑆𝐷
 of each of the rows in 𝑺𝑎𝑙𝑙𝑃1. A pseudocode for 

this phase of genetic algorithm is provided in Appendix G.  

This phase starts by generating an offspring solution array sampled from 𝑺𝑎𝑙𝑙𝑃1. In total 𝑁𝑠 −

(𝑁𝑝𝑎𝑟 ∗ 𝑁𝑡𝑜𝑝) new solutions were sampled from 𝑺𝑎𝑙𝑙𝑃1. This offspring solution array was 

subjected to Phase 2 genetic operators, with the hyperparameters for these genetic operations 

being provided in Table 6.1. This altered offspring array was combined with 𝑺𝑎𝑙𝑙𝑃1, 

producing a new solution array 𝑺. This array would become the starting solutions for Phase 2 

of the algorithm. 

Let 𝒔 be a vector representing a row in 𝑺 that contains the indices of sires chosen to be mated 

with the dam, with 𝑖th index in vector 𝒔 denoted as 𝑠𝑖. Using the dominance genetic effect 

score array (in this example, array 𝑫), the dominance score for vector 𝒔 (denoted as 𝑑𝑠) was 

calculated as follows:  

𝑑𝑠 = ∑𝑫𝑠𝑖,𝑖

𝑁𝑓

𝑖=1

 [19] 

With the notation 𝑫𝑥,𝑦 being the 𝑥th row and 𝑦th column of array 𝑫. In this study, the 𝑑𝑠 

serves as the objective function term 𝑓𝑂𝐶𝑆𝐷
 as defined in equation [5]. This operation was 

repeated for all the 𝒔 in 𝑺, from which a vector of length 𝑁𝑠 denoted as 𝒅𝒔 containing the 

dominance scores of each of the rows in 𝑺. If the dominance score array is built using 

heterozygosity, array 𝑯 can be used in place of 𝑫 in equation [19], and subsequent 

calculations remained unchanged.  

From the vector 𝒅𝒔, the indices of maximal values in this vector were chosen, from which the 

rows of 𝑺 were sliced, and from which the 𝑺𝑡𝑜𝑝 of size 𝑁𝑡𝑜𝑝 × 𝑁𝑓 was generated. The 𝑺𝑡𝑜𝑝 

was sampled 𝑁𝑠 − 𝑁𝑡𝑜𝑝 times, and the resulting matrix, denoted as 𝑺𝑜𝑓𝑓, was subjected to the 

vertical recombination and horizontal inversion. As in Phase 1, the rate of recombination and 

inversion was also scaled with the scaling factor as defined in equation [6]. The altered 𝑺𝑜𝑓𝑓 

was then recompiled with 𝑺𝑡𝑜𝑝, and the resulting 𝑺 array would become the input for the next 

iteration of the genetic algorithm.  
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The point of convergence in Phase 2 was defined as the point where the maximal values of 

𝒅𝒔 no longer substantially improve with each iteration. This refers to the point where the 

slope of the tangent of the curve of 𝒅𝒔 across the last 200 iterations is less than 1 × 10−5. At 

the point of convergence, the most optimal solution, denoted as 𝒔𝑜𝑝𝑡𝑃2, was generated.  

As the dominance genetic component has a significantly larger sample space than both 

additive and inbreeding coefficient, there is an increased probability of convergence toward 

local optima. For this reason, this phase was repeated 𝑁𝑝𝑎𝑟 times, using the same 𝑺𝑎𝑙𝑙𝑃1 as 

the input. The 𝒔𝑜𝑝𝑡𝑃2 from each repeat was kept as 𝑺𝑎𝑙𝑙𝑃2, which is a 2-dimensional array of 

size 𝑁𝑝𝑎𝑟 × 𝑁𝑓. The 𝑺𝑎𝑙𝑙𝑃2 was used for the third phase of the algorithm.  

6.5.7. Phase 3: Combining the Dominance Scores to Additive 

and Inbreeding Scores 

The aim of this phase is to identify the optimal solution from 𝑺𝑎𝑙𝑙𝑃2 by combining the 

dominance scores from the second phase into the additive and inbreeding scores from the first 

phase. Given the additive scores, dominance scores and inbreeding coefficients of each row 

in 𝑺𝑎𝑙𝑙𝑃2, denoted as 𝒂𝒔, 𝒅𝒔 and ∆𝒊𝒔 respectively, the objective function for this phase 

(denoted as 𝑓𝑂𝐶𝑆𝐴𝐷𝐼
) was defined as follows:  

𝑓𝑂𝐶𝑆𝐴𝐷𝐼
= 𝒂𝒔 + 𝜆𝑑𝒅𝒔 − 𝜆𝑎𝑣𝑔(∆𝒊𝒔 − ∆𝐼𝑡) [20] 

where 𝜆𝑎𝑣𝑔 is the average of all penalties of inbreeding coefficients at the point of 

convergence across the repeats in Phase 1, and 𝜆𝑑 being the weight for the dominance genetic 

effects, which for this study was set to 𝜆𝑑 = 1. 

This operation could then be applied to all 𝒔 in 𝑺𝑎𝑙𝑙𝑃2, generating a vector of length 𝑁𝑝𝑎𝑟 

containing the 𝑓𝑂𝐶𝑆𝐴𝐷𝐼
 of all the 𝒔s, which can be denoted as 𝒇𝑶𝑪𝑺𝑨𝑫𝑰

. The optimal solution 

for this phase, denoted as 𝒔𝒐𝒑𝒕, is defined as the 𝒔 that produces the maximal 𝑓𝑂𝐶𝑆𝐴𝐷𝐼
 value in 

𝒇𝑶𝑪𝑺𝑨𝑫𝑰
. The 𝒔𝒐𝒑𝒕 would also be regarded as output for the OCS algorithm and could then be 

applied to the selective breeding program.  
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6.5.8. The Difficulty of Optimization Across Multiple 

Generation 

The aforementioned algorithm optimizes the breeding pairs across one generation. For 

optimization across multiple generations, the most straightforward method is to optimize the 

breeding pair for the current generation and feed the algorithm with the predicted offspring 

genotypes. The feasibility of direct optimization of breeding pairs across multiple generations 

is limited as it requires the knowledge of the exact genotype of the population that need to be 

selected, which due to the randomness from Mendelian sampling, would not be available 

until the production of offspring.  

This is further complicated by the recombination process, which alter the allelic composition 

of a haplotype. While recombination would not alter the expected values for the additive, 

dominance and inbreeding scores, as there are no net changes in the expected allelic 

composition and heterozygosity between the four possible combinations of sire-dam 

haplotypes. Recombination does alter these quantities within each of the haplotypic 

combinations, and these quantities would be relevant to the allelic composition and 

heterozygosity as the parent transmitted the haplotypes to the offspring. For these reasons, 

without additional knowledge on the exact genotypes of the offspring, it might not be feasible 

to predict the exact permutation of sires required for optimal mating in the subsequent 

generation.  

6.6. Testing the Algorithm 

6.6.1. Layout of the Experiment  

The OCS algorithm was tested using simulation, which was conducted using Python (version 

3.9.7, released 30 August 2021). This OCS was tested against other methods of genomic 

selection. The merits of this OCS were also tested under varying sample sizes, genetic 

architecture as well as sources of information. The inputs for this experiment were the sire 

and dam genotype arrays, sire and dam phenotype vectors, narrow sense heritability (assumed 

to have been known) and a targeted coancestry level between selection candidates. The 

experiment was conducted on a PC with the following specification: 8-core Intel i7-8665U at 

1.90 GHz with 16 GB RAM, with all 8 cores being used in the OCS. 
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This simulation starts by generating the genotype arrays for the base population. For this 

simulation, a pair of sire and dam genotype arrays, 𝒁𝒎 and 𝒁𝒇 respectively, were generated. 

Equal numbers of sires and dams were simulated for the base population. 20k markers were 

generated for both genotype arrays, with the number of sires and dams being provided in 

Table 6.2. Correlation between markers was simulated however, by copying part of the 

genotypes from a marker into the adjacent markers, with the pairwise marker correlation 

being set at 0.9. The allele frequencies for each marker were assumed to follow a symmetric 

Beta distribution with shape parameter set at 0.5.  

Some of the markers were nominated as a QTL, and they were allocated an effect size. The 

additive effect sizes were randomly generated using a gamma distribution, with the 

distribution parameter tested provided in Table 6.2. In total 500 markers were designated to 

be additive QTL. These effect sizes were padded with zeros for null markers, and the vector 

for additive effect sizes of all markers, 𝜶, was used to calculate the sires’ true breeding values 

(TBVs) as follows:  

𝒃 = 𝑿𝒎𝜶 [21] 

Besides additive effect sizes, these QTL were allocated a dominance effect sizes (denoted as 

𝛿𝑘) that would contribute toward the phenotype of individuals heterozygous for that 

particular locus genotype. For the dominance genetic component, the dominance effect size 

was simulated using a half-normal distribution, with the distribution tested provided in Table 

6.2. In total 500 dominance QTL were simulated, with the collection of dominance effect 

sizes denoted as 𝜹. The 𝛿𝑘 was used to calculate the matrix 𝑫 as defined in equation [12]. 

The heterozygosity-based score array 𝑯 for the dominance genetic component can also be 

calculated using the sire and dam genotype arrays as defined in equation [12] and [13].   

Using the same 𝜶 and 𝜹, the phenotype of the sires and dams are also calculated in 

accordance with equation [1]. For the simulation of the phenotype, the narrow sense 

heritability for the additive genetic component was set at 0.3. The phenotype was in turn used 

to estimate the EBVs of the sires using equation [8], with the resulting EBVs denoted as �̂�. 

For the test statistics 𝜣, a single SNP regression of the phenotype on individual marker 

genotype was conducted. All sires and dams are utilized in the single SNP regression. The 𝜣 

was then used to build a �̂�𝒎 as defined in equation [9]. Markers with minor allele frequencies 

of less than 0.05 are filtered out. No threshold was applied for the test statistics.  
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The genotype arrays and additive and dominance scores was used in the OCS algorithm, with 

the targeted coancestry level between selection candidates set at ∆𝐼𝑡 = 0.01. This algorithm 

produced the vector 𝒔𝒐𝒑𝒕 that contains the permutation of mating between sire and dams that 

would optimize the additive and dominance genetic component while constraining the 

increase in inbreeding level. The 𝒔𝒐𝒑𝒕 was then used in the selection of sires for the next 

generation. The selection intensity of the sires was determined by the constraint set by ∆𝐼𝑡. 

No selection was conducted on the dam side.  

The OCS was used in a 4-generation genomic selection program. The generations were 

assumed to be non-overlapping. The OCS was applied on per generational basis, with the 

𝒔𝒐𝒑𝒕 from each generation being used to generate the offspring genotype arrays. Each dam 

produces two offspring per generation interval, with an equal number of males and females, 

and the total number of animals remained unchanged between generations. From each 

generation, the additive scores (𝑎𝑜𝑝𝑡), dominance scores (𝑑𝑜𝑝𝑡) and the increase in inbreeding 

coefficients (∆𝑖𝑜𝑝𝑡) of the 𝒔𝒐𝒑𝒕 was recorded. Besides these, the total genetic merits (𝑡𝑜𝑝𝑡), 

defined as the sums of 𝑎𝑜𝑝𝑡 and 𝑑𝑜𝑝𝑡, was calculated as well. To compare the performance of 

the selective breeding, the 𝑎, 𝑑 and 𝑡 of the base population (denoted as 𝑎𝑏𝑎𝑠𝑒 , 𝑑𝑏𝑎𝑠𝑒 and 

𝑡𝑏𝑎𝑠𝑒 respectively) were recorded.  

6.6.2. Parameters Tested in this Experiment 

The parameters, as well as their associated default and alternative values, tested in this 

experiment are provided in Table 6.2.  

Table 6.2: Parameter tested in this experiment 

Parameter Tested Default Values Alternative Values 

Number of Sires and Dams 500 1000 

Distribution of Additive QTL Effect Sizes 𝐺𝑎𝑚𝑚𝑎(0.3, 1.0)  𝐺𝑎𝑚𝑚𝑎(0.9, 1.0)  

Distribution of Dominance Coefficient  𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0.3)  𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0.8)  

 

The default parameter values were chosen such that the distribution of additive QTL effect 

sizes and dominance coefficients the dominance genetic variance is approximately 15% the 

additive genetic variance. This value was chosen based on values reported by several 
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previous publications (Garcia-Baccino et al., 2020; Vitezica et al., 2016). When the effects of 

one of the parameters were tested, the values for all other parameters were kept at their 

default values.  

6.6.3. Testing the Performance of the OCS 

To test the performance of the proposed OCS, several methods of genomic selection were 

conducted. Methods tested in this study, as well as the model of selection optimization, are 

provided in Table 6.3.  

For selections that includes true additive and dominance scores (i.e. 𝒃 for SWUA, SWAI, 

SWAD, SWD1 and SWH1, and 𝑫 for SWAD, SWED, SWTD, and SWD1), the aim for these 

scenarios was to test the theoretical improvement achievable with perfectly accurate sources 

of information, whereas the estimates (i.e. �̂� and �̂� for additive and 𝑯 for dominance genetic 

components) were used to test the performance of this OCS under realistic sources of 

information that might not be perfectly accurate. The usability of heterozygosity as a proxy of 

optimizing dominance effects were also tested by comparing the performance between SWEI 

(i.e. EBVs without dominance component), SWED (i.e. EBVs with true dominance effect 

sizes) and SWEH (i.e. EBVs with heterozygosity). Any improvement in the total genetic 

merit in SWEH and SWED compared to SWEI were deemed to be the additional gain 

obtainable from the inclusion of heterozygosity and dominance component in the OCS 

respectively.  

The SWD1 and SWH1 scenarios are used to test the effects of early termination of 

optimization of the dominance genetic component in the breeding program on its scores in 

the subsequent generations. For those optimized genomic selection scenarios that excluded 

the optimization of dominance genetic component (i.e., SWAI, SWEI, SWD1 and SWH1), 

𝑺𝑎𝑙𝑙𝑃1 was used in place of 𝑺𝑎𝑙𝑙𝑃2 (i.e., bypassing Phase 2 of the algorithm), and the term 𝑑𝑠 

was omitted in equation [20] in Phase 3 of the algorithm. For the un-optimized genomic 

selection, only the additive genetic component was used in the selection process. For 

optimizations that utilized estimates, the corresponding true additive and dominance scores 

(𝒃 and 𝑫 respectively) were also recorded. This allows valid comparisons on the true additive 

and dominance genetic gains between different optimization methods. 
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Table 6.3: Method of genomic selection and model of selection optimization tested in this study. For the models 

of selection optimization, 𝒃 represents optimization of additive using sire true QTL effect sizes; �̂� represents that 

of sire estimated additive breeding values; �̂� represents that of sire marker test statistics from GWAS; 𝑫 

represents optimization of non-additive using true dominance effect sizes, 𝑯 represents that of heterozygosity 

and 𝑰 represents selection with constraint on inbreeding coefficient.  

Genomic selection 

method 

OCS Utilized Model of selection optimization 

NSEL No No selection 

SWUA No 𝒃  

SWUE No �̂�  

SWAI Yes 𝒃 + 𝑰  

SWEI Yes �̂� + 𝑰  

SWAD Yes 𝒃 + 𝑫 + 𝑰  

SWAH Yes 𝒃 + 𝑯 + 𝑰  

SWED Yes �̂� + 𝑫 + 𝑰  

SWEH Yes �̂� + 𝑯 + 𝑰  

SWTD Yes �̂� + 𝑫 + 𝑰  

SWTH Yes �̂� + 𝑯 + 𝑰  

SWD1 Yes 𝒃 + 𝑫 + 𝑰 for generation 1; 𝒃 + 𝑰 for later generations 

SWH1 Yes 𝒃 + 𝑯 + 𝑰 for generation 1; 𝒃 + 𝑰 for later generations 

 

For the SWUA and SWUE tests, additional work was done to calculate the expected number 

of selected top sires required to generate the targeted amount of increment in the inbreeding 

coefficient. It is defined as follows: let 𝑘 be the number of top sires being chosen from a total 

of 𝑁𝑚  sires. These sires were used to generate a sire index array 𝑺𝑺𝑾𝑼, which through 

equation [14] translated into its corresponding sire proportion array 𝑿 (𝑿𝑺𝑾𝑼). The number of 

selected top sires 𝑘∆𝐼𝑡  was defined as the value 𝑘 such that when used to generate the 𝑿𝑺𝑾𝑼 

the 𝑿𝑺𝑾𝑼 fulfil the following equation:  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑑𝑖𝑎𝑔(𝑿𝑺𝑾𝑼𝑮𝑮𝑹𝑴
∗ 𝑿𝑺𝑾𝑼

𝑻)) = ∆𝐼𝑡 [22] 

Using the top 𝑘∆𝐼𝑡  number of sires, the 𝑺𝑺𝑾𝑼 array and 𝑿𝑺𝑾𝑼 arrays were generated, and their 

additive, dominance and rate of inbreeding coefficient were calculated as in other types of 

genomic selection tested in this experiment. 
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For the additive and dominance genetic component, as well as the total genetic merit for each 

of the methods of genomic prediction tested, they were compared with the base values, which 

is defined as the expected values had the mating being done randomly and no selection is in 

place (i.e., the NSEL). For the inbreeding coefficient, the absolute values of changes between 

generations were reported.  

Besides the optimization performance of the OCS, the runtime performance of the OCS was 

also recorded. This includes the time required for a run of genetic algorithm to converge in 

each phases, the total runtime of the OCS across all reruns for each generations, and the 

number of iterations before the convergences.  

6.7. Results 

6.7.1. Overall Results of Optimization 

Given a constraint on the rate of inbreeding, genomic selection that utilized OCS (i.e., SWAI, 

SWEI, SWAD, SWAH, SWED, SWEH, SWTD, SWTH, SWD1, SWH1) has a larger 

increase in the additive genetic component in comparison with un-optimized genomic 

selection (i.e., SWUA, SWUE). Among the genomic selection methods that utilized OCS 

however, those that optimized the dominance genetic component (i.e., SWAD, SWAH, 

SWED and SWEH, as well as SWD1 and SWH1 in the first generation) achieved a 

significantly higher dominance genetic response compared to those that did not do such 

optimization (i.e., SWAI and SWEI). Under default conditions, OCS methods that have the 

true dominance effects included have an average gain of the dominance genetic component of 

+8.41, compared to +0.07 for those an optimization that did not include dominance (Figure 

6.1(a)). 

The increase in genetic merit due to dominance genetic effects translated to an increased total 

genetic merit of +12.66 in the first generation for OCS that exploited dominance effects, 

compared to +2.75 for OCS without considering dominance effects, a difference of +9.91. A 

similar difference in total genetic merit was observed in the final generation, with total 

genetic merit of +19.16 for those that include dominance genetic component, compared to 

+9.01 for those that did not, a difference of +10.15 (Figure 6.1(b)), in other words, the 

additional gain due to exploiting dominance effects was a genetic lift that was mainly due to 

selection in the first generation.  
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The OCS remained successful even if only estimated data were utilized (i.e. �̂� or �̂� for 

additive optimization and 𝑯 for dominance optimization). With the use of EBV �̂�, compared 

with un-optimized truncation selection SWUE, the OCS increased the additive genetic 

component from +1.31 to +2.59 in SWEH. For SWEH, where the non-additive optimization 

was included, the non-additive genetic component reached +4.98 in the first generation, 

compared to +0.26 for SWEI if the non-additive genetic component was omitted (Figure 

6.2(a)). In terms of total genetic merit, the SWEH method achieved a value of +7.57, 

compared to +2.55 for SWEI (Figure 6.2(b)). Whereas in the SWTH strategy with the use of 

marker test statistics to form �̂�, the additive, non-additive and total genetic merit were 

increased to +3.03, +7.47 and +10.50, respectively.  

While the OCS successfully improved the offspring genetic merits, the accuracy of the 

additive scores used in the optimization has significant effects on the additive genetic gains of 

the offspring. As example, for SWAD, which use the true QTL effect size 𝒃, the OCS 

achieved an additive genetic gain of +5.10 in the first generation, whereas for SWED, where 

EBVs �̂� was used, the optimization only achieved an average additive genetic gain of +2.48 

in the first generation, and for SWTD, where test statistics �̂� was used, an additive genetic 

gain of +2.78 was achieved. These correspond to 48.6% and 54.5% of the maximum genetic 

gain based on using true additive genetic effects in the method (Figure 6.3). These figures 

should represent the accuracy of genomic selection. 

Similar observations have also been made on the effects of accuracy of dominance scores 

used in the optimization. One such example was SWEH, which uses heterozygosity score 

array 𝑯, the algorithm optimized the dominance genetic component up to +4.98 in the first 

generation, whereas for SWED, which uses true dominance effect size score array 𝑫, an 

optimization of +6.34 in the first generation was achieved. This corresponds to a 78.5% 

efficiency in using the dominance genetic component gained from optimization when 

approximating dominance gain by using predicted genome-wide heterozygosity in progeny 

(Figure 6.1(a)). The improvement in dominance component is sufficiently substantive when 

using heterozygosity as a score of non-additive genetic component optimization, and in most 

cases, this is likely higher than using estimated dominance effects.  

The decline in the dominance genetic component optimization also translated into lower total 

genetic merits in the optimized solutions; for heterozygosity score array, the total genetic 

merit of optimized solution has an average of +11.96 in the first generation, compared to 
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+13.35 if true dominance score array was used. This translated to a decline of 10.4% in total 

genetic merit in the use of heterozygosity instead of true dominance effect sizes (Figure 

6.1(b)).  

In terms of runtime performance, under the default set of parameters, the genetic algorithm in 

the first phase converges after an average of 281.28 iterations at an average of 43.1 seconds 

per run. Given that there were 8 runs in Phase 1 per generation, an average of 328.35 seconds 

was needed to complete this phase. Whereas for Phase 2, the genetic algorithm converges 

after an average of 2325.94 iterations over 278.21 seconds per run. Across all 8 runs of Phase 

2, the total average runtime for this phase is 2376.53 seconds. Similar observations in term of 

runtime performances were made for all parameter values tested, with the exception of the 

case with 1000 sires and dams. For this parameter values, the first phase genetic algorithm 

converges after an average of 338.44 iterations at an average of 223.17 seconds per run. The 

average runtime for Phase 1 across all 8 reruns was 1651.42 seconds. Whereas for Phase 2, 

the genetic algorithm converges at average of 4777.86 iterations, which requires 723.76 

seconds. Across all 8 reruns, the total runtime for this phase is 4894.16 seconds.  

 

Figure 6.1: Response to selection on the (a) dominance genetic component and (b) total genetic merit across 

generations. Red line represents SWAI, the OCS that omits dominance component (𝒃 + 𝑰), yellow line 

represents SWAD, the OCS that utilized true dominance effects (𝒃 + 𝑫 + 𝑰) and blue represent SWAH, the 

OCS that utilized heterozygosity (𝒃 + 𝑯 + 𝑰). A full description of the methods and models are provided in 

Table 6.3. For all these methods, a default set of parameters were utilized.  
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Figure 6.2: The effects of inclusion of the dominance component in mating optimization on (a) the dominance 

genetic component and (b) total genetic merit across generations in situations where only estimated data are 

utilized. The red line represents SWEI genomic selection method that ignores the non-additive component (�̂� +

𝑰) and the yellow line represents the SWEH method that utilizes the heterozygosity score array (�̂� + 𝑯 + 𝑰). A 

full description of the methods and models is provided in Table 6.3. The default set of parameters was used for 

all methods utilized.  

 

Figure 6.3: The effects of type of additive information on the optimization of the additive genetic component, with 

the red line being true QTL effect size 𝒃 being used in the optimization, yellow line being EBV �̂� and blue line 

being GWAS test statistics �̂�. For all these methods, default set of parameters were utilized.  
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6.7.2. Effects of Cessation of Optimization of Dominance 

Genetic Component 

Unlike the additive genetic component, the dominance genetic component is not cumulative 

from generation to generation. Thus, the cessation of optimization of this component would 

result in a decay of the dominance genetic component for the subsequent generations. This 

effect could be observed during the comparison of the total genetic merit between SWAI, 

where only the additive genetic component was optimized, and SWAH, where both additive 

and dominance genetic component were optimized for all generations, and SWH1, where the 

dominance component is optimized for the first generation only.  

In the first generation, the total genetic merit of SWH1 reaches +14.17 from the optimization 

of the dominance genetic component, which is comparable to +14.15 for SWAH, and is 

significantly higher than +5.36 observed in truncation selection method SWAI. From the 

second generation onward however, optimization of dominance genetic component ceases in 

SWH1, thus the total genetic merit decays to +9.20, which is comparable to +9.33 for SWAI, 

and significantly lower than +14.45 in SWAH (Figure 6.4). 

 

Figure 6.4: The effects of cessation of optimization of dominance genetic component on the total genetic merit 

from the OCS. Red line represents truncation selection method SWAI (𝒃 + 𝑰), yellow line represents SWAH 

method (𝒃 + 𝑯 + 𝑰) and blue line represent SWH1 (𝒃 + 𝑯 + 𝑰) in first generation, 𝒃 + 𝑰 in subsequent 

generations). Full description of the methods and models were provided in Table 6.3. For all these methods, 

default set of parameters were utilized.  
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6.7.3. Effects of Parameters 

6.7.3.1. Effects of Number of Sires and Dam 

Besides the methods of genomic selection, the number of sires and dams have significant 

effects on the OCS. For simulations that utilized the true additive genetic component 𝒃, by 

increasing the number of sires and dams from 500 to 1000, under the same constraint of 

inbreeding coefficient increment while allowing sire selection intensity to vary, the additive 

genetic component increases from an average of +5.11 to +6.27 in the first generation, an 

increment of 22.7%, and the total genetic merit from +14.89 to +15.66, an increment of 5.2%. 

When selecting on the EBV �̂�, the corresponding additive genetic component increases from 

+2.53 to +3.76, an increment of 48.6%, and total genetic merit increased from +8.20 to 

+10.26, an increment of 25.1%, with the same increment in number of sires and dams. One 

possible reason of this observation is that by increasing the number of sires and dams, a more 

stringent selection intensity could be afforded under the same increment of inbreeding 

coefficient, thus with increased additive genetic gain. Another possible reason is an increased 

accuracy of the EBVs estimated using a larger reference population.  

For the OCS that utilized �̂� for additive and 𝑯 for dominance genetic component 

optimization (i.e., SWEH), increasing the number of sires and dams increased gain from the 

additive genetic component from +2.59 to +3.67 in the first generation, and slightly increased 

the dominance genetic component from +4.98 to +5.64, with the total genetic merit 

increasing from +7.57 to +9.31 (Figure 6.5).  

6.7.3.2. Effects of Additive Genetic Variance  

Genetic architecture parameters such as additive genetic variance also has significant effects 

on the OCS. By increasing the shape parameter of the additive QTL effect size distribution, 

which increases the additive genetic variance by approximately fourfold, the increment of 

additive genetic score in the first generation has increased from an average of +5.08 to 

+13.34 for both SWAD and SWAH, which correspond to an increment of 162.6%. This 

increment in the additive genetic score has translated into an increase of total genetic merit 

from +14.92 to +22.89, which corresponds to an increase of 53.4%. Additive QTL effect size 

distribution do not have significant effects on the dominance scores.  

For the OCS that utilized �̂� for additive and 𝑯 for dominance genetic component 

optimization (i.e., SWEH), increasing the additive genetic variance increases the additive 
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genetic component from +2.59 to +9.20 in the first generation, and the non-additive genetic 

component from +4.98 to +6.84. This produces an increase in the total genetic merit from 

+7.57 to +16.04, an increment of 112% (Figure 6.6).  

6.7.3.3. Effects of Dominance QTL Genetic Architecture Parameters 

The genetic architecture for the dominance genetic component has significant effects on the 

OCS. By increasing the dominance QTL effect size distribution variance from 𝐻𝑎𝑙𝑓 −

𝑁𝑜𝑟𝑚𝑎𝑙(0.3) to 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0.8) increases the dominance genetic scores from an 

average of +9.11 to +24.36 if for true dominance effect size score array 𝑫 was used, and an 

average from +7.71 to +20.14 for heterozygosity score array 𝑯. This could be attributed to an 

increased variance in the dominance genetic component.  

It is also noted that the choice of the additive genetic scores altered the effects of genetic 

architecture for the dominance genetic component on the OCS. If the true additive genetic 

component 𝒃 was used in the optimization process, the same changes in dominance QTL 

effect size distribution slightly increases the additive genetic component increases from an 

average of +5.12 to +5.80, which corresponds to an increment of 13.3%. This is not the case 

for EBVs �̂� however; the same changes in the dominance QTL effect size distribution, the 

additive genetic component decreases from +2.54 to +1.42, a decline of 44.1%. Despite this, 

in comparison with truncation selection with �̂� SWUE, the OCS still has significantly higher 

additive genetic component; the implementation of OCS in SWEH has successfully increases 

the additive genetic component from +1.31 in SWUE to +2.59 in SWEH for 𝐻𝑎𝑙𝑓 −

𝑁𝑜𝑟𝑚𝑎𝑙(0.3), and from +0.50 in SWUE to +1.44 in SWEH for 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0.8).  

For OCS that utilized �̂� and 𝑯 for the additive and dominance genetic component 

optimization (i.e., SWEH), increasing the variance of the dominance QTL effect size 

distribution decreases the additive genetic component from +2.59 to +1.44, a decline of 

44.4%, but increases the dominance genetic component from +4.98 to +9.20. This produces 

an increase in the total genetic merit from +7.57 to +10.64, an increment of 40.6% (Figure 

6.7).  
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Figure 6.5: The effects of number of sires and dams on the optimization of (a) additive genetic component, (b) 

dominance genetic component and (c) total genetic merit. Red line represents optimization with 500 sires and 

dams, and blue line represents optimization with 1000 sires and dams. For these plots, SWEH method (�̂� +

𝑯 + 𝑰) was used.  

 

Figure 6.6: The effects of additive genetic variance on the optimization of (a) additive genetic component, (b) 

dominance genetic component and (c) total genetic merit. Red line represents optimization on a trait with many 

small QTL (i.e. 𝐺𝑎𝑚𝑚𝑎(0.3,1.0)), and blue lines on trait with few large QTL (i.e. 𝐺𝑎𝑚𝑚𝑎(0.9,1.0)). For 

these plots, SWEH method (�̂� + 𝑯 + 𝑰) was used. 

 

Figure 6.7: The effects of variance of the dominance QTL effect size distribution on the optimization of (a) 

additive genetic component, (b) dominance genetic component and (c) total genetic merit. Red line represents 

optimization on a trait with its additive QTL effect size distribution follows 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0.3), and blue lines 

on distribution that follows 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0.8). For these plots, OCS method with heterozygosity and EBVs 

SWEH (�̂� + 𝑯 + 𝑰) was used.  
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6.8. Discussion 

In this experiment the new optimal contribution selection algorithm that takes into account 

the optimization of non-additive genetic effects has been proposed and tested under varying 

genetic architectures, sample size and inbreeding level of the base population. By optimizing 

the contribution of sires to the next generation, the algorithm has successfully optimized the 

additive genetic component of the offspring within a constraint on inbreeding rate in a multi-

generational selective breeding program, achieving an additive genetic component superior to 

those expected from truncation selection. Using the true additive genetic value, the OCS 

increase the additive genetic component from an average of +1.91 to +5.11 in the first 

generation, and from an average of +7.29 to +16.25 for the final generation. This corresponds 

to an increment of 167.54% in the first generation and 122.9% in the final generation.  

Such an increment could be considered overly optimistic however, as obtaining such accurate 

additive genetic values is not feasible. In practice only the EBVs or the estimates of marker 

effects from GWAS are available. Despite this, even with more realistic accuracies, the OCS 

was still able to substantially increase the additive genetic gains from the un-optimized 

truncation selection; using the EBVs, the OCS increased the additive genetic gain from +1.31 

to +2.54 in the first generation, and for the final generation, an average increment from +5.47 

to +8.82. This corresponds to an increment of 87.0% for the first generation, and 62.7% for 

the final generation. While this is significantly higher than the 21% to 27% as reported by 

Meuwissen (1997), it is comparable to the 81% reported by Nielsen et al. (2011), suggesting 

its success.  

Besides the additive genetic component, through this OCS we also managed to optimize the 

mating pairs while exploiting the non-additive genetic variance, simulated as the dominance 

effects in this study. This is up to authors’ knowledge the first study that provided an explicit 

formulation on the ways of incorporating the non-additive genetic component into an OCS 

algorithm. This algorithm would be important for breeders that wished to exploit the heterosis 

effects in the animal production system, as well as in the situations when the maximization of 

the non-additive traits is required. The algorithm has also successfully exploited varying 

types of additive information (EBVs and genomic information) and non-additive information 

(true dominance effect sizes and heterozygosity). It is also noted that the increase in 

dominance component is one-off however, with additional merits not increased after the first 

generation despite continued optimization.  
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While it is arguable that the inclusion of dominance component would almost certainly led to 

a significantly higher dominance genetic response and thus total genetic merits, this depends 

on having an accurate estimate of dominance genetic component in the parental generation. 

There were attempts on estimating the dominance genetic component of the population which 

based on mixed model approaches (as example, Vitezica et al. (2013) and Aliloo et al. 

(2017)). These methods require an estimated dominance genetic variance however (Lynch 

and Walsh, 1998), which might not be available for all commercially important traits. The 

successful utilization of heterozygosity as a proxy of optimization bypassed this constraint, 

thus allowing a practical method of the optimization of offspring dominance genetic 

components.  

The performance of this method depends on a positive correlation between the score used in 

optimization and the true genetic values. As example, while heterozygosity serves as a 

suitable estimate for this study, this is with the assumption that loci with a negative value are 

uncommon and their effects deemed negligible, which might not always be the case. Thus, 

the suitability of such estimates needs to be established before feeding it into the algorithm. 

While it is anticipated that an increased dominance performance could be obtained if a more 

precise quantification of dominance effect of a loci could be included in the algorithm, 

attempts to elucidate the genetic architecture for non-additive genetic component of a trait is 

scarce due to difficulty in estimating the dominance effect sizes, especially without 

information on the dominance variance, and there is lack of reliable method of estimating 

variance contributed by epistatic effects (Lynch and Walsh, 1998; Vitezica et al., 2018). 

Future studies could be dedicated in search for a method that could estimate these non-

additive effect sizes, potentially without the use of these variance estimates.  

There are also several aspects of the algorithm worth improving. One such aspect was the 

improvement of hyperparameters chosen for the genetic algorithm in this study. Previous 

publications on the use of genetic algorithms suggested that the choice of hyperparameters 

could affect the balance between exploration, where a new region of solution space is 

searched, and exploitation, where the optima is determined within a region of solution space, 

which could affect the outcome of the convergence (Srinivas and Patnaik, 1994; 

Taherdangkoo et al., 2012). Further study could also be dedicated in search for a more 

optimal hyperparameters, such as those suggested by Heider and Drabe (1997). Alternatively, 

as it is likely that a poor solution has its configuration far away from those of optimal 

solution, another method that could be tested would include the adjustments of the mutation, 
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recombination and inversion rate based on the performance of the solutions (Srinivas and 

Patnaik, 1994). The possible shortcoming from the two phased genetic algorithm could 

potentially be alleviated further by “seeding” the solution pool in the first phase optimization 

with sire-dam pairs with high dominance scores, which increases the proportion of 

encountering sire-dam pairs with high dominance scores in the second phase, thus improving 

the chance of optimized pairing in this phase. These alternative optimization methods could 

warrant further studies.  

In conclusion, a new framework for optimal contribution selection that take into account the 

effects of non-additive genetic component have been proposed in this study. Besides 

improving the additive genetic component under a constraint on the increment of the 

inbreeding level, this algorithm has also successfully improved the non-additive genetic 

component compared to un-optimized genomic selection. The algorithm was successfully 

tested under varying population and genetic architecture parameters as well as different 

degrees of accuracy of estimating marker effects and EBV. Further studies could be dedicated 

to improving the algorithm especially in terms of more optimal hyperparameter values, as 

well as elucidating the additive and non-additive genetic architecture of a trait.  
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Chapter 7. General Discussion and Conclusion  

 

The aim of the project is to design a framework for the optimization of selection of breeding 

pairs in a breeding program using artificial intelligence, with emphasis being placed on the 

optimization of the additive and non-additive genetic components, using genomic 

information derived from a GWAS experiment. Due to the massive sample space of all 

possible breeding pairs, evaluating the performance from each breeding pairs would not be 

feasible, thus a genetic algorithm, a form of artificial intelligence, has been employed.  

While it might be possible to use genomic information such as t-test statistics in the 

optimization of breeding pair, its performance depends on the quality of the GWAS, which 

was liable to all the shortcomings a GWAS would suffer. This could include any factors that 

could affect the power and false positive rate of the GWAS. Some of these factors include 

allele frequencies and their distribution, narrow sense heritability, genetic architecture of the 

trait, linkage disequilibrium structures, correlation between markers, sample size and 

threshold of the experiment. While the effects for some of these factors, such as sample size 

and narrow sense heritability, have their effects well-characterized in previous publications 

(Spencer et al., 2009; Visscher et al., 2017), others, especially those related to the genetic 

architecture, are much less frequently studied. This has become the reason why this project 

starts by investigating the impact from these factors. This involves a comprehensive study on 

the impact of these factors on the power and false positive rate of the GWAS. Results from 

this investigation would serve as the foundational work for techniques to improve the quality 

of the genomic data.  

This study suggests significant impact from various factors on the power and false positive 

rate of the GWAS. Small sample sizes, extreme allele frequencies and polygenic genetic 

architectures significantly reduce the power of GWAS in detecting a QTL. Heterogeneity in 

linkage disequilibrium structures, correlations between markers and small sample sizes 

increases the false positive rate of the GWAS, especially with a large number of markers. 

These observations were important in establishing the suitability of using GWAS-based 

results on the optimization process. The vulnerability of GWAS toward small sample size 

could impede its use in the optimization, which in such case animal-based data might be more 

suitable for the optimization.  
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Besides impacting the power and false positive rate of the GWAS, these confounding factors 

could also affect the distribution of estimated effect sizes and test statistics from a GWAS 

experiment, in which a detailed description has been provided in Appendix B. With 

decreased sample sizes, the variance of the estimated effect sizes of the GWAS increases 

significantly, while the kurtosis of the distribution of the test statistics decreases. Small 

sample sizes and allele frequency distribution with higher proportion of extreme allele 

frequencies also reduces the proportion of markers at the tail of the distribution being actual 

QTL.  

This study has also suggested the sub-optimality of the commonly used multiple testing 

correction method such as the Bonferroni method and Benjamini-Hochberg False Discovery 

Rate (FDR), especially under changing genetic architectures and experimental designs. This 

is due to the fact that the calculation of both thresholds does not take into account the 

behaviour of the p-values or test statistics of the markers under such changing parameters. 

This causes the Bonferroni method to be insensitive toward the effects of these parameters, 

and for Benjamini-Hochberg FDR the way the threshold changes do not always line up with 

what is needed for an improved optimality. One such example is a polygenic trait, which is 

known to reduce the significance of the markers (Gondro, 2015). The Bonferroni method do 

not vary with the polygenicity of the trait, thus causing less QTL to have sufficient 

significance to cross the threshold and be detected. Whereas for Benjamini-Hochberg FDR, 

instead of decreasing the stringency of the threshold, the threshold stringency increases, thus 

reduces the optimality of the threshold.  

Another aspect worth considering for genomic information obtained from this investigation is 

the type of information used in the optimization. There are several types of information 

derivable from a GWAS experiment, two of which being the estimated effect sizes and t-test 

statistics of the markers. The latter was chosen for the optimization algorithm due to its 

reduced vulnerability toward extreme allele frequencies. As the estimated effect size has its 

variance inversely proportional to the 𝑝(1 − 𝑝), where 𝑝 is the allele frequency (Wang and 

Xu, 2019), an extreme allele frequency increases the amount of noises in the estimated effect 

sizes, reducing its suitability for optimization. Whereas for test statistics, it is directly 

proportional to the 𝑝(1 − 𝑝) (Spencer et al., 2009), which scale down the noises in the test 

statistics. This increases the signal-to-noise ratio of the top markers (i.e., the proportion of top 

markers being actual QTL), and indicated an increased likelihood of markers with large test 

statistics being an actual QTL. This observation has also been validated through additional 
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simulations (further details provided in Appendix B), where the tail of estimated effect size 

distribution has lower percentages of actual QTL compared to the tail of test statistics. This 

also indicate that if marker selection is to be conducted, test statistics of a GWAS instead of 

estimated effect sizes should be used.  

Due to the stringency of the thresholds, the number of detected QTL obtained from a GWAS 

in this study is significantly less than the actual number of nontrivial QTL included in the 

simulation. This observation highlighted the difficulty of detecting all or even most of the 

QTL associated with a trait, which obscures the true underlying number of QTL associated 

with a trait. This obscurity is exacerbated by the effects of linkage disequilibrium and 

correlation between markers, which blends the effect sizes across multiple QTL (details 

provided in Appendix B), and the errors in effect size estimation. To take this issue further, it 

is unlikely the true number of QTL can ever be definitively determined. This is because the 

“number of QTL” depends on the definition used to define a QTL in the context of a GWAS; 

in theory, a QTL can be defined as a locus that explained a nonzero genetic variance. In 

practice however, this definition also includes a locus that contributed a negligible amount of 

genetic variance that are virtually undetectable by a GWAS, which raises the question of 

should we expect a GWAS to be able to detect them. This is especially true if infinitesimal 

model, where all the loci would contribute a minute amount of genetic variance, is assumed. 

In this case, the number of QTL is substantially larger than what obtained if finite QTL 

model is assumed. The estimated number of QTL also depends on the distribution of effect 

size assumed by the methods used to estimate it. This phenomenon has been noted by Park et 

al. (2010) who mentioned the use of Weibull distribution resulted in a larger number of QTL 

estimated compared to that from an exponential distribution, with a large portion of the 

increment came from QTL with small effect sizes. For all these reasons, it is unreasonable to 

expect a concrete number of QTL obtainable through a GWAS, especially for QTL with 

small effect sizes. 

These findings were then being used to develop methods and techniques that can be used to 

improve the quality and suitability of genomic data in the breeding pair optimization 

algorithm. This includes the proposal of a method to calculate an optimal threshold that could 

balance the power and false positive rate of the GWAS for Chapter 4, which have previously 

been reported to be highly dependent on various factors such as genotypic correlation 

structures (Hoggart et al., 2008; Panagiotou and Ioannidis, 2012). Using simulated genotypes 

and phenotypes with the assumption of known genetic architectures (i.e. number of QTL and 
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distribution of effect sizes), the performance of the optimal threshold calculated from this 

method was tested under varying parameter values. For the performance in binary 

classification for gene discovery, when measured using Matthews Correlation Coefficient 

(MCC) scores, the use of the optimal threshold has led to an improvement of up to 54.9% 

compared to the Bonferroni method, and 11.0% compared to the Benjamini-Hochberg FDR 

method.  

The ROC-based thresholds have significantly better binary classification performance than 

the commonly used Bonferroni correction and the BH-FDR for all parameters tested. This 

would aid the gene discovery process in a GWAS, as this threshold increases a GWAS’s 

ability in detecting markers with moderate significance (i.e. markers with peaks that clearly 

distinguished from the less significant noises but with insufficient significance to cross the 

threshold), which could aid the phenotypic predictive capability of the detected markers in a 

polygenic trait, given the observation that one leading cause for the low predictive capability 

of GWAS output is the failure to detect QTL with small effect sizes (Hall et al., 2016; 

Kooperberg et al., 2010; Kraft and Hunter, 2009). Furthermore, the significantly improved 

performance of ROC-based thresholds in binary classification with an increased number of 

markers also suggests their potential utility in cases where high density markers and Whole 

Genome Sequence (WGS) is used. In these cases  the Bonferroni correction could become 

overly stringent and thus decimating the power of GWAS..  

Despite its apparently excessive leniency, the use of an optimal threshold as a truncation 

point for marker selection in genomic prediction has led to an improvement in accuracy up to 

16.8% compared to the Bonferroni method and 7.0% compared to Benjamini-Hochberg False 

Discovery Rate (FDR) method. This suggested if markers are selected for prioritization in 

genomic prediction, a more lenient threshold, such as that proposed by the ROC, would be 

more suitable. The significantly improved genomic prediction accuracy of the ROC-based 

thresholds in a strongly polygenic trait compared to Benjamini-Hochberg FDR also suggested 

its suitability to be used in marker prioritization of such traits, such as milk yield in cattle 

(Laodim et al., 2019) and mature body size in sheep (Posbergh and Huson, 2021). 

The improved performances of ROC-based thresholds in binary classification and marker 

selection also indicated their potential in an OCS. While threshold is not imperative for the 

OCS used in this study, this is the case if and only if all the QTL has a positive effect, which 

in practice do not occur. For the maximization of offspring performance, the number of 
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positive alleles shall be maximized, and deleterious alleles be excluded, which involves the 

assignment of positive scores for the former and negative scores for the latter. If the 

deleterious alleles were assigned with positive scores, maximizing the scores would not yield 

optimal offspring. This is especially problematic for alleles with small deleterious effects, 

where the errors of estimation have increased the chance of pushing their scores into the 

positives. This issue could be mitigated with the use of a threshold, which ensure only the 

markers with strong positive effects receive a positive score. It is for this reason a method for 

determining the optimal threshold was included in this study. Despite this, a formal study on 

the utility of these thresholds on the OCS is desirable, which would be an avenue for further 

study.  

Investigation from Chapter 3 suggested significant effects of genetic architecture on the 

optimality of a threshold. Furthermore, the calculation of optimal thresholds proposed in 

Chapter 4 require information on the genetic architectures. For these reasons, we did 

additional work for Chapter 5 in an attempt to estimate the genetic architecture parameters, 

such as number of QTL, as well as shape and scale parameters for the QTL effect size 

distribution, while simultaneously take into account the impact from various confounding 

factors such as allele frequency distribution, linkage disequilibrium structures and correlation 

between markers. Using simulated genotype, phenotype and narrow sense heritability, the 

estimated number of QTL with effect size 0.1 𝜎𝑒 ranges from 69.9% to 167.0% (average 

109.8%) of the true number of QTL, and for effect size 1.0 𝜎𝑒 from 101.6% to 175.8% 

(average 123.6%). This method can also be used to estimate the QTL effect sizes in 

consideration with various confounding factors. This work is important for a more accurate 

prediction of marker effect sizes, which could also be fed into the ROC-threshold calculation 

in Chapter 4 and subsequently marker prioritization in the OCS for Chapter 6. While 

simulated dataset were used in this study, it is anticipated this method could be used with real 

data, and this could be an avenue for further testing.  

One distinguishing features of our method of estimating genetic architecture parameters is the 

flexibility in the choice of QTL effect size distribution. Unlike previous methods such as 

Cheng et al. (2020), Moser et al. (2015) and Zhang et al. (2018, 2021) who use a normal 

distribution or a mixture of normal distributions, our method allows users to choose a wide 

range of distributions such as gamma distribution, Weibull distribution and q-exponential 

distributions, which have increased flexibility in the shape of distribution, thus better capture 

the shape of the QTL effect size distribution, especially if the distribution is strongly 
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leptokurtic. The changing number of QTL with varying shape parameters of the distribution 

was supported by Park et al (2010), who stated the number of QTL depends on distributions 

assumed by the estimation method, and our method further extended this statement by 

enumerating the range of expected number of QTL under varying shape parameters. This 

capability of our method could be beneficial in resolving the genetic architecture for a wide 

range of traits, be it a polygenic trait such as milk yield in cattle (Nayeri et al., 2016) or an 

oligogenic trait such as polledness in cattle (Scheper et al., 2021) and goats (Guo et al., 

2021). 

The success of this method in estimating the number of QTL with small effect size (i.e. 0.1 

𝜎𝑒) as well as their effect size distribution shows prospect for the method’s utility in a high 

density marker system, such as with WGS data. It is anticipated that the extreme stringency 

in threshold in a traditional GWAS with high density markers could severely reduce a 

GWAS’s power in detecting QTL with small effect sizes (Tam et al., 2019). As our method 

does not rely on having markers reach the threshold of significance, but rather it utilizes the 

statistical properties of the distributions of marker test statistics obtained from a GWAS, it 

could help uncover genomic regions associated with a trait that were previously undetectable 

due to their small effect size. The increased linkage disequilibrium in high density markers 

and WGS data could further aid the performance of this method. Unlike some of the 

previously published methods, our proposed method does not rely on arbitrarily-set 

thresholds, such as linkage disequilibrium threshold required by Zhang et al. (2018) or trivial 

effect size threshold as required by Park et al. (2010) and Cheng et al. (2020). Such arbitrary 

threshold could impact the performance for these methods under changing marker density. 

For these reasons, in conjunction with WGS, this method has the potential of help resolving 

the genetic architectures of a complex trait. 

In the final chapter (Chapter 6), results obtained from the investigations, such as the 

preference of test statistics over estimated effect sizes for optimization of additive genetic 

components, were incorporated into a breeding pair optimization framework, with 

experimentation on the use of additive and non-additive genomic data in the optimization. 

For this study, simulated genotype, phenotype and narrow sense heritability were used to test 

the performance of this optimization method. An avenue for further study would be the 

testing of this method using real dataset.  
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Results from this chapter suggested a successful improvement of additive and non-additive 

genetic component of the offspring; under the same constraint of increment in level of 

inbreeding, this method has successfully improved the additive genetic component by up to 

87.0% in the first generation compared to truncation selection method. With the dominance 

genetic variance of 15% of the additive genetic variance, the genetic lift in the first generation 

is approximately equal to two generations of additive genetic gains. Similar improvements 

have also been observed with the use of estimated breeding values and GWAS test statistics 

as additive genetic data and heterozygosity as non-additive genetic data. This framework has 

also been successfully tested under varying population and genetic architecture parameters 

such as number of sires and dams, and additive and non-additive genetic variances. From 

these results it can be said that the main aim of the project has been achieved, a feat made 

possible with the use of genetic algorithm and the incorporation of findings from the 

investigations on factors that could affect the usability of genomic data and techniques to 

improve their usability.  

There are several future prospects for the OCS, most notably the improvement of livestock 

production traits that have significant portion of non-additive genetic variance while 

constraining the increase in level of inbreeding. Previous published methods on exploiting 

non-additive genetic components in a selective breeding program have done so either through 

crossbreeding (e.g. Shepherd and Kinghorn, 1998) or through methods that do not constrain 

the level of inbreeding to a predefined level (e.g. González-Diéguez et al., 2019). Method 

proposed by González-Diéguez et al. (2019) also requires estimates of dominance effect 

sizes, which is not available without information on the dominance genetic variance. The use 

of heterozygosity bypassed this requirement, allowing the use of this OCS in these traits in 

these populations and approximating the maximum benefit that could be obtained if 

dominance effects were known, thus anticipated to produce significant economic benefit to 

the livestock industry. As non-additive effect sizes from QTL is more susceptible to linkage 

disequilibrium decay compared to the additive effect sizes (Visscher et al., 2017), the use of 

whole genome sequence data could further improve the performance of the OCS in 

optimizing the non-additive genetic component of the offspring, which worth further testing.  

While this algorithm has successfully improved the additive and non-additive genetic 

components in the offspring generation, there are numerous aspects that could be improved, 

which served as avenues for further studies. One such aspect is the genetic algorithm used for 

optimization. Numerous variants of genetic algorithms have been proposed in the past, each 
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with its own strengths and weaknesses that could influence the optimization. As for example, 

while the cascading genetic algorithm proposed in this study could alleviate the negative 

effects from competition between additive and non-additive component, it could come with a 

cost of reduced optimization of the latter due to reduced diversity in solution from the 

optimization of the former. The genetic algorithm proposed by Heider and Drabe (1997) 

could produce a more optimal hyperparameter values but came at a cost of increased runtime 

from the search of said optimal hyperparameters. Further work could be dedicated in search 

for a more optimal genetic algorithm for this framework.  

Another aspect worth further studying is the determination of effect sizes of non-additive 

genetic components such as dominance component. While there have been attempts to 

estimate the non-additive effect sizes (Aliloo et al., 2017; Goudey et al., 2013; Niel et al., 

2015; Vitezica et al., 2013), they may not be feasible to implement in a practical level due to 

the complexity of the model (Niel et al., 2015) the requirement for large sample sizes 

(Visscher et al., 2017), and its reliability remained largely untested. This is exacerbated by 

the ever increasing genotypic density and declining genotyping cost, such as that for whole-

genome sequence data (Visscher et al., 2017). Thus, a simple, scalable and reliable algorithm 

that could estimate the non-additive effect size of a polygenic trait would be desirable, which 

could warrant further studies.  

The algorithm for the estimation of genetic architecture parameters proposed in this study 

also solely focused on the additive genetic component. This is due to a lack of previously 

published algorithms that could reliably estimate the non-additive QTL effect sizes. If such 

algorithm is available, one could further extend the estimation of genetic architecture 

parameters onto those of the non-additive genetic component, which theoretically could 

provide insights on the genetic architecture of the non-additive genetic components, including 

the number of non-additive QTL. This further emphasized the desirability of further study for 

a reliable algorithm that could estimate the non-additive QTL effect sizes. Despite this, even 

if such algorithm does not exist or infeasible to be implemented, this study has suggested the 

ability of optimizing the offspring non-additive genetic component with the use of expected 

progeny heterozygosity.  

In conclusion, a framework for the optimization of breeding pairs using artificial intelligence 

has been developed, with successes in utilizing additive and non-additive genetic components 

while constraining the increment in inbreeding coefficient. While there are aspects that could 
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be improved, in general this algorithm has successfully achieved its aim. This algorithm 

would be useful for livestock producers and breed or species conservationists that wishes to 

improve the genetic merit of their livestock herds, while exploiting the non-additive genetic 

component. It is anticipated that all the methods proposed within this framework (i.e. 

calculation of ROC-based threshold from Chapter 4, genetic architecture estimator from 

Chapter 5 and the OCS from chapter 6) could be developed further into full-fledge products 

(such as Python packages that can be applied to real life mating system alongside with 

appropriate inputs) that could be utilized in a commercial setting.  
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Appendix A. The Mathematical Derivation of the 

Test Statistics and p-values of GWAS 

 

This section of the appendix is to provide a layout on the mathematical derivation of the 

estimated effect sizes and test statistics for a marker during a single SNP regression in a 

Genome-Wide Association Study (GWAS). In this project, the derivation would be utilized in 

the calculation of power and false positive rate of a GWAS experiment, as well as estimation 

of genetic architecture parameters.  

A.1. The Mathematical Derivation 

The aim of GWAS is to test the level of correlation between the genotype of a marker and the 

phenotype, often with the assumption of linearity of the marker effects. For this reason, 

GWAS is often conducted using linear regression model that attempts to fit the phenotype as 

the response variable and genotype as explanatory variable (Gondro, 2015). With this 

assumption, the phenotype is modelled as follows: 

𝒚 = 𝑿𝒂 + 𝒆 [1] 

Where 𝒚 being the phenotypic vector; 𝑿 being a matrix containing the genotypic states of all 

animals and markers; 𝒂 being a vector containing the additive effect sizes of all markers and 

𝒆 being a vector containing the residual component of the phenotype.  

Mathematically the distribution of a bi-allelic genetic variant with frequency 𝑝 follows a 

Bernoulli distribution where the only possible outcomes of the alleles are 0 and 1 (Mun, 

2012). For this distribution, the variance contributed by an allele 𝑗 in locus 𝑖 can be calculated 

as follows:  

𝑉𝑎𝑟(𝑿𝑖𝑗) = 𝑝𝑖(1 − 𝑝𝑖) [2] 

Where the 𝑝 is the probability of observing “1” (i.e., allele frequency in the context of SNP 

markers). Given that genotype of each marker comprises of sums of two independently 

assorted allele pairs (i.e., two independent Bernoulli distribution), the variance of the locus 𝑖 

(henceforth denoted as 𝑣𝑎𝑟(𝑿𝑖)) can be denoted as follows:  

𝑣𝑎𝑟(𝑿𝑖) = 𝑝𝑖(1 − 𝑝𝑖) + 𝑝𝑖(1 − 𝑝𝑖) 
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= 2𝑝𝑖(1 − 𝑝𝑖) [3] 

Given that 𝑣𝑎𝑟(𝑿𝑖) is a sample variance instead of population variance, the 𝑣𝑎𝑟(𝑋) need to 

be adjusted with a factor of 
𝑁−1

𝑁
, where 𝑁 is the sample size of GWAS, thus yielding the 

formula:  

𝑣𝑎𝑟(𝑿𝑖) =
2𝑝𝑖(1 − 𝑝𝑖)(𝑁 − 1)

𝑁
 [4] 

The contribution of a marker genotype to each individual’s phenotype can be obtained by 

multiplying the genotype with the allele substitution effect (henceforth denoted as 𝑎), as 

described by Falconer (1989). The sample variance of the additive genetic component of the 

phenotypic variance (henceforth denoted as 𝑣𝑎𝑟(𝑮𝑖)) can then be obtained from the product 

of this multiplication:  

𝑣𝑎𝑟(𝑮𝑖) = 𝑣𝑎𝑟(𝑎𝑖𝑿𝑖) 

= 𝑎𝑖
2 𝑣𝑎𝑟(𝑿𝑖) 

= 
2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖

2(𝑁 − 1)

𝑁
[5] 

The phenotypic variance (denoted as 𝑣𝑎𝑟(𝒚)) can then be calculated by the sum of the 

sample variance of the additive genetic component and the sample variance of the residual 

component: 

𝑣𝑎𝑟(𝒚) = 𝑣𝑎𝑟(𝑮𝒊) + 𝑉𝑎𝑟(𝒆) [6] 

Given the genotype of a marker 𝑿𝑖 and phenotype vector 𝒚, assuming the residual component 

of the phenotype is independent with the genotype (i.e. 𝑐𝑜𝑣(𝑿𝑖, 𝒆) = 0), the genotype-

phenotype covariance can be calculated as follows:  

𝑐𝑜𝑣(𝑿𝑖, 𝒚) = 𝑐𝑜𝑣(𝑿𝑖, 𝑎𝑿𝑖 + 𝒆) 

= 𝑐𝑜𝑣(𝑿𝑖, 𝑎𝑿𝑖) + 𝑐𝑜𝑣(𝑿𝑖, 𝒆) 

= 𝑎 ∗ 𝑐𝑜𝑣(𝑿𝑖, 𝑿𝑖) + 0 

= 𝑎 ∗ 𝑣𝑎𝑟(𝑿𝑖) 

= 
2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖(𝑁 − 1)

𝑁
 [7] 

The squared correlation coefficient (henceforth denoted as 𝑅2) is calculated as follows: 

(Gondro, 2015):  
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𝑅𝑖
2 = 

𝑆𝑆𝑅

𝑆𝑆𝑇
 [8] 

Where 𝑆𝑆𝑅 is defined as the explained sum of squares and 𝑆𝑆𝑇 the total sum of squares. In 

the context of GWAS, 𝑆𝑆𝑅 is represented by 𝑐𝑜𝑣2(𝑿𝑖, 𝒚) and 𝑆𝑆𝑇 represented by 𝑣𝑎𝑟(𝑿𝑖) ∗

𝑣𝑎𝑟(𝒚). Substituting 𝑆𝑆𝑅 =  𝑐𝑜𝑣2(𝑿𝑖, 𝒚) and 𝑆𝑆𝑇 =  𝑣𝑎𝑟(𝑿𝑖) ∗ 𝑣𝑎𝑟(𝒚) into [8] yields the 

following:  

𝑅𝑖
2 = 

𝑐𝑜𝑣2(𝑿𝑖, 𝒚)

𝑣𝑎𝑟(𝑿𝑖) ∗ 𝑣𝑎𝑟(𝒚)
 [9] 

The 𝑐𝑜𝑣2(𝑿𝑖, 𝒚) can in turn written as follows:  

𝑐𝑜𝑣2(𝑿𝑖, 𝒚) = (
2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖(𝑁 − 1)

𝑁
)

2

 

= 𝑎𝑖
2 ∗ (

2𝑝𝑖(1 − 𝑝𝑖)(𝑁 − 1)

𝑁
)

2

  

= 𝑎𝑖
2 𝑣𝑎𝑟2(𝑿𝑖) [10] 

Which can then be substituted into [9] as follows:  

𝑅𝑖
2 = 

𝑎𝑖
2 𝑣𝑎𝑟2(𝑿𝑖)

𝑣𝑎𝑟(𝑿𝑖) ∗ 𝑣𝑎𝑟(𝒚)
 

= 𝑎𝑖
2 ∗  

𝑣𝑎𝑟(𝑿𝑖)

𝑣𝑎𝑟(𝒚)
 [11] 

The test statistic of a locus (henceforth denoted as 𝑇𝑖) to test whether if the slope 𝑎 is 

significantly different from 0 (i.e., the 𝑿𝑖 has no effect on 𝒚) can be calculated as follows 

(Kremelberg, 2011):  

𝑇𝑖  =  
𝑅𝑖√𝑁 − 2

√1 − 𝑅𝑖
2

 [12]
 

Substituting equation [4], [5], [6] and [11] into [12] yields the following:  

𝑇𝑖 = 𝑎𝑖 ∗ √
𝑣𝑎𝑟(𝑿𝑖) ∗ (𝑁 − 2)

𝑣𝑎𝑟(𝒚) − 𝑎𝑖
2𝑣𝑎𝑟(𝑿𝑖)

 

= 𝑎𝑖 ∗ √
2𝑝𝑖(1 − 𝑝𝑖)(𝑁 − 2)

𝑉𝑎𝑟(𝒚) −  2𝑝𝑖(1 − 𝑝𝑖)𝑎𝑖
2
 [17] 
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If the marker is indeed null (i.e. 𝑎𝑖 = 0) then the test statistics 𝑇𝑖 would follow a standard 

Student’s t-distribution. Given a test statistics 𝑇𝑖, one can calculate the p-values, which is 

defined as the probability of observing a test statistic 𝑇𝑖 assuming the null hypothesis is 

correct. In a GWAS experiment, the null hypothesis would be the true QTL effect size is zero 

(𝑎𝑖 = 0), hence with zero slope of regression of phenotype on the genotype. Using 𝑇𝑖 the 

negative logarithmically transformed p-value (henceforth denoted as 𝑙𝑜𝑔𝑝𝑣𝑎𝑙) was defined 

as follows:  

𝑙𝑜𝑔𝑝𝑣𝑎𝑙 =  − log10 (2 ∗ ∫ 𝑡(𝑇𝑖;  𝑁 − 2) 𝑑𝑥
∞

𝑇𝑖

) [18] 

Where 𝑡(𝑥; 𝑣) is the probability density function (PDF) of Student’s t-distribution, which is 

defined as follows (Mun, 2012):  

𝑡(𝑥; 𝑣) =  
𝛤 (

𝑣 + 1
2 )

√𝑣𝜋 ∗ 𝛤 (
𝑣
2)

∗ (
𝑣

𝑣 + 𝑥2
)

𝑣+1
2

[19] 

The 𝑙𝑜𝑔𝑝𝑣𝑎𝑙 can then be used to test the significance of association of a marker with the 

phenotype. For this study, it can also be used to calculate the number of true and false 

positives, and ultimately the power and false positive rate of the GWAS.  
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Appendix B. The Distribution of Output from a 

GWAS Experiment 

 

The aim of this appendix is to provide a layout on the distribution of estimated effect sizes 

and test statistics from a GWAS experiment. This section includes the general asymptotic 

properties of the distributions of estimated effect sizes and test statistics of a GWAS, as well 

as factors that would affect the distributions, with emphasis on the effects from the genetic 

architecture parameters. Observations detailed in this section were then incorporated into an 

algorithm that aimed to estimate the genetic architecture parameters of a trait while taking 

into account the effects of nuisance parameters such as sample sizes and correlations between 

markers. Results from this appendix were also be utilized in testing the reliability of 

estimated effect sizes and test statistics as scoring method for the optimization of breeding 

pairs.  

B.1. The Asymptotic Distribution of Estimated Effect 

Sizes and Test Statistics, and Their Implications on the 

Algorithm Design 

B.1.1. The Distribution of Estimated Effect Sizes (𝕕𝐸𝑆
1 ) 

The “asymptotic distribution” is defined as the limiting distribution from an infinite sequence 

of distribution, which can be approximated by normalized sums or averages of probability 

densities from sufficiently large number of distributions. For this paper, the asymptotic 

distribution for 𝕕1 is generated by averaging the sequence of 𝕕1s from multiple GWAS 

experiments. This is done to alleviate the complications caused by the dispersion of the 

distribution of random variables obtained from any single GWAS experiment.  

In the idealized situation, the estimated effect size obtained from a GWAS experiment would 

correspond to those in true QTL effect size. Such ideal situation is impossible to achieve, and 

error of estimation on the QTL effect size is inevitable. With repeated measurements of the 

same marker however, the estimated effect size (�̂�) produced follows this normal distribution 

(Wang and Xu, 2019):  
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�̂� ~ 𝒩 (𝑎,
𝑒2

2𝑝(1 − 𝑝)(𝑁 − 2)
) [1] 

Where 𝑎 is the QTL effect size, 𝑝 the allele frequency, 𝑁 being the sample size and 𝑒2 being 

the residual variance. An example of this normal distribution is provided in Figure B.1.  

The estimated effect sizes obtained from a marker in GWAS can be thought of as obtaining 

one sample from the normal distribution of �̂� as defined by equation [1]. When conducted 

across all the markers, this pool of �̂� obtained would form a new distribution of estimated 

effect sizes (henceforth denoted as 𝕕𝐸𝑆
1 ). Due to various factors however, the distribution of 

�̂� from each locus would not be independent and identically distributed, even if all the loci 

have null effects, thus the often-cited central limit theorem does not apply in this distribution. 

Instead, the asymptotic distribution for 𝕕𝐸𝑆
1  follows a Student’s t-distribution (Lukacs, 1942) 

(Figure B.2). A mixture distribution was obtained if QTL is present, and while the mixture 

distribution superficially appeared similar to a Student’s t-distribution, there are some 

differences between the mixture distribution and the Student’s t-distribution.  

One main difference between the mixture distribution and the t-distribution is their moments, 

such as variance and kurtosis. In an all-null model where no QTL is associated with the 

phenotype, the probability of a marker that has its estimated effect sizes achieved extreme 

values was reduced, and the resulting distribution would have reduced kurtosis, resulting in a 

more normal-like distribution. Whereas for QTL model, where some markers are associated 

with the phenotype, the presence of QTL increases the proportion of markers that have their 

expected value far away from what is expected for a null marker (i.e. 𝑎 = 0), and this pushes 

the estimated effect size toward the tail of 𝕕𝐸𝑆
1 , increasing its kurtosis.  

For the same reason, the effect of QTL is also most observable at the tail of 𝕕𝐸𝑆
1 , suggested 

that this is the part of the distribution that shall be utilized in the estimation of QTL effect 

size distribution. Conversely for head of 𝕕𝐸𝑆
1  (i.e., estimated effect sizes that proximal to 

zero), the noises from the null markers can easily drown out the signals from the non-null 

markers. The decreased signal-to-noise ratio in this region of the distribution could reduce the 

power of detecting non-null markers and hampering any attempt to estimate the underlying 

QTL effect size distribution. Despite this, the overall changes in the distribution of estimated 

effect sizes are miniscule, and strongly concentrated at the tail of the distribution (Figure 

B.3). 
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Figure B.1: Histogram showing the distribution of estimated effect size of a QTL with an effect size of 1.0 𝜎𝑒. 

This histogram was generated from 20000 replicates of GWAS with sample size of 5000, allele frequency of 0.5 

and with phenotypic variance set at 750.  

 

Figure B.2: Histogram of estimated effect size obtained from 100 replicates of GWAS experiment with 50k 

independent markers, showing the Student’s t-distribution. In this plot, a sample size of 5000 was employed, with 

all markers being null. The distribution is generated by averaging the histograms of estimated effect sizes across 

all replicates of GWAS.  
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Figure B.3: Histogram showing the distribution of estimated effect sizes of GWAS experiment for an all-null 

markers (blue) and with 100 QTL that follows a gamma distribution with shape parameter of 0.1 and scale 

parameter 1 (orange). Figure (a) shows the overall distribution of the estimated effect sizes, while (b) showing 

the same plot focused on the bottom 1 counts. This GWAS was conducted using 50k independent markers on 

sample size of 5000, averaged over 100 replicates. The allele frequency distribution tested follows a Beta 

distribution 𝐵𝑒𝑡𝑎(0.1, 0.1). The excess kurtosis for the all-null model is 3.95, compared to 9.83 for QTL model.  

B.1.2. Distribution of Test Statistics (𝕕𝐹𝑇
1 ) 

Estimated effect sizes are not the only data obtainable from a GWAS experiment; a GWAS 

experiment can also return the test statistics and the associated p-values for each marker, 

which are used to test the probability of observing a level of genotypic-phenotypic 

correlation, assuming the null hypothesis being correct (i.e. 𝑎 = 0) (Gondro, 2015). The test 

statistics of a marker 𝐹𝑖 is calculated as follows (Gondro, 2015; Kremelberg, 2011):  

𝐹𝑖 = 
2𝑝𝑖(1 − 𝑝𝑖)(𝑁 − 2)𝑎�̂�

2

𝑉𝑎𝑟(𝒚) −  2𝑝𝑖(1 − 𝑝𝑖)𝑎�̂�
2  [2] 

Where 𝑉𝑎𝑟(𝒚) is the phenotypic variance. As in the estimated effect sizes, one can also build 

the distribution for the test statistics (henceforth denoted as 𝕕𝐹𝑇
1 ). This distribution is also 

influenced by the presence of QTL; if all the markers are indeed null, the 𝕕𝐹𝑇
1  follows a 

standard F-distribution, and a mixture distribution in case of the presence of QTL (Figure 

B.4).  

As reflected in the distribution of estimated effect sizes, the overall changes in the 

distribution of test statistics are miniscule, and strongly concentrated at the tail, which is also 

associated with an increased kurtosis (Figure B.5). This suggested the possibility of utilizing 

the test statistics of a GWAS experiment in detecting signals associated with the changing 

underlying QTL effect sizes.  
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Figure B.4: Histogram of the squared test statistics obtained from 100 replicates of GWAS experiment with 50k 

independent markers, showing the F-distribution. In this plot, a sample size of 5000 was employed, and all 

markers are null, and was generated by averaging the histogram of test statistics from all replicates of GWAS.  

 

Figure B.5: Histogram showing the distribution of test statistics of GWAS experiment for all-null markers (blue) 

and with 100 QTL that follows a gamma distribution with shape parameter of 0.1 and scale parameter 1 (orange). 

Figure (a) shows the overall distribution of the test statistics, while (b) showing the same plot focused on the 

bottom 1 count. This GWAS was conducted using 50k independent markers on sample size of 5000, averaged 

over 100 replicates. The allele frequency distribution tested follows a Beta distribution 𝐵𝑒𝑡𝑎(0.1, 0.1). The 

excess kurtosis for the distribution of test statistics for all null markers is 11.96, compared to 28896.64 for 100 

QTL model.  
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B.1.3. The Signal-to-Noise Ratio at the Tail of 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1  

While the presence of QTL can affect the shape of the tail of distribution of estimated effect 

sizes 𝕕𝐸𝑆
1  and test statistics 𝕕𝐹𝑇

1 , not all the loci that are located at the tail of 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1  

came from QTL. In fact, the proportion of loci at the tail of 𝕕𝐸𝑆
1  that originates from QTL is 

significantly lower than the proportion of loci at the tail of 𝕕𝐹𝑇
1  that originates from QTL 

(Figure B.6). 

The reduced proportion of loci at the tail of 𝕕𝐸𝑆
1  that originates from QTL is caused by the 

varying allele frequencies; while the expected value for the estimated effects size is 

independent of the allele frequency 𝑝, its variance is inversely proportional to 𝑝(1 − 𝑝), 

which attained maximal value when 𝑝 = 0.5 and decreases with extreme allele frequencies. 

Therefore, extreme allele frequencies increase the variance of estimated effect size. Thus, 

given a large estimated effect size from a marker (thus at the tail of 𝕕𝐸𝑆
1 ) it could be caused 

by either the marker is associated with a large effect size, or by extreme allele frequency. It is 

the latter that contributed to the reduced proportion of loci at the tail of the distribution that 

originates from QTL. This is not the case for test statistics however, which is directly 

proportional to 𝑝(1 − 𝑝) (Spencer et al., 2009). The scaling down effects of 𝑝(1 − 𝑝) in the 

test statistics from extreme allele frequencies reduces the noise from error of estimation near 

the tail of 𝕕𝐹𝑇
1 , thus increasing the proportion of loci at the tail of 𝕕𝐹𝑇

1  originates from QTL.  

This comparison could also be illustrated through additional simulations, of which the results 

are being provided in Figure B.6. In average only 6.38% of the top 50 markers in term of 

estimated effect sizes from each GWAS came from non-null markers, compared to 89.48% of 

the top 50 markers in term of test statistics. The increased signal-to-noise ratio in 𝕕𝐹𝑇
1  hinted 

the desirability of using the 𝕕𝐹𝑇
1  rather than the 𝕕𝐸𝑆

1  for the detection of QTL, and this could 

potentially aid the detection of signals from changing underlying QTL effect size distribution. 

B.2. Effects of Genetic Architecture on 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1  

Besides the presence of QTL, the 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1  are also affected by the genetic architecture of 

a trait, which can be defined in terms of number of QTL associated with a trait (denoted as 

𝕜), as well as the distribution of the underlying QTL effect sizes (denoted as 𝕕𝑄𝑇𝐿). 

Understanding the effects of these parameters on 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1  would be crucial for the 

designing of this algorithm.  
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Figure B.6: The histogram of (a) estimated effect sizes and (b) test statistics obtained from 100 replicates of 

GWAS experiment with sample size of 5000 and 50k independent markers. The blue bars are the null markers, 

and the orange bar from QTL. 2000 QTL were simulated in this histogram, with their effect sizes following a 

gamma distribution 𝛤(0.5, 1). The allele frequency distribution follows a beta distribution 𝐵𝑒𝑡𝑎(0.5, 0.5). From 

both figures, the top 0.1% of all markers (i.e., 50) from each replicate of GWAS had been extracted and tested, 

with the red lines indicating the cut-off points.  

For this study, the 𝕕𝑄𝑇𝐿 is assumed to follow a gamma distribution, with the shape and scale 

parameter denoted as 𝕒 and 𝕓 respectively:  

𝕕𝑄𝑇𝐿 ~ 𝛤(𝕒, 𝕓) [3] 

The shape parameter 𝕒 dictates the shape of 𝕕𝑄𝑇𝐿, with smaller 𝕒 produces a more leptokurtic 

distribution (i.e., distribution with larger kurtosis) and increases the proportion of QTL with 

small effect sizes over those with large effect sizes (Figure B.7(a)). The scale parameter 𝕓 

scales the random variates of the 𝕕𝑄𝑇𝐿 as follow (Figure B.7(b)) (Mun, 2012):  

𝛤(𝕒, 𝕓) =  𝕓 ∗ 𝛤(𝕒, 1) [4] 

Under these notations, the parameters for the genetic architecture of the trait were denoted as 

follows:  

𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 ~ 𝑄(𝕜, 𝕒, 𝕓) [5] 

The rationale of using a gamma distribution to model the distribution of QTL effect sizes in 

this study is its flexibility in its shape. Previous publications such as Cheng et al. (2020); Hall 

et al. (2016) and Zhang et al. (2018) have assumed normal or exponential distribution of the 

QTL effect sizes, which have a fixed kurtosis of 3 and 9 respectively. The fixed kurtosis 

restricts the flexibility of the model, which might cause failure in capturing the full aspect of 

the effect size distribution. Indeed, this is a concern voiced by Zeng and Zhou (2017) where 
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the authors stated the assumption of normal distribution for Linear Mixed Model (LMM) 

reduces the estimation performance. This could be mitigated by having a more flexible model 

for the distribution such as gamma distribution, which can have its kurtosis varied based on 

the shape parameter (i.e. 𝑒𝑥𝑐𝑒𝑠𝑠 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 6/𝕒) (Mun, 2012). The flexibility of a gamma 

distribution could better capture the shape of the tail of 𝕕𝑄𝑇𝐿, especially if 𝕕𝑄𝑇𝐿 is a strongly 

leptokurtic distribution. 

 

Figure B.7: The effects of varying values of (a) shape parameter 𝕒 and (b) scale parameter 𝕓 on the relative 

frequency of QTL effect sizes.  

B.2.1. Effects of Number of QTL 𝕜 

The number of QTL associated with a trait has a significant impact on the 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1 . 

Given a fixed narrow sense heritability ℎ2, shape and scale parameter as 𝕒 and 𝕓, a small 𝕜 

(i.e., oligogenic trait) reduces the variance and increases the kurtosis of 𝕕𝐸𝑆
1  (Figure B.8). In 

Figure B.8(a) the variance and excess kurtosis of 𝕕𝐸𝑆
1  are 0.16 and 7.03 respectively, 

compared to 1.61 and 6.14 in Figure B.8(b). The reduced proportion of additive genetic 

variance explained by a QTL in a polygenic trait (i.e. trait with large 𝕜) also reduces the 

proportion of markers with top estimated effect sizes come from QTL; in Figure B.8(a), 

where only 200 QTL are associated with the trait, 14.40% of top 50 markers from each 

GWAS are QTL, compared to 6.54% in Figure B.8(b) with 2000 QTL.  

Whereas for 𝕕𝐹𝑇
1 , due to an increased proportion of variance being explained by a QTL in an 

oligogenic trait (i.e., trait with small 𝕜), the test statistics deviate further from what is 

expected in null markers (i.e. 𝐹𝑖 = 0), and this increases the kurtosis of 𝕕𝐹𝑇
1 . The opposite is 

true for a polygenic trait. An example is provided in Figure B.9(a-b); in (a) where 𝕜 = 200 

the 𝕕𝐹𝑇
1  has an excess kurtosis of 10881.14, compared to 𝕜 = 2000 in (b) which has an 

excess kurtosis of 737.44. Its effects are also observable from the Manhattan plot; with small 

𝕜, the Manhattan plots have few but strong and well-distinguished peaks and, if correlation 
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between markers is present, null markers flanking the peak (Figure B.9(c)); whereas for large 

𝕜, the Manhattan plot has numerous, but less well-defined peaks that could be difficult to be 

distinguished from noises (Figure B.9(d)).  

 

Figure B.8: Histogram showing the effects (in units of residual standard deviation) of number of QTL 𝕜 on 𝕕𝐸𝑆
1 , 

averaged from 100 GWAS experiments, with sample size of 5000 over 50k independent markers. In (a) 200 QTL 

were simulated, and (b) 2000 QTL were simulated. In all replicates, the distribution of QTL effect size is set with 

gamma distribution 𝛤(0.5, 1), and allele frequency distribution followed a beta distribution 𝐵𝑒𝑡𝑎(0.5, 0.5).  

 

Figure B.9: The effects of number of QTL 𝕜 on (a-b) 𝕕𝐹𝑇
1  and (c-d) the Manhattan plots of the GWAS. In (a-b) 

100 GWASes with 50k independent markers and sample size of 5000 were simulated and have their histograms 

averaged. In (a) and (c) 200 QTL were simulated, and (b) and (d) 2000 QTL were simulated. In all simulations, 

the distribution of QTL effect size is set with gamma distribution 𝛤(0.5, 1), and allele frequency distribution 

followed a beta distribution 𝐵𝑒𝑡𝑎(0.5, 0.5).  
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B.2.2. Effects of Shape Parameter for the QTL Effect Size 

Distribution 𝕒 

Besides 𝕜, the shape parameter 𝕒 also has significant effects on the 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1 . Provided all 

other parameters being kept constant, a more leptokurtic 𝕕𝑄𝑇𝐿 (i.e., smaller 𝕒) reduces the 

variance while increasing the kurtosis of 𝕕𝐸𝑆
1  (Figure B.10). In Figure B.10(a) the variance 

and excess kurtosis of the 𝕕𝐸𝑆
1  are 0.24 and 6.52 respectively, compared to 3.66 and 6.10 in 

𝕕𝐸𝑆
1  featured in Figure B.10(b). This can be attributed to a reduced proportion of QTL with 

large effect size with smaller 𝕒, an effect similar to those observed in small 𝕜. The same 

effect also increases the proportion of top markers being QTL; in Figure B.10(a), where 𝕒 =

0.1, 13.16% of all top 50 markers originated from QTL, compared to 5.3% in Figure B.10(b) 

when 𝕒 = 0.9.  

Whereas for 𝕕𝐹𝑇
1 , a more leptokurtic 𝕕𝑄𝑇𝐿 increases the kurtosis of 𝕕𝐹𝑇

1 , which is observable 

as increased number of markers with large test statistics, and fatter tail of the test statistics 

distribution (Figure B.11(a-b)). In (a) where 𝕒 = 0.1 the 𝕕𝐹𝑇
1  has an excess kurtosis of 

7037.54, compared to 177.34 in (b) where 𝕒 = 0.9. The leptokurtic QTL effect size 

distribution also resulted in stronger and well-defined peaks, similar to those observed in a 

trait with small 𝕜 (Figure B.11(c-d)). 

The similarity of effects of a genetic architecture with small 𝕒 with those with small 𝕜 

highlighted one potential issue during the estimation the 𝕕𝑄𝑇𝐿: since the distributions from a 

trait with small 𝕒 are not distinguishable from those with small 𝕜, any attempts that utilized 

the distributions might not be able to return a unique solution. This concern has indeed been 

validated through additional simulation, for which the results of simulation are provided in 

Figure B.12, where the distribution from a trait with small 𝕜 but large 𝕒 is practically 

indistinguishable from the distribution of a trait with small 𝕒. Thus, if 𝕕𝐹𝑇
1  were used to 

estimate the 𝕕𝑄𝑇𝐿, and no additional constraints are available, the solutions were not unique, 

and instead an infinite solution that described the relationship between 𝕜 and 𝕒 was obtained. 

Similar observations have also been made for 𝕕𝐸𝑆
1 .  
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Figure B.10: Histogram showing the effects of shape parameter 𝕒 on 𝕕𝐸𝑆
1 , with the 𝕕𝑄𝑇𝐿 in (a) followed the 

gamma distribution 𝛤(0.1, 1) and in (b) 𝛤(0.9, 1). The histograms are generated by averaging the histograms 

from 100 GWASes with 50k independent markers and sample size of 5000. In both scenarios, 2000 QTL has 

been simulated, and the allele frequency distribution followed a beta distribution 𝐵𝑒𝑡𝑎(0.5, 0.5).  

 

Figure B.11: Histograms showing the effects of shape parameter 𝕒 of the 𝕕𝑄𝑇𝐿 on (a-b) 𝕕𝐹𝑇
1  and (c-d) 

Manhattan plots. In Figure (a) and (c), the 𝕕𝑄𝑇𝐿 had the shape parameter 𝕒 = 0.1, and (b) and (d) has shape 

parameter 𝕒 = 0.9. The histograms were generated by averaging 100 GWAS with sample size 5000 and 50k 

independent markers, and number of QTL 𝕜 = 2000 and scale parameter 𝕓 = 1. The allele frequency 

distribution followed a beta distribution 𝐵𝑒𝑡𝑎(0.5, 0.5).  
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Figure B.12: Histograms showing the 𝕕𝐹𝑇
1  of (a) genetic architecture 𝑄(200, 0.9,1) and (b) genetic architecture 

𝑄(1800, 0.1, 1). The figures were generated by averaging histograms from 100 GWAS with sample size of 

5000 and 50k independent markers, and the allele frequency distribution followed a beta distribution 

𝐵𝑒𝑡𝑎(0.5, 0.5).  

B.2.3. Effects of Scale Parameters for the QTL Effect Size 

Distribution 𝕓 

Unlike the parameter 𝕜 and 𝕒, which have effects on both 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1 , the scale parameter 

for the genetic architecture 𝕓 only affects 𝕕𝐸𝑆
1  (Figure B.13(a-b)). Provided all other 

parameters remained unchanged, 𝕓 scales the variance of 𝕕𝐸𝑆
1  in the proportion of 𝕓2. From 

the example provided in Figure B.13(a) with the scale parameter 𝕓 = 1, the variance of 𝕕𝐸𝑆
1  

is 1.58. Compared to 14.45 in Figure B.13(b) when 𝕓 = 3, this represents a scaling of 

variance by approximately 9 (14.45/1.58 = 9.15).  

This observation suggested that, if the observed additive genetic variance 𝑣Aobs
 can be 

calculated, and the value of 𝕜 and 𝕒 can be estimated, parameter 𝕓 can be defined as follows:  

𝕓 =  √
𝑣Aobs

𝑣A[𝕜,𝕒,𝕓=1]

 [6] 

Where 𝑣A[𝕜,𝕒,𝕓=1]
 is the expected additive genetic variance if the 𝕜 and 𝕒 are as determined 

from calculation, but with 𝕓 set as 1. It also implies that if the additive genetic variance can 

be determined, it reduces the number of parameters of the genetic architecture that need to be 

estimated by dropping the parameter 𝕓, and only 𝕜 and 𝕒 need to be determined. Changing 

the 𝕓 have no effects on the proportion of variance explained by each of the QTL, thus with 

no effects on the 𝕕𝐹𝑇
1  (Figure B.13(c-d)). This suggests that 𝕕𝐹𝑇

1  cannot be used to estimate 

parameter 𝕓, and only 𝕕𝐸𝑆
1  and 𝑣Aobs

 can be used for this estimation.  
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Figure B.13: Histograms showing the effects of scale parameters 𝕓 on (a-b) 𝕕𝐸𝑆
1  and (c-d) 𝕕𝐹𝑇

1 . Figure (a) and 

(c) has scale parameter 𝕓 = 1, while (b) and (d) has scale parameter 𝕓 = 3. The figures were generated by 

averaging histograms from 100 GWAS with sample sizes of 5000 and with 50k independent markers, with 

number of QTL set at 2000 and shape parameter of 0.1, and the allele frequency distribution followed a beta 

distribution 𝐵𝑒𝑡𝑎(0.5, 0.5).  

B.3. Confounding Factors that Affect 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1  

Genetic architecture is not the only factor that affects the asymptotic distribution of 𝕕𝐸𝑆
1  and 

𝕕𝐹𝑇
1 . They are confounded by numerous other factors, which could affect the estimation of 

the architecture parameters. This necessitates the investigation on the effects of these factors 

so that their effects could be taken into account during the estimation.  

B.3.1. Allele Frequency Distribution  

One of the factors that affects the 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1  is the distribution of the allele frequencies. 

Extreme allele frequencies reduce the GWAS’s ability to accurately estimate the effect size 

of the marker and increases the error of effect size estimation. The errors in estimation could 

then be extended toward the overall distribution of the allele frequencies, which can be 

modelled with a symmetric Beta distribution (i.e. 𝐵𝑒𝑡𝑎(𝑥, 𝑥)) where 𝑥 is the shape parameter 

(Daetwyler et al., 2013). A genotype array with more loci with extreme allele frequencies 

produce a Beta distribution with smaller 𝑥 (Figure B.14).  
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Figure B.14: The relative likelihood of allele frequency distribution under varying shape parameter for the 

symmetric Beta distribution.  

A genotype array with smaller 𝑥 has an increased proportion of loci with extreme allele 

frequencies, and this increases the variance of �̂� and 𝕕𝐸𝑆
1 . This increase in variance is 

illustrated in Figure B.15(a-b), where in (a) with allele frequency distribution 𝐵𝑒𝑡𝑎(0.1, 0.1) 

the variance of 𝕕𝐸𝑆
1  is 2.01, compared to 1.18 in (b) where the allele frequency distribution is 

𝐵𝑒𝑡𝑎(0.9, 0.9).  

This error of estimation not only obfuscate the 𝕕𝑄𝑇𝐿, but it also drowns out the signals from 

small QTL near the head of the distribution, making them undetectable. With changing allele 

frequency distribution, such errors could be sufficiently strong that it affects the tail of 𝕕𝐸𝑆
1 , 

which affects the proportion of top markers being QTL. In the example featured in Figure 

B.15(c), with the genotype array with its allele frequencies following the Beta distribution 

𝐵𝑒𝑡𝑎(0.1, 0.1), 7.90% of the top 50 markers in terms of estimated effect sizes from each 

GWAS came from QTL, compared to Figure B.15(d) where only 6.52% when the allele 

frequency following the Beta distribution 𝐵𝑒𝑡𝑎(0.9, 0.9). This observation hinted that the 

shape of the tail of 𝕕𝐸𝑆
1  is confounded by the allele frequency distribution, making it an 

unreliable indicator on the underlying genetic architecture of the trait.  

Due to the scaling down effects of 𝑝(1 − 𝑝) from extreme allele frequencies, markers with 

extreme allele frequencies do not have significant effects on the tail of 𝕕𝐹𝑇
1 , and thus less 

vulnerable to the changing the allele frequency distribution (Figure B.16(a-b)). The 

proportion of top 50 markers in terms of test statistics also do not change significantly with 

varying allele frequency distribution; from the example provided in Figure B.16(c), where the 
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allele frequency distribution follows the Beta distribution 𝐵𝑒𝑡𝑎(0.1, 0.1), 89.3% of the top 50 

markers came from QTL, which is comparable with the 89.0% from Figure B.16(d) where 

the allele frequency distribution follows the Beta distribution 𝐵𝑒𝑡𝑎(0.9, 0.9). The 

invulnerability of the tail of 𝕕𝐹𝑇
1  toward changing allele frequency distribution also hinted the 

desirability of using this distribution in the estimation of 𝕕𝑄𝑇𝐿. 

 

Figure B.15: Histograms showing the effects of allele frequency distributions on the (a-b) overall shape of 𝕕𝐸𝑆
1 , 

and (c-d) the distribution of estimated effect sizes of the null markers (blue bars) and non-null markers (orange 

bars), with the red lines indicating the top 0.1% of all markers in term of estimated effect sizes. In Figure (a) and 

(c) the allele frequency distributions follow the Beta distribution 𝐵𝑒𝑡𝑎(0.1, 0.1) and (b) and (d) follow the 

𝐵𝑒𝑡𝑎(0.9, 0.9). The figures were generated by averaging histograms from 100 GWAS with sample size of 5000 

and with 50k independent markers. The genetic architecture parameters in all figures were set at 

𝑄(2000, 0.5, 1). 
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Figure B.16: The effects of allele frequency distributions on (a-b) overall shape of 𝕕𝐹𝑇
1  and (c-d) the distribution 

of test statistics of the null markers (blue bars) and non-null markers (orange bars), with the red lines indicating 

the top 0.1% of all markers in terms of test statistics. In Figure (a) and (c) the allele frequency distributions follow 

the Beta distribution 𝐵𝑒𝑡𝑎(0.1, 0.1) and (b) and (d) follow the 𝐵𝑒𝑡𝑎(0.9, 0.9). The figures were generated by 

averaging histograms from 100 GWAS with sample size of 5000 and with 50k independent markers. The genetic 

architecture parameters in all figures were at 𝑄(2000, 0.5, 1). 

B.3.2. Sample Size 

Besides the allele frequencies, sample size also affects the 𝕕𝐸𝑆
1 . Due to an increased variance 

in the distribution of �̂� from equation [1], the variance of the 𝕕𝐸𝑆
1  increased significantly with 

decreased sample size. This phenomenon is illustrated in Figure B.17(a-b); in (a) where the 

sample size utilized is 5000, the variance of 𝕕𝐸𝑆
1  is 1.62, compared to (b) where the sample 

size is 2000, the corresponding variance is 4.04. The increased estimation error has further 

drowned out signals from QTL and obfuscate the underlying 𝕕𝑄𝑇𝐿. Indeed, from the top 50 

markers as presented in Figure B.17(c), 6.72% of the markers originate from true QTL if the 

sample size is 5000, compared to 4.52% for sample size of 2000 in Figure B.17(d). This 

suggested the susceptibility of 𝕕𝐸𝑆
1  toward small sample size, which further confound with 

the effects of allele frequency distribution.  
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Decreasing the sample size also reduces the magnitude of the test statistics, thus scaling down 

the variance of 𝕕𝐹𝑇
1 . The decreased magnitude of test statistics also reduces the proportion of 

test statistics with extreme values, thus decreasing the kurtosis of 𝕕𝐹𝑇
1 . This phenomenon is 

illustrated in Figure B.18(a-b); in (a) where the sample size utilized is 5000, the excess 

kurtosis of 𝕕𝐹𝑇
1  is 545.66, compared to (b) where the sample size is 2000, the corresponding 

excess kurtosis is 51.92. A reduced sample size also decreases the proportion of top markers 

being true QTL; in the example featured in Figure B.18(c), 88.2% of the top 50 markers 

originate from true QTL when sample size is 5000, compared to 44.0% for sample size of 

2000 in Figure B.18(d). This observation supported the previous reports on increased power 

in GWAS due to an increased sample size (Spencer et al., 2009), and also hinted that while 

the tail of the 𝕕𝐹𝑇
1  is susceptible to small sample size, placing a lower limit on the sample size 

for a feasible estimation of 𝕕𝑄𝑇𝐿.  

 

Figure B.17: Histograms showing thee effects of sample size used in the GWAS on 𝕕𝐸𝑆
1 , with (a-b) showing the 

overall shape of the distributions, and (c-d) the distribution of estimated effect sizes of the null markers (blue) and 

non-null markers (orange), with red lines indicating the top 0.1% of all markers in term of estimated effect sizes. 

Figure (a) and (c) was simulated with sample size of 5000, and (b) and (d) with sample size of 2000. The figures 

were generated by averaging histograms from 100 GWAS with 50k independent markers that have their allele 

frequency distribution of 𝐵𝑒𝑡𝑎(0.5, 0.5), and the genetic architecture parameters in all figures were set at 

𝑄(2000, 0.5, 1).  
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Figure B.18: Histogram showing the effects of sample size of (a-b) the overall shape of 𝕕𝐹𝑇
1  and (c-d) the 

proportion of null markers (blue) and non-null markers (orange),with red lines indicating the top 0.1% of all 

markers in term of test statistics. Figure (a) and (c) was simulated with sample size of 5000, and (b) and (d) with 

sample size of 2000. The figures were generated by averaging histograms from 100 GWAS with 50k 

independent markers that have their allele frequency distribution of 𝐵𝑒𝑡𝑎(0.5, 0.5), and the genetic architecture 

parameters in all figures were set at 𝑄(2000, 0.5, 1). 

B.3.3. Correlation Between Markers 

Correlation between markers also has significant impact on these distributions. As correlation 

introduced a degree of similarity in the genotype between two markers, if one of the markers 

is correlated with a QTL, the other marker would also exhibit some of the effect size from the 

QTL. This creates a characteristic “bleeding” effect on the Manhattan plot where a peak of 

QTL is flanked by several null markers (an example provided in Figure 3.7). The effect size 

experienced by a null marker that correlates with a QTL can be calculated as follows:  

�̂�𝑖 = 𝑅𝐿𝐷𝑖,𝑗
∗ 𝑎𝑄𝑇𝐿 +  𝜖 [7] 
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Where 𝑅𝐿𝐷𝑖,𝑗
 is the correlation coefficient between loci 𝑖 and 𝑗, and 𝜖 is the error of 

estimation of loci 𝑖. The 𝑅𝐿𝐷𝑖,𝑗
 can be calculated as follows:  

𝑅𝐿𝐷𝑖,𝑗
= 

𝑐𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝑣𝑎𝑟(𝑋𝑖) ∗ 𝑣𝑎𝑟(𝑋𝑗)
 [8] 

When several QTL correlates with one another, their estimated effect size interacted 

additively as follows:  

�̂�𝑖 = 𝑎𝑖 + ∑ 𝑅𝐿𝐷𝑖,𝑗
∗ 𝑎𝑗

𝑛𝑄𝑇𝐿

𝑗=1

+  𝜖 [9] 

The impact of correlation on the estimation of QTL effect sizes are extensive. Due to the 

additional terms, the expected values for the estimated effect sizes no longer correspond to 

those of the original QTL effect size, but instead approach �̂�𝑖 as defined in equation [9]. This 

suggests that if correlation between markers is present, the distribution of estimated effect 

size can no longer be directly used as the underlying QTL effect sizes distribution, even if 

error in estimation can be avoided.  

The additional terms also increase the variance of the estimated effect sizes (Figure B.19(a-

b)); in (a), where the markers are independent, the variance of the estimated effect size is 

0.33, whereas in (b) where the pairwise marker correlation 𝑅𝐿𝐷𝑖,𝑗
= 0.98, the variance 

increases to 1.85. The presence of correlation also altered the kurtosis of the distribution; in 

(a) the excess kurtosis is 0.07, which is not significantly different compared to a normal 

distribution, whereas in (b) the excess kurtosis is 2.48.  

Due to the shifted expected value and increased variance of the estimated effect sizes of the 

markers, the resulting distribution of estimated effect size 𝕕𝐸𝑆
1  would have an increased 

variance and decreased kurtosis (Figure B.20(a-b)); in (a), where no correlation between 

markers is present, the variance and excess kurtosis of the 𝕕𝐸𝑆
1  are 1.57 and 6.11, 

respectively, whereas in (b) where the pairwise marker correlation 𝑅𝐿𝐷𝑖,𝑗
= 0.98, the 

corresponding variance and excess kurtosis are 3.03 and 2.44 respectively. Similar changes 

can also be observed in the 𝕕𝐹𝑇
1 , where in Figure B.20(a) the variance and excess kurtosis of 

𝕕𝐹𝑇
1  are 3.15 and 488.54, compared to Figure B.20(b) with pairwise marker correlation 

𝑅𝐿𝐷𝑖,𝑗
= 0.98 the corresponding variance and excess kurtosis are 54.68 and 70.59 

respectively.  
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Figure B.19: Histogram showing the distribution of estimated effect size of a QTL under (a) independent markers 

and (b) average pairwise correlation of 0.98, with genetic architecture parameter 𝑄(2000, 0.5, 1). The 

distributions of estimated effect sizes featured in both figures have a true effect size is 1.0 𝜎𝑒, and the GWAS is 

generated with allele frequency of 0.5, sample size of 5000 and phenotypic variance set at 750.  

 

Figure B.20: The effects of correlation between markers in (a-b) the 𝕕𝐸𝑆
1  and (c-d) 𝕕𝐹𝑇

1 , with (a) and (c) being 

the distribution if the markers are independent, and (b) and (d) if the pairwise marker correlation is set at 0.97. In 

all figures, the sample size of GWAS was set at 5000, and number of markers is 50k. The number of QTL in all 

figures was set at 2000, with 𝕕𝑄𝑇𝐿  ~ (0.5, 1). The allele frequency distribution follows a symmetric Beta 

distribution 𝐵𝑒𝑡𝑎(0.5, 0.5). 100 replicates were generated, and the figures were generated by averaging the 

histograms from each of the replicates.  
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Besides altering the shape of 𝕕𝐹𝑇
1  and 𝕕𝐸𝑆

1 , correlation between markers also limits a 

GWAS’s ability to uniquely identify the number of QTL under a peak. It means given a peak 

observed in a Manhattan plot, it could be caused by few QTL with large effect sizes, or by 

numerous QTL with small effect sizes, and it might not be observable through estimated 

effect size alone, even with high density markers such as whole-genome sequence data 

(Figure B.21). While algorithms that “de-correlate” the estimate effect sizes are available (as 

an example, pruning of markers), the number of QTL is no longer recoverable as there is no 

way of identifying which markers contributed to the peaks.  

  

 

Figure B.21: The numerous possibilities of the underlying QTL effect size distribution (red crosses) given a peak 

being observed in the estimated effect sizes of a GWAS experiment (blue line). In all these plots, the pairwise 

marker correlation is set at 0.98.  

This observation also suggested an ambiguity in identifying the mechanism of peak 

formations in the Manhattan plots of a GWAS. Given a peak observed in a Manhattan plot, 

there are two extremes of mechanism on how the peak is formed; the first mechanism is the 

“effect size peak” where the peaks are created by one or a few QTL with large effect sizes. 

The second mechanism is “QTL density peak” where the peak is caused by many QTL with 

small effect size being correlated to one another, meanwhile being exceptionally dense under 

the peak. For any given peak, it is likely that the mechanism lies somewhere between the 

extremes, although in general, a Manhattan plot with more “effect size peaks” tend to have 

smaller 𝕜 and larger 𝕒, and the opposite is true for those with more “QTL density peaks”. In 

the context of architecture parameter, the proportion of QTL associated with the type of 
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peaks can be captured by parameter 𝕒; a smaller 𝕒 indicates a larger proportion of the QTL 

will be associated with the QTL density peak, and vice versa.  

B.3.4. Other Confounding Factors 

Other confounding factors that could affect the estimation of 𝕕𝑄𝑇𝐿 include heterogeneity in 

linkage disequilibrium structures in the genome which could produces false positives in a 

GWAS experiment (Kaler and Purcell, 2019). Population stratification has also been reported 

as a source of false positives in GWAS through non-random segregation of genotypes based 

on the subpopulation structures (Panagiotou and Ioannidis, 2012). Finally, as previously 

reported in several publications such as Beavis (1994) and Hall et al. (2016), GWAS have a 

tendency to overestimate the QTL effect sizes, especially for the QTL with small effect sizes, 

which could also impact the estimation of 𝕕𝑄𝑇𝐿 if 𝕕𝐸𝑆
1  is used. Further study could be 

dedicated to investigating the effects of these additional confounding factors on 𝕕𝐸𝑆
1  and 𝕕𝐹𝑇

1 .  

B.3.5. Conclusion 

In conclusion, there are numerous confounding factors that could affect the estimation of 

𝕕𝑄𝑇𝐿. Overall, it appears that 𝕕𝐹𝑇
1  is less vulnerable toward these confounding factors 

compared to 𝕕𝐸𝑆
1 , with the former being less vulnerable to allele frequency distribution that 

favoured extreme frequencies. This improves the signal-to-noise ratio in the tail of 𝕕𝐹𝑇
1  

compared to 𝕕𝐸𝑆
1 , suggested that the former is preferable for the estimation of the genetic 

architecture parameters such as number of QTL. Despite this, the vulnerability of both 𝕕𝐹𝑇
1  

and 𝕕𝐸𝑆
1  toward small sample size placed a lower limit on the sample size where the 

estimation of 𝕕𝑄𝑇𝐿 remained feasible (i.e., signals from QTL not being drowned out by noises 

from null markers). Even with smaller sample sizes however, the signal-to-noise ratio 

remained higher in the tail of 𝕕𝐹𝑇
1  compared to 𝕕𝐸𝑆

1 , thus suggested the former being 

preferable for such estimation.  

The higher signal-to-noise ratio in the tail of 𝕕𝐹𝑇
1  also suggested an increased proportion of 

top markers in term of test statistics being actual QTL compared to 𝕕𝐸𝑆
1 , as well as reduced 

amount of noises from the null markers. This suggested that if the optimization of breeding 

pair is to be done using genomic information, test statistics would be the more reliable 

method of scoring for the additive genetic component of the offspring.  
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Appendix C. Test Statistics for Equality between 

Distributions of GWAS 

 

The aim of this appendix section is to provide a layout of statistical tests that were utilized in 

the estimation of genetic architecture parameters. These tests are chosen or tailored to detect 

the effects of changing genetic architectures on the distributions of the test statistics from a 

GWAS experiment, with the null hypothesis being the expected distribution from a proposed 

set of genetic architecture parameters (denoted under the notation [𝕜, 𝕒, 𝕓]) being equal to the 

observed distribution from a GWAS experiment.  

C.1. Properties Required for the Test Statistics in the 

Estimation of Genetic Architecture Parameters 

While the genetic architectures such as number of QTL and shape of underlying QTL effect 

size distribution (denoted as 𝕕𝑄𝑇𝐿) have detectable influences on the distribution of estimated 

effect sizes (𝔻𝐸𝑆
1 ) and test statistics (𝔻𝐹𝑇

1 ) from a GWAS experiment, there are several 

properties of the distributions that need to be taken into account when choosing a test for their 

equality.  

One important aspect that needs to be taken into account being the difficulty of having the 

distributions to be defined mathematically. As the distribution is built from data of null and 

non-null marker, the resulting distributions are mixture distributions represented by a finite 

amount of data, thus are not smooth and not differentiable. This would call for statistics that 

do not make assumptions on the underlying distributions, such as nonparametric statistics 

(Cirrone et al., 2004; Fagerland, 2012). These nonparametric statistics work by detecting 

discrepancies in a multitude of aspects of a distribution, such as their locations and 

dispersion, which can then be used to test the equality of the distributions (Fagerland, 2012; 

Hart, 2001).  

The signals from changing 𝕕𝑄𝑇𝐿 on 𝔻𝐹𝑇
1  are miniscule but strongly concentrated at the tail 

region. This observation suggested that any statistics that are to be used in this algorithm need 

to be powerful at detecting the discrepancy between two distributions at the tail region. This 

requirement has, however, disqualified large number of statistics that potentially could be 
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utilized, as many of the statistics such as Kolmogorov-Smirnov test and Cramer von Mises 

test are sensitive at the median of the distribution and weak at the tail region (Lanzante, 2021; 

Mason and Schuenemeyer, 1983). This is the region of distribution that can be easily 

dominated by noise, which could easily drown out the signal from changing 𝕕𝑄𝑇𝐿.  

This could be partially alleviated through several methods. One of the simplest methods is to 

truncate 𝔻𝐹𝑇
1  at the tail region. By focusing the statistics on the tail region, any discrepancies 

at this region can be reliably detected, rather than being drowned out by noises near the head 

of 𝔻𝐹𝑇
1 . An additional benefit of truncation of 𝔻𝐹𝑇

1  is the improvement of computational 

speed; as truncation removes a large portion of data points, the amount of calculation 

required decreases significantly, thus with added benefit of increasing the feasibility of the 

algorithm. Despite this, care needs to be taken to avoid excessive truncation as this could lead 

to overly small number of data points that reduce the reliability of the statistics.  

An issue that should be noted is these modifications break the original validity of the tests, 

and thus no p-values that can be calculated, and no acceptance or a rejection of a model can 

be made. Despite this, minimization of the test statistics between a sequence of expected 

distributions of test statistics (denoted as 𝔻𝐹𝑇𝑠𝑖𝑚

2 ) and a sequence of observed distribution of 

test statistics (denoted as 𝔻𝐹𝑇𝑜𝑏𝑠

2 ) is still possible, and this would occur if the proposed 

genetic architecture parameters for 𝔻𝐹𝑇𝑠𝑖𝑚

2  matches with true genetic architecture parameters 

(denoted under the notation 𝑄(𝕜, 𝕒, 𝕓)) from 𝔻𝐹𝑇𝑜𝑏𝑠

2 .  

Utilizing the tail of 𝔻𝐹𝑇
1  had also entailed its own difficulty as well; with less data available at 

the tail of the distribution, it is more vulnerable toward the dispersion of 𝔻𝐹𝑇
1 . This reduces 

the robustness of any statistical tests, and the presence-absence of a data point has greater 

effects if the data point is located at the tail region compared to those located at the head 

region. As an example, if equality in kurtosis is to be used to test the equality of two 

distribution, adding data points at the tail of the distribution has stronger influences on the 

test compared to adding data points to the head of the distribution (Figure C.1). If the added 

data points came from false positives, this could muddle the test statistics.  

This issue could be partially alleviated in several ways, with the resampling of genotype and 

phenotype data being one such way. Besides this resampling, the use of a multitude of 

statistics that capture different aspects of the distributions, such as the shape of the 

distribution and maximal points in the distributions, could also be conducted. That way, if 
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one of the statistics failed (for example, the statistics are undefined, or returned anomalous 

results) other statistics can be used to supplement or back up the failures, thus improving the 

robustness of the algorithm. The use of multiple types of statistics has the added bonus of 

improving the accuracy of statistics that would otherwise be biased, and allowing an 

alternative formulation of “goodness of fit” between two distribution by defining it as the 

number of statistics that the model has successfully minimized (as an example, a model that 

minimizes seven out of ten statistics is a better fit than a model that minimizes two). It is also 

noted that the use of large number of statistics increases the chance of false positives 

however, thus the use of p-values should be avoided in this estimation, and the sole focus 

shall be the minimization of the test statistics.  

 

Figure C.1: The effects of additional data points at different part of the distribution on the kurtosis of the 

distribution. Figure (a) illustrated a histogram from 10,000 normal random variates, with excess kurtosis of -

0.016. Figure (b) illustrated the histograms from the same set of random variates but with 20 additional points 

(denoted as orange bars), sampled randomly between -3.0 and 3.0, were included. The excess kurtosis for this 

distribution is -0.018. In Figure (c) the histogram also has the same set of random variates but with 20 additional 

points, also denoted as orange bars, sample randomly between -10 and 10, been included. The excess kurtosis 

for this set of random variates is 3.421.  

The use of a sequence of 𝔻𝐹𝑇
1 s (in the form of 𝔻𝐹𝑇

2 ) rather than one singular 𝔻𝐹𝑇
1  also has the 

added benefit of introducing more types of statistics that could be tested. This could be 

attributed to the emergent properties from a sequence of 𝔻𝐹𝑇
1  compared to a sequence of 

random variables. One such example is the convergence of maximum values of the random 

variables. It is known that the maximum values of the random variables are heavily affected 

by the outliers, and any statistics that utilized such values would have low robustness and 

poor reliability (Nazir, 2014). Conversely if the maximum values are collected among the 

random variables from each of the 𝔻𝐹𝑇
1  within a 𝔻𝐹𝑇

2 , these maximum values converge 

toward a new distribution, as described by Fisher-Tippett-Gnedenko theorem (Charras-

Garrido and Lezaud, 2013; Fisher and Tippett, 1928), which could then be used to test the 
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equality of 𝔻𝐹𝑇
2 . This allows the development of new statistics that could be done to test the 

equality of 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 .  

To further increase the number of tests available, this algorithm would repeat the tests but 

with varying the options for the tests. An example of the varying options is changing the tail 

cut-off point at, for example, top 1%, 0.5%, 0.2% and 0.1%, and then run the statistics at 

these varying cut-off points. This would also alleviate issues that might arise due to 

ambiguity of the optimal cut-off point for the statistics; while the signal-to-noise ratio 

increases further into the tail of the distribution, a cut-off point too far into the tail reduces the 

reliability of the test. Using a multitude of cut-off points alleviate this ambiguity.  

C.2. Tests Utilized in Genetic Architecture Parameters 

Estimation 

C.2.1. Maximal Distance Statistics 

This class of statistics tests the equality of two distributions by testing the one-dimensional 

maximal distance between them. The rationale for this class of statistics is that if the two 

distributions came from the same underlying distribution, the maximal distance between them 

is asymptotically minimized (Cirrone et al., 2004; Simard and L’Ecuyer, 2011).  

C.2.1.1. Kolmogorov-Smirnov Test 

Perhaps the most well-known test statistic for maximal distance is the Kolmogorov-Smirnov 

test, which the calculation of test statistics has been defined in equation [1] in Chapter 5 

(Cirrone et al., 2004; Lanzante, 2021; Stephen, 1970). It can be defined as the maximum 

difference between two empirical distribution functions (ECDF) along the y-axis (Figure 

C.2). One commonly raised shortcoming for the test is its lack of power in detecting 

discrepancies at the tail of the distribution (Cirrone et al., 2004; Lanzante, 2021). For this, 

adjustment needs to be made to improve the Kolmogorov-Smirnov test at the tail of 𝔻𝐹𝑇
1 .  

One of the ways to improve the power of Kolmogorov-Smirnov test at the tail of 𝔻𝐹𝑇
1  is to 

truncate the distribution at the tail region, which is defined using a y-axis cut-off point 𝑦𝑐. 

Using 𝑦𝑐, the x-axis cut-off point (denoted as 𝑥𝑐) is defined as the minimum between the 

arguments on 𝔻𝐹𝑇
1  where 𝔻𝐹𝑇

1 = 𝑦𝑐:  

𝑥𝑐 = min ((𝔻𝐹𝑇𝑠𝑖𝑚

1 ∶  𝔻𝐹𝑇𝑠𝑖𝑚

1 = 𝑦𝑐) , (𝔻𝐹𝑇𝑜𝑏𝑠

1 ∶  𝔻𝐹𝑇𝑜𝑏𝑠

1 = 𝑦𝑐)) [1] 



228 
 

Using 𝑥𝑐, the test statistics for this truncated Kolmogorov-Smirnov test (denoted as 𝑡𝐾𝑆𝑡𝑟𝑐
) is 

defined as the maximal distance between two scaled empirical CDFs (denoted as 𝑀𝐸𝐶𝐷𝐹s) 

at 𝑥s larger than 𝑥𝑐:  

𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) = sup|𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝑥 ≥ 𝑥𝑐) −  𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝑥 ≥ 𝑥𝑐)| [2] 

An example of this truncated Kolmogorov-Smirnov test is provided in Figure C.2(b).  

 

Figure C.2: Examples of (a) Kolmogorov-Smirnov test and (b) truncated Kolmogorov-Smirnov test. In both 

graphs the test statistics are defined by the length of the red line. In (b) the y-axis truncation point 𝑦𝑐 is set at 0.3.  

In this study, given a cut-off point 𝑦𝑐, the truncated Kolmogorov-Smirnov test between 

𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  is defined as conducting this test between each of the 𝔻𝐹𝑇
1  with 𝔻𝐹𝑇𝑠𝑖𝑚

2  

each of the 𝔻𝐹𝑇
1  in 𝔻𝐹𝑇𝑜𝑏𝑠

2 , and the resulting 𝔻𝐹𝑇
2  test statistics 𝑡𝔻𝐾𝑆𝑡𝑟𝑐

2  is a 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 2-

dimensional array of 𝑡𝐾𝑆𝑡𝑟𝑐
 structured as follows:  

𝑡𝔻𝐾𝑆𝑡𝑟𝑐
2

= 

[
 
 
 
 
 𝑡𝐾𝑆𝑡𝑟𝑐

(𝔻𝐹𝑇𝑠𝑖𝑚1

1 , 𝔻𝐹𝑇𝑜𝑏𝑠1

1 ) 𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚1

1 , 𝔻𝐹𝑇𝑜𝑏𝑠2

1 )

𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚2

1 , 𝔻𝐹𝑇𝑜𝑏𝑠1

1 ) 𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚2

1 , 𝔻𝐹𝑇𝑜𝑏𝑠2

1 )
⋯

𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚1

1 , 𝔻𝐹𝑇𝑜𝑏𝑠𝑜

1 )

𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚2

1 , 𝔻𝐹𝑇𝑜𝑏𝑠𝑜

1 )

⋮ ⋱ ⋮

𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚𝑠

1 , 𝔻𝐹𝑇𝑜𝑏𝑠1

1 ) 𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚𝑠

1 , 𝔻𝐹𝑇𝑜𝑏𝑠2

1 ) ⋯ 𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚𝑠

1 , 𝔻𝐹𝑇𝑜𝑏𝑠𝑜

1 )]
 
 
 
 
 

[3] 

With the subscript (1,2, … , 𝑠) for 𝔻𝐹𝑇𝑠𝑖𝑚

1  and (1,2, … , 𝑜) for 𝔻𝐹𝑇𝑜𝑏𝑠

1  denoting the sequence 

index of 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  within 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  respectively, and 𝑛𝑠𝑖𝑚 and 𝑛𝑜𝑏𝑠 are 

the number of 𝔻𝐹𝑇
1  within 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  respectively.  

In this study a multitude of 𝑦𝑐 were employed. The following 𝑦𝑐 was utilized for this statistic: 

𝑦𝑐 = 0.01, 0.008, 0.006, 0.005, 0.004, 0.003, 0.002, 0.0015, 0.001, 0.0005, 0.0004, 0.0003, 
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0.0002, 0.0001 and 0. The 𝑡𝔻𝐾𝑆𝑡𝑟𝑐
2  from each 𝑦𝑐 is stacked into a 3-dimensional array with 

size 𝑛𝑠𝑖𝑚 × 𝑙𝑦𝑐
× 𝑛𝑜𝑏𝑠, with 𝑙𝑦𝑐

 being the number of 𝑦𝑐s being tested in this study (i.e. 𝑙𝑦𝑐
=

15).  

C.2.1.2. Kuiper’s Test 

A close relative to the Kolmogorov-Smirnov test is the Kuiper’s test. It was introduced by 

Kuiper (1960) as a modification of Kolmogorov-Smirnov test for testing the averages of 

azimuths a group of migratory birds would take during the migration process. The test 

statistic (𝑡𝐾𝑈) is defined as the sum of the absolute values of supremum distance and infimum 

distance between two ECDFs (Kuiper, 1960):  

𝑡𝐾𝑈 = |sup(𝔻𝐹𝑇𝑠𝑖𝑚

1 − 𝔻𝐹𝑇𝑜𝑏𝑠

1 )| + |inf(𝔻𝐹𝑇𝑠𝑖𝑚

1 − 𝔻𝐹𝑇𝑜𝑏𝑠

1 )| [4] 

An example of the implementation of Kuiper’s test is provided in Figure C.3(a).  

Cirrone (2004) and Lanzante (2021) suggested this statistic is equally powerful in detecting 

discrepancies at the median and the tail of the distribution. The signal-to-noise ratio near the 

median of 𝔻𝐹𝑇
1  is low however, thus discrepancy in that region could be caused by noise 

rather than signal, muddling the test statistics. For this reason, truncation of the statistics was 

also employed in this test statistic, using the same 𝑦𝑐 and 𝑥𝑐 as in the calculation of truncated 

Kolmogorov-Smirnov test. For this the test statistics of the truncated Kuiper’s test (𝑡𝐾𝑈𝑡𝑟𝑐
) it 

is calculated in a similar way as in truncated Kolmogorov-Smirnov test:  

𝑡𝐾𝑈𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) =  |sup (𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝑥 ≥ 𝑥𝑐) − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝑥 ≥ 𝑥𝑐))|

+ |inf (𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝑥 ≥ 𝑥𝑐) − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝑥 ≥ 𝑥𝑐))| [5]
 

The truncated Kuiper’s test is illustrated in Figure C.3(b). 

Given a cut-off point 𝑦𝑐, the test statistics for the truncated Kuiper’s test between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 

𝔻𝐹𝑇𝑜𝑏𝑠

2  (denoted as 𝑡𝔻𝐾𝑈𝑡𝑟𝑐
2 ) is a 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 2-dimensional array structured in a similar 

fashion as in 𝑡𝔻𝐾𝑆𝑡𝑟𝑐
2  in equation [3], with 𝑡𝐾𝑈𝑡𝑟𝑐

(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) from equation [5] being 

used in place of 𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ).The  same set of 𝑦𝑐s as in the truncated Kolmogorov-

Smirnov test was used, and the test statistics is kept as a 3-dimensional array with size 𝑛𝑠𝑖𝑚 ×

𝑙𝑦𝑐
× 𝑛𝑜𝑏𝑠.  
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Figure C.3: Example of (a) Kuiper’s test and (b) truncated Kuiper’s test. In both graphs the test statistics are 

defined as the sums of length of the red lines in each graph. In (b) the y-axis truncation point 𝑦𝑐 is set at 0.3.  

C.2.1.3. Maximal x-axis Distance Test  

While the Kolmogorov-Smirnov test and Kuiper’s test relies on the maximal distance 

between two distributions along the y-axis, it is also possible to test the equality of two 

distribution using the distance along the x-axis. One such statistic, which was termed 

“maximal x-axis distance test” in this study, utilized the latter. This is a newly developed 

statistics designed to detect differences in magnitude of outliers between two distributions.  

The mechanism of this statistics relies on the aforementioned convergence of the maximum 

values of the random variables in 𝔻𝐹𝑇
2 . The rationale behind this statistic is that if the two 

empirical distributions came from the same underlying distribution, provided that none of the 

random variates is undefined and they have the same data size, the maximum values from the 

empirical distribution converge asymptotically, forming a new distribution (Figure C.4(a), 

Figure C.4(c)). Whereas if the two empirical distributions do not come from the same 

underlying distribution, with resampling, they would not asymptotically converge toward the 

same distribution (Figure C.4(b), Figure C.4(d)). 

In this study, the maximal x-axis distance test is defined as the differences of maximum 

values between two distributions:  

𝑡𝑋𝑀𝐿(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) = |max(𝔻𝐹𝑇𝑠𝑖𝑚

1 ) − max(𝔻𝐹𝑇𝑜𝑏𝑠

1 )| [6] 

The 𝔻2 test statistics of maximum x-axis distance test 𝑡𝔻𝑋𝑀𝐿
2  is a 2-dimensional array of size 

𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 containing the 𝑡𝑋𝑀𝐿 between each of the 𝔻𝐹𝑇𝑠𝑖𝑚

1  and each of the 𝔻𝐹𝑇𝑜𝑏𝑠

1 , and is 

structured in a similar fashion as in 𝑡𝔻𝐾𝑆𝑡𝑟𝑐
2 , but with 𝑡𝑋𝑀𝐿(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1  ) in place of 

𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ).  
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Figure C.4: The mechanism of maximal x-axis distance test. Figure (a) and (b) shows the scaled ECDF (denoted 

as 𝑀𝐸𝐶𝐷𝐹s) of the test statistics, whereas (c) and (d) shows the distributions of the maximum test statistics 

(i.e., maximum x-axis values) from each of the 𝑀𝐸𝐶𝐷𝐹s. In (a) and (c) the red and blue lines are generated 

from the same genetic architecture parameters 𝑄(100, 0.2, 1), whereas for (b) and (d) the red lines are 

generated from 𝑄(100, 0.2, 1) whereas the blue lines are generated from 𝑄(1000, 0.2, 1). The maximal x-

axis distance uses the differences in the distribution in (c) and (d) to test the equality of the 𝑀𝐸𝐶𝐷𝐹s. 

C.2.2. Area-based Statistics  

Besides maximal distances, discrepancies between two distributions can also be measured 

through the area between the distributions. The rationale behind this class of statistics is that 

if the distribution comes from the same underlying distribution, the area between the 

distributions would be minimized (Dobrushin, 1970; Dowd, 2020). Generally, area-based 

statistics are more powerful than the maximal distance statistics as the comparison utilized 

the entirety range of x-axis rather than one single point (Cirrone, 2004, Dowd, 2020).  

C.2.2.1. Wasserstein’s Statistics  

Perhaps the most straightforward and important area-based statistics is the Wasserstein’s 

statistics (Cabrelli and Molter, 1995). It was first formulated by Kantorovich (1939) and 
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Kantorovich (1958) as a process to achieve optimized distribution of workforces using the 

least amount of work. It was unknowingly utilized by Vasershtein (1969) as part of the 

probability modelling of a Markov process, before popularized by Dobrushin (1970) as a way 

of measuring the amount of discrepancies between two distributions.  

The test statistic for Wasserstein’s statistics (𝑡𝑊𝑆) is defined as the area between curves of 

𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  across all test statistics 𝐹𝑇 (Cabrelli and Molter, 1995; Dobrushin, 1970):  

𝑡𝑊𝑆 = ∫ |𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇)|
∞

−∞

 𝑑𝐹𝑇 [7] 

Where 𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) and 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇) are defined as the values of 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  

evaluated at x-axis point 𝑥 = 𝐹𝑇 respectively. An example of this statistic is provided in 

Figure C.5(a). 

The Wasserstein’s statistics is generally more powerful than Kolmogorov-Smirnov test and 

Kuiper’s test (Cirrone, 2004). Despite this, similar to Kolmogorov-Smirnov test, this test is 

powerful at the median and weak at the tail of the 𝔻𝐹𝑇
1 . This can be attributed to the unequal 

variances of the test statistic across the y-axis of the ECDF, with maximal variance at 

𝐸𝐶𝐷𝐹 = 0.5 (Dowd, 2020). For this reason, truncation would be applied, with the truncated 

Wasserstein’s statistics defined as follows:  

𝑡𝑊𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) =  ∫ |𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇)|
∞

𝐹𝑇𝑐

 𝑑𝐹𝑇 [8] 

Where 𝐹𝑇𝑐 is the test statistic that served as the cut-off point of the truncated Wasserstein’s 

statistics. The calculation of 𝐹𝑇𝑐 is equivalent to the calculation of 𝑥𝑐 for the truncated 

Kolmogorov-Smirnov statistic. The truncated Wasserstein’s statistic is illustrated in Figure 

C.5(b).  

The test statistic for the truncated Wasserstein’s statistic between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  is 

defined (denoted as 𝑡𝔻𝑊𝑆
2

𝑡𝑟𝑐
) as a 2-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 containing 𝑡𝑊𝑆𝑡𝑟𝑐

 

between each 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1 , and is structured in a similar way as in 𝑡𝔻2 for the 

truncated Kolmogorov-Smirnov statistic. With repetition of 𝑡𝔻𝑊𝑆
2

𝑡𝑟𝑐
 across varying y-axis cut-

off points 𝑦𝑐, the resulting test statistic is a 3-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑙𝑦𝑐
× 𝑛𝑜𝑏𝑠. 

The y-axis cut-off points tested in truncated Wasserstein’s statistic is the same as those 

defined in truncated Kolmogorov-Smirnov test.  
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Figure C.5: Example of (a) Wasserstein’s statistics and (b) truncated Wasserstein’s statistics, evaluated across a 

range of x-axis. The test statistics are defined by the area of the pink regions in each of the graphs. In (b) the y-

axis truncation point 𝑦𝑐 is set at 0.3.  

C.2.2.2. DTS Statistics and its Generalization 

The weakness of Wasserstein’s statistic toward discrepancies at the tail of the distributions 

has led to development of new statistics, and one such statistic is the DTS statistic, a modified 

version of Wasserstein’s statistic introduced by Dowd (2020).  

The inspiration for this statistic is the Anderson-Darling test, which is equivalent to the 

Cramer-von Mises test that has been weighted by the variance factor 𝑦(1 − 𝑦) in order to 

improve the latter’s power toward discrepancies at the tail of the distribution (Anderson and 

Darling, 1952). For this, the DTS test statistics (𝑡𝐷𝑇𝑆) between 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  is defined 

as follows (Dowd, 2020):  

𝑡𝐷𝑇𝑆 = ∫
|𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇)|

�̂�(𝐹𝑇)
 𝑑𝐹𝑇 

∞

−∞

[9] 

Where �̂�(𝐹𝑇) is the weightage function at point 𝑥 = 𝐹𝑇. In the original publication by Dowd 

(2020) the �̂�(𝐹𝑇) is defined as follow (denoted as �̂�(𝐹𝑇)𝑚):  

�̂�(𝐹𝑇)𝑚 = (
𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) + 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇)

2
) ∗ (1 −

𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) + 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇)

2
) [10] 

An example of utilization of DTS statistics with �̂�(𝐹𝑇)𝑚 is provided in Figure C.6(a). 

There are several possible interpretations of �̂�(𝐹𝑇). Indeed, from the original publication for 

the Anderson-Darling test (Anderson and Darling, 1952; Anderson and Darling, 1954) the 

authors did not explicitly define the 𝑦(1 − 𝑦) as the mandatory weighting factor, and instead 
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allow the users to choose any suitable weighting factor as long as the factor is nonnegative. 

For this, besides the original definition of �̂�(𝐹𝑇), an alternative version for the weighting 

factor was formulated, which is defined as follows (denoted as �̂�(𝐹𝑇)𝐴):  

�̂�(𝐹𝑇)𝐴 = 
(𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) ∗ (1 − 𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇))) + (𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇) ∗ (1 − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇))) 

2
 [11]

 

There are slight differences between �̂�(𝐹𝑇)𝑚 and �̂�(𝐹𝑇)𝐴; the �̂�(𝐹𝑇)𝑚 can be seen as the 

expected variance of the test statistic evaluated at the midpoint between 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  at 

point 𝑥 = 𝐹𝑇, whereas for �̂�(𝐹𝑇)𝐴, it can be seen as the midpoint between two expected test 

statistic variances evaluated at 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  at point 𝑥 = 𝐹𝑇.  

While DTS statistics have more power to detect discrepancies at the tail of the distributions, it 

is still sensitive toward discrepancies near the median of the distribution, which is undesirable 

in this situation. Thus, truncation would also be applied onto DTS statistics. For the truncated 

DTS test statistics that utilized �̂�(𝐹𝑇)𝑚 is denoted as 𝑡𝐷𝑇𝑆𝑚𝑡𝑟𝑐
 and is defined as follows:  

𝑡𝐷𝑇𝑆𝑚𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) =  ∫
|𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇)|

�̂�(𝐹𝑇)𝑚

 𝑑𝐹𝑇
∞

𝐹𝑇𝑐

 [12] 

and the truncated DTS test statistics that utilized �̂�(𝐹𝑇)𝐴 is denoted as 𝑡𝐷𝑇𝑆𝐴𝑡𝑟𝑐
 and is defined 

as follows: 

𝑡𝐷𝑇𝑆𝐴𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) =  ∫
|𝔻𝐹𝑇𝑠𝑖𝑚

1 (𝐹𝑇) − 𝔻𝐹𝑇𝑜𝑏𝑠

1 (𝐹𝑇)|

�̂�(𝐹𝑇)𝐴

 𝑑𝐹𝑇
∞

𝐹𝑇𝑐

 [13] 

An example of truncated DTS statistics with �̂�(𝐹𝑇)𝑚 is provided in Figure C.6(b).  

The truncated DTS test statistic between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  is defined as a pair of 2-

dimensional arrays of size 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠. The first array, denoted as 𝑡𝔻𝐷𝑇𝑆𝑚𝑡𝑟𝑐
2 , contains 

𝑡𝐷𝑇𝑆𝑚𝑡𝑟𝑐
 between each of the 𝔻𝐹𝑇𝑠𝑖𝑚

1  and each of the 𝔻𝐹𝑇𝑜𝑏𝑠

1 , and is structured in a similar 

way as in the 𝑡𝔻𝐾𝑆
2

𝑡𝑟𝑐
, but with 𝑡𝐷𝑇𝑆𝑚𝑡𝑟𝑐

(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) in place of 𝑡𝐾𝑆𝑡𝑟𝑐
(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ). 

The second array, denoted as 𝑡𝔻𝐷𝑇𝑆𝐴𝑡𝑟𝑐
2 , contains 𝑡𝐷𝑇𝑆𝐴𝑡𝑟𝑐

 between the 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1 . 

This calculation of 𝑡𝔻𝐷𝑇𝑆𝑚𝑡𝑟𝑐
2  and 𝑡𝔻𝐷𝑇𝑆𝐴𝑡𝑟𝑐

2  was repeated across varying y-axis cut-off points 

𝑦𝑐, with the cut-off points being the same as those utilized in truncated Kolmogorov-Smirnov 
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tests. The eventual test statistics is kept as a 3-dimensional array of size 𝑛𝑠𝑖𝑚 × (2 ∗ 𝑙𝑦𝑐
) ×

𝑛𝑜𝑏𝑠 formed by compiling the 𝑡𝔻𝐷𝑇𝑆𝑚𝑡𝑟𝑐
2  and 𝑡𝔻𝐷𝑇𝑆𝐴𝑡𝑟𝑐

2  across all 𝑦𝑐.  

 

Figure C.6: Example of (a) DTS statistics and (b) truncated DTS statistics, evaluated across a range of x-axis. 

The test statistics is defined as the area of the shaded region, with the intensity of the shade denotes the relative 

weights for the statistics. The darker the shades the heavier the relative weights. In (b) the y-axis truncation point 

𝑦𝑐 is set at 0.3.  

C.2.3. Quantile-based Statistics 

While the x-axis cut-off points 𝑥𝑐 are utilized in the previously mentioned statistics as the 

truncation points for the 𝔻𝐹𝑇
1 s, the 𝑥𝑐 by itself reveal some of the properties for the 

distributions. For example, if the 𝔻𝐹𝑇
1 s originate from the same underlying distribution, then 

the 𝑥𝑐s converge toward a distribution. This is further aided by the internal consistency of the 

distributions, which allow a sequence of distributions to converge toward an asymptotic 

distribution (i.e., the distributions would distribute close to their asymptotic distribution, 

similar to how a set of normal random variates distribute close to their mean). Thus, several 

statistics of this class were utilized to detect the discrepancies between the 𝔻𝐹𝑇
1 s.  

C.2.3.1. Equivalence in Quantiles 

This is a newly developed method to test the equality between two sequences of distributions. 

The rationale for this method is that if two 𝔻𝐹𝑇
2 s come from the same underlying distribution, 

then the quantile from each of the 𝔻𝐹𝑇
1  within the two 𝔻𝐹𝑇

2  would form a similar distribution, 

and the opposite is true if the two 𝔻𝐹𝑇
2 s do not come from the same distributions (Figure C.7).  

Given a quantile that would be used as a cut-off point 𝑦𝑞, the corresponding x-axis cut-off 

point 𝑥𝑦𝑞 of 𝔻𝐹𝑇
1  is defined as follows:  
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𝑦𝑞 = 𝔻𝐹𝑇
1 (𝑥𝑦𝑞) [14] 

 

Figure C.7: The mechanism of “Equivalence in Quantiles” test. The top panels in both figures represent the 

𝑀𝐸𝐶𝐷𝐹s generated from (a) two of the same genetic architecture parameters 𝑄(100, 0.2, 1) and (b) two 

different genetic architecture parameters with red distributions being 𝑄(100, 0.2, 1) and blue 𝑄(1000, 0.2, 1). 

The total number of markers used is 50,000, and the quantile that would be used as cut-off point is set at 0.002. 

This correspond to 𝑀𝐸𝐶𝐷𝐹 cut-off point at 50,000*0.002 = 100, which is delineated with a dotted black line. 

From each of the 𝑀𝐸𝐶𝐷𝐹s the corresponding x-axis values were recorded, which is represented by the vertical 

lines down to the x-axis. These x-axis values form a distribution, which is featured in the bottom panels. The 

“Equivalence in Quantiles” test tests the similarity of distribution of the x-axis values from the blue and red 

𝑀𝐸𝐶𝐷𝐹s.  

This calculation can then be applied onto all 𝔻𝐹𝑇
1  within 𝔻𝐹𝑇𝑠𝑖𝑚

2 , and this produces a vector of 

length 𝑛𝑠𝑖𝑚 (denoted as 𝒙𝒚𝒒𝒔𝒊𝒎
) containing 𝑥𝑦𝑞 for each of the 𝔻𝐹𝑇𝑠𝑖𝑚

1 . These 𝑥𝑦𝑞 are denoted 

as 𝑠𝑥. This operation can then be repeated for 𝔻𝐹𝑇𝑜𝑏𝑠

2 , with the resulting vector denoted as 

𝒙𝒚𝒒𝒐𝒃𝒔
 and the 𝑥𝑦𝑞 denoted as 𝑜𝑥. The vectors are structured as follows: 

𝒙𝒚𝒒𝒔𝒊𝒎
= [𝑠𝑥1

, 𝑠𝑥2
, 𝑠𝑥3

, … , 𝑠𝑥𝑛𝑠𝑖𝑚
] [15] 

𝒙𝒚𝒒𝒐𝒃𝒔
= [𝑜𝑥1

, 𝑜𝑥2
, 𝑜𝑥3

, … , 𝑜𝑥𝑛𝑜𝑏𝑠
] [16] 

Finally, the test statistic for the equivalence in quantile (denoted as 𝑡𝔻𝐸𝑄𝑉
2 ) is a 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 

array and is calculated as follows:  

𝑡𝔻𝐸𝑄𝑉
2 =

[
 
 
 
 
 |𝑠𝑥1

− 𝑜𝑥1
| |𝑠𝑥1

− 𝑜𝑥2
| ⋯ |𝑠𝑥1

− 𝑜𝑥𝑛𝑜𝑏𝑠
|

|𝑠𝑥2
− 𝑜𝑥1

| |𝑠𝑥2
− 𝑜𝑥2

| ⋯ |𝑠𝑥2
− 𝑜𝑥𝑛𝑜𝑏𝑠

|

⋮ ⋮ ⋱ ⋮

|𝑠𝑥𝑛𝑠𝑖𝑚
− 𝑜𝑥1

| |𝑠𝑥𝑛𝑠𝑖𝑚
− 𝑜𝑥2

| ⋯ |𝑠𝑥𝑛𝑠𝑖𝑚
− 𝑜𝑥𝑛𝑜𝑏𝑠

|]
 
 
 
 
 

 [17] 
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The calculation of 𝑡𝔻𝐸𝑄𝑉
2  is repeated across varying cut-off points, with 𝑦𝑞 tested being 𝑦𝑞 =

 0.02, 0.015, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.0015, 0.001, 

0.0005, 0.0004, 0.0003, 0.0002, 0.0001 and 0.00002. The resulting test statistics are kept as a 

3-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑙𝑦𝑞
× 𝑛𝑜𝑏𝑠 where 𝑙𝑦𝑞

 is the number of 𝑦𝑞 being tested in 

this study (i.e. 𝑙𝑦𝑞
= 19).  

C.2.3.2. Distance from Median  

Using the same 𝒙𝒚𝒒𝒔𝒊𝒎
 and 𝒙𝒚𝒒𝒐𝒃𝒔

, another test that can be done is to compare the location 𝑥𝑦𝑞 

from one of the vectors onto the other vector. As a simplified example, given an ordered 

vector of length 7 𝒛𝟏 = [0.7, 1.0, 1.3, 1.5, 1.6, 2.0, 2.4], the location of the median in this 

vector would be 4. Given a value that is to be tested, e.g. 𝑧 = 1.9, if 𝑧 is to be inserted into 𝒛𝟏 

in such a way that ordered state in 𝒛𝟏 is preserved, then 𝑧 would be positioned between index 

5 and 6 in 𝒛𝟏. As it turns out, if 𝒛𝟏 forms a distribution, and 𝑧 came from the same 

distribution as 𝒛𝟏, then the expected location of 𝑧 would be close to the median of 𝒛𝟏. This is 

the basis of “distance from median” test. For this example, the distance from median test 

statistics (denoted as 𝑡𝐿𝑀) is defined as follows: 

𝑡𝐿𝑀(𝑧, 𝒛𝟏) = |(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑖 𝑖𝑛 𝒛𝟏 ≥ 𝑧) − 
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝒛𝟏 + 1

2
 | [18] 

= |5 − 
7 + 1

2
 | 

= 1  

The maximum value attainable by 𝑡𝐿𝑀 is 
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝒛𝟏+1

2
, and observing such 𝑡𝐿𝑀 would 

indicate that 𝑧 fall outside the range of 𝒛𝟏.  

Now hypothetically if there is a second vector to be tested 𝒛𝟐, and this vector is identically 

distributed as in 𝒛𝟏, then the “distance from median” test can be applied to each element in 𝒛𝟐 

onto 𝒛𝟏, from which a sequence of 𝑡𝐿𝑀s could be obtained. While the individual 𝑡𝐿𝑀s 

appeared to disperse randomly with no discernible pattern, collectively the 𝑡𝐿𝑀s would still be 

minimized (i.e., few if any of the 𝑡𝐿𝑀s would stray far away from the location of the median, 

minimizing the statistics). Whereas if 𝒛𝟐 came from different distribution as in 𝒛𝟏, especially 

if their median is far away from that in 𝒛𝟏, then a larger number of the 𝑡𝐿𝑀s would attain its 

maximum value, thus failing to minimize the 𝑡𝐿𝑀s collectively. An example of this 

phenomenon is provided in C.8.  
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Figure C.8: The mechanism of “Distance from Median” test, using the same set of 𝑀𝐸𝐶𝐷𝐹s with the same y-

axis cut-off points of 𝑦𝑞 = 0.002 and the same data and distribution of x-axis values as in Figure C.7. The red 

and blue 𝑀𝐸𝐶𝐷𝐹s in (a) were generated from the same genetic architecture parameters 𝑄(100, 0.2, 1) while 

(b) were generated from different genetic architecture parameters, with red from 𝑄(100, 0.2, 1) and blue from 

𝑄(1000, 0.2, 1). The raster plots at the bottom of (a) and (b) represent how far the location of each of the x-

axis values from a set of 𝑀𝐸𝐶𝐷𝐹s when compared with the median of those from the other sets of 𝑀𝐸𝐶𝐷𝐹s. 

The first row of the raster plots is from each of the blue 𝑀𝐸𝐶𝐷𝐹s compared to the medians of those in red 

𝑀𝐸𝐶𝐷𝐹s, and the second row if from each of the red 𝑀𝐸𝐶𝐷𝐹s compared to median of the blue 𝑀𝐸𝐶𝐷𝐹s. 

The distance is calculated as defined in equation [18], and the lighter the pixel is in the raster plot, the further the 

distance of an x-axis value to the median.  

One shortcoming for this statistic is that it is only powerful toward differences in median of 

the 𝒛𝟏 and 𝒛𝟐, and is weak against any other discrepancies in the distribution of 𝒛𝟏 and 𝒛𝟐, 

such as differences variance and kurtosis in their distribution.  

For this study, the distance from median test was conducted on the 𝒙𝒚𝒒𝒔𝒊𝒎
 and 𝒙𝒚𝒒𝒐𝒃𝒔

. If the 

comparison is made between two vectors there are two ways of calculating the test statistic: 

(1) compare each of 𝑠𝑥 in 𝒙𝒚𝒒𝒔𝒊𝒎
 with vector 𝒙𝒚𝒒𝒐𝒃𝒔

, and (2) compare each of 𝑜𝑥 in 𝒙𝒚𝒒𝒐𝒃𝒔
 

with vector 𝒙𝒚𝒒𝒔𝒊𝒎
. The resulting test statistic from (1), denoted as 𝑡𝔻𝐿𝑀(1)

2  is a vector of 

length 𝑛𝑠𝑖𝑚 and is calculated as follows:  

𝑡𝔻𝐿𝑀(1)
2 = [𝑡𝐿𝑀(𝑠𝑥1

, 𝒙𝒚𝒒𝒐𝒃𝒔
) 𝑡𝐿𝑀(𝑠𝑥2

, 𝒙𝒚𝒒𝒐𝒃𝒔
) 𝑡𝐿𝑀(𝑠𝑥3

, 𝒙𝒚𝒒𝒐𝒃𝒔
) ⋯ 𝑡𝐿𝑀 (𝑠𝑥𝑛𝑠𝑖𝑚

, 𝒙𝒚𝒒𝒐𝒃𝒔
)] [19] 

And the resulting test statistic from (2), denoted as 𝑡𝔻𝐿𝑀(2)
2  is a vector of length 𝑛𝑜𝑏𝑠 and is 

calculated as follows:  

𝑡𝔻𝐿𝑀(2)
2 = [𝑡𝐿𝑀(𝑜𝑥1

, 𝒙𝒚𝒒𝒔𝒊𝒎
) 𝑡𝐿𝑀(𝑜𝑥2

, 𝒙𝒚𝒒𝒔𝒊𝒎
) 𝑡𝐿𝑀(𝑜𝑥3

, 𝒙𝒚𝒒𝒔𝒊𝒎
) ⋯ 𝑡𝐿𝑀 (𝑜𝑥𝑛𝑜𝑏𝑠

, 𝒙𝒚𝒒𝒔𝒊𝒎
)] [20] 
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The final test statistic for the location from the median (denoted as 𝑡𝔻𝐿𝑀
2 ) is a 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 

array and is calculated as follows:  

𝑡𝔻𝐿𝑀
2 =

[
 
 
 
 

𝑡𝔻𝐿𝑀(1)
2 (1) + 𝑡𝔻𝐿𝑀(2)

2 (1) 𝑡𝔻𝐿𝑀(1)
2 (1) + 𝑡𝔻𝐿𝑀(2)

2 (2) ⋯ 𝑡𝔻𝐿𝑀(1)
2 (1) + 𝑡𝔻𝐿𝑀(2)

2 (𝑛𝑜𝑏𝑠)

𝑡𝔻𝐿𝑀(1)
2 (2) + 𝑡𝔻𝐿𝑀(2)

2 (1) 𝑡𝔻𝐿𝑀(1)
2 (2) + 𝑡𝔻𝐿𝑀(2)

2 (2) ⋯ 𝑡𝔻𝐿𝑀(1)
2 (2) + 𝑡𝔻𝐿𝑀(2)

2 (𝑛𝑜𝑏𝑠)

⋮ ⋮ ⋱ ⋮
𝑡𝔻𝐿𝑀(1)

2 (𝑛𝑠𝑖𝑚) + 𝑡𝔻𝐿𝑀(2)
2 (1) 𝑡𝔻𝐿𝑀(1)

2 (𝑛𝑠𝑖𝑚) + 𝑡𝔻𝐿𝑀(2)
2 (2) ⋯ 𝑡𝔻𝐿𝑀(1)

2 (𝑛𝑠𝑖𝑚) + 𝑡𝔻𝐿𝑀(2)
2 (𝑛𝑜𝑏𝑠)]

 
 
 
 

 [21] 

Where 𝑡𝔻𝐿𝑀(1)
2 (𝑖) and 𝑡𝔻𝐿𝑀(2)

2 (𝑗) are the 𝑖th and 𝑗th entries for the 𝑡𝔻𝐿𝑀(1)
2  and 𝑡𝔻𝐿𝑀(2)

2  , 

respectively. An example of the full 𝑡𝔻𝐿𝑀
2  is provided in Figure C.9.  

The process of calculation 𝑡𝔻𝐿𝑀
2  was then repeated for all quantiles 𝑦𝑞s, with the quantile 

tested being the quantiles utilized in the “Equivalence of Quantile” test. The resulting test 

statistics was kept in a 3-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑙𝑦𝑞
× 𝑛𝑜𝑏𝑠 where 𝑙𝑦𝑞

 is the number 

of 𝑦𝑞 being tested in this study (i.e. 𝑙𝑦𝑞
= 19).  

 

Figure C.9: Examples of 𝑡𝔻𝐿𝑀
2  calculated using equation [21] using the “Distance from Median” raster plots in 

Figure C.8.  

C.2.4. Integral based statistics 

As previously established, one way to improve the signals from the changing 𝕕𝑄𝑇𝐿 is to 

transform the 𝔻𝐹𝑇
1  such that it would amplify any discrepancies at the tail region. Several 

transformation methods are available, and one such method is by integrating the 𝔻𝐹𝑇
1 . This 

operation would become the basis of integral-based statistics.  
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C.2.4.1. The Mechanism of Error Amplification by Integration (EAI) 

This class of statistics employs a newly developed technique known as “Error Amplification 

by Integration” (EAI). This technique relies on the accumulative property of integration. 

While this property of integration is usually used in the calculation of CDF of a distribution, a 

side effect from this process is the amplification of any discrepancies between two 

distributions. This could be illustrated using the following simplified example. Let 𝑦1 be 

defined as the following constant function:  

𝑦1 = 1.0 [22] 

Let 𝑦2 be another function with similar definition as in 𝑦1 but with value of 1.2 between 2 <

𝑥 < 3 instead of 1.0, thus defined as follows:  

𝑦2 = {
1.2 ;  2 < 𝑥 < 3
1.0 ;  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 [23] 

The plots for functions 𝑦1 and 𝑦2 are provided in Figure C.10(a).  

The area between curves between the raw 𝑦1 and 𝑦2 evaluated in the range 0 < 𝑥 < 5 

(denoted as 𝐴𝑟𝑒𝑎1) can be evaluated as follows:  

𝐴𝑟𝑒𝑎1 = ∫ |𝑦1 − 𝑦2| 𝑑𝑥
5

0

                                                                                                                                 [24] 

= ∫ |𝑦1 − 𝑦2| 𝑑𝑥
2

0

+ ∫ |𝑦1 − 𝑦2| 𝑑𝑥
3

2

+ ∫ |𝑦1 − 𝑦2| 𝑑𝑥
5

3

  

= ∫ |1.0 − 1.0| 𝑑𝑥
2

0

+ ∫ |1.0 − 1.2| 𝑑𝑥
3

2

+ ∫ |1.0 − 1.0| 𝑑𝑥
5

3

 

= ∫ 0 𝑑𝑥
2

0

+ ∫ |−0.2| 𝑑𝑥
3

2

+ ∫ 0 𝑑𝑥
5

3

  

= 0 + (0.2𝑥)2
3 + 0 

= (0.2 ∗ 3) − (0.2 ∗ 2) 

= 0.2    

Let 𝑌1 and 𝑌2 be the integral of 𝑦1 and 𝑦2 respectively, which are defined as follows:  

𝑌1 = 𝑥 [25] 

𝑌2 = {
𝑥 𝑥 ≤ 2

1.2𝑥 − 0.4 2 < 𝑥 < 3
𝑥 + 0.2 𝑥 ≥ 3

 [26] 

The plots for functions 𝑌1 and 𝑌2 are provided in Figure C.10(b).  



241 
 

Using the same range of 𝑥, the area between curve between the 𝑌1 and 𝑌2 (denoted as 𝐴𝑟𝑒𝑎2) 

can then be evaluated as follows:  

𝐴𝑟𝑒𝑎2 = ∫ |𝑌1 − 𝑌2| 𝑑𝑥
5

0

                                                                                                                                   [27] 

= ∫ |𝑌1 − 𝑌2| 𝑑𝑥
2

0

+ ∫ |𝑌1 − 𝑌2| 𝑑𝑥
3

2

+ ∫ |𝑌1 − 𝑌2| 𝑑𝑥
5

3

  

= ∫ |𝑥 − 𝑥| 𝑑𝑥
2

0

+ ∫ |𝑥 − (1.2𝑥 − 0.4)| 𝑑𝑥
3

2

+ ∫ |𝑥 − (𝑥 + 0.2)| 𝑑𝑥
5

3

 

= ∫ 0 𝑑𝑥
2

0

+ ∫ |−0.2𝑥 + 0.4| 𝑑𝑥
3

2

+ ∫ |−0.2| 𝑑𝑥
5

3

  

= 0 + (|−0.1𝑥2 + 0.4𝑥|)2
3 + (|−0.2𝑥|)3

5  

= 0 + 0.1 + 0.4  

= 0.5  

Note the increment of the area between curves from 0.2 in 𝐴𝑟𝑒𝑎1 to 0.5 in 𝐴𝑟𝑒𝑎2. This is 

caused by the amplification effect from the integration of 𝑦1 and 𝑦2. As the integration ran 

from 𝑥 = 2 to 𝑥 = 3, the discrepancies between 𝑦1 and 𝑦2 was translated into additional y-

axis distance (note that 𝑌2 = 3.2 when 𝑥 = 3, compared to 𝑌1 = 3 for the same 𝑥). While the 

values of 𝑦1 and 𝑦2 coincides for 3 < 𝑥 < 5, this is no longer the case for 𝑌1 and 𝑌2. Instead, 

the discrepancies had been carried across the x-axis range, therefore translated into additional 

area between the curves. It can also be thought as “squashing” the original 𝐴𝑟𝑒𝑎1 into one of 

the dimensions for 𝐴𝑟𝑒𝑎2 while adding a new dimension onto 𝐴𝑟𝑒𝑎2, thus increasing the 

area between the curves. This phenomenon would become the basis of EAI.  

C.2.4.2. The Utility of EAI  

Using EAI, the two 𝔻𝐹𝑇
1 s were first be integrated using a cumulative integral, with the 

integrated 𝔻𝐹𝑇
1  denoted as 𝔻𝕀:  

𝔻𝕀(𝐹𝑇) =  ∫ 𝔻𝐹𝑇
1

𝑥

−∞

𝑑𝐹𝑇 [28] 

The integrated 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  were denoted as 𝔻𝑠𝑖𝑚
𝕀  and 𝔻𝑜𝑏𝑠

𝕀  , respectively. This 

operation can then be applied to all the 𝔻𝐹𝑇
1 s in 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 , producing the following 

sequences of 𝔻𝕀s (denoted as 𝔻𝑠𝑖𝑚
𝕀2  and 𝔻𝑜𝑏𝑠

𝕀2  respectively):  

𝔻𝑠𝑖𝑚
𝕀2  = [𝔻𝑠𝑖𝑚

𝕀
1
 , 𝔻𝑠𝑖𝑚

𝕀
2
, 𝔻𝑠𝑖𝑚

𝕀
3
, … , 𝔻𝑠𝑖𝑚

𝕀
𝑛𝑠𝑖𝑚

] [29] 
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𝔻𝑜𝑏𝑠
𝕀2  = [𝔻𝑜𝑏𝑠

𝕀
1
 , 𝔻𝑜𝑏𝑠

𝕀
2
, 𝔻𝑜𝑏𝑠

𝕀
3
, … , 𝔻𝑜𝑏𝑠

𝕀
𝑛𝑜𝑏𝑠

] [30] 

An example of implementation of EAI in this study is presented in Figure C.11.  

 

Figure C.10: Mechanism of Error Amplification by Integration (EAI) featured from the examples from equation 

[22] to [27]. Figure (a) featured the plots for 𝑦1 (blue line) and 𝑦2 (orange line), with the pink region denotes 

𝐴𝑟𝑒𝑎1. Figure (b) featured the plots for the integral of 𝑦1 and 𝑦2, denoted as 𝑌1 (blue line) and 𝑌2 (orange line) 

respectively, with the pink region denotes 𝐴𝑟𝑒𝑎2.  

 

Figure C.11: The use of EAI in testing the equality of 𝔻𝐹𝑇
2 s. Figure (a) and (b) illustrated the raw 𝑀𝐸𝐶𝐷𝐹s 

while (c) and (d) illustrated the running integral of the 𝑀𝐸𝐶𝐷𝐹s beyond the y-axis cut-off point (black dotted 

lines in (a) and (b)). The pink curves are the integrals of red 𝑀𝐸𝐶𝐷𝐹s, and the light blue curves are the 

integrals of blue 𝑀𝐸𝐶𝐷𝐹s in the figures. In (a) the red and blue 𝑀𝐸𝐶𝐷𝐹s are generated from the same genetic 

architecture parameter 𝑄(100, 0.2, 1), whereas in (b) the red and blue 𝑀𝐸𝐶𝐷𝐹s are generated from different 

genetic architecture parameters of 𝑄(100, 0.2, 1) and 𝑄(1000, 0.2, 1) respectively.  
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C.2.4.2.1. Amplified “Wasserstein”-like Statistics  

The 𝔻𝑠𝑖𝑚
𝕀2  and 𝔻𝑜𝑏𝑠

𝕀2  can be utilized in testing the discrepancies between distributions in a 

fashion analogous to the previously described statistics. As an example, a “Wasserstein”-like 

statistics between 𝔻𝑠𝑖𝑚
𝕀  and 𝔻𝑜𝑏𝑠

𝕀  (denoted as 𝐴𝔻𝕀) can be defined as follows:  

𝐴𝔻𝕀(𝔻𝑠𝑖𝑚
𝕀 , 𝔻𝑜𝑏𝑠

𝕀 ) =  ∫ |𝔻𝑠𝑖𝑚
𝕀 − 𝔻𝑜𝑏𝑠

𝕀 | 𝑑𝐹𝑇
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 [31] 

Where 𝐷𝑚𝑎𝑥 and 𝐷𝑚𝑖𝑛 are defined as follows:  

𝐷𝑚𝑎𝑥 = max(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) [32] 

𝐷𝑚𝑖𝑛 = min(𝔻𝐹𝑇𝑠𝑖𝑚

1 , 𝔻𝐹𝑇𝑜𝑏𝑠

1 ) [33] 

The test statistic for the amplified Wasserstein statistics between 𝔻𝑠𝑖𝑚
𝕀2  and 𝔻𝑜𝑏𝑠

𝕀2  (denoted as 

𝑡𝔻𝐴𝑊𝑆
2 ) is a 2-dimensional array of size 𝑛𝑠𝑖𝑚  × 𝑛𝑜𝑏𝑠 calculated as follows:  

𝑡𝔻𝐴𝑊𝑆
2 =

[
 
 
 
 
 𝐴𝔻𝕀(𝔻𝑠𝑖𝑚

𝕀
1
, 𝔻𝑜𝑏𝑠

𝕀
1
) 𝐴𝔻𝕀(𝔻𝑠𝑖𝑚1

𝕀 , 𝔻𝑜𝑏𝑠
𝕀

2
) ⋯ 𝐴𝔻𝕀 (𝔻𝑠𝑖𝑚1

𝕀 , 𝔻𝑜𝑏𝑠𝑛𝑜𝑏𝑠

𝕀 )

𝐴𝔻𝕀(𝔻𝑠𝑖𝑚2

𝕀 , 𝔻𝑜𝑏𝑠
𝕀

1
) 𝐴𝔻𝕀(𝔻𝑠𝑖𝑚2

𝕀 , 𝔻𝑜𝑏𝑠
𝕀

2
) ⋯ 𝐴𝔻𝕀 (𝔻𝑠𝑖𝑚2

𝕀 , 𝔻𝑜𝑏𝑠𝑛𝑜𝑏𝑠

𝕀 )

⋮ ⋮ ⋱ ⋮

𝐴𝔻𝕀(𝔻𝑠𝑖𝑚𝑛𝑠𝑖𝑚

𝕀 , 𝔻𝑜𝑏𝑠
𝕀

1
) 𝐴𝔻𝕀 (𝔻𝑠𝑖𝑚𝑛𝑠𝑖𝑚

𝕀 , 𝔻𝑜𝑏𝑠
𝕀

2
) ⋯ 𝐴𝔻𝕀 (𝔻𝑠𝑖𝑚𝑛𝑠𝑖𝑚

𝕀 , 𝔻𝑜𝑏𝑠𝑛𝑜𝑏𝑠

𝕀 )]
 
 
 
 
 

 [34] 

Truncation can be applied onto the EAI algorithm as well. Given a quantile cut-off point 𝑦𝑞, 

the x-axis cut-off point (𝑥𝑦𝑞) is first calculated using equation [14], and the vectors 𝒙𝒚𝒒𝒔𝒊𝒎
 

and 𝒙𝒚𝒒𝒐𝒃𝒔
 are calculated as defined in equation [15] and [16]. The “universal x-axis cut-off 

point” (denoted as 𝑥𝑦𝑚𝑖𝑛
) was defined as the minimum of all 𝑥𝑦𝑞s across both vectors:  

𝑥𝑦𝑚𝑖𝑛
= min(min(𝒙𝒚𝒒𝒔𝒊𝒎

),min(𝒙𝒚𝒒𝒐𝒃𝒔
)) [35] 

The 𝑥𝑦𝑚𝑖𝑛
 was used as the lower limit for the integral in equation [28]:  

𝔻𝕀(𝑥) =  ∫ 𝔻𝐹𝑇
1

𝑥

𝑥𝑦𝑚𝑖𝑛

𝑑𝐹𝑇 [36] 

And this 𝔻𝕀 can then be used in the calculations from equation [29] up to 𝑡𝔻𝐴𝑊𝑆
2  in [34].  

C.2.4.2.2. Amplified “Kolmogorov-Smirnov”-like Statistics 

Similarly, an amplified “Kolmogorov-Smirnov”-like y-axis maximal distance (denoted as 

𝐾𝑆𝔻𝕀) can also be calculated using 𝔻𝑠𝑖𝑚
𝕀  and 𝔻𝑜𝑏𝑠

𝕀  as follows:  
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𝐾𝑆𝔻𝕀(𝔻𝑠𝑖𝑚
𝕀 , 𝔻𝑜𝑏𝑠

𝕀 ) = sup|𝔻𝑠𝑖𝑚
𝕀 − 𝔻𝑜𝑏𝑠

𝕀 |  [37] 

This y-axis maximal distance between 𝔻𝑠𝑖𝑚
𝕀2  and 𝔻𝑜𝑏𝑠

𝕀2  was denoted as 𝑡𝔻𝐴𝐾𝑆
2 , and it is a 2-

dimensional array of size 𝑛𝑠𝑖𝑚  × 𝑛𝑜𝑏𝑠 structured in a similar way as in 𝑡𝔻𝐴𝑊𝑆
2  in equation 

[34], but with 𝐾𝑆𝔻𝕀(𝔻𝑠𝑖𝑚
𝕀 , 𝔻𝑜𝑏𝑠

𝕀 ) used in place of 𝐴𝔻𝕀(𝔻𝑠𝑖𝑚
𝕀 , 𝔻𝑜𝑏𝑠

𝕀 ).  

C.2.4.2.3. Amplified “Distance from Median”-like Test 

“Distance from Median”-like test can also be employed on 𝔻𝑠𝑖𝑚
𝕀  and 𝔻𝑜𝑏𝑠

𝕀 . This is done by 

evaluating the maximal y-values of the 𝔻𝕀s in 𝔻𝑠𝑖𝑚
𝕀2  and 𝔻𝑜𝑏𝑠

𝕀2  (denoted as 𝑠𝔻𝕀 and 𝑜𝔻𝕀): 

𝑠𝔻𝕀 = 𝔻𝑠𝑖𝑚
𝕀 (𝐷𝑚𝑎𝑥) [38] 

𝑜𝔻𝕀 = 𝔻𝑜𝑏𝑠
𝕀 (𝐷𝑚𝑎𝑥) [39] 

 These maximal values were kept as a pair of vectors of length 𝑛𝑠𝑖𝑚 and 𝑛𝑜𝑏𝑠 denoted as 

𝒚𝒒𝒔𝒊𝒎
 and 𝒚𝒒𝒐𝒃𝒔

 structured as follows:  

𝒚𝒒𝒔𝒊𝒎
= [𝑠𝔻𝕀

1
, 𝑠𝔻𝕀

2
, 𝑠𝔻𝕀

3
, … , 𝑠𝔻𝕀

𝑛𝑠𝑖𝑚
] [40] 

𝒚𝒒𝒐𝒃𝒔
= [𝑜𝔻𝕀

1
, 𝑜𝔻𝕀

2
, 𝑜𝔻𝕀

3
, … , 𝑜𝔻𝕀

𝑛𝑜𝑏𝑠
] [41] 

The distance from the median test can then be applied on 𝒚𝒒𝒔𝒊𝒎
 and 𝒚𝒒𝒐𝒃𝒔

 as per equation 

[18], [19] and [20], with 𝒚𝒒𝒔𝒊𝒎
 and 𝒚𝒒𝒐𝒃𝒔

 been used in place of 𝒙𝒚𝒒𝒔𝒊𝒎
 and 𝒙𝒚𝒒𝒐𝒃𝒔

. The 

resulting vector pair of “Distance from Median” test statistic were denoted as 𝑡𝔻𝐿𝑀(1)
𝕀2  and 

𝑡𝔻𝐿𝑀(2)
𝕀2 , and were defined as follows:  

𝑡𝔻𝐿𝑀(1)
𝕀2 = [𝑡𝐿𝑀 (𝑠𝔻𝕀

1
, 𝒚𝒒𝒐𝒃𝒔

) 𝑡𝐿𝑀 (𝑠𝔻𝕀
2
, 𝒚𝒒𝒐𝒃𝒔

) 𝑡𝐿𝑀 (𝑠𝔻𝕀
3
, 𝒚𝒒𝒐𝒃𝒔

) ⋯ 𝑡𝐿𝑀 (𝑠𝔻𝕀
𝑛𝑠𝑖𝑚

, 𝒚𝒒𝒐𝒃𝒔
)] [42] 

𝑡𝔻𝐿𝑀(2)
𝕀2 = [𝑡𝐿𝑀 (𝑜𝔻𝕀

1
, 𝒚𝒒𝒔𝒊𝒎

) 𝑡𝐿𝑀 (𝑜𝔻𝕀
2
, 𝒚𝒒𝒔𝒊𝒎

) 𝑡𝐿𝑀 (𝑜𝔻𝕀
3
, 𝒚𝒒𝒔𝒊𝒎

) ⋯ 𝑡𝐿𝑀 (𝑜𝔻𝕀
𝑛𝑜𝑏𝑠

, 𝒚𝒒𝒔𝒊𝒎
)] [43] 

Finally, the “Distance from median” statistics between 𝔻𝑠𝑖𝑚
𝕀2  and 𝔻𝑜𝑏𝑠

𝕀2  were defined as a 2-

dimensional array of size 𝑛𝑠𝑖𝑚  × 𝑛𝑜𝑏𝑠 (denoted as 𝑡𝔻𝐴𝐿𝑀
2 ) and is structured as follows:  

𝑡𝔻𝐴𝐿𝑀
2 =

[
 
 
 
 

𝑡𝔻𝐿𝑀(1)
𝕀2 (1) + 𝑡𝔻𝐿𝑀(2)

𝕀2 (1) 𝑡𝔻𝐿𝑀(1)
𝕀2 (1) + 𝑡𝔻𝐿𝑀(2)

𝕀2 (2) ⋯ 𝑡𝔻𝐿𝑀(1)
𝕀2 (1) + 𝑡𝔻𝐿𝑀(2)

𝕀2 (𝑛𝑜𝑏𝑠)

𝑡𝔻𝐿𝑀(1)
𝕀2 (2) + 𝑡𝔻𝐿𝑀(2)

𝕀2 (1) 𝑡𝔻𝐿𝑀(1)
𝕀2 (2) + 𝑡𝔻𝐿𝑀(2)

𝕀2 (2) ⋯ 𝑡𝔻𝐿𝑀(1)
𝕀2 (2) + 𝑡𝔻𝐿𝑀(2)

𝕀2 (𝑛𝑜𝑏𝑠)

⋮ ⋮ ⋱ ⋮
𝑡𝔻𝐿𝑀(1)

𝕀2 (𝑛𝑠𝑖𝑚) + 𝑡𝔻𝐿𝑀(2)
𝕀2 (1) 𝑡𝔻𝐿𝑀(1)

𝕀2 (𝑛𝑠𝑖𝑚) + 𝑡𝔻𝐿𝑀(2)
𝕀2 (2) ⋯ 𝑡𝔻𝐿𝑀(1)

𝕀2 (𝑛𝑠𝑖𝑚) + 𝑡𝔻𝐿𝑀(2)
𝕀2 (𝑛𝑜𝑏𝑠)]

 
 
 
 

 [44] 
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C.2.4.3. Iterated EAI 

The algorithm can also be iterated, with each iteration increasing the magnitude of the 

discrepancies between 𝔻𝐹𝑇
1 s. For iterated EAI, the iteratively integrated 𝔻𝐹𝑇

1  (denoted using 

the notation 𝔻𝕀𝑛 , where 𝑛 is the number of iterations) is first calculated as follows:  

𝔻𝕀𝑛(𝑥) =  ∫ (∫ … ∫ (∫ 𝔻𝐹𝑇
1  𝑑𝐹𝑇

𝑥

−∞

)  𝑑𝐹𝑇
𝑥

−∞

𝑥

−∞

…𝑑𝐹𝑇)𝑑𝐹𝑇
𝑥

−∞

 [45] 

With the number of integral signs corresponding to the number of iterations 𝑛. This 

iteratively integrated 𝔻𝐹𝑇
1  can then be used in various statistics. As an example, the area 

between curve between iteratively integrated 𝔻𝐹𝑇𝑠𝑖𝑚

1  and 𝔻𝐹𝑇𝑜𝑏𝑠

1  (denoted as 𝔻𝑠𝑖𝑚
𝕀𝑛  and 𝔻𝑜𝑏𝑠

𝕀𝑛  

respectively) can be calculated as follows:  

𝐴
𝔻𝕀𝑛(𝔻𝑠𝑖𝑚

𝕀𝑛 , 𝔻𝑜𝑏𝑠
𝕀𝑛 ) =  ∫ |𝔻𝑠𝑖𝑚

𝕀𝑛 − 𝔻𝑜𝑏𝑠
𝕀𝑛 | 𝑑𝐹𝑇

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 [46] 

The 𝐴
𝔻𝕀𝑛(𝔻𝑠𝑖𝑚

𝕀𝑛 , 𝔻𝑜𝑏𝑠
𝕀𝑛  ) can then be substituted in place of 𝐴𝔻𝕀(𝔻𝑠𝑖𝑚

𝕀 , 𝔻𝑜𝑏𝑠
𝕀 ) for the 𝔻2 test 

statistics 𝑡𝔻𝐴𝑊𝑆
2  in equation [34]. 

For this study, amplified Wasserstein’s statistics (𝑡𝔻𝐴𝑊𝑆
2 ), amplified Kolmogorov-Smirnov 

statistics (𝑡𝔻𝐴𝐾𝑆
2 ) and amplified Distance from Median (𝑡𝔻𝐴𝐿𝑀

2 ) between 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  

were calculated. Iterated amplifications have also been implemented, with the number of 

iterations 𝑛 = 1 (i.e., no iteration), 2, 3 and 4 being used. Truncation was applied during the 

calculation of this statistic, with the quantile cut-off points 𝑦𝑞 set at 𝑦𝑞 = 0.01, 0.008, 0.006, 

0.005, 0.0045, 0.004, 0.0035, 0.003, 0.0025, 0.002, 0.0015, 0.001, 0.0005, 0.0004, 0.0003, 

0.0002, 0.0001 and 0. Overall, the test statistic from this class of statistics were kept in a 3-

dimensional array of size 𝑛𝑠𝑖𝑚 × (3 × 4 × 𝑙𝑦𝑞
) × 𝑛𝑜𝑏𝑠, where 𝑙𝑦𝑞

 is the number of quantiles 

tested (i.e. 𝑙𝑦𝑞
= 18 in this case).  

C.2.5. Moment based Statistics  

C.2.5.1. The Basics of Moments 

In statistics, the moments of a distribution can be defined as quantitative measures that 

describe the shape of a distribution (Ramsey et al., 2002). While some of the lower moments 

such as arithmetic mean (Legendre, 1805; Plackett, 1958) and variance (Bienaymé, 1867) 
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have been discussed by various authors, the generalized concept of moments was first 

formalized by Tchebichef (1874) and Tchebychef (1907) where the author described the 

relationship of the asymptotic value of the integral of a function with the mass distribution 

within a material. In particular, Tchebichef (1874) and Tchebychef (1907) are evaluating the 

integral of this form:  

𝜇 = ∫ 𝑥𝑚𝑓(𝑥) 𝑑𝑥
∞

−∞

 [47] 

The asymptotic value 𝜇 would later develop into the concept of “moments” in statistics. With 

a finite set of random variables, the raw sample moments (denoted as 𝜇𝑟) of a vector 𝒙 can be 

defined as the averages of the power of the random variables (Ramsey et al., 2002):  

𝜇𝑟(𝒙,𝑚) =  
1

𝑛
 ∑𝑥𝑖

𝑚

𝑛

𝑖=1

 [48] 

One notable examples of moment is the arithmetic mean of the random variable, which is 

defined as 𝜇𝑟(𝒙, 1). This definition of moment is not translation-invariant however; adding a 

constant value to each of the 𝑥𝑖 in 𝒙 changes the 𝜇𝑟 (Ramsey et al., 2002; Zellinger et al., 

2017). This means if the distribution is shifted along the x-axis the 𝜇𝑟 would change, which is 

undesirable if the shape and spread of the distribution is the properties of interest. For this 

reason, the random variables were centralized at the mean of the random variables, yielding 

the concept of “central moment” (𝜇𝑐), defined as the moment around the mean (Ramsey et 

al., 2002):  

𝜇𝑐(𝒙,𝑚) =  
1

𝑛
 ∑(𝑥𝑖 − 𝜇𝑟(𝒙, 1))

𝑚
𝑛

𝑖=1

 [49] 

Where 𝜇𝑟(𝒙, 1) is the arithmetic mean of 𝒙. One notable example is variance, where under 

this notation is defined as 𝜇𝑐(𝒙, 2) (Ramsey et al., 2002). Similarly, if the location and spread 

of the distribution are not the aspects of interest, a scale invariant measure was required, and 

for this the random variable can be further transformed by scaling the random variable with 

the measure of spread of the distribution. This would yield a “standardized moment” (denoted 

as 𝜇𝑠), which is defined as follows:  

𝜇𝑠(𝒙,𝑚) =  
1

𝑛
∑(

𝑥𝑖 − 𝜇𝑟(𝒙, 1)

√𝜇𝑐(𝒙, 2)
)

𝑚𝑛

𝑖=1

 [50] 
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Where 𝜇𝑐(𝒙, 2) is the variance of the distribution. Some examples of standardized moments 

include skewness (𝜇𝑠(𝒙, 3)) and kurtosis (𝜇𝑠(𝒙, 4)) (Ramsey et al., 2002).  

From Tchebichef’s (1874) analogy and further development of the “problem of moments” 

(i.e., loosely speaking, given a sequence of moments, find the distribution 𝑓(𝑥) that produces 

said sequence of moments), the concept of moment eventually became tied to the shape of a 

distribution (Schmüdgen, 2020; Tian et al., 2017). This property also suggested the 

possibility of a class of statistics that could be utilized to test the equality of distributions.  

C.2.5.2. Test Based on Differences in Sample Moments 

Given that the distributions are internally consistent (i.e., the dispersion of distributions 𝑉(𝔻) 

is finite and quantifiable, analogous to how a set of normally distribution random variables 

have a finite variance), theoretically if the proposed model for the genetic architecture 

[𝕜, 𝕒, 𝕓] matches the underlying genetic architecture 𝑄(𝕜, 𝕒, 𝕓), then the shape of the 𝔻𝐹𝑇𝑠𝑖𝑚

1  

is similar to that obtained from the observed phenotypes 𝔻𝐹𝑇𝑜𝑏𝑠

1 . Therefore, in theory, the 

moments of the random variables that produce the former should also match up with those of 

the latter, minimizing the differences between the moments (Figure C.12). This becomes the 

basis of the “Differences in Sample Moments” test.  

Given a power of moment 𝑚, a vector of test statistics from observed phenotype 𝒇𝒕𝒐𝒃𝒔 and 

simulated phenotype 𝒇𝒕𝒔𝒊𝒎, and a function for the calculation of moment 𝜇(𝒇𝒕,𝑚), the 

difference in sample moments between 𝒇𝒕𝒔𝒊𝒎 and 𝒇𝒕𝒐𝒃𝒔 (denoted as 𝑡𝐷𝑀) is defined as 

follows:  

𝑡𝐷𝑀(𝒇𝒕𝒔𝒊𝒎, 𝒇𝒕𝒐𝒃𝒔, 𝑚) = |𝜇(𝒇𝒕𝒔𝒊𝒎, 𝑚) −  𝜇(𝒇𝒕𝒐𝒃𝒔,𝑚)| [51] 

The function 𝜇(𝒇𝒕,𝑚) used in equation [51] could be that of raw, central or standardized 

moments, with its method of calculation defined in equation [48], [49] and [50] respectively. 

Truncation can also apply onto this test, where only the data points larger than an x-axis cut-

off point (𝑥𝑦𝑞) were utilized in the sample moment calculation.  

The test statistics for the differences in sample moments between 𝑭𝑻𝒔𝒊𝒎 and 𝑭𝑻𝒐𝒃𝒔 for 

moment 𝑚 (denoted as 𝑡𝔻𝐷𝑀
2 (𝑚)) is defined as a 2-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 as 

follows: 
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𝑡𝔻𝐷𝑀
2 (𝑚)

= [

𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(1), 𝑭𝑻𝒐𝒃𝒔(1),𝑚) 𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(1), 𝑭𝑻𝒐𝒃𝒔(2),𝑚) ⋯ 𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(1), 𝑭𝑻𝒐𝒃𝒔(𝑛𝑜𝑏𝑠),𝑚)

𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(2), 𝑭𝑻𝒐𝒃𝒔(1),𝑚) 𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(2), 𝑭𝑻𝒐𝒃𝒔(2),𝑚) ⋯ 𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(2), 𝑭𝑻𝒐𝒃𝒔(𝑛𝑜𝑏𝑠),𝑚)
⋮ ⋮ ⋱ ⋮

𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(𝑛𝑠𝑖𝑚), 𝑭𝑻𝒐𝒃𝒔(1),𝑚) 𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(𝑛𝑠𝑖𝑚), 𝑭𝑻𝒐𝒃𝒔(2),𝑚) ⋯ 𝑡𝐷𝑀(𝑭𝑻𝒔𝒊𝒎(𝑛𝑠𝑖𝑚), 𝑭𝑻𝒐𝒃𝒔(𝑛𝑜𝑏𝑠),𝑚)

] [52] 

 

Figure C.12: The mechanism of “differences in moment” test. Figure (a) and (b) illustrated the 𝑀𝐸𝐶𝐷𝐹s of the 

test statistics, whereas (c) and (d) illustrated the distribution of the kurtosis of the 𝑀𝐸𝐶𝐷𝐹s. In (a) the red and 

blue 𝑀𝐸𝐶𝐷𝐹s were generated from the same genetic architecture parameters of 𝑄(100, 0.2, 1), whereas in 

(b) the red and blue 𝑀𝐸𝐶𝐷𝐹s were generated from different genetic architecture parameters, with the red being 

𝑄(100, 0.2, 1) and blue being 𝑄(1000, 0.2, 1). The distribution of kurtosis of 𝑀𝐸𝐶𝐷𝐹s in (c) are generated 

from those in (a), and those in (d) are generated from those in (b). The black dotted lines were used to truncate 

the random variables for the calculation of the kurtosis.  

Where 𝑭𝑻𝒔𝒊𝒎(𝑖) and 𝑭𝑻𝒐𝒃𝒔(𝑗) are the 𝑖th and 𝑗th rows of 𝑭𝑻𝒔𝒊𝒎 and 𝑭𝑻𝒐𝒃𝒔, respectively.  

For this study, the differences in raw moments, central moments and standardized moments 

were calculated. A multitude of powers of moments 𝑚s were tested in this study. For the raw 

moments, 10 𝑚s were used: 𝑚 = 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10; while for central moments; 9 

𝑚s were used: 𝑚 = 2, 3, 4, 5, 6, 7, 8, 9 and 10; and standardized moment, 8 𝑚s were used: 

𝑚 = 3, 4, 5, 6, 7, 8, 9 and 10. Truncation had also been applied in this calculation, with 

quantile cut-off points 𝑦𝑞 set at 𝑦𝑞 = 0.2, 0.17, 0.15, 0.13, 0.1, 0.07, 0.05, 0.03, 0.02, 0.01 and 
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0.005. The resulting test statistics is a 3-dimensional array of size 𝑛𝑠𝑖𝑚 × ((10 + 9 + 8) ×

𝑙𝑦𝑞
) × 𝑛𝑜𝑏𝑠 where 𝑙𝑦𝑞

= 10 in this study. 

C.2.5.3. Statistics based on Fractional Moments  

Many of the most familiar moments such as mean, variance and kurtosis deal with the power 

𝑚 being natural numbers (Ramsey, 2002). One interesting observation that could be made on 

the equations for the calculation of the sample moments (i.e., equation [48], [49] and [50]) 

lies in the exponent 𝑚. Provided the bases of the exponentiation in these equations are 

nonnegative, there is no reason to restrict the 𝑚 into positive integers. The equation is still 

properly defined for any value of 𝑚, and this includes non-integers. This observation 

introduces the concept of fractional moments, where the moment calculation no longer 

restricted to positive integers (Consortini and Rigal, 1998; Dremin, 1994). The equations for 

fractional sample moments are defined as in equation [48], [49] and [50].  

Fractional moments shared many properties as in integer moments, such as similarity in 

magnitude of moments for similar distributions, which allows their use in the testing of 

equality of distribution (Figure C.13). Unlike integer moments however, the continuous and 

smooth nature of the fractional moments allowed more types of operations to be conducted. 

This opened up a new class of tests that could be used to test the equality in distributions. 

With the fractional moment, one can define the equations for calculation of moments as a 

continuous function of 𝑚, which allows additional tests that can be used. For example, one 

can conduct “Wasserstein”-like statistics test where the area between the curves of the 

fractional moments (denoted as 𝑡𝐹𝑀𝑊) can be calculated as follows:  

𝑡𝐹𝑀𝑊(𝒇𝒕𝒔𝒊𝒎, 𝒇𝒕𝒐𝒃𝒔,𝑚) =  ∫ |𝜇(𝒇𝒕𝒔𝒊𝒎, 𝑚) −  𝜇(𝒇𝒕𝒐𝒃𝒔, 𝑚)|
𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

 𝑑𝑚 [53] 

where 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑥 are the minimum and maximum moments tested. The reason for 

restricting the range of integration is due to the divergent nature of the integral (i.e., the area 

between curve increases without bound). An example of area between the curves for the 

fractional moment is provided in Figure C.14.  

The test statistics for area between curve of fractional moment function (denoted as 𝑡𝔻𝐹𝑀𝑊𝑚
2 ) 

is a 2-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 structured as follows:  
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𝑡𝔻𝐹𝑀𝑊𝑚
2

= [

𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(1), 𝑭𝑻𝒐𝒃𝒔(1),𝑚) 𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(1), 𝑭𝑻𝒐𝒃𝒔(2),𝑚) ⋯ 𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(1), 𝑭𝑻𝒐𝒃𝒔(𝑛𝑜𝑏𝑠),𝑚)

𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(2), 𝑭𝑻𝒐𝒃𝒔(1),𝑚) 𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(2), 𝑭𝑻𝒐𝒃𝒔(2),𝑚) ⋯ 𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(2), 𝑭𝑻𝒐𝒃𝒔(𝑛𝑜𝑏𝑠),𝑚)
⋮ ⋮ ⋱ ⋮

𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(𝑛𝑠𝑖𝑚), 𝑭𝑻𝒐𝒃𝒔(1),𝑚) 𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(𝑛𝑠𝑖𝑚), 𝑭𝑻𝒐𝒃𝒔(2),𝑚) ⋯ 𝑡𝐹𝑀𝑊(𝑭𝑻𝒔𝒊𝒎(𝑛𝑠𝑖𝑚), 𝑭𝑻𝒐𝒃𝒔(𝑛𝑜𝑏𝑠),𝑚)

] [54] 

To ensure the monotonicity of the fractional moments, and to avoid the calculation of 

negative number power to a non-integer, only the raw moments been utilized in the fractional 

moments in this study. Further work could extend this statistic toward the central and 

standardized moments, and for negative random variables. For this study, the 𝑚𝑚𝑖𝑛 is set at 1 

and 𝑚𝑚𝑎𝑥 set at 5. Truncation had also been utilized in this calculation, with quantile cut-off 

points 𝑦𝑞 set at 𝑦𝑞 = 0.2, 0.17, 0.15, 0.13, 0.1, 0.07, 0.05, 0.03, 0.02, 0.01 and 0.005. The 

resulting test statistics is a 3-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑙𝑦𝑞
× 𝑛𝑜𝑏𝑠 where 𝑙𝑦𝑞

= 10 in 

this case. 

 

Figure C.13: An application of fractional moments in testing of equality of distributions. Figure (a) and (b) 

represent the 𝑀𝐸𝐶𝐷𝐹s of the test statistics, whereas (c) and (d) illustrated the distribution of the kurtosis of the 

𝑀𝐸𝐶𝐷𝐹s, with the genetic architecture parameters utilized being defined in Figure C.12. The fractional 

moments of 𝑀𝐸𝐶𝐷𝐹s in (a) are illustrated in (c), and those in (b) are illustrated in (d). The black dotted lines 

were used to truncate the random variables for the calculation of the fractional moments.  
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Figure C.14: The area between the curves of fractional moments, shaded in pink regions, being used to test the 

equality in distributions. In (a) the fractional moments of both red and blue curves were generated from the same 

genetic architecture parameters 𝑄(100, 0.2, 1), whereas for (b) the red curve was generated from 

𝑄(100, 0.2, 1) and for blue from 𝑄(1000, 0.2, 1).  

C.3. Stacking up the Statistics 

From the several types of statistics proposed in the previous sections, there exists some 

statistics that can be “stacked”. This involves the combinations of various elements from 

other statistics into a new statistic. From this process, even more types of statistics that test 

the equality of distributions can be built. This is further aided by the emergent properties of 

𝔻𝐹𝑇
2  that do not exist in 𝔻𝐹𝑇

1 , which allows combinations of elements from other statistics.  

For example, Wasserstein’s statistics involved the calculation of the area of difference 

between the curves, with the rationale that said area is minimized if two distributions came 

from the same underlying distribution. This however also hinted that the area under the curve 

between the two distributions should also be similar. From this observation, an alternative 

statistic that could be applied is to simply compare the area under the curves between the two 

distributions. For this, given a quantile cut-off point 𝑦𝑞 and its corresponding x-axis point 

𝑥𝑦𝑞, the area under the curves (denoted as 𝑎𝔻1) is the integral of 𝔻𝐹𝑇
1  from 𝑥𝑦𝑞 onward:  

𝑎𝔻1(𝔻𝐹𝑇
1 ) =  ∫ 𝔻𝐹𝑇

1
∞

𝑥𝑦𝑞

 𝑑𝐹𝑇 [55] 

For this study, the vectors of 𝑎𝔻1 for 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  were denoted as 𝒂𝔻𝑠𝑖𝑚
2  and 𝒂𝔻𝑜𝑏𝑠

2  

respectively, structured as follows:  

𝒂𝔻𝑠𝑖𝑚
2 = [𝑎𝔻1 (𝔻𝐹𝑇𝑠𝑖𝑚1

1 ) , 𝑎𝔻1 (𝔻𝐹𝑇𝑠𝑖𝑚2

1 ) , 𝑎𝔻1 (𝔻𝐹𝑇𝑠𝑖𝑚3

1 ) , … , 𝑎𝔻1 (𝔻𝐹𝑇𝑠𝑖𝑚𝑛𝑠𝑖𝑚

1 )] [56] 
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𝒂𝔻𝑜𝑏𝑠
2 = [𝑎𝔻1 (𝔻𝐹𝑇𝑜𝑏𝑠1

1 ) , 𝑎𝔻1 (𝔻𝐹𝑇𝑜𝑏𝑠2

1 ) , 𝑎𝔻1 (𝔻𝐹𝑇𝑜𝑏𝑠3

1 ) , … , 𝑎𝔻1 (𝔻𝐹𝑇𝑜𝑏𝑠𝑛𝑜𝑏𝑠

1 )] [57] 

The differences in area under the curve between the vectors of 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2  (denoted as 

𝑡𝔻𝐴𝐷𝐹
2 ) can then be calculated and defined as a 2-dimensional array of size 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 

defined as follows:  

𝑡𝔻𝐴𝐷𝐹
2 =

[
 
 
 
 
 |𝒂𝔻𝑠𝑖𝑚

2 (1) − 𝒂𝔻𝑜𝑏𝑠
2 (1)| |𝒂𝔻𝑠𝑖𝑚

2 (1) − 𝒂𝔻𝑜𝑏𝑠
2 (2)| ⋯ |𝒂𝔻𝑠𝑖𝑚

2 (1) − 𝒂𝔻𝑜𝑏𝑠
2 (𝑛𝑜𝑏𝑠)|

|𝒂𝔻𝑠𝑖𝑚
2 (2) − 𝒂𝔻𝑜𝑏𝑠

2 (1)| |𝒂𝔻𝑠𝑖𝑚
2 (2) − 𝒂𝔻𝑜𝑏𝑠

2 (2)| ⋯ |𝒂𝔻𝑠𝑖𝑚
2 (2) − 𝒂𝔻𝑜𝑏𝑠

2 (𝑛𝑜𝑏𝑠)|

⋮ ⋮ ⋱ ⋮

|𝒂𝔻𝑠𝑖𝑚
2 (𝑛𝑠𝑖𝑚) − 𝒂𝔻𝑜𝑏𝑠

2 (1)| |𝒂𝔻𝑠𝑖𝑚
2 (𝑛𝑠𝑖𝑚) −  𝒂𝔻𝑜𝑏𝑠

2 (2)| ⋯ |𝒂𝔻𝑠𝑖𝑚
2 (𝑛𝑠𝑖𝑚) −  𝒂𝔻𝑜𝑏𝑠

2 (𝑛𝑜𝑏𝑠)|]
 
 
 
 
 

[58] 

Similarly, the location from median test can also be used to compare the area under the curve 

of 𝔻𝐹𝑇
1 s in 𝔻𝐹𝑇𝑠𝑖𝑚

2  and 𝔻𝐹𝑇𝑜𝑏𝑠

2 , with the vectors 𝒂𝔻𝑠𝑖𝑚
2  and 𝒂𝔻𝑜𝑏𝑠

2  being used in place of 𝒙𝒚𝒒𝒔𝒊𝒎
 

and 𝒙𝒚𝒒𝒐𝒃𝒔
: 

𝑡𝔻𝐿𝑀(1)
2 = [𝑡𝐿𝑀 (𝒂𝔻𝑠𝑖𝑚

2 (1), 𝒂𝔻𝑜𝑏𝑠
2  ) 𝑡𝐿𝑀 (𝒂𝔻𝑠𝑖𝑚

2 (2), 𝒂𝔻𝑜𝑏𝑠
2  ) ⋯ 𝑡𝐿𝑀 (𝒂𝔻𝑠𝑖𝑚

2 (𝑛𝑠𝑖𝑚), 𝒂𝔻𝑜𝑏𝑠
2  )] [59] 

𝑡𝔻𝐿𝑀(2)
2 = [𝑡𝐿𝑀 (𝒂𝔻𝑜𝑏𝑠

2 (1), 𝒂𝔻𝑠𝑖𝑚
2  ) 𝑡𝐿𝑀 (𝒂𝔻𝑜𝑏𝑠

2 (2), 𝒂𝔻𝑠𝑖𝑚
2  ) ⋯ 𝑡𝐿𝑀 (𝒂𝔻𝑜𝑏𝑠

2 (𝑛𝑜𝑏𝑠), 𝒂𝔻𝑠𝑖𝑚
2  )] [60] 

The final test statistic for the distance from median (denoted as 𝑡𝔻𝐿𝑀𝐴
2 ) is a 𝑛𝑠𝑖𝑚 × 𝑛𝑜𝑏𝑠 array 

and is calculated as in equation [21].  

This technique allows the multiplication of the number of statistics that could be done, 

making the construction of a battery of 703 statistics designed to test the equality of tail 

distribution between the distribution from observed phenotypes 𝔻𝐹𝑇𝑜𝑏𝑠

2  and simulated 

phenotypes 𝔻𝐹𝑇𝑠𝑖𝑚

2  possible.  
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Appendix D. The Selection of Proposed Genetic 

Architecture Parameters 

 

The aim for this appendix section is to provide a layout of methodology of sampling the 

genetic architecture parameters that were tested for the estimation of genetic architecture 

parameters. This includes the number of QTL (denoted as 𝕜) and the shape parameters for the 

distribution of the QTL effect sizes (denoted as 𝕒). This section will also detail the 

methodology and a simplified example of generating a “Geom-linear” sequence for the 

testing of number of QTL. This methodology will be used to generate a grid of [𝕜, 𝕒] 

combinations that were brute force searched during the estimation of genetic architecture 

parameters.  

D.1. The selection of 𝕜 and the Rationale of a “Geom-

linear” Sequence 

For this study, the possible range of 𝕜 can span from 0 to total number of markers 𝑀. In the 

idealized situation all possible values of 𝕜 would be tested. Given the large number of 𝑀 

however, this introduces a large parameter space that needs to be tested, which could impede 

the feasibility of the algorithm. This however can be resolved by choosing some of the values 

of 𝕜 that were tested by the algorithm.  

One possible approaches is a series of equally spaced 𝕜, which ensures consistent coverages 

of all possible values for this parameter. This series suffered from poor scalability however; 

as the number of operations increases linearly with 𝑀, any increment in 𝑀 would quickly 

overwhelm the practicality of the algorithm. For example, if 𝑀 = 5,000 and the spacing 

between 𝕜 is 100, this means 50 𝕜s need to be tested, and if 𝑀 = 500,000, with the same 

spacing there were 5000 𝕜s that need to be tested, severely reducing the feasibility of the 

algorithm. Furthermore, given a fixed amount of change in the value of parameter 𝕜, the 

effects of such change is greater if 𝕜 is small (Figure D.1). Therefore, from the perspective of 

investigating the effects of 𝕜 on the output, choosing an equal spacing for 𝕜 would result in a 

poor resolution for the small values (i.e., overly large changes in outputs for each 𝕜), and an 
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unnecessarily high resolution for larger values. Thus, an equal spacing of 𝕜 is not appropriate 

for this purpose.  

 

Figure D.1: The effects of changing a fixed amount of parameter 𝕜 on the 𝑀𝐸𝐶𝐷𝐹 and their asymptotic 

distributions. The light blue 𝑀𝐸𝐶𝐷𝐹s in (a) is generated from the genetic architecture of 𝑄(100, 0.5,1), 

whereas the 𝑀𝐸𝐶𝐷𝐹s in pink is generated from 𝑄(200, 0.5,1), with a differences of 100 between the two 𝕜s. 

Whereas for (b) the light blue 𝑀𝐸𝐶𝐷𝐹s are generated from the genetic architecture parameter of 

𝑄(2000, 0.5,1) and the pink 𝑀𝐸𝐶𝐷𝐹s are generated from 𝑄(2100, 0.5,1), the same amount of differences 

between the two 𝕜s. The red and blue distributions in both graphs are the asymptotic distributions of the pink 

and light blue 𝑀𝐸𝐶𝐷𝐹s respectively.  

Conversely, one can also choose geometric series for 𝕜 (i.e., two consecutive 𝕜s have equal 

ratio), which increases the density for small 𝕜 while decreasing the density for large 𝕜. This 

serie has a good scalability, quickly achieving large 𝑀 with relatively small number of tested 

𝕜s. Indeed, the expected number of 𝕜 that need to be tested increases logarithmically with 

larger 𝑀; using the previous example of 50 𝕜s for 𝑀 = 5,000, the number of 𝕜s that need to 

be tested for 𝑀 = 500,000 would be 78 (i.e. ⌈50 ∗ 𝑙𝑜𝑔 (
500,000

5,000
)⌉ = 78).  

This series has suffered from inconsistent coverage across the range of 𝕜 however; this series 

tends to be overly sparse for large 𝕜, overly dense for small 𝕜, while failing to maintain 

consistency of spacing. From the example of 𝑀 = 500,000, 23 of them have values less than 

50, while only 14 of them have values more than 50,000. This corresponds to an average 

distance of 2.17 markers per consecutive pairs of 𝕜s within the smallest 50 markers (50/30 = 

2.17) and 32142.86 markers per consecutive pairs of 𝕜s for those larger than 50,000 

((500,000 – 50,000)/14 = 32142.86). The massive discrepancy of distance between 𝕜s could 

reduce the accuracy of the algorithm, especially if the trait is polygenic. Thus, a geometric 

series for 𝕜 was also unsuitable for this purpose.  
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One possible solution for this issue is to build a new progression that combines the benefits 

from both linear and geometric series. One such series, which was termed “geom-linear 

progression”, would combine the consistent coverage of linear progression and scalability of 

geometric progression. Three numbers were required to build a geom-linear progression: the 

starting value 𝐶0, the common ratio between geometric node 𝐶𝑟 and number of linear nodes 

within each geometric node pairs, excluding the geometric nodes themselves, 𝐶𝑙. As an 

example, if 𝐶0 = 10, 𝐶𝑟 = 5 and 𝐶𝑙 = 4, a geom-linear series can be built by first building a 

geometric progression:  

(𝐶0, 𝐶1, 𝐶2, 𝐶3, … ) = (𝐶0, 𝐶0(𝐶𝑟), 𝐶0(𝐶𝑟)2, 𝐶0(𝐶𝑟)3, … ) 

= (10, 10(5), 10(5)2, 10(5)3, … ) 

= (10, 50, 250, 1250, … ) [1] 

For each pair of 𝐶𝑛 and 𝐶𝑛+1, the common differences of linear nodes for each geometric 

node pairs, denoted as 𝐶𝑑𝑛, are calculated. Using 𝐶0 = 10 and 𝐶1 = 50 pair as example, the 

𝐶𝑑1 is calculated as follows:  

𝐶𝑑1 = 
𝐶1 − 𝐶0

𝐶𝑙 + 1
 

= 
50 − 10

4 + 1
 

= 8 [2] 

The 𝐶𝑑𝑛 was then be calculated from the linear progression between 𝐶𝑛 and 𝐶𝑛+1 up to 𝐶𝑙th 

term, excluding the geometric node itself:  

(𝐶𝑛1
, 𝐶𝑛2

, 𝐶𝑛3
, … , 𝐶𝑛𝐶𝑙−1

, 𝐶𝑛𝐶𝑙
) = (𝐶𝑛 + 𝐶𝑑, 𝐶𝑛 + 2𝐶𝑑,… , 𝐶𝑛 + (𝐶𝑙 − 1) ∗ 𝐶𝑑, 𝐶𝑛 + 𝐶𝑙 ∗ 𝐶𝑑)[3] 

And in the example above, with 𝐶0 = 10, 𝐶1 = 50 and 𝐶𝑑1 = 8, the linear progression was 

as follows:  

(𝐶01
, 𝐶02

, 𝐶03
, 𝐶04

) = (10 + 8, 10 + 2(8), 10 + 3(8), 10 + 4(8)) 

= (18, 26, 34, 42) [4] 

The sequence in equation [4] can be inserted between 𝐶0 and 𝐶1 in equation [1]. This process 

was then repeated for all 𝐶𝑛 and 𝐶𝑛+1 pairs. The end result of the sequence would have this 

pattern: 

(𝐶0, 𝐶01
, 𝐶02

, … , 𝐶0𝐶𝑙
, 𝐶1, 𝐶11

, 𝐶12
, … , 𝐶1𝐶𝑙

, 𝐶2, 𝐶21
, … , 𝐶2𝐶𝑙

, … ) [5] 
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From the example provided above, the 𝐶𝑑1 = 8, 𝐶𝑑2 = 40, 𝐶𝑑3 = 200 and so on, and final 

sequence was as follows:  

(10, 18, 26, 34, 42, 50, 90, 130, 170, 210, 250, 450, 650, 850, 1050, 1250 … ) [6] 

The geom-linear series can also be seen as a finite linear approximation of an exponential 

curve, with the example featured above illustrated in Figure D.2. Using the example of 50 𝕜s 

for 𝑀 = 5,000 with 𝐶0 = 1 and 𝐶𝑟 = 10, the resulting 𝐶𝑙 was 15, and 𝐶𝑑𝑛 = 0.5625 ∗

(10)𝑛. If the same 𝐶0, 𝐶𝑟, 𝐶𝑙 and 𝐶𝑑𝑛 are to be used on 𝑀 = 500,000 the number of 𝕜s that 

need to be tested would be 82.  

Compared to the 5000 𝕜s from linear progression, brute forcing the sequence of 82 𝕜s from 

geom-linear series have a better feasibility. Compared to geometric series, a “geom-linear” 

series also has a better consistency in coverage of 𝕜s. Compared to the 23 𝕜s with a value 

less than 50 in a geometric series, a geom-linear series has only 17 𝕜s. This translated into an 

average of 2.94 markers per consecutive pairs of 𝕜s. Whereas for 𝕜s larger than 50,000, 

compared to 14 𝕜s from a geometric series, geom-linear series also has 17 𝕜s, which 

translated to an average of 26470.59 markers per consecutive pairs of 𝕜s. Compared to the 

range of average number of markers from 2.17 to 32142.86 per consecutive pairs of 𝕜s, the 

geom-linear series produces a less extreme range of average number of markers per 

consecutive pairs of 𝕜s, therefore provides a better consistency of coverages. Therefore, the 

geom-linear progression could be used to sample the 𝕜s for the brute-force algorithm.  

 

Figure D.2: An example of the “geom-linear” progression (orange line), in comparison with the regular geometric 

progression (blue line).  
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D.2. The Selection of 𝕒 

In a situation similar to parameter 𝕜, testing each possible value of the shape parameter for 

QTL effect size distribution (𝕕𝑄𝑇𝐿), 𝕒, is also not possible. This is due to the fact that 𝕒 is a 

continuous variable that can take any positive real number (Mun, 2012), and thus impractical 

to brute-force. Therefore, the algorithm should only select a number of 𝕒s that would be 

tested. Despite this, as 𝕒 can range from 0 to infinity, that would still leave an infinite number 

of 𝕒s that need to be tested.  

The range of 𝕒s that need to be tested can be restricted by inspecting the probability density 

function of the gamma distribution. As the gamma distribution is used to model the 𝕕𝑄𝑇𝐿 that 

have large number of QTL with small effect sizes and small number of QTL with large effect 

sizes, this requirement has placed a restriction on the possible range of 𝕒s that could fulfil 

such purpose.  

Given the shape parameter 𝕒 and scale parameter 𝕓, the probability density function for a 

gamma distribution is defined as follows (Mun, 2012): 

𝛤(𝑥, 𝕒, 𝕓) =  
𝕓 ∗ (𝕓𝑥)𝕒−1 ∗ 𝑒−𝕓𝑥

𝛾(𝕒)
 [7] 

Where 𝛾(𝕒) is the gamma function of 𝕒, which is always positive for all positive values of 𝕒.  

The restriction for parameter 𝕒 in the gamma distribution can be observed in its numerator, 

more precisely the exponent of the (𝕓𝑥)𝕒−1 part. The exponent 𝕒 − 1 hinted that if 𝕒 < 1, 

then the exponent would become negative, and this places the 𝕓𝑥 into the reciprocal (i.e. 
1

𝕓𝑥
). 

This reciprocal function means as 𝑥 become smaller, 𝛤(𝑥, 𝕒, 𝕓) would become larger, just 

like the model with large number of QTL with small effect sizes. This is further aided by the 

𝑒−𝕓𝑥, where if 𝕓 is positive, then it would reach its maximum of 1, when 𝑥 = 0.  

If 𝕒 > 1, the 𝕓𝑥 would remain in the numerator of 𝛤(𝑥, 𝕒, 𝕓), thus for the range of x-axis 

with value less than its mode the 𝛤(𝑥, 𝕒, 𝕓) decreases, reaching zero as 𝑥 = 0. If the purpose 

of gamma distribution is to model the 𝕕𝑄𝑇𝐿 with a large number of QTL with small effect 

size, then the condition of 𝕒 > 1 might not be appropriate for such modelling. If 𝕒 = 1, the 

gamma distribution simplifies into an exponential distribution, which have been used in 

previous attempts to estimate the 𝕕𝑄𝑇𝐿 (Hall et al., 2016; Mun, 2012). Thus, 𝕒 = 1 is also a 

feasible model. Examples of 𝕒 < 1, 𝕒 = 1, 𝕒 > 1 and 𝕒 ≫ 1 were presented in Figure D.3. 
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With these observations, one can restrict the brute-force search of 𝕒 within the range 0 <

𝕒 ≤ 1, which greatly increases the feasibility of the search algorithm. In fact, one could use a 

linear progression as a way to discretise the parameter into a finite number of 𝕒s that needs to 

be tested.  

Using the 𝕜s sampled from a geom-linear progression and the discretised 𝕒s sampled from 

linear progression, one could build a grid of [𝕜, 𝕒] combinations that could be brute-force 

searched to find the combinations of parameters that best fit the observed distribution from a 

GWAS experiment.  

 

Figure D.3: Example of gamma distribution under varying shape parameter 𝕒. Only the blue and the orange lines 

have the correct shape for the modelling of QTL effect size distributions.  
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Appendix E. Evaluation of Sizes of Sample Space 

for Additive, Non-additive and Inbreeding 

Coefficient 

 

This appendix is to provide a description on the size of sample space of additive and non-

additive effects and level of co-ancestry that needs to be evaluated by the genetic algorithm. 

The sample space for the non-additive genetic component is significantly larger than those of 

additive and inbreeding coefficients, and this appendix is to provide a mathematical proof for 

this assertion.  

E.1. The Mathematical Proof 

Given a number of sires 𝑁𝑚 and number of dams 𝑁𝑓, the size of sample space for all possible 

values of additive and co-ancestry (denoted as 𝑛{𝐴} and 𝑛{𝐼} respectively) can be defined as 

the number of combinations of sires chosen with repetition, without considering the ordering 

of the sires. This can be calculated using the following binomial coefficient (Benjamin and 

Quinn, 2003): 

𝑛{𝐴} = 𝑛{𝐼} = (
𝑁𝑚 + 𝑁𝑓 − 1

𝑁𝑓
) =  

(𝑁𝑚 + 𝑁𝑓 − 1)!

(𝑁𝑓)! (𝑁𝑚 − 1)!
 [1] 

Where (𝑛
𝑘
) is the binomial coefficient of “n choose k” and 𝑘! is denoted as the factorial of 𝑘. 

The size of sample space of all possible values of non-additive genetic value possible 

(denoted as 𝑛{𝐷}) was defined as number of combinations of sires chosen with repetition, but 

with consideration of ordering of the sires. Thus, the sample space for non-additive genetic 

values was defined as follows:  

𝑛{𝐷} = 𝑁𝑚

𝑁𝑓  [2] 

Let 𝑏 be the binomial coefficient that represent both 𝑛{𝐴} and 𝑛{𝐼}, which is defined as 

follows:  

𝑏 =  (
𝑁𝑚 + 𝑁𝑓 − 1

𝑁𝑓
) =  

(𝑁𝑚 + 𝑁𝑓 − 1)!

(𝑁𝑓)! (𝑁𝑚 − 1)!
 [3]  
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The 𝑏 in equation [3] can be expanded as follows:  

(𝑁𝑚 + 𝑁𝑓 − 1)!

(𝑁𝑓)! (𝑁𝑚 − 1)!
=  

(1)(2)(3) … (𝑁𝑓 − 1)(𝑁𝑓)(𝑁𝑓 + 1) … (𝑁𝑚 + 𝑁𝑓 − 3)(𝑁𝑚 + 𝑁𝑓 − 2)(𝑁𝑚 + 𝑁𝑓 − 1)

((1)(2)(3) … (𝑁𝑓 − 2)(𝑁𝑓 − 1)(𝑁𝑓)) ∗ ((1)(2)(3) … (𝑁𝑚 − 3)(𝑁𝑚 − 2)(𝑁𝑚 − 1)) 
  

= 
(1)(2)(3) … (𝑁𝑓 − 1)(𝑁𝑓)(𝑁𝑓 + 1)… (𝑁𝑓 + 𝑁𝑚 − 3)(𝑁𝑓 + 𝑁𝑚 − 2)(𝑁𝑓 + 𝑁𝑚 − 1)

((1)(2)(3) … (𝑁𝑓 − 2)(𝑁𝑓 − 1)(𝑁𝑓)) ∗ ((1)(2)(3) … (𝑁𝑚 − 3)(𝑁𝑚 − 2)(𝑁𝑚 − 1))
  

= 
(𝑁𝑓 + 1)(𝑁𝑓 + 2)(𝑁𝑓 + 3)… (𝑁𝑓 + 𝑁𝑚 − 3)(𝑁𝑓 + 𝑁𝑚 − 2)(𝑁𝑓 + 𝑁𝑚 − 1)

(1)(2)(3) … (𝑁𝑚 − 3)(𝑁𝑚 − 2)(𝑁𝑚 − 1)
 [4] 

Let 𝑏∗ be a new binomial coefficient defined as: 

𝑏∗ = (
𝑁𝑚 + 𝑁𝑓

𝑁𝑓
) =

(𝑁𝑚 + 𝑁𝑓)!

(𝑁𝑓)! (𝑁𝑚)!
 [5] 

Which can be expanded as follows:  

(𝑁𝑚 + 𝑁𝑓)!

(𝑁𝑓)! (𝑁𝑚)!
=

(1)(2)(3) … (𝑁𝑓 − 1)(𝑁𝑓)(𝑁𝑓 + 1) … (𝑁𝑚 + 𝑁𝑓 − 2)(𝑁𝑚 + 𝑁𝑓 − 1)(𝑁𝑚 + 𝑁𝑓)

((1)(2)(3) … (𝑁𝑓 − 2)(𝑁𝑓 − 1)(𝑁𝑓)) ∗ ((1)(2)(3) … (𝑁𝑚 − 2)(𝑁𝑚 − 1)(𝑁𝑚))
  

= 
(1)(2)(3) … (𝑁𝑓 − 1)(𝑁𝑓)(𝑁𝑓 + 1) … (𝑁𝑚 + 𝑁𝑓 − 2)(𝑁𝑚 + 𝑁𝑓 − 1)(𝑁𝑚 + 𝑁𝑓)

((1)(2)(3) … (𝑁𝑓 − 2)(𝑁𝑓 − 1)(𝑁𝑓)) ∗ ((1)(2)(3) … (𝑁𝑚 − 2)(𝑁𝑚 − 1)(𝑁𝑚))
  

= 
(𝑁𝑓 + 1)(𝑁𝑓 + 2)(𝑁𝑓 + 3) …(𝑁𝑚 + 𝑁𝑓 − 2)(𝑁𝑚 + 𝑁𝑓 − 1)(𝑁𝑚 + 𝑁𝑓)

(1)(2)(3) … (𝑁𝑚 − 2)(𝑁𝑚 − 1)(𝑁𝑚)
 [6] 

Taking the ratio between 𝑏 and 𝑏∗ would yield the following value:  

𝑏

𝑏∗
= 

(𝑁𝑚+𝑁𝑓−1

𝑁𝑓
)

(
𝑁𝑚+𝑁𝑓

𝑁𝑓
)

  

= 

(𝑁𝑓 + 1)(𝑁𝑓 + 2)(𝑁𝑓 + 3)… (𝑁𝑓 + 𝑁𝑚 − 3)(𝑁𝑓 + 𝑁𝑚 − 2)(𝑁𝑓 + 𝑁𝑚 − 1)
(1)(2)(3)… (𝑁𝑚 − 3)(𝑁𝑚 − 2)(𝑁𝑚 − 1)

(𝑁𝑓 + 1)(𝑁𝑓 + 2)(𝑁𝑓 + 3)…(𝑁𝑚 + 𝑁𝑓 − 2)(𝑁𝑚 + 𝑁𝑓 − 1)(𝑁𝑚 + 𝑁𝑓)
(1)(2)(3)… (𝑁𝑚 − 2)(𝑁𝑚 − 1)(𝑁𝑚)

 

= 
1

1⁄

(𝑁𝑚 + 𝑁𝑓)
𝑁𝑚

⁄

  

= 
𝑁𝑚

𝑁𝑚 + 𝑁𝑓
                                                                                                                                                    [7] 

By rearranging [7], it could be shown that  

𝑏 = (
𝑁𝑚

𝑁𝑚 + 𝑁𝑓
)𝑏∗ [8] 
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This identity is important to establish as it heavily simplifies the mathematics from here 

onward. Without the nuisance “−1” in the equation, and with sufficiently large 𝑁𝑚 and 𝑁𝑓 

(i.e. 𝑁𝑚 > 2 and 𝑁𝑓 > 2), the 𝑏∗ can be converted into a more tractable form using Stirling’s 

approximation. This approximation is defined as follows (Pearson, 1924):  

𝑛! ≅  √2𝜋𝑛 ∗ (
𝑛

𝑒
)
𝑛

 [9] 

Where 𝑒 is the Euler’s number (i.e. 𝑒 ≈ 2.71828 …). Substituting equation [9] into [8] yields 

the following:  

𝑏 = (
𝑁𝑚

𝑁𝑚 + 𝑁𝑓
) ∗ 𝑏∗ 

= (
𝑁𝑚

𝑁𝑚 + 𝑁𝑓
) ∗ (

(𝑁𝑚 + 𝑁𝑓)!

(𝑁𝑓)! (𝑁𝑚)!
) 

= (
𝑁𝑚

𝑁𝑚 + 𝑁𝑓
) ∗

(

 
 

(√2𝜋(𝑁𝑚 + 𝑁𝑓) ∗ (
𝑁𝑚 + 𝑁𝑓

𝑒
)
𝑁𝑚+𝑁𝑓

)

(√2𝜋𝑁𝑓 ∗ (
𝑁𝑓

𝑒 )
𝑁𝑓

) ∗ (√2𝜋𝑁𝑚 ∗ (
𝑁𝑚
𝑒 )

𝑁𝑚

)
)

 
 

  

= (
𝑁𝑚

𝑁𝑚 + 𝑁𝑓
) ∗ (

1

√2𝜋
) ∗ (√

𝑁𝑚 + 𝑁𝑓

𝑁𝑚𝑁𝑓
) ∗ (

𝑒𝑁𝑚+𝑁𝑓

𝑒𝑁𝑚 ∗ 𝑒𝑁𝑓
) ∗ (

(𝑁𝑚 + 𝑁𝑓)
𝑁𝑚+𝑁𝑓

𝑁
𝑓

𝑁𝑓
∗ 𝑁𝑚

𝑁𝑚
) 

= (√
𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ (

1

√2𝜋
) ∗ (

𝑒𝑁𝑚+𝑁𝑓

𝑒𝑁𝑚+𝑁𝑓
) ∗ (

(𝑁𝑚 + 𝑁𝑓)
𝑁𝑚

∗ (𝑁𝑚 + 𝑁𝑓)
𝑁𝑓

𝑁𝑚
𝑁𝑚 ∗ 𝑁

𝑓

𝑁𝑓
) 

= 
1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ ((

𝑁𝑚 + 𝑁𝑓

𝑁𝑚
)
𝑁𝑚

∗ (
𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

) [10] 

To prove that 𝑛{𝐷} grows faster than 𝑛{𝐴} and 𝑛{𝐼} with increasing large 𝑁𝑚 and 𝑁𝑓, it needs 

to be shown that 𝑁𝑚

𝑁𝑓
 grows faster than [10]. Let 𝑑 be a function that represent 𝑛{𝐷}:  

𝑑 = 𝑁𝑚

𝑁𝑓  [11] 

With these definitions, function 𝑑 can be said to grow faster than 𝑏 if it fulfils the following 

condition:  

lim
(𝑁𝑚,𝑁𝑓)→(∞,∞)

𝑏

𝑑
=  lim

(𝑁𝑚,𝑁𝑓)→(∞,∞)

(
1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ ((

𝑁𝑚 + 𝑁𝑓

𝑁𝑚
)

𝑁𝑚

∗ (
𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

))

𝑁𝑚

𝑁𝑓
= 0 [13]

 



262 
 

To evaluate this limit, some rearrangement and simplification of the function is required. This 

could be done as follows:  

(
1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ ((

𝑁𝑚 + 𝑁𝑓

𝑁𝑚
)

𝑁𝑚

∗ (
𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

))

𝑁𝑚

𝑁𝑓
 

= 
1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗

(
𝑁𝑚 + 𝑁𝑓

𝑁𝑚
)

𝑁𝑚

𝑁𝑚

𝑁𝑓
∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓

)

𝑁𝑓

 

= 
1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ (

1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓

)

𝑁𝑓

                    [14] 

 

The evaluation of this limit also require the use of l’Hôpital’s rule, which states the following 

(Lawlor, 2020):  

lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
=  lim

𝑥→𝑐

𝑓′(𝑥)

𝑔′(𝑥)
 [15] 

The condition required for the application of l’Hôpital rule is that (1) the derivative of 𝑓(𝑥) 

and 𝑔(𝑥) (denoted as 𝑓′(𝑥) and 𝑔′(𝑥)) exists at 𝑥 = 𝑐, with (2) lim
𝑥→𝑐

𝑓(𝑥) =  lim
𝑥→𝑐

𝑔(𝑥) = 0 

and (3) 𝑔′(𝑐) ≠ 0. This function does not fulfil condition (2), but it could be transformed into 

a form that does fulfil such a requirement. Even so, l’Hôpital rule cannot be directly applied 

to this [13] as it is a multivariate function, whereas this rule could only be applied to a 

univariate function (Lawlor, 2020). For this reason, the limit in equation [13] needs to be split 

between the variables and inspect their behaviour of the limits. This is similar to taking the 

partial derivatives of [13] by 𝑁𝑚 and 𝑁𝑓. The split limits were defined as follows:  

lim
𝑁𝑚→∞

1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ (

1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

 [16] 

lim
𝑁𝑓→∞

1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ (

1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

  [17] 

The limit defined in function [16] and [17] comprises of products of several sub-functions, 

which, by using the distributive property of limit, could be inspected individually, most 

notably the following sub-functions:  
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𝑠1 = √
𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
 [18] 

and  

𝑠2 = (
1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

[19] 

For limit [16], when 𝑁𝑚 → ∞, the sub-function 𝑠1 in [18] can be evaluated as following:  

lim
𝑁𝑚→∞

𝑠1 = lim
𝑁𝑚→∞

√
𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
 

= lim
𝑁𝑚→∞

√
𝑁𝑚

𝑁𝑚𝑁𝑓 + 𝑁𝑓
2 

= 
1

√𝑁𝑓

 [20] 

For evaluating the limit of 𝑠2 as 𝑁𝑚 → ∞, [19] can be further rearrange as follows:  

𝑠2 = (
1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

 

= (
𝑁𝑚 + 𝑁𝑓

𝑁𝑚
)

𝑁𝑚

∗ (
𝑁𝑚 + 𝑁𝑓

𝑁𝑚𝑁𝑓
)

𝑁𝑓

 

= (1 +
𝑁𝑓

𝑁𝑚
)
𝑁𝑚

∗ (
1

𝑁𝑚
+

1

𝑁𝑓
)

𝑁𝑓

[21] 

The limit of 𝑠2 could then be evaluated as follows:  

lim
𝑁𝑚→∞

𝑠2 =  lim
𝑁𝑚→∞

((1 +
𝑁𝑓

𝑁𝑚
)
𝑁𝑚

∗ (
1

𝑁𝑚
+

1

𝑁𝑓
)

𝑁𝑓

) 

=  lim
𝑁𝑚→∞

(1 +
𝑁𝑓

𝑁𝑚
)
𝑁𝑚

∗  lim
𝑁𝑚→∞

(
1

𝑁𝑚
+

1

𝑁𝑓
)

𝑁𝑓

 [22] 

Using the following definition of Euler’s number (Khattri and Witkowski, 2012):  

𝑒𝑧 = lim
𝑥→∞

(1 +
𝑧

𝑥
)

𝑥

 [23] 

The limit in [22] can be further simplified as follows:  
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lim
𝑁𝑚→∞

(1 +
𝑁𝑓

𝑁𝑚
)
𝑁𝑚

∗  lim
𝑁𝑚→∞

(
1

𝑁𝑚
+

1

𝑁𝑓
)

𝑁𝑓

= 𝑒𝑁𝑓 ∗ (
1

𝑁𝑓
)

𝑁𝑓

 

= (
𝑒

𝑁𝑓
)

𝑁𝑓

[24] 

By comparing [24] with the Stirling’s approximation from [9], it can be shown that [24] is 

approximately equals to:  

(
𝑒

𝑁𝑓
)

𝑁𝑓

≅ 
√2𝜋𝑁𝑓

𝑁𝑓!
 [25] 

By combining [20] and [25] into [16], one can evaluate the limit in [16] as follows:  

lim
𝑁𝑚→∞

1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ (

1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓

 

= 
1

√2𝜋
∗

1

√𝑁𝑓

∗  
√2𝜋𝑁𝑓

𝑁𝑓!
 

= 
1

𝑁𝑓!
                                                                                                                                      [26] 

This implies that as the 𝑁𝑚 increases toward infinity, the ratio between 𝑏 and 𝑑 reaches a 

constant value of 
1

𝑁𝑓!
. Given that 𝑁𝑓! is always greater than 1 when 𝑁𝑓 > 1, the ratio between 

𝑏 and 𝑑 is always smaller than 1 for all positive integer values of 𝑁𝑓 > 1 if the value of 𝑁𝑚 is 

large. With the 𝑁𝑓 in the denominator of the limit in [26], this also means that as 𝑁𝑓 

approaches infinity, the value of [26] would approach zero.  

Similar to the limit defined in [16], the limit in [17] can also be evaluated by calculating the 

limit of the sub-functions 𝑠1 and 𝑠2 as 𝑁𝑓 approaches infinity. As all the 𝑁𝑓 terms are at the 

denominator of 𝑠1, the limit of 𝑠1 as 𝑁𝑓 approaches infinity is as follows:  

lim
𝑁𝑓→∞

√
𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
= 0 [27] 

While for the limit of 𝑠2 as 𝑁𝑓 approaches infinity, it is defined as follows:  

lim
𝑁𝑓→∞

𝑠2 = lim
𝑁𝑓→∞

(
1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓
)

𝑁𝑓
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= (
1

𝑁𝑚
𝑁𝑚

) ∗ lim
𝑁𝑓→∞

(
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ lim

𝑁𝑓→∞
(1 +

𝑁𝑚

𝑁𝑓
)

𝑁𝑓

[28] 

There are two additional limits in [28] that need to be evaluated:  

𝑠21 = lim
𝑁𝑓→∞

(
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) [29] 

and 

𝑠22 = lim
𝑁𝑓→∞

((1 +
𝑁𝑚

𝑁𝑓
)

𝑁𝑓

) [30] 

The limit from [30] can be easily evaluated by again comparing it with the equation from 

Euler’s number, which yielded the value of:  

𝑠22 = lim
𝑁𝑓→∞

((1 +
𝑁𝑚

𝑁𝑓
)

𝑁𝑓

) = 𝑒𝑁𝑚 [31] 

Evaluating the limit of 𝑠21 from [29] is significantly more difficult however and requires the 

use of l’Hôpital’s rule. As mentioned, this rule requires both numerator and denominator to 

approach zero as 𝑁𝑓 approaches infinity to be applied (Lawlor, 2020). It is obvious however 

that as 𝑁𝑓 approaches infinity, so do the numerator and denominator, thus the rule could not 

be directly applied. Despite this, it is possible to transform the functions such that the rule 

become applicable, which can be achieved through iterated differentiation of the functions.  

Let 𝑓(𝑁𝑓) =  (𝑁𝑚 + 𝑁𝑓)
𝑁𝑚

 and 𝑔(𝑁𝑓) = 𝑁𝑚

𝑁𝑓  , with 𝑁𝑚 being a positive integer, then  

𝑓(𝑁𝑓)

𝑔(𝑁𝑓)
=  

(𝑁𝑚 + 𝑁𝑓)
𝑁𝑚

𝑁𝑚

𝑁𝑓
 [32] 

Differentiate the functions once, and the resulting ratio was as follows:  

𝑓′(𝑁𝑓)

𝑔′(𝑁𝑓)
=  

𝑁𝑚(𝑁𝑚 + 𝑁𝑓)
𝑁𝑚−1

𝑁𝑚

𝑁𝑓 ∗  ln𝑁𝑚

 [33]  

Which can be differentiated again, yielding the following:  
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𝑓′′(𝑁𝑓)

𝑔′′(𝑁𝑓)
=  

𝑁𝑚(𝑁𝑚 − 1)(𝑁𝑚 + 𝑁𝑓)
𝑁𝑚−2

𝑁𝑚

𝑁𝑓 ∗ (ln𝑁𝑚)2
 [34] 

This process could be iterated 𝑁𝑚 times, with the last two iterations being as follows:  

𝑓(𝑁𝑚−1)(𝑁𝑓)

𝑔(𝑁𝑚−1)(𝑁𝑓)
=  

𝑁𝑚(𝑁𝑚 − 1)(𝑁𝑚 − 2)…(3)(2)(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑓 ∗ (ln𝑁𝑚)𝑁𝑚−1
 [35] 

and  

𝑓(𝑁𝑚)(𝑁𝑓)

𝑔(𝑁𝑚)(𝑁𝑓)
=  

𝑁𝑚(𝑁𝑚 − 1)(𝑁𝑚 − 2)… (3)(2)(1)

𝑁𝑚

𝑁𝑓 ∗ (ln𝑁𝑚)𝑁𝑚

 

= 
𝑁𝑚!

𝑁𝑚

𝑁𝑓 ∗ (ln𝑁𝑚)𝑁𝑚

 [36] 

L’Hôpital’s rule can finally be applied onto [36], yielding the following:  

lim
𝑁𝑓→∞

𝑁𝑚!

𝑁𝑚

𝑁𝑓 ∗ (ln𝑁𝑚)𝑁𝑚

= 
𝑁𝑚!

(ln𝑁𝑚)𝑁𝑚
∗  lim

𝑁𝑓→∞

1

𝑁𝑚

𝑁𝑓
 

= 0 [37] 

By substituting [31] and [37] into [28], the limit of 𝑠2 as 𝑁𝑓 approaches infinity can be 

evaluated as such:  

lim
𝑁𝑓→∞

𝑠2 = 
1

𝑁𝑚
𝑁𝑚

∗ 𝑒𝑁𝑚 ∗ 0 

= 0 [38] 

By combining [27] and [38], the limit in [17] as 𝑁𝑓 approaches infinity can be evaluated as 

such:  

lim
𝑁𝑓→∞

1

√2𝜋
∗ (√

𝑁𝑚

𝑁𝑓(𝑁𝑚 + 𝑁𝑓)
) ∗ (

1

𝑁𝑚
𝑁𝑚

) ∗ (
(𝑁𝑚 + 𝑁𝑓)

𝑁𝑚

𝑁𝑚

𝑁𝑓
) ∗ (

𝑁𝑚 + 𝑁𝑓

𝑁𝑓

)

𝑁𝑓

 =
1

√2𝜋
∗ 0 ∗ 0 

= 0                             [39]  

This implies that as 𝑁𝑓 increases toward infinity, the ratio between 𝑏 and 𝑑 converges toward 

zero for all values of 𝑁𝑚. Along with the proposition from [26], this suggests that as 𝑁𝑚 and 

𝑁𝑓 grow toward infinity, the limit from [13] converges toward zero, thus showing that 𝑑, and 

henceforth 𝑛{𝐷}, grow faster than 𝑏 from 𝑛{𝐴} and 𝑛{𝐼}.  
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To fur further confirm the increased growth rate of 𝑛{𝐷} compared to 𝑛{𝐴} and 𝑛{𝐼} especially 

when 𝑁𝑚 and 𝑁𝑓 are small, equation [14] has also been tested under varying values of 𝑁𝑚 

and 𝑁𝑓. Besides the trivial value of 𝑁𝑚 = 1, where [14] returned the value of 𝑁𝑓, the 

maximal value attained by this equation is when (𝑁𝑚, 𝑁𝑓) = (2,2) and (𝑁𝑚, 𝑁𝑓) = (2,3), 

where equation [14] reaches 0.75 (Figure E.1). Given that at this maximal value the ratio 

between 𝑏 and 𝑑 is still less than 1, it means for any given value of 𝑁𝑚 > 1, the 𝑑 is larger 

than 𝑏, even for small 𝑁𝑚 and 𝑁𝑓. With the ratio quickly approaching 0 for any larger value 

of 𝑁𝑚 and 𝑁𝑓, this proves that with larger number of sires and dams, the growth rate of 𝑛{𝐷} 

is greater than 𝑛{𝐴} and 𝑛{𝐼}.  

 

Figure E.1: The ratio between 𝑛{𝐴} and 𝑛{𝐷}, defined by equation [14], evaluated across a number of sires and 

dams.  
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Appendix F. The Discrepancies of ∆𝐼 Between 

NRM and GRM by VanRaden (2008) for Equally 

Contributed Sires 

 

One of the most popular methods of calculating the Genomic Relationship Matrix (GRM) is 

one proposed by VanRaden (2008). This GRM has been utilized in optimal contribution 

selection (OCS) where it is used to calculate the increment in level of inbreeding (denoted as 

∆𝐼) in the offspring (Clark et al., 2013). Compared to a pedigree-based Numerator 

Relationships Matrix (NRM), there are some discrepancies in the ∆𝐼 calculated if the GRM is 

used. In particular, with the assumption of all sires contributed equally to the dams, with no 

inbreeding or consanguinity between the sires, the expected ∆𝐼 for NRM is 
1

2𝑁𝑚
 where the 𝑁𝑚 

being the number of sires selected, whereas for GRM, the expected ∆𝐼 is zero. This appendix 

section is to provide a mathematical explanation of such discrepancy, and the rationale for the 

adjustment of the GRM.  

F.1. A Simplified Example 

Consider a case with 5 unrelated, non-inbred sires being considered in a breeding program, 

which was denoted using a sire contribution vector 𝒄. Assuming all the sires contributed 

equally to the breeding program (i.e. 𝑁𝑚 = 5), the sire contribution vector was as follows:  

𝒄 = [0.2 0.2 0.2 0.2 0.2] [1] 

If the sires are unrelated and non-inbred, the expected NRM between the sires (denoted as 

𝑮𝑵𝑹𝑴) is an identity matrix (Henderson, 1976):  

𝑮𝑵𝑹𝑴 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 [2] 

Using the NRM and sire contribution vector, the ∆𝐼 can then be calculated as such (Clark et 

al., 2013):  
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∆𝐼 =
1

2
𝒄𝑮𝑵𝑹𝑴𝒄𝑇 [3] 

Which can be calculated as follows:  

∆𝐼 =
1

2
𝒄𝑮𝑵𝑹𝑴𝒄𝑇 =

1

2
∗ [0.2 0.2 0.2 0.2 0.2] ∗

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

∗

[
 
 
 
 
0.2
0.2
0.2
0.2
0.2]

 
 
 
 

= 0.1 [4] 

The value of ∆𝐼 = 0.1 also corresponds to the previously reported expected ∆𝐼 in the 

offspring; if there is no inbreeding or relationship between sires, the expected increase in 

inbreeding level is 
1

2𝑁𝑚
 (Clark et al., 2013; Falconer, 1989; Meuwissen, 1997).  

This is not the case for the GRM however; as one of the steps by VanRaden (2008) involves 

the removal of effects of allele frequency, this causes the GRM to have column-wise 

expected values of zero. Due to this, if the GRM is used in place of the NRM in equation [4], 

the resulting ∆𝐼 would become zero. The mathematical explanation for this observation is 

provided in Section F.2.  

F.2. The Mathematical Explanation 

Let 𝑿 be a matrix of size 𝑛 × 𝑘 that represents a genotype array with 𝑛 number of animals 

and 𝑘 number of markers that have been coded in the form of {−1, 0, 1} for genotype ℎℎ, 𝐻ℎ 

and 𝐻𝐻. VanRaden (2008) call for the adjustment of each column of matrix 𝑿 with their 

column-wise means (denoted using the vector �̅�), which is defined as follows:  

�̅� = 2𝒑 − 1 [5] 

Where 𝒑 is the vector of allele frequencies. The adjustment is done by subtracting each 

column of 𝑿 with the corresponding values of �̅� (denoted as �̅�𝑗) The adjusted matrix, denoted 

as 𝒁, is defined as follows:  

𝒁 = 𝑿 − �̅� [6] 

Where the 𝑖th row and 𝑗th column of matrix 𝒁 is calculated as follows:  

𝒁𝑖,𝑗 = 𝑿𝑖,𝑗 − �̅�𝑗 [7] 
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The purpose for this adjustment is to remove the effects of allele frequency from each of the 

loci in 𝑿 (VanRaden, 2008). This adjustment has also the effects of setting the column-wise 

means of 𝒁 into zero: 

∑𝒁𝑖,𝑗

𝑛

𝑖=1

= 0 [8] 

This observation is the key to the proof of the zero ∆𝐼 with the use of GRM.  

As defined by VanRaden (2008), the GRM (denoted as 𝑮𝑮𝑹𝑴) is defined as follows:  

𝑮𝑮𝑹𝑴 =
𝒁𝒁𝑇

2∑ 𝑝𝑗(1 − 𝑝𝑗)
𝑘
𝑗=1

 [9] 

As the denominator of equation [9] (i.e. 2∑ 𝑝𝑗(1 − 𝑝𝑗)
𝑘
𝑗=1 ) is a nonnegative finite scalar 

factor, it is not relevant to the proof and thus can be ignored. In this case, the unscaled GRM, 

denoted as 𝑴 be defined as such:  

𝑴 = 𝒁𝒁𝑇 = 2∑𝑝𝑗(1 − 𝑝𝑗)

𝑘

𝑗=1

∗ 𝑮𝑮𝑹𝑴 [10] 

Without loss of generality, let 𝑎 be the index of a column from matrix 𝑴. This column of 𝑴 

(denoted as 𝑴∗,𝑎) is the product of 𝒁 and the 𝑎th column of 𝒁𝑇(denoted as 𝒁∗,𝑎
𝑇 ): 

𝑴∗,𝑎 = 𝒁𝒁∗,𝑎
𝑇  [11] 

This column vector 𝑴∗,𝑎 can be defined in term of 𝒁 as follows:  

𝑴∗,𝑎 =

[
 
 
 
 
 
𝒁1,1𝒁1,𝑎

𝑇 + 𝒁1,2𝒁2,𝑎
𝑇 + 𝒁1,3𝒁3,𝑎

𝑇 + ⋯+ 𝒁1,𝑘𝒁𝑘,𝑎
𝑇

𝒁2,1𝒁1,𝑎
𝑇 + 𝒁2,2𝒁2,𝑎

𝑇 + 𝒁2,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁2,𝑘𝒁𝑘,𝑎

𝑇

𝒁3,1𝒁1,𝑎
𝑇 + 𝒁3,2𝒁2,𝑎

𝑇 + 𝒁3,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁3,𝑘𝒁𝑘,𝑎

𝑇

⋮
𝒁𝑛,1𝒁𝑛,𝑎

𝑇 + 𝒁𝑛,2𝒁2,𝑎
𝑇 + 𝒁𝑛,3𝒁3,𝑎

𝑇 + ⋯+ 𝒁𝑛,𝑘𝒁𝑘,𝑎
𝑇 ]

 
 
 
 
 

 [12] 

The zero column mean of 𝑴 can be shown by multiplying a row vector of ones 𝟏1,𝑛 and the 

unscaled GRM 𝑴. It is from the observation that the multiplication of a row vector of ones 

onto a matrix has the same effect of taking the unweighted column-wise sums of the matrix. 

Therefore, the multiplication of row vector 𝟏1,𝑛 into 𝑴 has the following effect on 𝑴∗,𝑎:  
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𝟏1,𝑛𝑴∗,𝑎 = [1 1 1 ⋯ 1] ∗

[
 
 
 
 
 
𝒁1,1𝒁1,𝑎

𝑇 + 𝒁1,2𝒁2,𝑎
𝑇 + 𝒁1,3𝒁3,𝑎

𝑇 + ⋯+ 𝒁1,𝑘𝒁𝑘,𝑎
𝑇

𝒁2,1𝒁1,𝑎
𝑇 + 𝒁2,2𝒁2,𝑎

𝑇 + 𝒁2,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁2,𝑘𝒁𝑘,𝑎

𝑇

𝒁3,1𝒁1,𝑎
𝑇 + 𝒁3,2𝒁2,𝑎

𝑇 + 𝒁3,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁3,𝑘𝒁𝑘,𝑎

𝑇

⋮
𝒁𝑛,1𝒁1,𝑎

𝑇 + 𝒁𝑛,2𝒁2,𝑎
𝑇 + 𝒁𝑛,3𝒁3,𝑎

𝑇 + ⋯+ 𝒁𝑛,𝑘𝒁𝑘,𝑎
𝑇 ]

 
 
 
 
 

[13] 

Which can be expressed in term of the following summations:  

𝟏1,𝑛𝑴∗,𝑎 = [𝒁1,1𝒁1,𝑎
𝑇 + 𝒁1,2𝒁2,𝑎

𝑇 + 𝒁1,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁1,𝑘𝒁𝑘,𝑎

𝑇 ] + 

= [𝒁2,1𝒁1,𝑎
𝑇 + 𝒁2,2𝒁2,𝑎

𝑇 + 𝒁2,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁2,𝑘𝒁𝑘,𝑎

𝑇 ] + 

= [𝒁3,1𝒁1,𝑎
𝑇 + 𝒁3,2𝒁2,𝑎

𝑇 + 𝒁3,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁3,𝑘𝒁𝑘,𝑎

𝑇 ] + 

= ⋯+ 

= [𝒁𝑛,1𝒁1,𝑎
𝑇 + 𝒁𝑛,2𝒁2,𝑎

𝑇 + 𝒁𝑛,3𝒁3,𝑎
𝑇 + ⋯+ 𝒁𝑛,𝑘𝒁𝑘,𝑎

𝑇 ] [14] 

By rearranging and factorizing the common terms in 𝟏1,𝑛𝑴∗,𝑎 (i.e. 𝒁𝑇s), the summation 

could be simplified as follows:  

𝟏1,𝑛𝑴∗,𝑎 = 𝒁1,𝑎
𝑇 (𝒁1,1 + 𝒁2,1 + 𝒁3,1 + ⋯+ 𝒁𝑛,1) + 

= 𝒁2,𝑎
𝑇 (𝒁1,2 + 𝒁2,2 + 𝒁3,2 + ⋯+ 𝒁𝑛,2) + 

= 𝒁3,𝑎
𝑇 (𝒁1,3 + 𝒁2,3 + 𝒁3,3 + ⋯+ 𝒁𝑛,3) + 

= ⋯+ 

= 𝒁𝑘,𝑎
𝑇 (𝒁1,𝑘 + 𝒁2,𝑘 + 𝒁3,𝑘 + ⋯+ 𝒁𝑛,𝑘) [15] 

and by collecting the indices within the parentheses, as follows:  

𝟏1,𝑛𝑴∗,𝑎 = 𝒁1,𝑎
𝑇 ∑𝒁𝑖,1

𝑛

𝑖=1

+ 𝒁2,𝑎
𝑇 ∑𝒁𝑖,2

𝑛

𝑖=1

+ 𝒁3,𝑎
𝑇 ∑𝒁𝑖,3

𝑛

𝑖=1

+ ⋯+ 𝒁𝑘,𝑎
𝑇 ∑𝒁𝑖,𝑘

𝑛

𝑖=1

 [16] 

Note the equivalence in the summations ∑ 𝒁𝑖,𝑗
𝑛
𝑖=1  ; 𝑗 ∈ {1, … , 𝑘} in [16] with that in [8], 

which suggests that each of these summations would result in zeroes. Thus, by substituting 

[8] into [16], the 𝟏1,𝑛𝑴∗,𝑎 could be evaluated as such:  

𝟏1,𝑛𝑴∗,𝑎 = 𝒁1,𝑎
𝑇 (0) + 𝒁2,𝑎

𝑇 (0) + 𝒁3,𝑎
𝑇 (0) + ⋯+ 𝒁𝑘,𝑎

𝑇 (0) [17] 

= 0 

The 𝟏1,𝑛𝑴∗,𝑎 = 0 suggests the column-wise sum of 𝑴∗,𝑎 sums to zero and, given the 

generality of index 𝑎, also mean any columns within 𝑴 sums to zero and, by extension, the 

GRM as proposed by VanRaden (2008) sums to zero as well. 
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The zero column mean of 𝑮𝑮𝑹𝑴 is the root cause for ∆𝐼 to become zero when it is used in 

place of 𝑮𝑵𝑹𝑴 in equation [4]. This can be further proven as follows: let 𝒄 be a sire 

contribution row vector of length 𝑁𝑚. If all the sires contributed equally to the breeding 

program, the sire contribution vector was defined as follows:  

𝒄 = [
1

𝑁𝑚

1

𝑁𝑚

1

𝑁𝑚
⋯

1

𝑁𝑚
] [18] 

Which can be rewritten as such:  

𝒄 =
1

𝑁𝑚
∗ [1 1 1 ⋯ 1]  

= 
1

𝑁𝑚
∗ 𝟏1,𝑛 [19] 

By substituting equation [19] and [9] into [3], the following expression for ∆𝐼 is obtained:  

∆𝐼 =
1

2
∗ (

1

𝑁𝑚
∗ 𝟏1,𝑛) ∗ (

𝒁𝒁𝑇

2∑ 𝑝𝑗(1 − 𝑝𝑗)
𝑘
𝑗=1

) ∗ (
1

𝑁𝑚
∗ 𝟏1,𝑛)

𝑇

 [20] 

Which simplified into:  

∆𝐼 =
1

4𝑁𝑚 ∑ 𝑝𝑗(1 − 𝑝𝑗)
𝑘
𝑗=1

∗ 𝟏1,𝑛𝒁𝒁𝑇𝟏1,𝑛
𝑇 [21] 

As the denominator for equation [21] (i.e. 4𝑁𝑚 ∑ 𝑝𝑗(1 − 𝑝𝑗)
𝑘
𝑗=1 ) is a nonnegative finite 

scalar factor, it is not relevant to the proof for a zero ∆𝐼, thus can be ignored. In this case, the 

unscaled version of ∆𝐼 (denoted as ∆𝐼𝑠) was as follows:  

∆𝐼𝑠 = 𝟏1,𝑛𝒁𝒁𝑇𝟏1,𝑛
𝑇 [22] 

Or in term of 𝑴: 

∆𝐼𝑠 = 𝟏1,𝑛𝑴𝟏1,𝑛
𝑇 [23] 

As the column-wise sum of 𝑴 had been shown to equate to zero, the product 𝟏1,𝑛𝑴 in 

equation [23] yields a zero vector and, by extension, the full product 𝟏1,𝑛𝑴𝟏1,𝑛
𝑇 . Therefore, 

the ∆𝐼𝑠 and, by extension, the ∆𝐼 from equation [20] would become zero, showing that the 

use of GRM as suggested by VanRaden (2008) in equally contributed sires would yield ∆𝐼 =

0.  



273 
 

F.3. Adjusting the GRM for the OCS 

While t the effects of discrepancies of ∆𝐼 between GRM and NRM could be easily ignored 

for conventional use of the OCS, the zero column-wise means of GRM has an undesirable 

consequence; as the column-wise means of the GRM is zero, the increase in inbreeding level 

become no longer relevant to the 𝑁𝑚 if all the sires contributed equally to all the dams. This 

means if 5 sires are chosen, the calculated expected increase in inbreeding level would not 

differ from another scenario with, for example, 5000 sires (i.e., expected ∆𝐼 = 0). This 

contradicts the theoretical results from previous publications. For this reason, adjustments on 

the calculation of GRM are proposed to make the expected ∆𝐼 more analogous with those 

expected from NRM. This could be done by comparing the numerical properties of GRM and 

NRM.  

This calculation can be generalized to any columns of the GRM and NRM, but for 

convenience, let 𝑮𝑵𝑹𝑴∗,1
 and 𝑮𝑮𝑹𝑴∗,1

 be the first column of the NRM 𝑮𝑵𝑹𝑴 and GRM 𝑮𝑮𝑹𝑴, 

respectively. If the sires are unrelated and non-inbred, the expected values of 𝑮𝑵𝑹𝑴∗,1
 were as 

follows (Henderson, 1976):  

𝑮𝑵𝑹𝑴∗,1
= [1 0 0 ⋯ 0] [24] 

Publication of the nature of 𝑮𝑮𝑹𝑴∗,1
 is less common but can be calculated as follows. Let 𝒛 ∈

{𝑧1, 𝑧2, 𝑧3 …𝑧𝑁𝑚
} be a set of covariance that built the 𝑮𝑮𝑹𝑴∗,1

, defined as follows: 

𝑮𝑮𝑹𝑴∗,1
= [𝑧1 𝑧2 𝑧3 ⋯ 𝑧𝑁𝑚] [25] 

Given the assumption of unrelated sires, from the perspective of the first sire (i.e., the first 

column and row of the GRM), it would share a similar level of relationship with all other 

individuals within the matrix. This implies that with the exception of 𝑧1, all other covariance 

in 𝑮𝑮𝑹𝑴∗,1
 have the same value (i.e. 𝑧2 = 𝑧3 = ⋯ = 𝑧𝑁𝑚

). Thus equation [25] can be 

simplified into the following:  

𝑮𝑮𝑹𝑴∗,1
= [𝑧1 𝑧2 𝑧2 ⋯ 𝑧2] [26] 

As the column-wise means of GRM has been shown to be zero (i.e. ∑𝑮𝑮𝑹𝑴∗,1
= 0), this also 

imply the following relationship between the 𝑧s:  

𝑧1 + (𝑁𝑚 − 1) ∗ 𝑧2 = 0 
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𝑧2 = −
𝑧1

𝑁𝑚 − 1
 [27] 

Substituting equation [27] into [26] yields the following:  

𝑮𝑮𝑹𝑴∗,1
= [𝑧1 −

𝑧1

𝑁𝑚 − 1
−

𝑧1

𝑁𝑚 − 1
⋯ −

𝑧1

𝑁𝑚 − 1
] [28] 

From equation [28], the remaining value that needs to be determined was 𝑧1, which is the 

covariance value of the first individual with itself. Additional simulations from 100,000 

rounds of GRMs suggest that expected values for the 𝑧1 can be approximated as follows:  

𝑧1 ≈
2𝑁𝑚 − 2

2𝑁𝑚 − 1
[29] 

which can be substituted into [28], yielding the following:  

𝑮𝑮𝑹𝑴∗,1
= [

2𝑁𝑚 − 2

2𝑁𝑚 − 1

2 − 2𝑁𝑚

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

2 − 2𝑁𝑚

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
⋯

2 − 2𝑁𝑚

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
] [30] 

The 𝑮𝑮𝑹𝑴∗,1
 can then be compared with 𝑮𝑵𝑹𝑴∗,1

, with their differences (denoted as 

𝑮𝑵𝑹𝑴−𝑮𝑹𝑴∗,1
) be calculated as follows:  

𝑮𝑵𝑹𝑴−𝑮𝑹𝑴∗,1
= 𝑮𝑵𝑹𝑴∗,1

− 𝑮𝑮𝑹𝑴∗,1
 

= [1 −
2𝑁𝑚 − 2

2𝑁𝑚 − 1

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
⋯

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
] 

= [
1

2𝑁𝑚 − 1

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
⋯

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
] [31] 

which, provided that 𝑁𝑚 and 𝑘 are sufficiently large (𝑁𝑚 ≥ 50 and 𝑘 ≥ 10𝑘), can also be 

approximated using the following simplified expression:  

𝑮𝑵𝑹𝑴−𝑮𝑹𝑴∗,1
≈ [0

1

𝑁𝑚 − 1

1

𝑁𝑚 − 1
⋯

1

𝑁𝑚 − 1
] [31] 

With an expected bias of −
1

2𝑁𝑚−1
 for the diagonal component, and 

1

(𝑁𝑚−1)(2𝑁𝑚−1)
 for the off-

diagonal component.  

The 𝑮𝑵𝑹𝑴−𝑮𝑹𝑴∗,1
 in equation [31] suggests a constant shift of the off-diagonal component of 

the GRM by 
1

𝑁𝑚−1
. If expressed in terms of the full GRM, the 𝑮𝑵𝑹𝑴−𝑮𝑹𝑴∗,1

 becomes the first 

column of the following adjustment matrix (denoted as 𝑮𝑵𝑹𝑴−𝑮𝑹𝑴):  
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𝑮𝑵𝑹𝑴−𝑮𝑹𝑴 =

[
 
 
 
 
 
 
 
 
 0

1

𝑁𝑚 − 1

1

𝑁𝑚 − 1
⋯

1

𝑁𝑚 − 1
1

𝑁𝑚 − 1
0

1

𝑁𝑚 − 1
⋯

1

𝑁𝑚 − 1
1

𝑁𝑚 − 1

1

𝑁𝑚 − 1
0 ⋯

1

𝑁𝑚 − 1
⋮ ⋮ ⋮ ⋱ ⋮
1

𝑁𝑚 − 1

1

𝑁𝑚 − 1

1

𝑁𝑚 − 1
⋯ 0

]
 
 
 
 
 
 
 
 
 

 

=
1

𝑁𝑚 − 1
∗ (𝟏𝑵𝒎

− 𝑰𝑵𝒎
) [32] 

The shifted GRM, denoted as 𝑮𝑮𝑹𝑴
∗ , could thus be expressed as follows:  

𝑮𝑮𝑹𝑴
∗ = 𝑮𝑮𝑹𝑴 + 𝑮𝑵𝑹𝑴−𝑮𝑹𝑴 

= 𝑮𝑮𝑹𝑴 +
1

𝑁𝑚 − 1
∗ (𝟏𝑵𝒎

− 𝑰𝑵𝒎
) [33] 

Which can be used to take into account the effects of a changing number of equally 

contributing sires on ∆𝐼 if GRM has been used.  

A less wieldy but more precise adjustment (suitable for 𝑁𝑚 < 50) can also be defined as 

follows:  

𝑮𝑵𝑹𝑴−𝑮𝑹𝑴

=

[
 
 
 
 
 
 
 
 
 

1

2𝑁𝑚 − 1

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
⋯

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

1

2𝑁𝑚 − 1

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
⋯

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

1

2𝑁𝑚 − 1
⋯

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
⋮ ⋮ ⋮ ⋱ ⋮

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
⋯

1

2𝑁𝑚 − 1 ]
 
 
 
 
 
 
 
 
 

[34] 

=
1

2𝑁𝑚 − 1
∗ 𝑰𝑵𝒎

+
2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
∗ (𝟏𝑵𝒎

− 𝑰𝑵𝒎
) 

=
2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
∗ 𝟏𝑵𝒎

−
1

2𝑁𝑚 − 1
∗ 𝑰𝑵𝒎

 

And the corresponding 𝑮𝑮𝑹𝑴
∗  was as follows:  

𝑮𝑮𝑹𝑴
∗ = 𝑮𝑮𝑹𝑴 +

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
∗ 𝟏𝑵𝒎

−
1

2𝑁𝑚 − 1
∗ 𝑰𝑵𝒎

 [35] 
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Using the aforementioned simplified example with 𝑁𝑚 = 5, the unadjusted 𝑮𝑮𝑹𝑴 would have 

diagonal component with expected value of 
2𝑁𝑚−2

2𝑁𝑚−1
=

8

9
 and off-diagonal component with 

expected value of 
2−2𝑁𝑚

(2𝑁𝑚−1)(𝑁𝑚−1)
= −

2

9
. The corresponding 𝑮𝑮𝑹𝑴

∗  would be as follows:  

𝑮𝑮𝑹𝑴
∗ = 𝑮𝑮𝑹𝑴 +

2𝑁𝑚 − 2

(2𝑁𝑚 − 1)(𝑁𝑚 − 1)
∗ 𝟏𝑵𝒎

−
1

2𝑁𝑚 − 1
∗ 𝑰𝑵𝒎

 

= 𝑮𝑮𝑹𝑴 + (
8

9 ∗ 4
) ∗ 𝟏𝑵𝒎

− (
1

9
) ∗ 𝑰𝑵𝒎

 

≈

[
 
 
 
 
 
 
 
 
 
 

8

9
−

2

9
−

2

9
−

2

9
−

2

9

−
2

9

8

9
−

2

9
−

2

9
−

2

9

−
2

9
−

2

9

8

9
−

2

9
−

2

9

−
2

9
−

2

9
−

2

9

8

9
−

2

9

−
2

9
−

2

9
−

2

9
−

2

9

8

9 ]
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
1

9

2

9

2

9

2

9

2

9
2

9

1

9

2

9

2

9

2

9
2

9

2

9

1

9

2

9

2

9
2

9

2

9

2

9

1

9

2

9
2

9

2

9

2

9

2

9

1

9]
 
 
 
 
 
 
 
 
 
 

  

=

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 [36] 

Equation [36] suggests that the 𝑮𝑮𝑹𝑴
∗  is an identity matrix, the same matrix that defines an 

NRM for non-inbred and unrelated sires (Henderson, 1976). Thus, the 𝑮𝑮𝑹𝑴
∗  can be 

substituted in place of 𝑮𝑵𝑹𝑴 equation [4] and produces the same results.  

To illustrate the bias of the approximated 𝑮𝑮𝑹𝑴
∗  from equation [33] with a small number of 

sires, it would be defined as follows:  

𝑮𝑮𝑹𝑴
∗ = 𝑮𝑮𝑹𝑴 +

1

𝑁𝑚 − 1
∗ (𝟏𝑵𝒎

− 𝑰𝑵𝒎
) 

= 𝑮𝑮𝑹𝑴 +
1

4
(𝟏𝑵𝒎

− 𝑰𝑵𝒎
) 

≈

[
 
 
 
 
 
 
 
 
 
 

8

9
−

2

9
−

2

9
−

2

9
−

2

9

−
2

9

8

9
−

2

9
−

2

9
−

2

9

−
2

9
−

2

9

8

9
−

2

9
−

2

9

−
2

9
−

2

9
−

2

9

8

9
−

2

9

−
2

9
−

2

9
−

2

9
−

2

9

8

9 ]
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 0

1

4

1

4

1

4

1

4
1

4
0

1

4

1

4

1

4
1

4

1

4
0

1

4

1

4
1

4

1

4

1

4
0

1

4
1

4

1

4

1

4

1

4
0]
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=

[
 
 
 
 
 
 
 
 
 
 
8

9

1

36

1

36

1

36

1

36
1

36

8

9

1

36

1

36

1

36
1

36

1

36

8

9

1

36

1

36
1

36

1

36

1

36

8

9

1

36
1

36

1

36

1

36

1

36

8

9 ]
 
 
 
 
 
 
 
 
 
 

 [37] 

With a bias of −
1

9
 for the diagonal and 

1

36
 for the off-diagonals. Compared to 𝑮𝑵𝑹𝑴

∗  of 

equation [36] however, these biases would not affect the outcome of ∆𝐼; by substituting this 

𝑮𝑵𝑹𝑴
∗  into equation [4], the same result is obtained:  

∆𝐼 =
1

2
𝒄𝑮𝑵𝑹𝑴

∗ 𝒄𝑇 =
1

2
∗ [0.2 0.2 0.2 0.2 0.2] ∗

[
 
 
 
 
 
 
 
 
 
 
8

9

1

36

1

36

1

36

1

36
1

36

8

9

1

36

1

36

1

36
1

36

1

36

8

9

1

36

1

36
1

36

1

36

1

36

8

9

1

36
1

36

1

36

1

36

1

36

8

9 ]
 
 
 
 
 
 
 
 
 
 

∗

[
 
 
 
 
0.2
0.2
0.2
0.2
0.2]

 
 
 
 

= 0.1 [38] 

Thus, this approximated 𝑮𝑵𝑹𝑴
∗  from equation [33] can still be used in the OCS to handle 

situation with equally contributed sires, while taking into account the effects of number of 

sires on the ∆𝐼 when GRM is utilized. Furthermore, given the fact that the biases would 

become less prominent with larger 𝑁𝑚, this suggested the suitability of using the 

approximated 𝑮𝑵𝑹𝑴
∗  in the OCS.  
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Appendix G. Pseudocodes for the Phases of 

Genetic Algorithm in Chapter 6 

G.1. Phase 1 Pseudocode for Chapter 6 

The pseudocode for the Phase 1 of the cascading genetic algorithm, which aimed to optimize 

the additive and inbreeding component for the OCS, is as follows:  

## INPUT: bhat, GRM, Z_fem (b for TBV control) 

### bhat: sire EBVs # shape = (nmal, 1) 

### GRM: sire's GRM # shape = (nmal, nmal) 

### nmal: number of sires 

### Z_fem: dam genotype array (included here just to obtain the number of dam) 

### bhat and GRM are calculated using method proposed by VanRaden (2008) 

### b: additive TBV for sires # shape = (nmal, 1) 

 

nmal = nrow(bhat) 

nfem = nrow(Z_fem) 

 

phase1_Ns = 1500 # number of solutions for GA 

phase1_Ntop = 2 # number of top solution chosen to propagate into the next iteration 

phase1_Npar = 8 # number of parallelized threads 

 

## inbreeding component targets  

i_t = 0.01 # user-specified targeted level of consanguinity (Clark et al., 2013) 

z_lambda = 100 # amount of lambda_i update per unit of departure from i_t 

 

##### HYPERPARAMETERS 

### GENETIC OPERATOR HYPERPARAMETERS FOR PHASE 1 (Table 6.1) 

## mutation hyperparameters 

p_m = 0.05 # mutation rate 

 

## horizontal recombination hyperparameters 

p_hcr = 0.3 # horizontal recombination rate 

p_hcb = 0.1 # horizontal recombination block size 

 

## vertical recombination hyperparameters 

p_vcr = 0.3 # vertical recombination rate 

p_vcb = 0.1 # vertical recombination block size 

 

## horizontal inversion hyperparameters 

p_hir = 0.3 # horizontal inversion rate 

p_hib = 0.1 # horizontal inversion block size 

 

## vertical inversion hyperparameters 

p_vir = 0.3 # vertical inversion rate 

p_vib = 0.1 # vertical inversion block size 

 

## convergence hyperparameters  

convergence_slope = 1e-3 ## slope of fOCS for which convergence is reached 

convergence_lastiter = 50 ## convergence evaluated over the last ... iterations 

maximum_iteration = 3000 ## maximum number of iterations 

 

GRMstar = GRM + (matrix(1, shape=(nmal, nmal)) - I(nmal)) / (nmal - 1) 

## I(x): a function that produces identity matrix of size x*x 

 

## PHASE 1 GENETIC ALGORITHM: optimizing additive + inbreeding components 

S_allP1 = matrix(NA, shape = (phase1_Npar, phase1_Ntop, nfem)) 

fOCS_AI_avg = numeric(length = maximum_iteration) 

lamba_i_fin = numeric(length = phase1_Npar) 
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for npx in range(phase1_Npar): # parallelizing the GA 

 

 # generating seed sire index array, an array containing indices of sires to be mated 

 S = random(nmal, size=(phase1_Ns, nfem), replace=T)  

 lambda_i = 0  # seed lambda i 

  

 for itx in range(maximum_iteration): 

  # converting sire index array S to sire proportion array X (using s_to_x) 

  

  X = matrix(NA, shape=(phase1_Ns, nmal))  

  for zs in range(nmal):  

   X[zs,:] = s_to_x(S[zs,:], nmal) 

  

  a_s = X @ bhat # eqn [15]; @: matrix multiplication 

  ## for TBV control: b is used in place of bhat 

  i_s = diag(X @ GRMstar @ X.T) # eqn [16]; X.T: transpose of X 

  

  fOCS_AI = a_s + lambda_i*i_s # eqn [17] 

  fOCS_AI_avg[itx] = mean(fOCS_AI)  

 

  ## scaling factor for genetic operators(eqn. [6], based on Srinivas and Patnaik (1994)) 

  f_min, f_mean, f_max = min(fOCS_AI), mean(fOCS_AI), max(fOCS_AI) 

  scaling_factor = (f_max - f_mean) / (f_max - f_min) 

  

  # updating lambda_i  

  i_avg = mean(i_s) 

  lambda_i = lambda_i + z_lambda*(i_avg - i_t) 

  

  top_sln_idx = argsort(fOCS_AI)[-phase1_Ntop:] # extract top phase1_Ntop solutions 

  S_top = S[top_sln_idx,:] 

  

  ## testing convergence using slope of fOCS_AI 

  if itx >= convergence_lastiter: 

   if slope(fOCS_AI_avg[-convergence_lastiter:]) <= convergence_slope: 

    break 

  

  ## applying genetic operators, with hyperparameters scaled by scaling_factor 

  S_off = S_top[random(phase1_Ntop, size=(phase1_Ns - phase1_Ntop)),:] 

  # mutation 

  S_off = mutation(S_off, p_m, scaling_factor)  

  # horizontal recombination 

  S_off = horizontal_recombination(S_off, p_hcr, p_hcb, scaling_factor)  

  # vertical recombination 

  S_off = vertical_recombination(S_off, p_vcr, p_vcb, scaling_factor)  

  # horizontal inversion 

  S_off = horizontal_inversion(S_off, p_hir, p_hib, scaling_factor)  

  # vertical inversion 

  S_off = vertical_inversion(S_off, p_vir, p_vib, scaling_factor)  

  

  S = vstack((S_top, S_off)) # combining S_top and S_off -> new S 

  

 lamba_i_fin[npx] = lambda_i 

 S_allP1[npx,:,:] = S_top 

 

S_allP1 = reshape(S_allP1, shape=(-1, nfem))  

## reshape S_allP1 into a new shape: ((phase1_Ntop*phase1_Npar) * nfem) 
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G.2. Phase 2 Pseudocode for Chapter 6 

The pseudocode for the Phase 2 of the cascading genetic algorithm, which aimed to optimize 

the dominance component for the offspring, is as follows: 

##### PHASE 2 GENETIC ALGORITHM  

###INPUT: S_allP1 , H_scorearray (D_scorearray for (true) dominance control) 

## S_allP1: Solutions optimized in Phase 1 

## H_scorearray: Heterozygosity score array 

## D_scorearray: (True) Dominance Score Array  

#### D_scorearray can also be calculated using estimated dominance effect sizes 

#### (if such estimates are available) 

 

## GENETIC OPERATORS HYPERPARAMETERS 

# Vertical Recombination  

p_vcr = 0.4 # vertical recombination rate 

p_vcb = 0.1 # vertical recombination blocksize 

 

# Horizontal Inversion 

p_hir = 0.4 # horizontal inversion rate 

p_hib = 0.1 # horizontal inversion blocksize 

 

# Solution Hyperparameters 

Phase2_Ns = 3000 

Phase2_Ntop = 2 

Phase2_Npar = 8 

 

# Convergence Hyperparameters 

convergence_slope = 1e-5 

convergence_lastiter = 200 

maximum_iteration = 30000 

 

nmal, nfem = H_scorearray.shape ## D_scorearray if dominance effect sizes are used 

nsln_from_p1 = nrow(S_allP1) 

 

# GA for optimizing dominance components  

S_allP2 = matrix(NA, shape=(Phase2_Npar, nfem)) 

for npx in range(Phase2_Npar): # parallelization of GA 

 S_off = S_allP1[random(nsln_from_p1, size=(Phase2_Ns - nsln_from_p1)),:] 

 ## genetic operators to remove duplicated solutions from the sampling process   

 S_off = vertical_recombination(S_off, p_vcr, p_vcb) # vertical recombination 

 S_off = horizontal_inversion(S_off, p_hir, p_hib) # horizontal inversion 

  

 S = vstack((S_allP1, S_off)) # shape = (Phase2_Ns, nfem) 

 fOCS_D = numeric(maximum_iteration) 

  

 for itx in range(maximum_iteration): 

  # calculating the dominance scores for each solutions fOCS_D (d_s_bold)  

  d_s_bold = numeric(length = Phase2_Ns) 

  for i in range(Phase2_Ns): 

   d_s = numeric(length = nfem) 

   for zf in range(nfem):  

    sire_from_S = S[i,zf] 

    d_s[zf] = H_scorearray[sire_from_S,zf]  

    ## D_scorearray if dominance effect sizes are used 

   d_s_bold[i] = sum(d_s) 

   

  d_s_top_index = argsort(d_s_bold)[-Phase2_Ntop:] # extract top phase2_Ntop sols. 

  S_top = S[d_s_top_index,:] 

  fOCS_D[itx] = mean(d_s_bold) 

   

  # testing convergence 

  if itx >= convergence_lastiter: 

   if slope(fOCS_D[-convergence_lastiter:]) <= convergence_slope 

    break 
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  f_min, f_mean, f_max = min(d_s_bold), mean(d_s_bold), max(d_s_bold) 

  scaling_factor = (f_max - f_mean) / (f_max - f_min) 

   

  # generate new S array 

  S_off = S_top[random(Phase2_Ntop, size=(Phase2_Ns - Phase2_Ntop)),:] 

# vertical recombination 

  S_off = vertical_recombination(S_off, p_vcr, p_vcb, scaling_factor)  

# horizontal inversion 

  S_off = horizontal_inversion(S_off, p_hir, p_hib, scaling_factor)  

   

  S = vstack((S_top, S_off)) # stacking S_top and S_off -> new S 

  

 # extract the most optimal solution  

 s_optP2 = S[argmax(d_s_bold),:] 

 S_allP2[npx,:] = s_optP2  
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