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Abstract

While selective breeding has played an important role in improving the economic
performance of animals, traditional selection methods depend on animal-based data such as
phenotypic or Estimated Breeding Values. The advent of novel genotyping technologies have
led to genomic data, which directly probed into the genotypic configuration of the animals.
This allows the exploitation of non-additive genetic components such as the dominance
effects, which previously were not exploitable in selective breeding due to their dependence
on the genotypic configurations of the parents, an aspect not made available through animal-
based data. The use of such components has been relegated to crossbreeding systems, and

rarely in within population mating systems.

For this reason, the aim of this thesis is to explore the optimization of breeding pairs and
mating decisions, with emphasis on the use of genomic data. This thesis will explore the use
of such data in the exploitation of additive and dominance genetic components while
constraining the inbreeding level increment. To cover the large sample space of possible
solutions, this project will be conducted using artificial intelligence for the optimization of
breeding pairs. The optimization method proposed in this study was validated using a
simulated dataset.

It is noted that there could be factors such as genetic architecture and data sizes that would
affect the usability of genomic data in the optimization of breeding pairs, which was the
reason this project starts by investigating the impact of these factors on the power and false
positive rate of detecting quantitative trait loci (QTL) in a Genome-Wide Association Study
(GWAS), a tool widely used for the detection of QTL and estimating the effect sizes of
genomic regions. This study suggested significant impacts of sample sizes and number of
markers, as well as genetic architecture of the traits on the power and false positive rates of
the GWAS. This study also explored the performance of GWAS using two commonly used
multiple testing correction methods, and also proposed a scoring method that could be used to

test the optimality of thresholds between different multiple testing correction methods.

From the findings of this foundational work, techniques that could improve the performance
of GWAS experiments have been explored. One such techniques was the calculation of
optimal threshold that takes into account the effects of genetic architecture and data size. For
this calculation, a method based on Receiver Operating Characteristics was developed to



calculate the optimal threshold of a GWAS. Simulation studies suggested this method
performed better in binary classifications and marker selection for genomic predictions, with
the use of this optimal threshold resulting in an increment of accuracy of genomic prediction
up to 16.8% compared to that of the Bonferroni method, and 7.0% compared to the

Benjamini-Hochberg FDR method.

The calculation of optimal threshold requires information on the genetic architecture of the
trait, and this has become the basis for the next part of the thesis, where a novel method that
estimates the genetic architecture parameters such as number of QTL and shape of the effect
size distributions was proposed, while taking into account the impact of various confounding
factors such as correlation between markers, heterogeneity in linkage disequilibrium
structures, and allele frequency distribution. Using this method, the estimated number of QTL
with effect sizes 0.1 g, ranged from 69.9% to 167.0% (an average of 109.8%) of the true
number of QTL, and for effect size 1.0 g, it ranged from 101.6% to 175.8% (an average of
123.6%). The method was developed to be able to estimate the QTL effect size, similar to a
GWAS, but taking into account the impact of the confounding factors. This method would
also allow the detection of QTL with smaller effect size with more confidence. New
statistical tests designed to be powerful at the tail of the QTL distribution were developed,
and an observation was made on the preference of utilization of test statistics for optimization

of breeding pairs over the estimated effect size of the markers.

For the final chapter, a framework for the optimization of breeding pairs was developed that
could optimize both the additive and dominance genetic component while constraining the
increment in inbreeding coefficient. For this framework, a genetic algorithm was used. Using
the EBVs, this method successfully improved the additive genetic component by up to 87.0%
compared to a truncation genomic selection method. Using heterozygosity as a mean of
optimizing the dominance component, the genetic lift from the dominance component in
offspring is approximately twice the additive genetic gain, although the lift only occurs in the

first generation.

This project is important for livestock producers or species conservationists who wished to
improve the additive and non-additive genetic components in their breeding herds by using
genomic data. It is anticipated that this framework could be further developed into a full-
fledged product that could be utilized in a commercial setting.
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small effect sizes between the true QTL effect size distribution (black lines)
and estimated QTL effect size distributions (red lines).

Chapter 6. An Optimal Contribution Selection Algorithm that Utilizes Non-additive
Genetic Effects

Figure 6.1: Response to selection on the (a) dominance genetic component and 180

(b) total genetic merit across generations.

Figure 6.2: The effects of inclusion of the dominance component in mating 181
optimization on (a) the dominance genetic component and (b) total genetic

merit across generations in situations where only estimated data are utilized.

Figure 6.3: The effects of type of additive information on the optimization of 181

the additive genetic component.
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Figure 6.4: The effects of cessation of optimization of dominance genetic 182

component on the total genetic merit from the OCS.

Figure 6.5: The effects of number of sires and dams on the optimization of (a) 185
additive genetic component, (b) dominance genetic component and (c) total

genetic merit.

Figure 6.6: The effects of additive genetic variance on the optimization of (a) 185
additive genetic component, (b) dominance genetic component and (c) total

genetic merit.

Figure 6.7: The effects of variance of the dominance QTL effect size 185
distribution on the optimization of (a) additive genetic component, (b)
dominance genetic component and (c) total genetic merit.

Appendix B. The Distribution of Output from a GWAS Experiment

Figure B.1: Histogram showing the distribution of estimated effect size of a 204
QTL with an effect size of 1.0 g,.

Figure B.2: Histogram of estimated effect size obtained from 100 replicates of 204
GWAS experiment with 50k independent markers, showing the Student’s t-

distribution.

Figure B.3: Histogram showing the distribution of estimated effect sizes of 205
GWAS experiment for an all-null markers (blue) and with 100 QTL that
follows a gamma distribution with shape parameter of 0.1 and scale parameter

1 (orange).

Figure B.4: Histogram of the squared test statistics obtained from 100 206
replicates of GWAS experiment with 50k independent markers.

Figure B.5: Histogram showing the distribution of test statistics of GWAS 206
experiment for all-null markers (blue) and with 100 QTL that follows a
gamma distribution with shape parameter of 0.1 and scale parameter 1

(orange).
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Figure B.6: The histogram of (a) estimated effect sizes and (b) test statistics
obtained from 100 replicates of GWAS experiment with sample size of 5000

and 50k independent markers.

Figure B.7: The effects of varying values of (a) shape parameter a and (b)

scale parameter b on the relative frequency of QTL effect sizes.

Figure B.8: Histogram showing the effects (in units of residual standard
deviation) of number of QTL k on d, averaged from 100 GWAS

experiments, with sample size of 5000 over 50k independent markers.

Figure B.9: The effects of number of QTL k on (a-b) d}, and (c-d) the
Manhattan plots of the GWAS.

Figure B.10: Histogram showing the effects of shape parameter a on d}

Figure B.11: Histograms showing the effects of shape parameter a of the dlyr,,

on (a-b) d}; and (c-d) Manhattan plots.

Figure B.12: Histograms showing the d}, of (a) genetic architecture
Q(200,0.9,1) and (b) genetic architecture Q(1800, 0.1, 1).

Figure B.13: Histograms showing the effects of scale parameters b on (a-b)
dz and (c-d) d.

Figure B.14: The relative likelihood of allele frequency distribution under

varying shape parameter for the symmetric Beta distribution.

Figure B.15: Histograms showing the effects of allele frequency distributions
on the (a-b) overall shape of d’, and (c-d) the distribution of estimated effect
sizes of the null markers (blue bars) and non-null markers (orange bars), with
the red lines indicating the top 0.1% of all markers in term of estimated effect

sizes.

Figure B.16: The effects of allele frequency distributions on (a-b) overall
shape of d}, and (c-d) the distribution of test statistics of the null markers
(blue bars) and non-null markers (orange bars), with the red lines indicating

the top 0.1% of all markers in terms of test statistics.
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Figure B.17: Histograms showing thee effects of sample size used in the
GWAS on d},, with (a-b) showing the overall shape of the distributions, and
(c-d) the distribution of estimated effect sizes of the null markers (blue) and
non-null markers (orange), with red lines indicating the top 0.1% of all

markers in term of estimated effect sizes.

Figure B.18: Histogram showing the effects of sample size of (a-b) the overall
shape of d}, and (c-d) the proportion of null markers (blue) and non-null
markers (orange),with red lines indicating the top 0.1% of all markers in term

of test statistics.

Figure B.19: Histogram showing the distribution of estimated effect size of a
QTL under (a) independent markers and (b) average pairwise correlation of
0.98, with genetic architecture parameter @ (2000, 0.5, 1).

Figure B.20: The effects of correlation between markers in (a-b) the d}s and
(c-d) di,, with (a) and (c) being the distribution if the markers are

independent, and (b) and (d) if the pairwise marker correlation is set at 0.97.

Figure B.21: The numerous possibility of the underlying QTL effect size
distribution (red crosses) given a peak being observed in the estimated effect

sizes of a GWAS experiment (blue line).

Appendix C. Test Statistics for Equality between Distributions of GWAS

Figure C.1: The effects of additional data points at different part of the
distribution on the kurtosis of the distribution.

Figure C.2: Examples of (a) Kolmogorov-Smirnov test and (b) truncated

Kolmogorov-Smirnov test.
Figure C.3: Example of (a) Kuiper’s test and (b) truncated Kuiper’s test.
Figure C.4: The mechanism of maximal x-axis distance test.

Figure C.5: Example of (a) Wasserstein’s statistics and (b) truncated

Wasserstein’s statistics.

Figure C.6: Example of (a) DTS statistics and (b) truncated DTS statistics.
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Figure C.7: The mechanism of “Equivalence in Quantiles” test. 236

Figure C.8: The mechanism of “Distance from Median” test, using the same 238
set of MECDFs with the same y-axis cut-off points of y, = 0.002 and the

same data and distribution of x-axis values as in Figure C.7.

Figure C.9: Examples of tpz,, calculated using equation [21] using the 239

“Distance from Median” raster plots in Figure C.8.

Figure C.10: Mechanism of Error Amplification by Integration (EAI). 242
Figure C.11: The use of EALI in testing the equality of DZ,s. 242
Figure C.12: The mechanism of “differences in moment” test. 248
Figure C.13: An application of fractional moments in testing of equality of 250

distributions.
Figure C.14: The area between the curves of fractional moments. 251

Appendix D. The Selection of Proposed Genetic Architecture Parameters

Figure D.1: The effects of changing a fixed amount of parameter k on the 254

MECDF and their asymptotic distributions.

Figure D.2: An example of the “geom-linear” progression (orange line), in 256

comparison with the regular geometric progression (blue line).
Figure D.3: Example of gamma distribution under varying shape parameter a. 258

Appendix E. Evaluation of Sizes of Sample Space for Additive, Non-additive and

Inbreeding Coefficient

Figure E.1: The ratio between ng,, and ngpy, defined by equation [14], 267

evaluated across a number of sires and dams.
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Chapter 1. Introduction

Selection processes have played a major role in livestock production since the beginning of
human civilization, starting from the process of domestication of various wild animals to the
formation of specialized breeds tailored for high economic performance. In recent decades,

selection has made dramatic increase on the livestock’s economic productivity (Bokonyi,

1974; Gill and Harland, 1992).

Previous selection processes utilized animal-based data such as phenotypic data or, derived
from that, Estimated Breeding Values (EBVS) of the animals. The advancement of molecular
technology and the development of genotyping techniques for high-density genetic marker
arrays based on Single Nucleotide Polymorphism (SNP) and Whole Genome Sequencing
(WGS) has led to the development of a new class of genetic data utilizable in a selection
program: genomic-based data. Genomic-based data, such as a genotype array, can be used in
combination with phenotype to estimate the genetic merit contributed by a genomic region
toward the phenotype, which can be used to scan for causal variants associated with a trait
through Genome-Wide Association Study (GWAS) (Spencer et al., 2009; Visscher et al.,
2017). Genomic data can also be used to estimate the additive genetic variance of a trait
(Yang et al., 2009) and EBVs of the animals, which is subsequently utilized in genomic
selection (VanRaden, 2008). Genomic-based estimates of level of consanguinity between
animals have also been developed (VVanRaden, 2008), which has been used in Optimal
Contribution Selection (OCS) method where selection is done under a constraint of

inbreeding coefficient increment (Clark et al., 2013).

Most of the breeding programs have thus far focused on selection using additive genetic
effects, with the non-additive effects, such as dominance and epistasis, often being used in
crossbreeding program, but rarely for selection and mating within breed. Unlike the additive
genetic component, which depends solely on the number of copies of alleles, the non-additive
component depends on the exact genotypic configurations of the alleles, which would be
scrambled from parent to offspring generations through Mendelian assortment (de Boer et al.,
1993). This precludes the use of EBV in optimization of the non-additive genetic component.
This is further complicated by the difficulties in estimation of these non-additive genetic
components, as that requires multiple observations of the same mating, which occurs mainly

in species with larger full sib groups. For this reason, these genetic components were
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considered not exploitable through selection and mating designs in most animal-based data
(Lynch and Walsh, 1998). Marker-based data directly probes into the genotypic configuration
of the parents however, which allows the prediction of offspring genotype, including the non-
additive effects which can be estimated from heterozygosity. In theory, genomic-based
information would allow the selection of individuals based on both the additive and non-

additive genetic components.

Therefore genomic-based data can theoretically also be used to optimize the breeding pairs in
a selection program. While this optimization is traditionally done using EBVs of the animals
(Kinghorn, 2000), genomic-based data is now available, which can then be used to select
animals with high merit and predict offspring merit based on both additive and non-additive

effects.

When using genomic data in the optimization of selection and mating, it is imperative to
establish which region in the genome is associated with the trait. This could be estimated with
several methods, e.g. such as those used in GWAS. As a method, GWAS suffers from several
limitations however. Due to the stringent threshold from the large number of markers and low
proportion of variance explained by individual QTL, GWAS in general failed to explain a
large portion of the additive genetic component (Hall et al., 2016). Studies on the factors that
affect the false positive rate of a GWAS, which could produce a misleading result for the
optimization, remain lacking. The effects of certain factors, especially those pertaining to the
genetic architecture of the traits, on the power and false positive rate of the GWAS also have
not been studied widely. There were also problems with how well a threshold balances the
power and false positive rate of a GWAS, which previous publications have suggested to be
highly dependent on some of these factors (Hoggart et al., 2008; Panagiotou and loannidis,
2012). These issues of GWAS could have contributed to the replicability crisis of a GWAS
(Heller and Yekutieli, 2014; Wang and Zhu, 2019), which could impede the use of genomic-
based information on the optimization of the breeding pairs.

With this in mind, the aim of this project is to design a framework for the optimization of
breeding pairs in a selective breeding program, with emphasis placed on optimizing the
additive and non-additive genetic components while constraining the increment in level of
inbreeding. For this study, only the dominance component was utilized due to the difficulty in
obtaining estimates required for the optimization of an epistatic component. Emphasis was

placed on the use of additive and non-additive genomic-based information in the optimization
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of the breeding pairs, such as estimated effect sizes and test statistics from a GWAS
experiment. Due to the vast sample space of the possible mating pairs, methods based on

artificial intelligence was used to optimize the mating pairs.

This project starts by investigating the factors that could affect the reliability of the genetic
effects estimated at various genomic regions by a GWAS. A comprehensive study on
potential confounding factors that could affect such reliability, such as genetic architecture of
the trait, data size, allele frequency distribution and correlations between markers, will be
detailed in the first experimental chapter (Chapter 3), which serves as a foundation for the
subsequent chapters. Using the findings obtained from Chapter 3, techniques that could be
utilized to improve the power and false positive rate of the GWAS were developed. This
includes the calculation of an optimal threshold that balances power and false positive rate of
a GWAS, which is proposed in Chapter 4, and presentation of a method of estimating genetic
architecture parameters and QTL effects size while taking into account the effects of
aforementioned confounding factors in Chapter 5. In the final chapter (Chapter 6), findings
from the previous chapters were incorporated into the development of an optimized selective
breeding method that could utilize genomic-based information to optimize the additive and
non-additive genetic component under a constraint of increment of inbreeding level. This

method was tested using simulated data under varying parameter values.

This project would be important for livestock breeders and producers who aim to improve the
genetic merits of the animals while constraining the level of inbreeding and exploiting the
non-additive genetic components, as well as breed or species conservationists that aim to

preserve the additive and non-additive variation for traits.
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Chapter 2. Literature Review

2.1. Abstract

The aim of this chapter is to review previous studies that have been done on optimizing
breeding pairs, as well as all the necessary components for such optimization. There are three
main sections in this literature review. The first part covers optimal contribution selection for
the optimization of contributions of selection candidates to the next generation. The second
part of the chapter deals with the components required for the optimization. This includes the
estimation of inbreeding coefficient and co-ancestry of the selected animals, as well as
previous attempts to detect the additive and non-additive effects of quantitative trait loci
(QTL). The third part focuses on factors that would be important in the detection of these
QTL, and how to improve their detection. This includes a discussion on the threshold for the
multiple testing correction methods in the testing of QTL effect sizes. Findings from this
literature review will also be used to establish the most practical approach for designing the
breeding pair optimization method, as well as various aspects that need to be taken into

account when designing such methods.
2.2. Selection Process and the Beginning of Optimized

Selection Program

Selection processes have played a major role in the livestock production since the beginning
of human civilization, from the breeding of domestic sheep from mouflons for wool colour
and reduced fibre diameter (Ryder, 1973) up to the breeding of cattle for meat and dairy
production (Gill and Harland, 1992). The selection process has been imperative in the
improvement of the livestock herds to fulfil the ever-increasing needs of the humanity
(Bokonyi, 1974).

For most of the history, selective breeding is done based on truncation selection, where the
individuals were selected based on their performance alone, with all the substandard
individuals being culled and the top animals were chosen to be propagated into the next
generation (Akdemir and Sanchez, 2016; Crow and Kimura, 1979). The selection can be done
from the traditional phenotype-based selection process up to the most recent genomic

selection process (VanRaden, 2008). This breeding system is simple to operate and execute
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and is effective in changing the phenotype of the animals (Crow and Kimura, 1979). There
are several models being proposed in terms of expected additive genetic gains that could be
obtained from a certain breeding strategy, most notably the link between the proportion of
sires and dams selected with the expected additive genetic gain per generation (Crow and
Kimura, 1979; Falconer, 1989; Robertson, 1970).

The traditional selection method and its associated models have their shortcoming, however.
One such shortcomings is the un-optimized contributions and allocation of sires toward the
dams. As dams are more restricted in the amount of contributable genetic material to the next
generation per animals, they represented a limiting resource toward a breeding program
(Wray and Goddard, 1994; Robertson, 1970). Traditional selection methods tend to produce
an “equal and randomized contribution” of sires, where each sire has equal chance of
contribute to the next generation, and yet their contributions and mating are randomized (i.e.
no specific patterns in the sire contributions and sire-dam matching). The equal and
randomized contribution of sires might cause less valuable sires to contribute excessively to
the gene pool in the offspring while leaving fewer dams for the best sires, impacting the
overall performance of the offspring and reducing the efficiency of a breeding program.
Randomized contribution also produces un-optimized pairings of sires and dams, which
would lead to a failure in optimization of the non-additive genetic components that depend on
the exact configuration of alleles of sire and dam (de Boer et al., 1993).

Furthermore, truncation selection method and its associated models assume that the optimal
values for some parameters, such as the proportion of selected sires, can be calculated before
the commencement of a breeding program, and then remain unchanged for the subsequent
generations (Brotherstone and Goddard, 2005; Meuwissen, 1997). Such breeding methods
have been noted as the “static” breeding decision, which is less optimal as it fails to exploit
unforeseen genetic gains in the subsequent generations (Meuwissen, 1997), while not taking
in consideration the actual situations of the breeding herds, such as the consanguinity in the
base population. This has become the impetus for a “dynamic” or “tactical” breeding
decision, where the optimal sire contributions are calculated using information about the
pedigree structure from the breeding herds (Brotherstone and Goddard, 2005; Meuwissen,
1997).

The paradigm of tactical breeding decision allows a more flexible framework for the breeding
strategy, which includes controlling the level of inbreeding and the genetic diversity in the
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population (Brotherstone and Goddard, 2005; Kinghorn, 2000). While inbreeding can also
occur in random and natural selection, the artificial selection process utilized in livestock
production systems accelerates the rate of inbreeding as selected animals tend to be more
related (Falconer, 1989). Inbreeding has been implicated with a decline in the economic
performance and welfare of the animals in a condition known as “inbreeding depression”
(Falconer, 1989; Ryder and Wedemeyer, 1982; Schlie, 1967). This led to the development of
tactical breeding strategies that aimed to maximize additive genetic gains while restricting the
level of inbreeding.

Early attempts of this strategy focused on controlling the proportion of selected sires. The
simplest and yet most inflexible method was simply calculating the optimal proportion of top
sires to be selected such that the expected increase in inbreeding would be at the predefined
level (Toro and Perez-Enciso, 1990). Dempfle (1975) and Dempfle (1990) attempted to
achieve this aim by calculating the number of sires contributed by each full-sib family, while
finding a balance between a within-family selection, which minimizes the increase in
inbreeding coefficient, and between-family selection, which maximize the coefficient. This
approach might not applicable if family information is unavailable, limiting its applicability
(Toro and Perez-Enciso, 1990; Wray and Goddard, 1994). Using linear programming, Toro
and Perez-Enciso (1990) proposed a mate selection method where the best combinations of
individual sires and dams were chosen in attempt to maximize the genetic gain under the
constraint of inbreeding level increment for one generation. While this method resolves the
impact caused by the “randomized contribution”, this method assumes a fixed equal number
of sires and dams to be propagated into the next generation while disallowing half-sibs in the
offspring population, thus with restrictions in its flexibility (Toro and Perez-Enciso, 1990).

Wray and Goddard (1994) argued that all aforementioned methods have made some arbitrary
criterion and assumptions to control the increase of inbreeding rate, which may not reflect the
true situation that might be encountered in a livestock production system. Therefore, rather
than finding the optimal proportion of sires selected from a predefined level of inbreeding
coefficient, Wray and Goddard (1994) directly derive a score that dictates the balance
between the additive genetic gains and the increase in inbreeding coefficient, which for sire-
only selection is defined using the following LaGrange objective function (denoted as f,j;)

(Wray and Goddard, 1994):

1 1
forj(x) = Ebe —Q* 3" (xTAx) [1]
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Where x is defined as the vector of sire contributions, xT (with superscript T) denotes the
transpose of the vector of the sire contributions, b being the sire Estimated Breeding Values
(EBVs), A being the numerator relationship matrix between the sires, and Q being the
Lagrange multiplier that act as a weighting factor that balances emphasis on the additive
genetic gain versus the inbreeding coefficient. The use of LaGrange objective function in
balancing the additive genetic gains (i.e. xTb) and the increase in inbreeding coefficient (i.e.
xT Ax) significantly improves the model’s flexibility by allowing a variable number of sires

and dams to be selected with variable contributions.

Wray and Goddard (1994) calculated Q using the expected genetic gains for an infinite
population size, time domain and observed inbreeding depression. The increment in
inbreeding level is not part of the calculation of Q however, due to an assumption of uniform
risk of inbreeding depression toward a breeding program, and this has become the subject of
criticism by Meuwissen (1997). A high inbreeding coefficient increases the probability of
deleterious alleles being drifted toward fixation, increasing its risk toward a breeding
program. This is especially problematic if it is used on a trait with little inbreeding depression
during the time of calculation of Q, which produces an overly lenient Q. For this reason,
Meuwissen (1997) advocated the calculation of Q directly from the targeted increment of
level of inbreeding coefficient, with the presumption that the breeders would generally know
the acceptable increment of level of inbreeding coefficient. Despite this, the algorithm
proposed by Meuwissen (1997) still largely followed of the one by Wray and Goddard
(1994), including the use of a LaGrange objective function. Therefore, both Meuwissen
(1997) and Wray and Goddard (1994) have been hailed as the pioneering work for the
modern-day Optimal Contribution Selection (OCS) method, which has since become the
main method for an optimized selective breeding operation (Brothersone and Goddard, 2005;
Clark et al., 2013; Nielsen et al., 2011).

Despite the importance of Meuwissen (1997) and Wray and Goddard (1994), both methods
are still highly restrictive in terms of its flexibility. This is caused by the fact that both
methods have been built using generalized theorems based on isolated studies on the effects
of selection on additive genetic gain and inbreeding coefficient. A more unified framework
on other aspects pertaining to a breeding operation, such as those related to mate allocations
and economic evaluations, remained lacking. For this reason, Kinghorn (2000) employed the
“Mate Selection” framework, where indices from various aspects in the breeding operation

could be integrated. In essence, given a vector of contributions of chosen and allocated sires
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x, the integrated index for mate selection, the Mate Selection Index (MSI) has the generalized

form as follows:

Nfactor

MSI= ) s fi(®) [2]
k=1
Where nsqq.0r IS the number of factors taken into account by the MSI and 4, being the
weighting factor associated with the components that needed to be optimized, which is
defined as f;, (x). The f, (x) could include any factors associated with a breeding operation,
such as additive genetic gain, impact from inbreeding coefficients, gains from heterosis and

cost of mating policy (Kinghorn, 2000).

Maximizing the MSI is not a trivial issue however, as this index comprises of mathematically
disparate components. Due to this, Kinghorn (2000) utilized an differential evolution, a form
of evolutionary algorithm, in order to find x that maximize the MSI, given the constraints set
by the A, and f, (x). This allows a more flexible model of optimization to be specified, thus

better suited to real life scenarios commonly encountered in a breeding operation.

Since Kinghorn (2000), many other renditions of OCS algorithms have been proposed and
published. Many of these new algorithms draw inspirations from Kinghorn’s work however,
with the most notable aspect being the use of evolutionary algorithm. Due to its flexibility,
the evolution algorithm would later be directly used to optimize the OCS’s LaGrange
objective function as defined in equation [1], allowing the more dynamic and case-by-case
breeding strategy that maximizes the additive genetic gains under a constrained inbreeding
rate (Gourdine et al., 2012; Sgrensen et al., 2008). Evolutionary algorithms have allowed the
emergence of new OCS algorithms such as the Look Ahead Mate Selection” (LAMS)
algorithm (Shepherd and Kinghorn, 1998) and Differential Evolution based methods
(Kinghorn, 2011), and OCS for conflicting breeding objective (Wang et al., 2017a).

Given the flexibility of the evolutionary algorithm, this opened up a possibility for selection
that takes into account non-additive genetic components such as dominance effects. While
they could have contributed a significant portion of the genetic variance, they are there are
difficult to exploit as they depend on the parental genotypic configuration, which is not
observable through pedigree data (Crow, 2010; Falconer, 1989; Lynch and Walsh, 1998).
However, with the advancement of high-density genomic data such as Single Nucleotide

Polymorphism (SNP) markers and whole genome sequence data however, this allowed a
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direct observation on the genotypic states of the individuals, therefore allowing the prediction
of non-additive genetic component in the progeny. Despite this, OCS and mate allocation
algorithms that utilize the non-additive genetic component is currently lacking. While
Kinghorn (2000) mentioned the possibility of exploiting the additional genetic gains derived
from crossbreeding (i.e., heterosis), the publication did not provide additional information on
the calculation and optimization of the non-additive genetic component. Gonzéalez-Diéguez et
al. (2019) have proposed a mate allocation method with dominance effect taken into account,
but do not restrict the increment in inbreeding level. The lack of methods to increase additive
and non-additive while constraining the increase of inbreeding coefficient stands as a missed

opportunity of improving the long-term economic yield of a breeding program.

Despite the opportunity, there is a possibility that an OCS that utilizes additive and non-
additive genetic components while simultaneously constraining the increase in inbreeding
level might not be feasible. For this reason, it is important to establish the feasibility of such
OCS, and this can be done by testing the feasibility of obtaining an estimate for each
component in the OCS, and the feasibility of combining these estimates into an OCS.

2.3. Aspects of an Optimized Selective Breeding
2.3.1. Inbreeding

Perhaps the most important aspect for an optimized selective breeding program is the control
of inbreeding, defined as the breeding of genetically related parents (Falconer, 1989; Griffith
et al., 2015). Statistically the coefficient of inbreeding is defined as the probability of two
alleles in an individual being inherited from the same copy of allele of a common ancestor
(Griffith et al., 2015).

2.3.1.1. Estimating the Changes in Inbreeding Coefficient

To control the level of inbreeding, the changes of inbreeding coefficient per generation of

selection (denoted as AF) need to be estimated.

There were several methods being put forward to estimate the changes in the level of
inbreeding. Some of the earliest methods utilized pedigree data, with the pioneering works
being those of Wright (1921) and Fisher (1949). The most important and more practical
pedigree-based method came after 1950 however, with Charles R. Henderson developing a

matrix that contains the ancestry relationship between each individual (Henderson, 1975).
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This matrix, now known as Numerator Relationship Matrix (NRM), has been used to develop
efficient algorithms to calculate inbreeding coefficients in very large pedigrees (Quaas, 1976;

Meuwissen and Luo, 1992).

In breeding programs inbreeding needs to be managed by controlling the rate of inbreeding,
i.e., to limit the increase of the average inbreeding coefficient from generation to generation.
Inbreeding coefficients themselves are relative to some based population of animals where
ancestry is unknown, e.g., these coefficients would be higher in a population with a known
deep pedigree. Using NRM, the expected increase in inbreeding coefficient can be expressed
as the co-ancestry among the selected parents (Meuwissen, 1997), which can be calculated as

follows:

1
AF = ExTAx [3]

This method requires an accurate and complete pedigree data, with any missing data could
lead to underestimation of co-ancestry of selected parents and therefore the rate of inbreeding
(VanRaden, 1992). Similarly, inbreeding coefficients can be underestimated with the

assumption of unrelated founder population in the NRM (McQuillan et al., 2008).

The availability of high-density genotype array allows alternative methods of estimating the
genetic relationship between individuals, such as the “Genomic Relationship Matrix” (GRM)
by VanRaden (2008). Mathematically, a GRM is a square symmetric matrix that contains the
scaled covariance of genomic states between animals (Gondro, 2015), and the inbreeding
coefficient is defined as the diagonal of the GRM subtracted by 1 (Caballero et al., 2022). It
can also be defined as the ratio between the variance of a SNP marker with the sum of
variances from all SNP markers, subtracted by 1 (Caballero et al., 2022). In the context of
optimized selective breeding, the GRM could be used in place of NRM in equation [3] to
estimate the inbreeding level changes. GRM has the advantage in its ability in estimating the
co-ancestry of apparently unrelated animals (Gondro, 2015). Despite this, the inbreeding
coefficient estimated through GRM is not robust against changing allele frequencies
(VanRaden, 2008; Zhang et al., 2015), and given the fact that the GRM is the scaled
covariance between individuals, negative values in GRM are possible, which might cause

some discrepancies in the estimated AF with those that utilized NRM.

Besides deriving inbreeding from the genomic relationship matrix as proposed by VVanRaden

(2008), several other methods have been proposed for the calculation of changes in
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inbreeding level. For example, Yang et al. (2010) proposed a similar method for calculation
of inbreeding coefficients based on the correlation between uniting gametes, while Li and
Horvitz (1953) proposed a method using the expected homozygosity with the assumption of a
Hardy-Weinberg Equilibrium (Caballero et al., 2022).

A common feature for these methods is that they define the inbreeding coefficients as the
sum of variance explained by each SNP marker scaled by the total variance of the allele
frequencies from all the markers. This methodology has been described by Hou and Ochoa
(2023) as “ratio of means” (ROM) methods. A close counterpart for these methods is the
“means of ratio” (MOR) methods, where the variance of a SNP marker is scaled by variance
of the allele frequency from that marker alone. VanRaden (2008), Yang et al. (2010) and Li
and Horvitz (1953) have independently proposed the MOR counterpart of their respective
methods. Despite this, the MOR methods have been criticized for poorly reflecting the
kinship structure as the kinship matrix generated is ill-conditioned (Hou and Ochoa, 2023),
and tend to behave poorly with small sample sizes (Caballero et al., 2023). Neither Caballero
et al. (2021) and Hou and Ochoa (2023) provided explanations for this observation.

One possible reason for the ill-conditioned matrix from MOR methods lies in the distribution
of the kinship estimates, which in turn rooted from the denominators of these estimators.
Since the denominator of ROM estimator involves the summations of variances across all the
SNP markers, their denominator has a larger magnitude than the denominators of the MOR
(which do not involve such summation). The summation of variances increases the
magnitude of the denominator of ROM estimators, thus decreases the sample variance and
kurtosis of this estimators (compared to MOR estimators). This observation was supported
through additional simulations, which suggested MOR estimators of VanRaden (2008)
produces a significantly larger variance and kurtosis than the ROM equivalent (Figure 2.1).
Furthermore, the expressions for the MOR estimators are closely analogous to the
expressions analysed by Pillai and Meng (2016) who proved such expressions produce
Cauchy-distributed random variables, a distribution renowned for its “pathological”
behaviour of having undefined mean and variance (Mun, 2012). Indeed, the expressions for
MOR estimators suggested these estimators would follow a ratio distributions, which often
have ill-defined moments (Brody et al., 2002). It is likely that these ill-defined moments are
the culprit of ill-conditioning of these kinship matrix, thus the poor estimation of variance
component. The observation of ill-conditioned kinship matrix implies the preference of using

ROM estimators over MOR estimators in the estimation of inbreeding.
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Figure 2.1: Histogram showing the estimated inbreeding coefficient obtained from ratio of mean (ROM) method
(blue) and mean of ratio (MOR) methods (orange) from VanRaden (2008). The estimated inbreeding coefficient
from MOR method has a sample variance of 0.0066 and kurtosis of 0.491, which are significantly higher than the
corresponding values of 0.0011 and 0.027 from that obtained using ROM method. In this simulation, 100 repeats
of 5000 unrelated samples with 50k markers with average pairwise linkage disequilibrium of 0.9 were conducted,
with allele frequencies following a symmetric beta distribution with shape parameter of 0.5, and minor allele

frequency filtering set at 0.01.

Method based on effective population sizes in the selected population has also been proposed
by Wang et al. (2017a). In this method, the variance effective population size of the selected

sires and dam has been utilized, with the equation as defined as such:

A= g [4]
~ 8N,, B8N,

Where N, and Ny are the number of selected breeding sires and dams respectively. This
method ignores the inbreeding that might already exist in the base population. This method
also does not take into account the impact of varying amount of contributions of sires and
dams on the inbreeding coefficient (as an example in the scenario of 100 sires with each
contributed to 10 dams, compared to another with 99 sires contributed to one dam, while the
one remaining sire contributed to 901 dams). These shortcomings could be easily overcome

with the use of relationship matrices, for which equation [3] gives the relationship among the

selected parents, thus predicting the inbreeding rate.
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2.3.2. Additive Genetic Component

The most important genetic component of the phenotype contributing to long term genetic
improvement is the additive genetic component. The loci associated with this component
would contribute to the phenotype in an amount proportional to the number of copies of an
allele (Falconer, 1989; Lynch and Walsh, 1998). The additive genetic effect at each locus is

defined as half of the differences between the homozygotes:

a= Haa ; Uga [5]

Where p,,4 and p,, are the phenotypic mean of the homozygotes with genotype A4 and aa
respectively. Given n number of additive QTL, the portion of the phenotype explained by the
additive loci (denoted as A) is the sum of the individual additive effects of each of the loci
(Falconer, 1989; Lynch and Walsh, 1998):

n
A=) gayan [6]
k=1

Where g,, is the number of copies of an allele in locus k, with the values of {0,1,2} for
genotype aa, Aa and AA, respectively, and a; being the additive effect size of the additive
loci. With the assumption of independence between QTL and Hardy-Weinberg Equilibrium
(HWE), the additive genetic variance (denoted as var(A)) is defined as the sum of variances
contributed by each of the n QTL loci (Falconer, 1989):

var(4) = 2+ ) pe(l-py) < a 7]
k=1

Where p; is the allele frequency of locus k. In reality it is unlikely that loci act independently
from each other. It is also infeasible to detect all QTL that contribute to the variance of a trait
as there are likely many QTL with very small effects and difficult to detect statistically. Due
to this the variances explained by the detected QTL often explained less variances than what
is expected from its heritability, causing the missing heritability problem (Maher, 2008), and
have prompted studies like Yang et al. (2011) that uses restricted maximum likelihood
(REML) method to detect variance from additional QTL. Attempts to detect these additional

variance or QTL warrants further studies.
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Most of the efforts on QTL detection focused on additive loci, as their effects are heritable,
and their frequencies and variances can be easily and reliably altered through a selection
process (Falconer, 1989). Many polygenic traits also have significant portion of its variance
explainable through additive genetic component, often more so than that explained by non-
additive genetic component (Crow, 2010; Visscher et al., 2017), and there are solid

groundworks on the methodology of estimation of the effect sizes of the loci.

2.3.2.1. Detection of Additive QTL

The detection of additive QTL is based on regression of the phenotypes on genotypes, which
has become the basis of association studies. The advent of high-density markers that span
throughout the genome has given rise to Genome-Wide Association Study (GWAS). The
additive effects could be estimated one locus at a time (as in Single SNP Regression) or
simultaneously (as in SNP Best Linear Unbiased Prediction (SNPBLUP) or Bayesian
methods) (Gondro, 2015; Wang et al., 2016).

2.3.2.1.1. Single SNP Linear Regression

The Single SNP Linear Regression method is perhaps the most straightforward method of
detecting additive QTL. The basis of this method is to conduct a linear regression of the
phenotypes on the genotypes for each marker. Given a locus j, the estimated additive QTL

effect sizes (denoted as @) can be defined as follows (Falconer, 1989):

cov(x;,y)

_ O Y) 8
K 2p;(1-p)) o

With the cov(x]-, y) being defined as the covariance between genotype of locus j and the

phenotype and the denominator the variance of the genotype

They a, could then be used to test the significance of effects of the loci, with the null
hypothesis being a is not significantly different from zero. The test statistic for this

hypothesis (denoted as F) could be defined using a as follows:

20,(1-p))&°(N - 2)

F = —
var(y) — ij(l — )oj)a2

[9]

Where N is the sample size of the GWAS experiment. Under null hypothesis, the F would
follows a Snedecor’s F-distribution, which asymptotically approaches a chi-squared

distribution with large N (Wang and Xu, 2019), which in turn can be utilized to calculate the
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p-values of the marker having its true effect size significantly different from the null
hypothesis (Gondro, 2015). A detailed mathematical derivation has been provided in

Appendix A.

Compared to SNPBLUP, single SNP linear regression is computationally less demanding,
and the method does not shrink the estimated effect sizes of the QTL as strongly, but
therefore tends to overestimate the marker effect sizes, especially if the marker has extreme
allele frequencies (Gondro, 2015; Wang et al., 2016). The single SNP regression method is
the simplest method as it does not need knowledge on the haplotypes. Some studies such as
Grapes et al. (2004) suggest that the power for single SNP linear regression is comparable to
haplotype-based methods. For sufficiently large sample size and as long as the central limit
theorem applies, linear regression does not require normally distributed residuals (Buzkova,
2013). Single SNP regression has the disadvantage of difficulty in defining the true mutation
due to the QTL being in linkage disequilibrium with multiple SNPs. This is especially
problematic when large numbers of SNPs are being used. Therefore, the method is likely to
inflate the number of detected SNPs, which can be solved by having all the SNP fitted
simultaneously (Hayes, 2013; Pryce et al., 2010).

2.3.2.1.2. SNP Best Linear Unbiased Prediction (SNPBLUP)

SNP Best Linear Unbiased Prediction (SNPBLUP) is another common method used in
GWAS. Unlike the Single SNP Linear Regression, this method fits all the SNP
simultaneously, with the genotype fitted as random effect, and is solved through Tikhonov’s
regularization (Gondro, 2015; Hayes, 2013). For N number of animals and M number of
markers, this method estimates the effect sizes by solving the following matrix equation for a
(Gondro, 2015):

-

Where fi isa 1 X 1 vector containing the estimated mean of the phenotype; @ is a column

171, 1Ix ] '[1ly (10]
X", XTX+AL,| |XTy

vector of length M containing the estimated marker additive effect sizes; 1, being a column
vector of ones with length of N, X being a frequency adjusted genotype array of size N x M,
with I, being an identity matrix of size M X M and y being a column vector of length N
containing the phenotype. The A is a scalar shrinkage factor that controls the instability of
estimated @ caused by the near singularity of the XX matrix, and is defined as follow
(Gondro, 2015; Hoerl and Kennard, 2000):
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Where p, is the allele frequency at the k-th marker locus. It is also noted that as A could add
up to a large number with large number of markers, thus could severely regress the marker
genotype contrasts in the estimation of the effects. Matrix X has also been adjusted based on

the allele frequency at each locus as follows (Gondro, 2015):
X = Xraw - Zp [12]

Where p is vector of length M containing the marker allele frequencies. In terms of
establishing the significance of the markers, the test statistics for the markers, which
measures whether the markers jointly have an effect on the phenotypes, are estimated as such
(Gondro, 2015):

az

F= var(a) [13]

Most of the advantages conferred by this method originated from the simultaneous fitting of
all markers and the use of A, which restrict the overestimation of effect sizes of the QTL, and
the SNPs unrelated to QTLs are calculated much closer to zero. Also due to this, phenotype

predicted from the estimated effect sizes of this method is also less overestimated and closer

to the true additive genetic values (Gondro, 2015).

The main weakness for this method is its computational and memory intensiveness, and
relatively slow compared to Single SNP Linear Regression. Due to its simultaneous fitting,
this method would also produce strong shrinkage in the estimated effect sizes (Gondro,
2015). This can be partially mitigated my assuming the prior effect of effect sizes followed a
non-linear regression, such as Student’s t-distribution. Another method was based on
estimating the posterior probability of whether the SNP follows a certain model, which
assume a prior distribution of SNP effects with large mass at zero, and the remaining SNP in

other non-linear distribution such as normal or t-distribution (Hayes, 2013).

A computationally less intensive variant of SNPBLUP utilizes an intermediate vector of

animals’ relationship matrix and EBVs (Gondro, 2015). With the assumption of y being

mean-centred, the EBVs b could be calculated as follow (Gondro, 2015; Hoerl and Kennard,
2000):
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Where G is the GRM of the animals. If there are fewer genotyped animals compared to
number of SNP markers, the matrix G in equation [14] is smaller than the XX in equation
[10], thus reducing the computational intensity. Using the b, the estimated additive QTL

effect sizes can then be backsolved as follows (Gondro, 2015):

1 —~
230 (1 —p)

2.3.3. Non-Additive Genetic Component

Besides the additive genetic variance, there is a significant portion of the genetic variances
that did not arise from the number of copies of an allele at a locus, but instead from the
interaction between alleles or loci (Falconer, 1989). These non-additive genetic components
are more difficult to estimate however, and thus frequently are being omitted in the models,

despite its importance in many economically important traits (Lynch and Walsh, 1998).

Unlike the additive genetic component, exploiting the non-additive genetic component is not
trivial, as they arise from certain allelic configurations that would be scrambled in the next
generation (de Boer et al., 1993). Thus, this component would not be inherited in a
predictable manner, and with dependency on the mating configurations of sires and dams.
The detection of non-additive effect sizes also provides more challenges; Visscher et al.
(2017) commented on the power of detection of an additive locus Q using marker M is in
proportion to R, (Q, M), whereas for non-additive genetic loci it is proportional to

R}5(Q, M). Thus, given an effect size of a QTL, a much larger sample size is needed to

detect a non-additive locus compared to additive locus, reducing its feasibility of detection.

There are two major types of non-additive genetic component: the interaction between alleles
within a locus, which is known as dominance, and interaction between different loci, known
as epistasis (Falconer, 1989). For this study emphasis was placed on optimizing the
dominance genetic component. This is due to the difficulty of obtaining an estimate for the
epistatic effect sizes, a field that warrants further study (Lynch and Walsh, 1998; Vitezica et
al., 2018).
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2.3.3.1. Dominance

The term dominance was first defined by Gregor Mendel in his works on plant breeding. He
defined an allele being dominant if its effect overcomes the effect of its alternative allele and
expressed in the phenotype (Mendel, 1865). Under the current framework of quantitative
genetics however, the definition of the dominance has since been reformulated into the
interaction between alleles within a locus (Isik et al., 2003). Statistically it is defined as the
deviation in the heterozygote genotypic value from that expected from the expected mid-

homozygote value (Falconer, 1989).

The prediction of dominance effects can be important as it contributes genetic gains toward
the phenotypes (de Almeida Filho et al., 2016). Dominance effects are also thought to play a
major role in the heterosis phenomena in crossbred animals, an aspect that has been exploited
by breeders to increase the production rate and efficiency by crossing two inbred lines (Goto
and Nordskog, 1959; Vitezica et al., 2016; Zeng et al., 2013).

Given a locus, the dominance is defined through the following equation (Zhu et al., 2015):

Haa T Haqa

> [16]

d= ppg —

Assuming the dominance effects across loci are cumulative, given n number of loci with
dominance effect sizes, the portion of the phenotype described by the dominance component
(denoted as D) is defined as follow (Duenk, 2020):

n
D= ngkdk [17]
k=1

Where g4, is the state of heterozygosity of the loci k, with g4, = 1 for heterozygote loci and
Ja, = 0 otherwise, and d;, being the dominance deviation as defined in equation [16]. Under

the assumption of HWE and independence between QTL loci, the variance of dominance

genetic component can be calculated through the equation (Zhu et al., 2015):

var(D) = 4 i+ (1= py)  d)? [18]
k=1
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2.3.3.1.1. Detection of Dominance Genetic Component

The initial models on prediction of breeding qualities often ignores the effect of dominance
due to a lack of reliable method of estimating dominance effect (Misztal et al., 1998). Due to
massive increase in genotypic and pedigree data, the effect of dominance has been taken into
account for some of the models (Aliloo et al., 2017; de Almeida Filho et al., 2016; Sun et al.,
2013; Zeng et al., 2013). Lynch and Walsh (1998) have suggested the following methodology

of estimating the dominance portion of the phenotypes (denoted as d in this instance):

_ -1
11y 1y 1y
7i E) T
u 1 Iv + ﬂ A1 I 1.y
H= oo (var(A) N x|y [19]
d var(E) y
1 I I D1
| Y N +<var(D)> _

Where A is the additive genetic relationship matrix, and D is the dominance relationship
matrix, which is built using the coefficient of fraternities between individuals. While
theoretically feasible, the practicality of this method is impeded by the need of estimating the

dominance variance var (D), which itself is not trivial (Lynch and Walsh, 1998).

Unlike additive EBV, d is not directly usable in predicting the dominance component of the
offspring. This is due to the ambiguity in the expected offspring dominance component given
the values of parent dominance component. This could be illustrated as follows: let h and H
be two alleles in a QTL and let a and d be its additive and dominance effect sizes. Let the
paternal and maternal additive genetic component be denoted as P, and M, respectively, and
for dominance component be P, and My, respectively. The paternal additive genetic
component is defined as follows: {hh, Hh, HH} = {0, a, 2a} and for dominance

{hh, Hh, HH} = {0, d, 0}. Using this information, the expected additive genetic component of
the offspring can be defined as in Table 2.1.

Note that for all possible offspring additive genetic components, it is always defined as its

mid-parent values % (Falconer, 1989). Thus, if P, and M, are known, it is possible to

predict with certainty the expected offspring additive genetic component. This is not the case
for dominance component however; with the same parental genotypes, the expected

dominance genetic component of the offspring was defined as in Table 2.2.
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Table 2.1: The expected offspring additive genetic component given the paternal additive values (P,) and

maternal additive values (My,).

Additive Genetic Component hh Hh HH
(Rows: P,; Columns M) (M, =0) M, =a) (M, = 2a)
hh (P, =0) 0 0.5a a
Hh (Py = a) 0.5a a 1.5a
HH (P, = 2a) a 1.5a 2a

Table 2.2: The expected offspring dominance genetic component given the paternal additive values (Pp) and

maternal additive values (Mp)).

Dominance Genetic Component hh Hh HH
(Rows: Pp; Columns Mp) (Mp =0) Mp =4d) (Mp =0)
hh (Pp = 0) 0 0.5d d
Hh (P, =d) 0.5d 0.5d 0.5d
HH (P, = 0) d 0.5d 0

Note that when P, = M}, = 0 the expected offspring dominance coefficient could be either 0
or d. This introduces ambiguities onto the expected offspring dominance, thus making the
offspring dominance genetic component unpredictable using P, and M, alone. Therefore, the
prediction of the offspring dominance component requires the parental genotypes, an
inherently genomic information. This entails the requirement for estimation of dominance

effect sizes of the markers.

Work on predicting dominance is sparse however; while dominant loci have been detected
for some important traits (Billiard et al., 2021) Most of such studies focused on oligogenic
traits. Attempts to detect QTL with dominance effects in a polygenic trait remained lacking.
Due to this, in term of the practicality of optimization, a proxy that correlates with the

dominance effect sizes would be desirable.

2.3.4. Optimizing the Contributions from Each Components

While the mathematical theories behind inbreeding, additive and dominance genetic
components were relatively well-established, generalized theories on how to combine these

components in an optimized selective breeding remained scarce. This is especially true for
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the inclusion of dominance genetic component. In such case, these components can be
combined using evolutionary algorithms, such as differential evolution used by Kinghorn
(2000).

Despite this, there are different forms of evolutionary algorithms available, each suited for
specific types of optimization problems (Gondro and Kinghorn, 2009; Slowik and
Kwasnicka, 2020). For example, the differential evolution method is suited for optimization
problem in a continuous search space (Storn and Price, 1993). The mating-specific nature of
the dominance component means the sire permutations need to be considered during the
optimization. As sire permutation is not a continuous quantity, this impedes the usability of
differential evolution in the optimization of the dominance component. For this reason, other
variants of evolutionary algorithms that can tackle combinatorial problems are needed, and

one such variants is the genetic algorithm (Slowik and Kwasnicka, 2020).

Initially developed by Fraser (1957) as a simple simulator for genetic processes, the genetic
algorithm has quickly been adopted by computer scientists as a general purpose problem
solvers and optimizer (Mitchell and Forrest, 1994). This method has been used successfully
to solve complex combinatorial problems with potentially infinitely large sample space such
as Sudoku (Gerges et al., 2018), travelling salesman problem (Braun, 1991) and graph
partitioning problem (Muhlenbein, 1992). Since optimization of the dominance component
involves finding the optimal sire-dam mating configuration, an inherently combinatorial
problem, genetic algorithms serves as a promising route for the optimization of this genetic

component.

Besides combinatorial problems, genetic algorithms have also been successfully used in
problems related to continuous search spaces (Haupt and Werner, 2007). This purpose of
genetic algorithm is commonly used in engineering-related problems, such as optimal designs
for hypersonic aircraft (Evans and Walton, 2017), microwave absorbing material (Jiang et al.,
2009) and antennas for satellite missions (Lohn et al., 2008) and 5G communications
(Marasco et al., 2022). The successes of genetic algorithm in optimizing problems with
continuous search spaces hinted the possibility of its use in optimizing the combination of
animals to be included in the selective breeding process to optimize additive genetic merit
and build-up of co-ancestry, similar to the achievements attained by differential evolution in
previously published OCS such as that by Kinghorn (2000). Unlike previously suggested
mate allocation and sire contribution optimization methods, but similar to that of Toro and
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Perez-Enciso (1990), a method that incorporates a genetic algorithm could resolves issues
caused by “randomized contributions” of each sire and dams but relaxing the requirements of
“equal contributions” from each sire and dams, thus promising a fully dynamic selection
tactics for varying genetic architecture of a trait. Overall, genetic algorithms serves as a
promising choice for the maximization of offspring’s additive and dominance genetic

component under a constraint of increment in inbreeding.

In its simplest form, a genetic algorithm starts by generating a population of candidate
solutions. In the context of previously published OCS such as that in [1], the candidate
solutions would be the vector of contributions of each sire toward the next generation (i.e. x).
The performance of each solution was evaluated using an objective function (i.e. the f,,;(x)
from equation [1]). From the population of candidate solutions, those with the top
performance in term of the f,,;(x) were selected to be propagated into the next iteration. The
top solutions were subjected to the effects of “genetic operators,” with the most common
being “mutation,” where the values in the solutions were replaced or adjusted, and
“crossover,” where part of the solutions within the population were exchanged. These altered
solutions were then fed into the next iteration where the solutions were evaluated and selected
again. These processes repeat up to the point of convergence, which for the OCS be defined
as the point where subsequent iterations no longer yield a more optimal solution.

Despite the successes of genetic algorithm, there were several shortcomings for this method
of optimization. One such shortcomings is its propensity to converge toward a local optimum.
There were numerous potential reasons for such convergence, such as a suboptimal
hyperparameters for the genetic operators (Heider and Drabe, 1997), a large sample space

and a rugged fitness landscape for the optimization (Taherdangkoo et al., 2012).

Several modifications have thus been proposed to mitigate such shortcoming; one such
modification is a parallelized genetic algorithm, where the algorithm is ran multiple times in
attempt to extract the best solutions from multiple processes. This way, if one of the attempts
converges toward a local optimum, there could be other attempts that converges toward the
global optimum, thus increasing the chance of finding the latter (Baluja and Caruana, 1995;
Miuhlenbein, 1992). Another modification is an adaptive genetic algorithm, where the
hyperparameters utilized were adjusted according to the performance of the offspring
solutions. These adjustments of hyperparameters balance the exploration phase, where the
solution space is searched for global optimum (but with the risk of disrupting an optimized
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solution), with the exploitation phase, where the optimal solutions are extracted (but with the
risk of premature convergence), thus improving the chance of encountering the global
optimum (Srinivas and Patnaik, 1994). Heider and Drabe (1997) suggested a genetic
algorithm that optimized the hyperparameter values, with these optimized values

subsequently fed into another genetic algorithm that solves the actual problem.

Another shortcoming of genetic algorithms is its propensity of disrupting an already
optimized solution. As the genetic algorithm approaches convergence, the solution population
is on average performing better (thus more optimal) than the starting population, which also
suggested these solutions are closer to an optimum. A genetic algorithm in its simplest form
tends to disrupt such solutions, thus increasing the risk of missing the global optimum. This
can be mitigated through elitist genetic algorithm, where the best parent solutions are
propagated unaltered into the next generation among other offspring solutions. This reduces
the chance of disrupting an already optimized solutions for the genetic algorithm, thus

improving the chance of finding the global optimum (Baluja and Caruana, 1995).

By implementing these modifications onto the genetic algorithm, the chance of finding the
global optimum for the optimized sire contribution and sire-dam mating configuration can be
greatly improved. These improvements suggested a promising route for using a genetic
algorithm in finding the exact configuration of sires and dams that would maximize both

additive and non-additive genetic components under a predefined level of inbreeding.

2.4. The Power and False Positive Rate of GWAS

While GWAS has been used in detecting the QTL of a trait, there are several factors that
could affect the power and false positive rate of a GWAS. Understanding these aspects of a
GWAS could be important for an OCS that utilizes genomic information, such as assigning
weights to individuals that have certain genotypic states in a marker. True positives allow
correct assignment of QTL for the optimization process, whereas the false positives could
mislead the optimization, causing the selection of poorly performing animals to be
propagated into the next generation. Therefore, a reliable genomic information maximizes
true positives and minimizes false positives, and this quality could be captured using the
power and false positive rate of a GWAS. Thus, the effects of these factors on the power and

false positive rate needed to be established.
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2.4.1. The Ambiguous Definitions

Depending on how the terms are interpreted there are two different approaches in defining the

“power” and “false positive rate” of a GWAS.

2.4.1.1. The Two Definitions of Power

The first definition of power was the probability of detecting a QTL given a set of parameters
(i.e., true QTL effect size, allele frequency, phenotype variance and sample size). This
definition has been used by Wang and Xu (2019), Spencer et al. (2009) and Chapman et al.
(2003). Given a critical value for a threshold in a GWAS experiment z, the power of GWAS
to detect a marker could then be defined as one minus the cumulative distribution function of
the non-central chi-squared distribution with a non-centrality parameter (Wang and Xu,
2019). Wang and Xu (2019) suggested the following equation as a way of calculating a
power of GWAS to detect a QTL k, given the estimated effect size a:

i -p)i o)
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Where y2..(t; v, x) is the probability density function for a non-central chi-squared
distribution with argument ¢t with degree of freedom v and non-centrality parameter of x.
Despite this, this equation assumes of having the QTL uncorrelated with one another, which
for a highly polygenic trait might not be applicable.

The second definition of power, used by Klein (2007), Storey and Tibshirani (2003) and Shen
and Carlborg (2013), was the number of QTL being detected by a GWAS out of all the QTL.
This definition of power is based on the observation that many of the traits are polygenic in
nature, thus a practical and utilizable GWAS would be the one that could detect as many

QTL as possible. This is calculated using the following equation:

Nrp

power(GWAS) = ——
Nrp + Npy

[21]

Where N;p and Ny are the number of true positives and false negative, respectively. One of
the shortcomings for the second definition is that the calculation of Np and Ny require the
number of null and non-null markers, which its estimation is not trivial (some previously
published methods, as well as their shortcomings, were detailed in Section 2.5). This

definition also assumed independence between tests (i.e. markers), which is broken in an
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actual GWAS as the dependency present itself as linkage disequilibrium between markers.
The dependency between markers introduces ambiguity in the definitions between true or
false positives or negatives (i.e. at what point of linkage disequilibrium between a QTL and a
null marker shall become the boundary between “true positive” and “false positive” if the
marker is declared as a positive). This ambiguity makes the second definition ill-defined
unless such boundary can be defined, which its criteria for definition could warrant further

studies.

2.4.1.2. The Two Definitions of False Positive Rate

Similarly, the first definition of false positive rate of a GWAS was defined as the probability
of detecting a null marker. Under this definition, given a critical value for a threshold z the

false positive rate could be evaluated as follows:
false positive rate(k) = j x2(t; 1) dt [22]
Z

where y2(t; v) is a chi-squared distribution with argument ¢t and degree of freedom v. It can
also be thought as the “power (from the first definition)” of GWAS if the true effect size
being zero. This equation also assumes the markers being uncorrelated however, thus might

not be directly applicable on a GWAS.

The second definition of false positive rate was the proportion of detected markers in a
GWAS being a null marker:

Nep

alse positive rate(GWAS) = ——————
f NFP + NTP

Where Npp is the number of false positives. This definition of false positives rate also
suffered from the same shortcomings from the second definitions of power, namely the
requirements for number of null and non-null markers, and the assumption for independence
between markers. Compared to power of GWAS, less attentions have also been placed on

factors that affect its false positive rate.

42



2.4.1.3. The Relationship Between the Two Definitions of Power and
False Positive Rate

There are mathematical relationships between the first and second definitions for both terms.
In terms of the power in the second definition, Klein (2007) defined this power (denoted as

power(GWAS)) as the average power of detection for all the non-null SNP markers:

thl
1
power(GWAS) = N * Z power (k) [24]
=

Where the power (k) being the probability of detecting a QTL as defined in equation [20]

and Ng¢; being the number of non-null SNP markers of a trait.

The false positive rate under the second definition could also be defined in terms of power
and false positive rate of the first definition:

false positive rate(GWAS) = (Nsnp — Ngu1) * false positive rate (k)

[25]

(Nsnp — thl) * false positive rate(k) + Zgitll power (k)

with false positive rate(k) being defined as the probability of detecting a null marker.

While these equations are theoretically sound, they are difficult to implement in practice.
This is because the value of N, is unknown. This calculation also relies on a perfect
estimation of power(k), which in turn requires a perfect estimation of a (i.e. @ = a). This
causes difficulties in estimating power and false positive rate under this definition. For this

project, focus would be placed on the second definition of power and false positive rate.

2.4.2. Factors that Affect the Power and False Positive Rate of
GWAS
2.4.2.1. Sample Size

The factor that was most studied in the literature relates to GWAS sample size, with a general
consensus of increased power with sample sizes (Spencer et al., 2009; Visscher et al., 2017).
Despite this, a large range of sample sizes have been used, from less than 100 by Ren et al.
(2016) up to more than 1 million by Jansen et al. (2019), and the proportion of true and false

positives among the significant markers detected by these studies remained unclear.
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There were also studies that went into the theoretical aspects of effects of sample sizes of the
GWAS. Spencer et al. (2009) stated that in a case control design with purely additive model,

the power is directly proportional to the sample N:

E(x?) « Naipx(1 — p)R?*(Q, k) [26]

Where yZ is the chi-squared test statistics of the marker k, a, being the effect sizes of the
QTL, p, being the allele frequency of marker k, and R(Q, k) being the linkage
disequilibrium between QTL Q and marker k (Spencer et al., 2009).

Direct studies on the effects of sample size on the false positive rate in the context of GWAS
are not as common. The general wisdom for any statistical tests, in which GWAS is a part of,
is that increasing the sample sizes reduces the false positive rate (Forstmeier et al., 2017).
Despite this, these statistical tests often have assumptions not applicable to GWAS, such as
independence between tests (Gondro, 2015). An explicit experimentation of the effects of

sample size on the false positive rate in GWAS would be desirable.

2.4.2.2. Genetic Architecture

Very few studies focused on the effect of genetic architecture on the power and false positive
rate of GWAS. Most of the previous study, such as Hu et al. (2012) and Daetwyler et al.
(2010), aimed at genomic prediction and the architecture’s impact on accuracy of phenotypic
prediction. Those that mentioned the effect of genetic architecture on the power of GWAS
such as Gondro (2015) focus on the effects of polygenicity, with increased polygenicity
reduces the power of GWAS. Gondro (2015) stated that the detection of QTL for polygenic
traits requires larger sample sizes compared to oligogenic traits, especially for QTL with

larger effect sizes.

2.4.2.3. Threshold of GWAS

The large number of markers used in a GWAS experiment constituted an unprecedented level
of multiple testing, which increases the false positive rate (Gondro, 2015; Hayes, 2013). As
an example, let z be the critical point for the threshold of GWAS. Assuming the markers are

uncorrelated, the expected number of false positives can be defined as follows:

Number of False Positives = (Nsnp — thl) * f x2(t; 1) dt [27]
z
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If the threshold is set at point such that the Type 1 Error a, = 0.05, the expected number of
false positives is 0.05 * (Nsnp - thl), i.e., 5% of the number of null markers. If for example
there are 10,000 null markers this threshold would produce 500 false positives. This
phenomenon would further worsen if high density markers were utilized. For this reason, a
multiple testing correction method should be employed in a GWAS experiment (Gondro,
2015; Hayes, 2013).

Several types of correction methods have been suggested for GWAS. One such method is the
Bonferroni correction, popularized by Dunn (1961). The method calculates the expected
Type 1 Error that needed to produce the same number of false positives as in one test. Using
the aforementioned example, given m = 10,000 null markers, this correction attempts to find
an a, that would produce 0.05 false positives, the expected number of false positives for one
test, instead of the original 500 false positives. Through proportionality, the expected a,

(a; o) €an be calculated as follows:

a;

azBON = E [28]

The Bonferroni correction method is simple to implement and is effective in controlling the
false positive rate (Wilson, 2019). It assumes independence between markers however, which
increases the threshold stringency and reducing the power of GWAS, especially for a high-

density genotype array (Hayes, 2013; Nishino et al., 2018; Wang et al., 2016).

The stringency of threshold from the Bonferroni method has led to the development of
alternative methods of controlling multiple testing. One of the most popular class of methods
was those that attempted to control the False Discovery Rate (FDR). Pioneered by Simes
(1986) before popularized by Benjamini and Hochberg (1995). This method aims at

controlling the false discovery rate of the multiple testings.

The method suggested by Simes (1986) is defined as follows: given a level of false discovery
rate a, let pv,, pv,, pvs, ..., PV, be a list of p-values that have been ordered from the most
significant to the least significant that test the following set of null hypothesis H, =

{Hy, Hy, H3, ..., Hp, }, the critical point pv; is defined as the last p-value that fulfil the
following inequality (Simes, 1986):
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for j ranges from 1 to m. This method is known to have a more lenient threshold (i.e., the
maximum stringency is equivalent to that of the Bonferroni method, i.e. j = 1). Despite this,

it also assumes independence between markers in GWAS.

Since Simes, several FDR-based methods have been suggested. Benjamini and Yekutieli
(2001) suggested an adjustment being made at the denominator of equation [29] to take into
account the effects of dependencies between tests. Storey and Tibshirani (2003) has criticized
the original method proposed by Benjamini and Hochberg (1995) as being overly
conservative, and thus introduced an adjustment parameter based on the proportion of null
compared to all markers. This method also assumes independent or weakly dependent
markers. Efron et al. (2001) introduced the concept of “Local False Discovery Rate” (LFDR)
which is defined as the expected FDR within a bounded interval of p-values. Extending the
LFDR model, Broberg (2005) has introduced a “Pooling of Adjacent Violators” (PAVA)
based FDR method, with the assumption that the LFDR is monotonic.

Despite the wealth of multiple testing correction methods, many of these methods do not take
into account numerous factors that might affect the optimality (i.e., increase the power of
GWAS while constraining the false positive rate) of the threshold. As an example, Pryce et
al. (2010) suggested increased stringency of the FDR-based threshold with the use of the
single SNP regression method compared to those utilizing haplotype-based methods,
reducing the power in the former method. Hong and Park (2012) and Nishino et al. (2018)
suggested an increase in genotyping density also increases the sample sizes required to
achieve the same power of GWAS. loannidis (2007) criticized these methods as they ignored
the effects of population stratification and ratio between true and null markers on the
threshold. There are also studies that criticized the increased false positive rate of FDR-based
methods (Huang et al., 2018; Shen and Carlborg, 2013). None of the previous works have

tested the optimality of these thresholds under changing genetic architecture parameters.

2.5. Estimating the Genetic Architecture Parameters

Given the potential impacts of genetic architecture on the power and false positive rate of a
GWAS, it might be imperative to estimate the parameters for the genetic architecture of a
trait, which includes the number of QTL and the distribution of the QTL effect sizes. Using
the estimated genetic architecture, we can calculate the optimal thresholds for a GWAS while

taking into account the effects of genetic architecture, from which the number of true
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positives can be maximized and that of false positives be minimized, and thus reducing the

chance of having the optimization misled by the latter.

Previously proposed methods of estimating the genetic architecture parameters tend to follow
a generalized framework of estimating the admixture proportion between null and non-null
markers based on a certain presumed parameterized model of QTL effect size distribution
(Cheng et al., 2020; Zhang et al., 2018, 2021; Zeng et al., 2017). As an example, Cheng et al.
(2020), Lloyd-Jones et al. (2019) and Zhang et al. (2018) utilized Expectation-Maximization
(EM) to estimate the admixture proportion, with the assumption the effect sizes distribute
according to a normal distribution. Zhang et al. (2021) also proposed a set of similar methods
that assumed fixed mixtures of normal distributions and a double exponential distribution.
O’Connor (2021) utilizes the characteristic function for a mixture of 13 normal distributions.
Park et al. (2010) fitted the previously published GWAS results using exponential and
Weibull distributions, and Hall et al. (2016) calculated the number of QTL directly from the
proportion of genetic variance explained by the markers and the heritability, with the
assumption that the QTL effect sizes follow an exponential distribution. Many Bayesian-
based methods such as that by Meuwissen et al. (2001) and Moser et al. (2015) also assumed
a normal distribution or a mixture of normal distributions for the modelling of QTL effect

sizes.

The use of presumed parameterized models for QTL effect size distribution from all
aforementioned approaches have been criticized by Zeng et al. (2017) for having a restrictive
shape of the normal or exponential distribution, which could cause failure in capturing the
shape of the effect size distribution and led to a reduced accuracy and robustness in estimated
effect size distribution. Indeed, both normal (or a fixed number of mixtures of normal) and
exponential distributions have fixed kurtosis, which means they might not be able to capture
the shape of the tail of the QTL effect size distribution (Mun, 2012). For this reason, Zeng et
al. (2017) proposed a nonparametric prior for the variances of an infinite number of mixtures
of normal distributions (although in practice still with a fixed number of normal distributions
for computational reasons), which produces a more flexible shape of QTL effect size

distribution.

Despite its improved flexibility, one assumption for Zeng et al. (2017) is an infinitesimal
QTL model where all the SNP markers have nonzero effect sizes, which might not be suitable
for an oligogenic trait. Indeed, several authors argued against the infinitesimal model both on
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theoretical ground (for example Hill (2010) and Orr (1999)) and on empirical ground (for
example Moser et al. (2015) and Orr (1999)). While methods such as Moser et al. (2015)
assume a finite QTL model, the use of a fixed number of normal distributions could restrict
its flexibility and thus its robustness against changing genetic architectures. Methods that
combine flexibility of QTL effect size distribution and assumption for QTL models, be it the
infinitesimal model or finite QTL model, remain lacking, and this is an avenue worth further

studying.

Besides the inflexibility in distribution and assumptions on QTL models, several other
limitations have been identified in the literature. One such limitations is the requirement of
arbitrary, user-defined thresholds in these methodologies. For example, the method by Cheng
et al. (2020) requires a user-defined input for the null — non-null SNP marker threshold,
which can reduce the performance of the methodology if such a threshold is mis-specified.
Park et al. (2010) utilized a “trivial effect size” threshold where the QTL with effect sizes
smaller than the threshold were excluded from estimation, and Zhang et al. (2018) requires
the use of a linkage disequilibrium threshold and a pre-specified linkage disequilibrium
window size. The choice of these values could affect the optimality of the genetic
architecture parameter estimations. Another limitation in the method by Park et al. (2010) is
the requirement for previously published GWAS, which might reduce its usability for a
newly studied trait.

Many of the previously published methods were tested on extremely large sample sizes. For
example, Cheng et al. (2020) tested methodology on simulated sample sizes of 5000 and
10,000, and Park et al. (2010) used 13,532 human sample for Crohn’s disease and 63,000 for
height. Methods for constructing a genetic architecture, such as that suggested by Cheng et al.
(2020) and Park et al. (2010) relies on the ability to differentiate between noises and signals,
and hence requiring the use of significance thresholds, these methods might behave
differently for smaller dataset. Indeed O’Connor (2021) acknowledged the vulnerability of
their method toward small sample sizes. Given that many GWAS in livestock have been
conducted at relatively smaller sample sizes of less than a few thousand phenotypes, the
previously published methods might not be as reliable in these cases. Methods that could
handle a smaller sample sizes (i.e. sample sizes comparable to GWAS in livestock

production) warrant further studies.
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Another important aspect worth considering is the effect of linkage disequilibrium structures.
Unlike human samples, which have relatively short segments of homozygosity and strong
decay in their linkage disequilibrium (Gibson et al., 2006), the strong selection regimes and
small effective population size in livestock produce long tracts of homozygosity and extended
blocks of linkage disequilibrium in the genome, e.g. as demonstrated in sheep (Al-Mamun et
al., 2015a; Kijas et al., 2014), cattle (Porto-Neto et al., 2014; Purfield et al., 2012) and horses
(Jasielczuk et al., 2020). Differences in linkage disequilibrium structures could have a large
impact on the performance of themethods that estimate the genetic architectures of livestock
traits. Indeed, Zhang et al. (2018) assumes the effect sizes are independent on the local
linkage disequilibrium structures, and Lloyd-Jones et al. (2019) commented on the negative
effects of linkage disequilibrium structures on the convergence of the model. These
assumptions could affect the utility of these methods to provide a model for genetic

architecture of livestock traits.

Finally, Lloyd-Jones et al. (2019) also commented on the infeasibility of identifying the true
underlying mixture distribution of the QTL effect sizes due to linkage disequilibrium. They
referred to cases where a significant region captured by a GWAS could either be caused by
one causal variant with a large effect, or numerous causal variants with smaller effects that
were in linkage disequilibrium. This ambiguity would subsequently affect the estimation of
the mixture distribution parameters. Methods to handle such ambiguity warrant further

studies.

2.6. Direction for the Project

The aim of this project is to develop a method that optimizes the breeding pairs of sires and
dams with the use of evolutionary algorithm such as genetic algorithm. This method would
likely be OCS-like method that maximize the additive and dominance genetic component

while constraining the level of inbreeding coefficient increment. Emphasis could be placed

on the use of genomic data in the optimization of the breeding pairs.

From the literatures, the additive genetic component of the offspring can be calculated using
animal-based data such as EBVs and genomic data from a GWAS. The dominance genetic
component can only be estimated through genomic data however and given the difficulty of
estimating the dominance effect sizes of the markers, a proxy based on genomic data will be
used. The objective function for the OCS might also need to be modified from [1] to take into

account the mating-specific nature of the dominance component. The optimization of
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epistatic component would not be emphasized in this study due to the difficulty of obtaining

an estimate for this component (Lynch and Walsh, 1998; Vitezica et al., 2018).

While the effects from some of the factors such as sample size on the power and false
positive rate of the GWAS has been widely reported, effects from other factors, such as those
pertaining to the genetic architecture, remain largely elusive. This suggests additional work
needs to be done to ascertain the effects of various factors on the power and false positive
rate of the GWAS. Findings from this investigation could then be incorporated into
techniques that could improve the power and false positive rate of the GWAS before
incorporating them into the OCS. This could include the establishment of an optimal
threshold for the GWAS-based results, and the estimation of genetic architecture parameters
such as number of QTL and the distribution of their effect sizes. Preferably, these techniques
could be developed in a manner that suits a livestock GWAS-sized dataset while taking into

accounts effects from confounding factors such as linkage disequilibrium structures.

This project is important as it can potentially increase the accuracy of selection, concentrating
the economically beneficial alleles in the breeding stock, while exploiting the non-additive

components such as the dominance effects.
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Chapter 3. Effects of Experimental Design,
Genetic Architecture and Threshold on Power and
False Positive Rate of GWAS

Zhi Loh, Julius H. J. van der Werf, Sam Clark

3.1. Abstract

Genome-Wide Association Studies are an important tool for identifying genetic markers
associated with a trait, but it has been plagued by the multiple testing problem, which
necessitates a multiple testing correction method. While many multiple testing methods have
been suggested, e.g., Bonferroni and Benjamini-Hochberg’s False Discovery Rate, the quality
of the adjusted threshold based on these methods is not as well investigated. The aim of this
study was to evaluate the balance between power and false positive rate of a Genome-Wide
Association Studies experiment with the Bonferroni and Benjamini-Hochberg’s False
Discovery Rate multiple testing correction methods and to test the effects of various
experimental design and genetic architecture parameters on this balance. Our results suggest
that when the markers are independent the threshold from the Benjamini-Hochberg’s False
Discovery Rate provides a better balance between power and false positive rate in an
experiment. However, with correlations between markers the threshold of the Benjamini-
Hochberg’s False Discovery Rate becomes too lenient with an excessive number of false
positives. Experimental design parameters such as sample size and number of markers used,
as well as genetic architecture of a trait affect the balance between power and false positive
rate. This experiment provided guidance in selecting an appropriate experimental design and

multiple testing correction method when conducting an experiment.

3.2. Introduction

Since high-density genotyping arrays using abundant genetic markers such as Single
Nucleotide Polymorphisms (SNPs) have become available, Genome-Wide Association
Studies (GWAS) has become an important tool in gene discovery (Wang and Xu, 2019).
Hundreds of thousands to several millions of genetic markers can now be used in association

studies, where the aim is to estimate and test the effect of genetic variants linked to a
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Quantitative Trait Locus (QTL). This has provided a huge research opportunity but the use of
large numbers of markers to be tested has also introduced a multiple testing problem of an
unprecedented scale. Multiple testing significantly increases the number of false positives
when using a standard significance threshold, thus necessitating the use of a correction
method to adjust this threshold (Tam et al., 2019).

The most popular method of controlling the number of false positives is the the Bonferroni
correction. This multiple testing correction method is based on the joint distribution of all the
Student’s t-distribution for each individual linear contrast, with the assumption that each of
these tests are independent to one another (Dunn, 1961). This method had gained popularity
due to its simplicity (Llinares-Lopez et al., 2015; lonita-Laza, Cho and Laird, 2012), and is
considered one of the most effective methods in controlling the number of false positives
(Wilson, 2019). However, the Bonferoni method has also been criticized when applied to
GWAS as with very large numbers of SNPs tested, it has been perceived as being
overconservative, leading to reduced power in identifying causal variants (Gao, Becker,
Becker, Starmer and Province, 2010; Huang, Ritchie, Brozynska and Inouye, 2018; Llinares-
Lopez et al., 2015; Wilson, 2019). The situation has been further exacerbated by decreasing
cost of genotyping, and it now has become common practice to use all genetic variants
obtained from Whole Genome Sequence (WGS) information, often exceeding 25 million
marker genotypes per sampled individual (Huang et al., 2018; Tam et al., 2019; Visscher et
al., 2017).

Alternative multiple testing correction methods have been introduced, many of which have
reduced stringency. One class of alternatives is those methods that attempt to control the
False Discovery Rate (FDR), with one of the most popular methods being the Benjamini-
Hochberg’s False Discovery Rate (BH-FDR) method. Initially introduced by Simes (1986),
this method aims at testing the ranked p-values against a stepwise threshold that varies based
on the rank of the p-values, with the most significant p-value subjected to the most stringent
threshold, and other p-values that are less significant are subjected to more lenient threshold.

An example of its implementation is provided in Table 3.1.
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Table 3.1: An example of implementation of Benjamini-Hochberg's False Discovery Rate (BH-FDR). For this
example, 10 SNPs were tested and have their p-values calculated according to their rank j. The point where the
p-value of the marker falls below of that calculated from the stepwise threshold is at j = 4 is, and this is the
point where the threshold of the BH-FDR is set. Note that only the most significant marker (i.e. j = 1) had been

subjected to the stepwise threshold equivalent to a Bonferroni correction.

Index of ranked p- Ranked p- Stepwise Threshold Decision
values () values (Ongip’) (Accept or Reject Null)

10 0.676 0.050 Accept
9 0.324 0.045 Accept
8 0.213 0.040 Accept
7 0.119 0.035 Accept
6 0.087 0.030 Accept
5 0.034 0.025 Accept
4 0.012 0.020 Reject
3 0.010 0.015 Reject
2 0.006 0.010 Reject
1 0.002 0.005 Reject

Many GWAS have chosen the BH-FDR multiple testing correction method on the grounds of
overconservativeness of the Bonferroni correction but appeared to have no consideration on
the possibility of increased false positive rate. In the context of gene expression analysis,
Huang et al. (2018) considered BH-FDR to have a better balance between power and false
positive rate, although they also commented that the use of the BH-FDR resulted in an
inflated false positive rate whereas Bonferroni correction had a significantly lower number of
false positives. Another consideration in most GWAS is that with the use of dense markers,
marker genotypes can be highly correlated. Benjamini and Yekutieli (2001) suggested that in
theory this method is valid even when the assumption of independence between tests is

violated, as would be the case in GWAS based on dense marker genotypes. An actual study
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on the ability of the BH-FDR in controlling the false positive rate in a GWAS and the need to

account for the lack of independence between tests is lacking, however.

Several factors could impact the success in detecting QTL associated with a trait while
controlling the false positive rate, including parameters related to the genetic architecture of
the traits, i.e., the size of the QTL effects, and experiment design, most notably the sample
size. Spencer et al. (2009) and Visscher et al. (2017) argued a reduced power of GWAS with
small sample size, while Forstmeier et al. (2017) argued an increased false positive rate with
small sample size in any statistical test. The low power alongside with increased false
positive rate could have contributed to the low replicability of a GWAS experiment where
hits from the previous studies failed to be replicated in subsequent studies (Heller and
Yekutieli, 2014; Wang and Zhu, 2019). Spencer et al. (2009) and Visscher et al. (2017)
argued that increasing the sample size is the most effective way to increase the power of
GWAS, and while the number of positives increases with sample size, it is unclear how much
of the positives are true positives (a summary of number of positives reported in previous

publication is provided in Table 3.2).

The aim of this study is to test the effects of multiple testing correction methods on the power
and false positive rate of a GWAS experiment, and subsequently evaluate the effects of
experimental design parameters and genetic architecture of a trait on the suitability of the
methods. We use simulation to evaluate the power and false positive rate with Bonferroni and

BH-FDR correction methods under varying parameter values.

3.3. Method

The effects of the GWAS parameters and multiple testing correction methods were evaluated
using simulated genotypes and phenotypes. This simulation is conducted using Python
(version 3.7.3).

To simulate a GWAS experiment with independent markers, data from a genotype array with
M markers (henceforth denoted as X) was generated for N individuals. The distribution of the
allele frequency of the markers following a symmetrical Beta distribution (i.e. Beta (B, )).
Values used for the shape parameter 8 from the beta distribution are provided in Table 3.3.
Some of the markers were nominated as QTL, with their effect sizes (in units of a,)

distributed based on the following gamma distribution:

QTL Ef fect Size (a)~ gamma(shape parameter, scale parameter) [1]
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Table 3.2: Summary of threshold used, sample size, and number of markers and positives used in previous

publications. For studies that included multiple traits, data from only one trait was included. BH-FDR stands for

the Benjamini-Hochberg False Discovery Rate method, and BON for the Bonferroni method. The publications are

ranked based on the sample size used.

Publications Sample Number of Correction Alpha Threshold (- Number of
Size Markers Method log10(THR)) positives
Ghasemi et al. (2019) 130 41,323 BON 0.05 591 7
Zhang et al. (2013) 319 48,198 BON 0.05 5098 10
Vanvanhossou et al. (2020) 449 32,518 BON 0.05 5.81* 4
Signer-Hasler et al. (2012) 1077 38,124 BON 0.05 5.88 8
Xia et al. (2017) 1141 677,855 BON 1.0 5.83 11
Chang et al. (2018) 1217 671,990 BON 0.05 712 11
Al-Mamun et al. (2015b) 1449 48,640 BON 0.01 6.69 39
Weerasinghe et al. (2019) 3454 37974 BON 0.05 5.88 13
Cai et al. (2019) 5373 16,503,508 BON 0.05 8.52* 58535
Dakhlan et al. (2017) 6463 48,599 BON 0.01 6.69 17
Yin and Kénig (2019) 13,827 54,613 BON 0.05 6.04 10
Jiang et al. (2019) 294079 57,067 BON 0.005* 7.00 15215
Smotucha et al. (2021) 155 49,204 BH-FDR  0.05 5.99 1
Wang et al. (2017b) 880 51,727 BH-FDR 0.01 4.00 5
Steri et al. (2019) 946 135,992 BH-FDR 0.08 5.84 5
An et al. (2020) 1,217 67,192 BH-FDR 0.01 6.17* 45
Ibeagha-Awemu et al. (2016) 1,246 76,355 BH-FDR 0.1 4.16* 53
Pegolo et al. (2020) 1,369 23,173 BH-FDR  0.05 4.30 24
Akanno et al. (2018) 5324 42,536 BH-FDR 0.10 3.16* 294

* Values back-calculated using available data (i.e. alpha, number of SNPs, number of

positives)
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The scale parameter for the gamma distribution in [1] is set at 1.0 for all simulations, and
the shape parameter is varied based on the Average QTL Ef fect Size, which is provided

in Table 3.3. The average QTL effect size is calculated as follows:

Shape Parameter for Gamma Distribution

A TLE t Size =
verage Q ffect Size Scale Parameter for Gamma Distribution

The Average QTL Ef fect Size was specified in units of g, .With the aforementioned
scale parameter, the Average QTL Ef fect Size in [2] equates the

Shape Parameter for Gamma Distribution. Markers that were not nominated as QTL
would have their effect sizes marked at 0. Using the vector containing the effect sizes for all
markers and QTL (denoted as a), the additive genetic component of the phenotype (denoted

as g) is calculated as follows:
g = Xa 3]

The residual component of the phenotype (denoted as e) is then simulated using the variance
of vector g and the narrow sense heritability of the trait h2. The residual component follows a

normal distribution with mean of zero and variance as follows:

Var(e) = Var(g) = <1 ;le) [4]

For all the parameter under study, the heritability was set at 0.3. The vector g and vector e
were then summed to obtain the simulated phenotype of the individuals. A GWAS was then
conducted using the genotype array and phenotype vector. Single SNP regression was used to
estimate the effect sizes of the markers, which would then be used to calculate the p-values

for each marker using the Student’s t-test.

Using the alpha = 0.05 for type 1 error, the thresholds from both Bonferroni correction and
BH-FDR were calculated. The threshold for the Bonferroni correction is defined as alpha

divided by number of markers used in the experiment:

0.05 )

Threshold for Bonferroni = —log, (Number of SNPs

For the BH-FDR in this experiment, the threshold is defined as follows (Simes, 1986;
Benjamini and Yekutieli, 2001):
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0.05*k ) (6]

Stepwise Threshold for BH — FDR = —logy, (Number of SNPs

where k is the point where the k ranked -log(p-value) of the GWAS becomes larger than the
stepwise threshold. The point k is equivalent to the j = 4 from the example in Table 3.1.
With these thresholds, the power and false positive rate, as well as differences between true
and false positives (denoted as Receiver Operating Characteristic (ROC) score), were

calculated. The power is defined as follows:

Number of True Positives
Power = . [7]
Total Number of QTL used in Study

For the calculation of power only the QTL with effect size exceeding 0.1 o, were taken into

account. The false positive rate is as follows:

False Positive Rat Number of False Positives i8]
alse Positive Rate =
H Number of True Positives + Number of False Positives

And the ROC score is defined as follows:
ROC score = Number of True Positives — Number of False Positives [9]

In this study the ROC score was used as a measure to test the capability of a threshold in
balancing the power and false positive rate of a GWAS. This is equivalent to the weighted
Youden’s Index as described by Habibzadeh et al. (2016), who have utilized a Receiver
Operating Characteristic (ROC) curve to establish the optimal threshold for clinical

diagnostic tests.

A multiple testing correction method with its threshold having a high ROC score was
considered as capable of providing a better balance between power and false positive rates. A
threshold with maximum ROC score was considered as optimal. This is equivalent to having
the point on the ROC curve where the tangent of the curve equals to 1, which has been
demonstrated mathematically by Kaivanto (2008). The experiment was then repeated 200

times for each combination of parameter values.

To test the effect of correlations between marker genotypes on the optimal threshold and
number of true and false positives, the experiment is repeated with pairwise marker linkage
disequilibrium (denoted as r2) set at 0.8. This is achieved by copying the haplotype state of
some of the alleles from one locus to its neighbouring locus while randomizing the haplotype
state of other alleles, thus generating a genotype array with a controlled level of pairwise
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marker linkage disequilibrium. For correlated markers, besides the true positives (denoted as
TP), there were two types of false positives to be identified: (i) correlated false positives
(henceforth denoted as FPC), defined as the false positives that its 2 exceed 0.1 with one or
more true QTLS, and (ii) uncorrelated false positives (denoted as FPU), defined as false
positives that had its 72 below 0.1 with any of the QTLs. For the calculation of false positive
rate, the number of FPU is used in place of number of false positives in equation [6], and for

ROC score, the number of FPU is used in equation [7].

A list of parameters and value tested is provided in Table 3.3. When a parameter is under

study, default values were used of other parameters.

Table 3.3: Parameters tested in this study.

Parameters Default Value Alternative Values
Sample Size 2000 200, 800, 1400, 3000, 5000
Shape parameter for Distribution of Allele 0.5 0.1,0.2,0.3,0.7,1.0

Frequencies ()

Average QTL Effect Sizes (y) 04 0102030710
Number of Markers 20k 5k, 10k, 40k, 60k, 80k
Number of QTLs 100 20, 50, 300, 600, 1000

The number of QTL was arbitrarily chosen based on the proportion of positives markers out
of all the markers in previous studies cited in Table 3.2. The sample sizes used are based on

those used by previous studies as cited in Table 3.2.

Besides the parameters listed in Table 3.3, the combined effects of sample size and number of
markers on the power and false positive rate of GWAS were also tested. To test the combined
effects of both parameters, additional simulations on variable sample sizes have been
conducted with number of markers of 5k, 20k and 80k. The sample sizes used in this
additional simulation are the same as those provided in Table 3.3. This additional simulation
is to test the power, false positive rate and suitability of the correction methods for a GWAS
experiment that involves small sample size but large number of markers, as in Steri et al.
(2019) that have conducted a GWAS with 946 animals but with 135,992 markers.
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3.4. Results

3.4.1. Parameters determining the threshold of multiple

testing correction methods

Number of markers and sample size. The threshold from both multiple testing methods is
influenced by the number of markers used in GWAS. With an increased number of markers
used in GWAS, the threshold increases in stringency. This observation was made in both
multiple testing correction methods in both independent and correlated marker system.

When the Bonferroni correction is used, sample size does not have any effect on the threshold
of GWAS. This is not the case for BH-FDR however, as the threshold from the BH-FDR is
significantly affected by sample size, with larger sample sizes decreasing the threshold.
Generally, the threshold calculated by the BH-FDR is less stringent than those calculated by

Bonferroni correction (Figure 3.1).

Number of QTL and QTL effects. The number of QTL does not have any influence on the
threshold calculated from the Bonferroni correction. The number of QTL has an effect on the
threshold of the BH-FDR, however. When the number of QTL is small (e.g., 20) the
threshold from the BH-FDR approaches 4.9, and this threshold declines slightly to 4.63 with
a number of QTL of 100, but then increases again gradually with larger numbers of QTL
(Figure 3.2(a)). A smaller average QTL effect sizes also increases the threshold slightly for
the BH-FDR (Figure 3.2(b)). The allele frequency distribution does not have an effect on
both multiple testing correction methods (Figure 3.2(c)).

Correlation between marker genotypes: For Bonferroni correction, correlation between
markers does not have any effect on the threshold for any of the parameters tested. For BH-
FDR however, marker correlation has a significant effect on the threshold. Correlation
between markers significantly decreases the GWAS threshold (Figure 3.2). With independent
markers, the number of markers and sample size also have significant effects on the threshold
of BH-FDR for correlated markers. While the trend is comparable with those in independent
markers, the threshold calculated by BH-FDR is lower with correlated markers compared to
independent markers for all marker numbers and sample sizes tested. Correlations between
markers also caused a similar decline in the BH-FDR threshold for all numbers of QTL,

average QTL effect sizes and allele frequency distributions tested in this experiment.
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Figure 3.1: Threshold of the Bonferroni correction (in solid lines) and BH-FDR (in dashed lines) under varying
sample size and number of markers used in a GWAS experiment. This is the threshold under independent
markers. The number of QTL maintained at 100, and the average QTL effect sizes (y) and allele frequencies (B)

are at 0.4 and 0.5, respectively.
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Figure 3.2: The effects of (a) number of QTL, (b) average QTL effect size (y) and (c) shape parameter for allele
frequencies distribution (j3) on the threshold for the Bonferroni correction (blue line) and BH-FDR (red lines) for
both independent (solid lines) and correlated (dashed lines) markers. The default parameters for each of the
plots are as follows: number of QTL at 100, sample size 2000, the number of markers 20k, the average QTL
effect size (y) at 0.4 and shape parameter for allele frequencies distribution () at 0.5. The threshold for
Bonferroni correction for independent markers fully overlaps with that for correlated markers in this figure, thus
indistinguishable from one another.

3.4.2. Parameters determining the power of GWAS

Number of markers and sample size: Due to an increased stringency in threshold from both

multiple testing correction methods, the power decreases with an increased number of SNP
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markers used in a GWAS experiment. This observation was made for both independent
markers and correlated markers. While correlations between markers increased the power for
all marker number values tested, such an increase is more significant for experiments with a
small number of markers, or when BH-FDR is used in GWAS (Figure 3.3(a)).

Increasing the sample size increases the number of true positives and the power of GWAS,
and this increase is more significant when BH-FDR is used. Correlation between markers has
no effect on the power of GWAS if Bonferroni correction is used, but significantly increases
the power for BH-FDR. This is attributable to an increased leniency in the threshold for the
BH-FDR with larger sample size (Figure 3.3(b)).

Number of QTL and QTL effects: The number of QTL that is associated with a trait has a
significant effect on the power of detecting the QTL, with the power decreasing when the
number of QTL increased, both for independent and correlated markers. This was observed
for both multiple testing correction methods, although the power is higher for correlated
markers when BH-FDR is used in the GWAS (Figure 3.3(c)).

The average QTL effect sizes (y) has significant effects on the number of true positives and
power of GWAS. With an increased value of y, the number of true positives increases until it
starts to plateau by average QTL effect size of 0.4. In all cases, BH-FDR had a higher number
of positives. Correlation between markers also increases the number of true positives for both
multiple testing correction methods, and this increment is more significant for BH-FDR
(Figure 3.3(d)). The shape parameter for allele frequency distribution () has again no effect

on the number of true positives and power of GWAS.

3.4.3. Effect of Parameters on False Positive Rate of GWAS

Number of markers and sample size: Despite the increasingly large number of tests needed to
be conducted in a GWAS experiment with a larger number of markers, due to the
increasingly stringent threshold, the raw number of false positives declines logarithmically.
This is observed in both FPU and FPC. Due to a lower number of true positives associated
with a more stringent threshold, however, the false positive rate is no longer significantly

affected by the number of markers used in a GWAS experiment (Figure 3.4(a)).
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Figure 3.3: The effects of (a) number of markers, (b) sample sizes, (c) number of QTL and (d) average QTL
effect size (y) on the power of GWAS for the Bonferroni correction (blue line) and BH-FDR (red lines) for both
independent (solid lines) and correlated (dashed lines) markers. The default parameters for each of the plots are
as follows: number of QTL at 100, sample size 2000, the number of markers 20k, the average QTL effect size

(v) at 0.4 and shape parameter for allele frequencies distribution (j3) at 0.5.

Unlike marker number, sample size has a significant effect on the false positive rate of a
GWAS experiment (Figure 3.4(b)). The false positive rate increased significantly when the
sample size is small (i.e., N=200). This trend was observed for both independent and
correlated markers, and in both multiple testing correction methods. With larger sample size,
the false positive rate remained relatively constant if the markers are independent. This is not
the case for correlated markers however; the number of FPU increased significantly with
larger sample sizes, and that led to an increase in false positive rate. While this was observed
for both multiple testing correction methods, the false positive rate for the BH-FDR is higher
for all sample sizes tested in this experiment. While the number of markers does not have an
effect on the false positive rate of a GWAS experiment under the default sample size (i.e.,
N=2000), for small sample size (N=200) a larger number of markers also strongly increased

the false positive rate (Figure 3.5).
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Figure 3.4: The effects of (a) number of markers, (b) sample sizes, (c) number of QTL and (d) average QTL
effect size (y) on the false positive rate of a GWAS for the Bonferroni correction (blue line) and BH-FDR (red
lines) for both independent (solid lines) and correlated (dashed lines) markers. The default parameters for each
of the plots are as follows: number of QTL at 100, sample size 2000, the number of markers 20k, the average

QTL effect size (y) at 0.4 and shape parameter for allele frequencies distribution (f) at 0.5.

Number of QTL and QTL effects: For independent markers, the false positive rate of a GWAS
is not influenced by the number of QTL associated with a trait. This is not the case for
correlated markers however; traits with small number of QTL with large effect sizes have a
higher false positive rate compared to traits with large number of QTL with small effect sizes,
and correlation between markers exacerbated that increment (Figure 3.4(c)). This is caused
by an increase in raw number of FPU and a decrease in raw number of true positives (as there
is less QTL to be detected in the first place). The increase in the number of false positives
with a small number of QTL is due to an increase in significance from the increased
proportion of variance explained by those QTL (which also explained the increase in power
of GWAS with a small number of QTL). This increase in significance at the QTL also
increases the significance of neighbouring null markers, thus increases the false positive

rates.
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Figure 3.5: The effects of sample size on the false positive rate of GWAS under varying number of independent
markers and correction methods. Solid lines represent the number of false positives for the Bonferroni correction
whereas dashed lines represent those of BH-FDR. The number of QTL is maintained at 100, and the average

QTL effect sizes (y) and allele frequencies () maintained at 0.4 and 0.5 respectively.

The false positive rate is not significantly affected by the average QTL effect size (y) when
the markers are independent. But for correlated markers a lower value for y significantly
increased the number of FPU and false positive rate in both multiple testing correction
methods. The number of false positives began to stabilize at an average QTL effect size of
0.4 (Figure 3.4(d)). The number of false positives is not significantly affected by the

distribution of the allele frequencies.

Correlation between markers: For all the parameters tested, correlation between markers has
a significant effect on the number of false positives detected in a GWAS. The presence of
correlation significantly increased the number of false positives, although most of the false
positives are correlated to the true QTLs (Table 3.4). This observation can be made in both
multiple testing correction method, although the numbers of both correlated and uncorrelated

false positives are higher for BH-FDR compared to the Bonferroni correction.
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Table 3.4: The number of true positives (TP), correlated false positives (FPC) and uncorrelated false positives
(FPU) under varying multiple testing correction methods and dependency between markers. Default parameters

had been used in calculating the number of true and false positives for this table.

Multiple Testing Bonferroni correction BH-FDR
Correction Method

TP FPC FPU TP FPC FPU
Independent Markers  7.53 NA 0.22 9.13 NA 0.76
Correlated Markers 7.86 51.12 0.80 12.23 98.44 10.18

3.4.4. Effects of Parameters on ROC score of Multiple

Testing Correction Methods

With increasingly large numbers of markers used, there is a general decline in the difference
between number of true and false positives (ROC score) for both correction methods. For
independent markers, the BH-FDR had a higher ROC score compared to the Bonferroni
correction for all numbers of markers tested in this experiment. This suggests that the
threshold for Bonferroni correction provided a less favourable balance between power and
false positive rates in a GWAS experiment. The trend changes with the presence of
correlations however; when the markers are correlated the BH-FDR had a significantly
reduced ROC score for all numbers of markers tested. This is attributable to an increased
number of FPU when the assumption of independence is violated. With the exception of
small number of markers used, which increases the ROC score, correlation between markers
generally do not have a significant effect on the ROC score for the Bonferroni correction
method (Figure 3.6(a)).

Besides the number of markers used, sample size also has a significant effect on the

ROC score for both multiple testing correction methods (Figure 3.6(b)). When the markers
are independent, compared to Bonferroni correction, BH-FDR has somewhat higher

ROC score in all sample sizes tested, although this observation is more notable for very
small sample size (N=200) or for the larger sample size (N=5000). The presence of
correlation changes the trend however; for N=200, the ROC score for BH-FDR is higher
than for Bonferroni, but with sample size of 800 and larger the ROC score of Bonferroni is

higher than that of BH-FDR, and with sample size larger than 1400, the ROC score actually
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decreases with larger sample size for BH-FDR. This is attributable to an increased number of

false positives for BH-FDR with large sample sizes.
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Figure 3.6: The effects of (a) number of markers, (b) sample sizes, (c) number of QTL and (d) average QTL
effect size (y) on the Receiver Operating Characteristics (ROC) Score of a GWAS for the Bonferroni correction
(blue line) and BH-FDR (red lines) for both independent (solid lines) and correlated (dashed lines) markers. The
default parameters for each of the plots are as follows: number of QTL at 100, sample size 2000, the number of
markers 20k, the average QTL effect size (y) at 0.4 and shape parameter for allele frequencies distribution (B) at
0.5.

For independent markers, the ROC score for both BH-FDR and Bonferroni correction would
initially increase, but when the number of QTL exceeds 100 there is a slow decline in the
ROC score. This can be attributed to a decline in power with increasingly large number of
QTL that have smaller effect. For correlated markers, the ROC score of Bonferroni
correction followed a similar trend as with independent markers, but the trend is different for
BH-FDR. When the number of QTLs is small (less than 200) the ROC score went below that
of Bonferroni correction, but with further increase in number of QTL, the ROC score with

BH-FDR became significantly higher than that of Bonferroni (Figure 3.6(c)).
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With increased numbers of QTL with large effect sizes (i.e., a high average QTL effect
sizes), the ROC score for both multiple testing correction method increases (Figure 3.6(d)).
This can be attributed to an increase in power with increasingly large average QTL effect
sizes. When the markers are independent, the BH-FDR has again a higher ROC score than
Bonferroni for all parameter values, although the increase is more significant with a larger
average QTL effect size. This trend flipped when the markers are correlated however; while
BH-FDR has high power in detecting QTLS, the massive increase in number of false
positives decreased the ROC score to that below of Bonferroni correction. Correlation has a

less significant effect on the ROC score for Bonferroni correction.

3.5. Discussion

In this experiment the effects of parameters on the threshold of Bonferroni correction and
BH-FDR, as well as its associated power and false positive rate, were tested. Unlike BH-
FDR, which has its threshold affected by various parameters, none of these parameters have
an effect on the threshold of the Bonferroni correction, with the exception of number of SNP
markers. This is due to how the threshold is calculated; with the number of SNP markers
being the only variable for the calculation of threshold for the Bonferroni correction
(equation [5]). The threshold of the BH-FDR also depends on the distribution of the ranked p-
values of the markers (i.e., rank “k” inequation [6]). Due to this, any parameters that could
affect the distribution of p-values would have an effect on the threshold from the BH-FDR.
Parameter values that would increase the -log(p-value) of the markers increase the value of
point k and thus decrease the stepwise threshold from [6], thus decreasing the stringency of
the threshold. Conversely parameters that decrease that -log(p-value) decrease the value of
point k and thus increase the threshold stringency. For example, increasing the sample size of
the GWAS increases the test statistic of the marker and thus increases the value of the -log(p-
value). This causes an increase in the value of k and thus decreases the stringency of
threshold. Conversely a trait with a large number of QTL decrease the proportion of
phenotypic variance explained of any given QTL, and this increase the p-values and thus the
stringency of the threshold of the BH-FDR. Correlations between markers also causes the
“bleeding” of effect sizes from the true markers into the neighbouring null markers, and this
produces a peak of true QTL with several neighbouring null markers flanking the peak
(Figure 3.7). This increases the p-values of the neighbouring null markers and thus decreases
the threshold of the BH-FDR.
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Figure 3.7: The estimated effect sizes (blue dots) of a peak in a correlated marker, showing the effect of
correlation on null markers that flanked a QTL (red peak at locus 1589). The marker pairwise correlation is set at
RLD == 095

The effects of these changes in the threshold of both correction methods would affect the
power and false positive rate of a GWAS, with a decreased stringency in threshold increases
its power and false positive rate and vice versa. For example, increasing the number of
markers caused the threshold to become more stringent as it needs to exclude the additional
null markers. This increased stringency however also has the effect of decreasing the number
of true positives and thus the power. As the threshold increase in stringency in a logarithmic
fashion with an increase in the number of markers, the power also decreases in a similar
fashion, approaching zero as none of the true QTL had its p-value exceed the extremely
stringent threshold. This could be an issue for Whole Genome Sequencing (WGS) data,
where Tam et al (2019) warned the exacerbation of decline in power due to the
overconservative threshold, especially when the Bonferroni correction is used. In this

situation BH-FDR might serve as a better alternative.

This study also suggested a larger number of markers does not necessarily increase the
power, as it might increase the number of null markers utilized in a GWAS experiment and
increase the required stringency of a threshold. In fact, we saw a decrease in power with a
larger number of markers tested in both correlated and uncorrelated markers. Conversely
increasing the sample size increase the -log(p-value) of the true markers, making them more

likely to be detected. This increases the number of true positives logarithmically, thus
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increasing the power of GWAS. This suggests that increasing the sample size could be more

important than increasing the number of markers used in a GWAS experiment.

On the other end of the spectrum, the use of small sample size significantly increased the
number of false positives and decreases the number of true positives. This is due to the fact
that observations made from a small sample size can often be explained by a larger number of
predictors (i.e., SNPs markers), which causes the null markers that have its combination of
genotypic values coincided with those of true markers to have an elevated p-value,
contributing to the false positive rate (Forstmeier et al., 2017). Combined with the reduced
number of true positives, this means a GWAS with small sample size would have low power
and high false positive rate. This observation is also supported by the low ROC score for
small sample sizes, and this elevated the number of false positives, especially with
increasingly large number of SNPs. As expected, the results of this experiment casted doubt
on the validity of the results obtained from studies with a small sample size, especially for

those with high marker density.

Besides the experimental design parameters, the distribution of the QTL effect size of the
trait studied also affect the threshold, power and false positive rate of a multiple testing
correction method in a GWAS experiment. This agrees with the study of Panagiotou and
loannidis (2012) which stated that the most suitable threshold used in a GWAS experiment
might vary for different populations and genetic architecture of the trait. This could mean that
a threshold from one study might not be suitable for another association study. Indeed, this
can be observed with the decreased number of true positive as well as increased number of
false positives for a trait with a small number of QTL with large effect sizes (small average
QTL effect size in this study). While in theory this observation could be used to calculate the
threshold optimized for the trait in study, in practice this might not be possible as it requires
information on the underlying QTL effect size distribution. Previous works such as those
published by Park et al (2011), Hall et al. (2016) and Zhang et al. (2018) have attempted to
estimate such distribution using various approaches, although these algorithms assumed the
QTL effect sizes followed exponential or normal distribution, and the effect of violation of
such assumption (as an example, the QTL effect size followed a gamma distribution)
remained untested. Future work should be thereby focus on an algorithm for robust
estimation of QTL effect size distribution, and its incorporation into the calculation of

optimal threshold for a GWAS experiment.
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Panagiotou and loannidis (2012) also commented that correlated markers constituted a major
source of uncertainty in the suitability of a threshold used in a GWAS experiment. Our results
show that this is a valid concern. Due to the “bleeding” effect of the effect sizes, correlation
between markers significantly increased the number of false positive in a GWAS experiment,
especially with increasingly large number of markers used. As markers become increasingly
dense, they become less well separated to one another and they no longer inherited
independently, producing linkage disequilibrium between markers (Cheverud, 2001,
Falconer, 1989). It is expected that maximal linkage disequilibrium would be observed for
WGS data, which made high degree of correlation between markers unavoidable (Pengelly et
al., 2015).

While correlations between markers led to an increased number of false positives for BH-
FDR and increase in number of QTL also led to a decline in the power of GWAS, such that
increase in number of QTLs had led to an increase in the absolute number of true positives
and a decrease in number of false positives. This led to an increase in the ROC score and a
decrease in the false positive rate. This could be attributed to an increase in threshold
stringency for the BH-FDR with large number of QTLs associated with a trait, as well as the
reduced proportion of variance explained by each of the QTL. Such a decrease in false
positive rate and increase in ROC score was neither observed for the Bonferroni correction,
nor for independent markers. While this initially suggested that BH-FDR might be more
suitable correction method compared to those of the Bonferroni for a polygenic trait,
especially with correlated marker, it does come with a caveat: the actual false positive rate in
BH-FDR is significantly higher than that of the Bonferroni method; the false positive rate
from FPU is 0.095 under default conditions for BH-FDR, compared to 0.006 for Bonferroni.
Thus, the actual suitability of the correction methods depends on the priority of the
experiment; if the priority of the GWAS is to be placed on the explanatory power of the
GWAS, then BH-FDR might serve as a better choice, but if the priority is to increase the
specificity (i.e. number of false positives out of all null markers) of the GWAS, then the

Bonferroni might be preferred.

Rather than choosing one multiple testing correction methods over the other, perhaps a better
alternative is to modify the methods so that they could take into account correlation between
markers. One such method is a Bonferroni correction that utilized “effective number of
independent markers” instead of raw number of SNP markers, similar to those suggested by

Cheverud (2001) and Nyholt (2004). This might serve as a promising route for an increased
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power. The calculation of effective number of independent markers utilized the variance of
eigenvalues obtained from the marker correlation matrix to adjust the “Number of SNPs” in
equation [3], thus yielding a less stringent threshold. One downside of this method however is
that the calculation of a very large marker correlation matrix is memory and computationally
demanding, which might not be feasible with large dataset. Modification of the original
methods might thus be required. Studies on the effect of such adjustment of “Number of
SNPs” on the false positive rate of GWAS is also lacking as well. Attempts to modify the
BH-FDR so that it could take into account correlation between markers had also been done
by Benjamini and Yekutieli (2001), and this might serve as a better alternative than the BH-
FDR.

While correlation between markers is expected to be at its strongest with WGS data, the
effects of correlation on setting the threshold in a multiple testing correction method cannot
be ignored in GWAS experiment where WGS data is not used. With pairwise marker
correlation as high as 0.8, it has caused such a significant decline in the stringency of the
threshold for the BH-FDR that it fails to control the number of false positive and thus the
false discovery rate at 0.05 in all parameter value tested. This highlighted the importance of
selecting the appropriate multiple testing correction method in a GWAS experiment. The
results from this experiment have also run contrary to the claims from Benjamini and
Yekutieli (2001) on the validity of the BH-FDR in correlated marker array. This experiment
highlighted the unsuitability of the BH-FDR with high density marker arrays, which is to be
expected in a real GWAS experiment, especially when the markers are not sufficiently dense.
In this situation the Bonferroni correction was shown to be more capable of maintaining the

number of false positives.

An important note for this experiment, which would serve as a caveat, is how the number of
FPU and FPC is determined. It should be noted that the cut-off point between FPU and FPC
(i.e. 72 = 0.1) is arbitrary and changing said cut-off point would affect the number of FPU
and FPC. The rationale of using this cut-off point is to differentiate the “false positives” that
is caused by correlation with true QTL from those that actually caused by the varying
parameter values. This distinction is important in the context of increasing the sample size of
the GWAS. While the naive results of this experiment suggested that increasing the sample
size increase the false positive rate of a GWAS, this is more likely the effect of choosing a
certain cut-off point for FPC and FPU, as increasing the sample size would not only
decreases the required effect size detectable by the GWAS, but also the required correlation
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between the marker and the QTL. Thus, given a probability of detection of a QTL, the
required correlation between a marker and QTL decreases with increasingly large sample
size. This is best illustrated by Spencer et al. (2009) who had provided the following
proportionality between the test statistics for the detection of a QTL and correlation between
QTL and marker:

Test Statistics o Nay pr(1 — pr)R2(0Q, k) [10]

Where N is the sample size, py, is the allele frequency, a; being the QTL effect size and
R?%(Q, k) being the correlation between QTL and marker. This proportionality suggests that
for a given a test statistic value, as N approaches infinity, the R?(Q, k) required for the test
statistic to reach said value approaches zero. Thus, as long as a marker has a nonzero
correlation with any of the QTL, regardless how small the correlation is, there would be a
finite sample size required. Taking this to extreme, this could cause a GWAS to declare
excessively large number of null markers to be positive, even if those markers are minimally
correlated to the QTL. This could be the situation observed by Jiang et al. (2019), who have
utilized 294,079 animals in their GWAS experiment, and with that sample size the
experiment declared 27 percent of all markers as positives (15215/57067 = 0.267). It is for
this reason that an extremely liberal cut-off point for FPC and FPU of r2 = 0.1 has been
chosen for this experiment, to ensure that any FPU detected are “as null as possible” (i.e. as
little influenced by a QTL as possible). In the context of multiple testing correction methods,
this also suggest that a GWAS with large sample size could afford a more stringent threshold,

such as those suggested by the Bonferroni correction.

Given that differing genetic architecture of a trait and experimental designs would affect the
suitability of the threshold of a multiple testing method, an algorithm that could test the
suitability of such threshold would be desirable. One possible method of testing the
appropriateness of the multiple testing correction method is to use the ROC score. As defined
by equations [7], [8] and [9], a low ROC score could either be caused by low power, which
was associated with an overconservative threshold, or with high false positive rate, which
was associated with overly lenient threshold. Only a threshold that could provide a good
balance between true and false positives that would have a high ROC score. Results from
this experiment suggested that when the markers are independent, the BH-FDR provided a
better balance between power and false positive rate for all parameter values tested when

markers are not correlated, but for correlated markers, the Bonferroni correction consistently
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provided a better balance between power and false positive rate for all parameter value tested

except for highly polygenic trait (i.e. trait with large number of QTL).

Given the relationship between the ROC score and the optimality of the threshold, another
potential route for further study is to establish an algorithm that could find an optimal
threshold that would maximize the ROC score based on certain parameters related to
experimental design and genetic architecture of the trait in study, similar to what is suggested
by Habibzadeh et al. (2016) in finding a threshold that balances the power and false positive
rate in a clinical test, and de Smet et al. (2004) had used such an algorithm in balancing true
and false positives in a gene expression experiment. Along with suitable modification, such
as taking into account the effect of correlation between markers, a similar algorithm could be
suggested to be used in a GWAS experiment. A major obstacle for this route is the
requirement of prior information on the underlying QTL effect size distribution, which
further emphasize the importance of a robust algorithm to estimate it.

In conclusion this experiment suggested that power and false positive rate in a GWAS
experiment is affected by the choice of the multiple testing correction method, the
experimental parameters such as sample size and number of markers, and the genetic
architecture parameters of the trait studied. For independent markers, the BH-FDR provided a
better balance between the true and false positives for all parameter values, but for correlated
markers, the Bonferroni correction did provide a better balance between true and false
positives. The only exception where the BH-FDR provided a better balance between true and
false positive with correlated markers is when the trait is highly polygenic, and even so with
the caveat of increased false positive rate. This experiment had also suggested that increasing
the number of markers used in an experiment would not necessarily increase the power of
GWAS but increasing the sample size would increase the power and decrease the false
positive rate of GWAS. Our study also showed the importance of having large sample size if
large number of markers is to be used in a GWAS experiment, which would be crucial if
WGS data is to be used in a GWAS experiment, as a genotype array of such high density
would inevitably and excessively increase the stringency of the threshold, necessitating a
larger sample size. Future work should focus on a robust algorithm to estimate the QTL effect
size distribution and using it to calculate an optimal threshold that could balance the power
and false positive rate under arbitrary experimental designs and genetic model of the trait
studied in a GWAS experiment.
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Chapter 4. A Robust Algorithm for Calculation of
an Optimal Threshold in Genome-Wide

Association Studies

Zhi Loh, Julius H. J. van der Werf, Sam Clark

4.1. Abstract

While Genome Wide Association Studies have become an important tool in identifying
causal loci, the large number of markers utilized has created a severe multiple testing
problem which reduces its power. While several methods have been suggested to control
false positives, they have their own strengths and shortcomings in terms of balancing power
and false positive rates, with none of them taking into account the effects of parameters such
as distribution of QTL effect sizes. Using the Receiver Operating Characteristics (ROC), we
developed an algorithm for the calculation of an optimal threshold that could balance the
power and false positive for a given set of experimental parameters and evaluated its
performance against two of the most popular correction methods. Through simulated
genotypes and phenotypes, we found that, compared with the frequently used Bonferroni and
FDR methods, the optimal threshold performed better in binary classification between
significant and non-significant markers, which is important for QTL identification. The
optimal threshold leads also to more accuracy in genomic prediction when the threshold was
used to as a truncation point when selecting the markers to be used for genomic prediction;
the use of optimal threshold led to an increment in accuracy up to 16.8% compared to the
Bonferroni method and 7.0% compared to FDR method. This study is important not only
within the scope of genomics in term of causal variant identification, but also in signal
processing theory for the generalization of ROC algorithm in the context of handling
correlated tests and class imbalance.

4.2. Introduction

Since the advent of high-density markers such as Single Nucleotide Polymorphisms (SNPs),
Genome-Wide Association Studies (GWAS) have become one of the most important tools in

identifying loci associated with a trait. GWAS has found several uses in the field of
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genomics, such as identifying causal loci associated with human diseases such as diabetes
(Cai et al., 2020) and multiple sclerosis (Cotsapas and Mitrovic, 2018), as well as truncation
of null, uninformative markers for genomic prediction (Brgndum et al., 2015). Despite this,
the large number of markers used in a GWAS has introduced a severe multiple testing
problem which significantly increases its false positive rate. Such issue could be exacerbated
by the use of increasingly dense markers or genetic variants derived from Whole Genome
Sequence (WGS) data. Such GWAS would necessitate the correct use of a multiple testing
correction method.

The most popular multiple testing correction method is the Bonferroni correction, initially
introduced by C. E. Bonferroni before being popularized by Dunn (1961). The rationale of
this correction method is the observation that the confidence interval of the joint distribution
of a number of variates that follow a Student t-distribution can be calculated as the Type 1
Error divided by total number of tests (Dunn, 1961). This correction method had gained
popularity in GWAS due to its simplicity of implementation and effectiveness in controlling
the false positive rate (Wilson, 2019). In its effort of controlling the false positive rate
however, the Bonferroni correction has been widely criticized for its excessively stringent
threshold, particularly with the dramatic increase in marker number, as this led to reduced
power in GWAS (Huang et al., 2018; Wilson, 2019).

The low power of GWAS with the Bonferroni correction method has prompted numerous
other multiple testing correction methods, with the most well-known class of methods being
those that attempt to control the false discovery rate (FDR). The first FDR-based correction
method is the Benjamini-Hochberg FDR (BH-FDR), first suggested by Simes (1986) before
popularized by Benjamini and Hochberg (1995). While previous publications such as Storey
(2002) suggested an increased power with the BH-FDR, the effects of violation the
assumption of independence of markers required by the BH-FDR was not considered. Indeed,
Broberg (2005) had suggested the inability of BH-FDR in controlling FDR when the markers
are dependent, while Huang et al. (2018) suggested the failure of BH-FDR in controlling
FDR in general.

Since then, a multitude of FDR-based correction methods have been suggested, each with its
own strength and weaknesses. For example, Benjamini and Yekutieli (2001) suggested a
method that considers the lack of independence between tests. Storey (2002) also suggested

another correction method that increases the power by using information from the number of
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actual null markers, although with the assumption of independence between tests. Broberg
(2005) suggested Pooling of Adjacent Violators FDR (pava-FDR) which enforces
monotonicity on the local FDR, defined as the FDR within a range of p-values, with the
assumption that local FDR in these models is monotonic (Efron et al., 2001).

Despite the multitude of these algorithms, the optimality of these algorithm in balancing the
power and the false positive rates in a GWAS remains unclear, especially with the context of
changing parameter values. While Broberg (2005) tested the ability of some of the FDR-
based methods in controlling the FDR, the effects of varying parameters associated with a
GWAS study, such as those related to experimental design and genetic architecture of the
trait, remained unclear. loannidis (2007) stated that the ratio between true and null SNPs and
population stratification could affect the FDR of a GWAS, while Hoggart et al. (2008)
suggested a dependency of the GWAS significance level on the population structure and
sample size used in an experiment. None of these studies went into detail on how to take

these effects into account when deciding an optimal threshold.

There are also questions on the severity of the impact of false positives in a GWAS. As the
results from a GWAS experiment could have multiple uses such as detecting causal loci or
marker selection in genomic prediction, one could ask the question of “How severe the
impact of false positives is toward a GWAS experiment?”, or “Does the severity of impact
from these false positives depends on the ultimate purpose of a GWAS results?” Combined
with the arbitrariness of the chosen threshold (p-value of 0.05 before correction methods
being applied), this also raises the question of suitability of a threshold and its associated
multiple testing correction method. While Panagiotou and loannidis (2012) commented on
the potential impact of such an arbitrary threshold on a GWAS experiment, proper studies on
how severe such impact is to the GWAS experiment remain lacking, especially under

different ultimate purposes of a GWAS experiment.

Perhaps rather than choosing a threshold arbitrarily or utilizing a one-size-fit-all algorithm in
attempts to increase the power of GWAS while controlling its false positive rate, an
alternative method could be establishing a threshold that could provide an optimal balance
between the power and false positive rate simultaneously. One such method is those based on
the Receiver Operating Characteristic (ROC) curve. Initially introduced as a way of
distinguishing signals from noise for radar operators in World War 11, the ROC had found its
use in numerous fields such as medical diagnostic tests (Habibzadeh et al., 2016), psychology
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and psychophysics (Streiner and Cairney, 2007) and gene expression analysis (de Smet et al.,
2004). Previous studies such as Habibzadeh et al. (2016) and de Smet et al. (2004)
demonstrated the possibility of using ROC in identifying the optimal threshold in medical
diagnostic tests and gene expression respectively. While in the context of GWAS, the ROC
curve has been used to evaluate the sensitivity and specificity of a GWAS experiment
(Bossini-Castillo et al., 2021; Patron et al., 2019), or evaluating the performance of a newly
developed model (Shafquat et al., 2020). These studies did not test the optimal balance
between the sensitivity and specificity of a GWAS however, especially if the GWAS results
are to be used for different purposes, or when correlation between markers, genetic
architectures and imbalance between number of QTL and number of null markers need to be

considered.

With this in mind, the aim for this study is to establish an algorithm for a threshold that
provides an optimal balance between power and false positive rates in a GWAS experiment,
while taking into account factors that would be relevant in such experiments, such as
correlation between markers, effects of genetic architectures and experiment designs, and the
imbalance between number of QTL and null markers. This optimality of the threshold would
then be tested using simulation under two ultimate uses for a GWAS experiment: in gene

discovery and in truncated genomic prediction.

4.3. Theory
4.3.1. Definitions used in this Study

In this study, the optimality or performance of a threshold is defined as its capability in
balancing the power and false positive rate. To establish an algorithm that could produce a
threshold that could balance the power and false positive rate of the GWAS, concrete

definitions for both power and false positive rate were required.
For this study the power of GWAS was defined as follows:

Number of QTL detected
Total number of QTL

[1]

power =

The Number of QTL detected can be defined through multitude of ways. It can be defined
as the number of QTL with its test statistic exceeding a critical value, its p-value below a

threshold, or its negative logarithmically transformed p-value exceeding its correspondingly
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transformed threshold. For this study, the negative logarithmically transformed threshold
(henceforth defined as THR) was utilized.

The Number of QTL detected depends on the genetic architecture of the trait. For example,
a highly polygenic trait would have very large Number of QTL detected but most of which
have small effect sizes, with each explaining a very small portion of the additive genetic
variance. Whereas an oligogenic trait would have small number of large QTL and each would
explain a relatively large portion of additive genetic variance. Methods for the estimation of
number of QTL and its effect size distribution will be discussed below. As it is unrealistic to
expect a GWAS to detect all the QTL, especially for QTL with very small effect sizes, only
true markers with effect sizes greater than the bottom 30% of all QTL were counted under
Total number of QTL in this study (i.e., only top 70% of all QTLs were included in the
calculation).

Under the same THR, the false positive rate of a GWAS can be defined as follows:

l » to = Number of null marker detected (2]
false positive rate = Number of positive hits

Both Number of null marker detected and Number of positive hits can be obtained
through the test statistic or the p-values in GWAS, with the assumption that the location of
the true QTL can be determined.

4.3.2. Calculation of Power and False Positive Rate in GWAS

The basics of GWAS is to estimate the slope component a of the line of regression such that
it would minimize the mean squared deviation of the data points from the line. The

phenotypic model assumed by a GWAS experiment is defined as follow (Gondro, 2015):
y=Xa+e [3]

where y being a N x 1 vector containing phenotypic values of N number of animals; X being
a M x N matrix containing genotypic states of M number of markers from N animals; a
being a M x 1 vector containing the effect sizes of each marker allele or QTL and e being a

N X 1 vector containing the residual component in the phenotype.

For the calculation of power and false positive rate in a GWAS experiment, the negative
logarithmically transformed p-value of the markers were required. This transformed p-value

can be defined as follows:
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o

logpval = —log,, <2 * f t(T; N—2) dx) [4]
T

Where t(x; v) is the probability density function (PDF) of Student’s t-distribution. The T; is
the test statistics of the marker which, if the Hardy-Weinberg Equilibrium (HWE) is obeyed,
were defined as follows:

_— var(X;) * (N — 2)
1= WF var(y) — a?var(X;)

[5]

. 2p;(1 —p)(N —2)
b Var(y) = 2p;(1 - p;)a;?

The mathematics for the derivation of the test statistics and p-values of a marker are provided
in Appendix A.

For the calculation of power of GWAS, the number of true positives from a GWAS (denoted
as Number of TP) would be needed. In this study the Number of TP can be defined as the
number of true QTL with its logpval exceed the threshold THR:

Number of TP = (#{logpvalQTL > THR}) [6]
And the power of GWAS calculated as follows:

Number of TP
nQTL

power =

[7]

For this study, the nQTL were defined as number of QTL associated with a trait with effect
size larger than the “trivial effect sizes” (denoted as a,;;, in this study). This would be the

power that will be used in the subsequent sections.

Several previous publications have attempted to estimate the number of QTL and its
associated effect size distribution using GWAS-based statistics. Given a sample size and
variance explained by the SNP markers, Park et al. (2010) utilized the previously reported
power of a study to estimate the effect size distribution. Cheng et al. (2020) utilized the
expectation-maximization algorithm to estimate the proportion of QTL with certain effect
size and the variance contributed by said QTL and build a mixture model using these
parameters. Zhang et al. (2018) also provided an algorithm for the estimation of number of

non-null markers for a disease outcome that could be modelled using logistic regression. Hall
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et al. (2016) provided an algorithm for estimating number of QTL using the proportion of

variance explained by the QTL and the heritability of the trait.

Despite this, there are many assumptions and limitations in these methods. One such
limitations was the inflexibility of the assumed distributions (normal distribution for Cheng et
al. (2020) or exponential distributions for Hall et al. (2016)), which might affect the validity
of these algorithms on real data, and the effects of varying allele frequency and small sample
sizes. For this study the nQTL and its associated distribution, as well as the location of these
QTL, are assumed to be known. Further studies should focus on providing a robust algorithm
to estimate the nQTL, its effect size distribution and its location using a sample size

comparable to a GWAS experiment.

For a GWAS experiment, the number of false positives can also be defined as the number of

null markers with its logpval that exceed the threshold THR:
Number of FP = (#{logpvalyy, = THR}) [8]
And the false positive rate for a GWAS can be calculated as follows:

] ” to = Number of FP (9]
false positive rate = Number of FP + Number of TP

4.3.3. Balancing the Power and False Positive Rate

4.3.3.1. The Basics of Receiver Operating Characteristics (ROC)

Curve

To balance the power and false positive rate in a GWAS, a receiver operating characteristic
(ROC) curve can be used. An example of implementation of the ROC in identifying the
optimal threshold is provided in Figure 4.1.

The common interpretation for ROC curve is plotting the changes in power under varying
probability of false alarm, defined as the total number of false positives over the total number
of null cases (Habibzadeh et al., 2016). Under this setting the optimal threshold was defined
as the point on the curve where the tangent of the curve equals to one (the red dot on Figure
4.1(b)). This would also be the argument of the maxima for the ROC’s Youden’s Index,
defined as the differences between power and probability of false alarm, as proven by de
Smet et al. (2004), Schisterman and Perkins (2005) and Kaivanto (2008) (Figure 4.1(b)).
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This interpretation of ROC curve is not directly usable in identification of optimal threshold
in GWAS however, as this interpretation placed equal emphasis on false negative and false
positives (Chicco and Jurman, 2020; Lobo et al., 2008). Given that the number of null
markers generally far exceeds the number of true QTL in a GWAS experiment, placing equal
emphasis on false negatives and positives has the ramification of setting the threshold overly
lenient, which allows an excessive number of false positives. Indeed, from a test-run example
provided in Figure 4.1(c), with 2000 QTL from 50k independent markers, under this
definition of optimal threshold, while there are 516 true QTL being detected, the threshold
also marked 10,230 null markers as positive, representing a false positive rate of 95.2%.

Thus, an alternative interpretation was required.

One such interpretation for the ROC curve, which would be used in this study, is the raw
differences between the number of true positives and false positives under varying threshold

levels:
ROCryp = TPryg — FPryg [10]

where the ROCryg, TPryr and FPryy denote the ROC score, number of true positives and
number of false positive at threshold THR, respectively. This is equivalent to the Youden’s
index that had been described in Habibzadeh et al. (2016) weighted by total number of true
and null markers, which made up the denominator portions of power and probability of false
alarm respectively. The reinterpreted ROC curve has the benefit of its ability in taking into
account the massive discrepancy between the number of true and null markers, producing a

more applicable threshold (Figure 4.1(d)).

Another benefit for this reinterpretation of the curve is the easiness of obtaining the optimal
threshold; as the calculation of Number of TP and Number of FP involves counting
functions, the ROC curve is not smooth and not differentiable, impeding the discovery of the
tangent of the curve. With the reinterpreted ROC curve, the optimal threshold (denoted as

THR,,;) can easily be obtained as the argument of the maxima of the curve:

THROpt = arg maX(TPTHR - FPTHR) [11]

4.3.3.2. Generalization of the ROC Curve and THR,,,; calculation

Besides the aforementioned reinterpretation of ROC curve, the formulation can also be
generalized to place more emphasis on markers that showed evidence of association with the

phenotype (i.e., additional weightage is assigned to an associated marker).
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An applicable weightage is weighting the T Pryx With the effect size associated to the QTL.
The weightage would transform the raw T Py into the sum of the absolutized effect sizes

associated with the true positives:
TPrig,, = ) lai [12]
LETP

With the index of summation i € TP denoting a set of QTL being marked as positives.

a) Counts of -log10(p-value) of positive vs. negative b) ROC curve (original)
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Figure 4.1: The implementation of ROC curve in identifying optimal threshold. Figure (a) illustrated the
distribution of —log10(p-value) for both null markers (blue) and true QTL (orange). Figure (b) illustrated the
classical ROC curve on the distribution of p-values, with red point indicating power and probability of false alarm
for the optimal threshold, defined as the point where the tangent of the curve as a slope of 1. Figure (c) shows
the changes in unweighted Youden'’s Index under varying threshold, with the red line indicating the optimal
threshold under this definition. Figure (d) illustrated the changes in weighted Youden’s Index under varying
threshold, with red line indicating the optimal threshold. The example utilized in generating these figures is
conducted using 50k independent markers and sample size of 2000, with number of QTL set at 2000 with effect
size distribution of Gamma (0.5, 1) and narrow sense heritability at 0.3.

To ensure the balance of weights between the true and the false positives, the FPyyr would
also need to be weighted. One applicable weight is the expected value of the QTL effect size

distribution, which weighs the number of false positives as follows:
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nQTL

i—r lal
FPryg,, = FPrug * <W [13]

With this weight, the THR,,,, was defined as the argument of the maxima in differences
between sums of absolute effect sizes associated with the true positives and the number of

false positives:

THR,,: = argmax Z |a;| — FPryg * <w> [14]
iETP TlQTL
A shortcoming for the weighted false positive as suggested in Equation [13] is its lack of
robustness against the distribution of the QTL effect size, most notably a distribution with
large number of QTL with small effect sizes, which excessively downweighed the effects of
false positives. This is especially problematic if the QTL effect sizes are gamma distributed

with small shape parameter value (i.e., a strongly leptokurtic distribution), where the large

TL
T gy

number of QTL with small effect sizes heavily reduces the weight ‘:ll—

g N equation [13].

This can be mitigated by excluding QTL with effect size below certain cut-off point a,,;,.
While in theory such exclusion could affect the balance for the TPryp ,, in equation [14], in
practice such exclusion has minimal effects on the TPryy ., as the true positives are
generally overrepresented by detection of QTL with large effect size. This is also in line with
the aforementioned impracticality of expectation for a GWAS to detect QTL with small
effect sizes. With this in mind, given an effect size cut-off point a,,;,, the optimal threshold
from equation [14] was redefined as follows:

nQTL
_ Zi:l:aizamin |ai|
THROptWte - arg max Iall - FPTHR * TlQTL . [15]
i ETP,a;2Amin i=1,a;2amin

This effect size weighted optimal threshold would henceforth denoted as THR

optwte*

Another option for weightage is the additive genetic variances explained by the QTL. With
the effect size cut-off point applied, the version of weighted optimal threshold could also be

defined as follows:

THR

S sa, 2pi(1 —pa?
optywiq = argmax Z sz(l - pi)al'z - FPTHR * ( nQTL [16]
i ETP,ai2amin Ei=1,ai2amin
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This version of weighted optimal threshold would henceforth denoted as THRopt,,y-

4.3.4. Incorporating the Effects of Correlation Between
Markers in ROC Curve
4.3.4.1. The Effects of Correlations on ROC Curve

While the previous algorithm can be used to establish the optimal threshold for a GWAS
experiment, it assumed the markers to be independent from one another. This is not realistic
in actual GWAS, as some correlation between markers are to be expected. This however has
a significant effect on the optimality of a threshold, with examples provided in Figure 4.2.
Modification of the original model would thus be required, and with this, the impact of

correlation on the ROC curve would need to be established.

One of the main effects of correlation between the markers in a genotype array is the

“bleeding” of the effect of true QTLs into its neighbouring null markers, which produces a
peak with several null markers flanking a core with true QTL (an example was provided in
Figure 3.7). Through additional simulations, the expected amount of effect size received by

null marker j from a correlated QTL i can be calculated as follows:
a; =a; *Ryp(i,)) [17]

Where a; is the apparent effect size of a null marker, a; being the effect size of the QTL, and
R;p(i,)) is the linkage disequilibrium between the QTL and null marker. Given two loci i

and j, the linkage disequilibrium between the two loci R, (i, j) can be calculated as follows:

RLD (l,]) — (fllfOO - f01f10) [18]

\/Pi(l - p)p;(1-p))

Where f.,, is the haplotype frequency for genotype x in locus i and genotype y in locus j, and

p; and p; are allele frequency for first and second loci respectively (Mueller, 2004).

Another effect of correlation is the interaction between several correlated QTL. When there
were several correlating QTL, they acted synergistically as their apparent effect sizes, scaled
by their correlation, combine additively to one another. Indeed, with several correlating QTL,

the expected apparent effect size of a QTL of locus j, @, can be modelled as follows:
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Figure 4.2: An example of the effects of correlation between markers on the thresholds estimated. Figure (a)
features a Manhattan plot for GWAS for independent markers, while (b) and (c) featured Manhattan plots with
correlated markers with marker pairs correlation set at R, , = 0.8. The blue line from each of the figures is the
optimal threshold. The optimal threshold presented in figure (a) and (b) is calculated using the original ROC
curve, while the threshold in (c) differentiates between the markers correlated with QTL (yellow) from markers
uncorrelated with QTL (green). The threshold is calculated using the generalized ROC curve with R%,; = 0.05,

wy;=1,w,=0andw,, = —1.

nQTL

&= ) @R [19]

i=1
Where R?, (i, ) is the linkage disequilibrium between QTL i and j.

Correlation also altered the distribution of the estimated effect sizes and test statistics of the
markers. For independent markers, the test statistics of the true and null markers tend to be
rather well-distinguished, with the QTL produces the peaks and null markers formed the
base. Thus, one simple threshold can be used to separate the peaks from the base, effectively
classifying the null and true markers (an example of such distribution of estimated effect
sizes was provided in Figure 4.2(a)). This is not the case for correlated markers however. Due
to the “bleeding” effects, the null markers can have their test statistics comparable or even
exceed the QTL. This blurs the boundary between QTL and null markers, and if the
aforementioned ROC curve is applied, the threshold would be overly stringent as it attempted
to exclude the correlated null markers (an example of this overly stringent threshold was
provided in Figure 4.2(b)). The original ROC model would thus need to be modified to

accommodate the null correlated markers.

One applicable modification is the introduction of an additional threshold which separates the
null markers based on their squared level of correlation with the QTL. This additional
threshold, denoted as R?,,, act on the correlation between the QTL and null markers. It

separates the markers into three classes: the QTL, the null markers that had correlation
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greater than RZ,, with any QTL, and null markers that had its correlation less than RZ,, with
all QTL. The number of positives from each class at a threshold THR were denoted as
TPrygr, FPCryg and FPUpyg respectively. Weights can then be assigned to each of the

classes, and the ROC score (ROCyyg) can then be calculated as follows:
ROCryr = Wi TPryp + W.FPCryg + Wy FPUryr [20]

Where w;, w, and w,, are defined as the weights for true positives, false but correlated
positives and false and uncorrelated positives. The optimal threshold can then be defined as

follows:
THRype = argmax (W.TPryg + W FPCrygp + wy FPUryg) [21]

This modification can also be seen as a generalization of the original optimal threshold
calculation, which is equivalent to the optimal threshold from equation [21] for correlated
markers with the term w, = 1, w, = 0 and w,, = —1. An example of such threshold using

correlated ROC curve is provided in Figure 4.2(c).

4.3.4.2. Generalization of the ROC Curve and THR,,,; calculation

under Correlated Marker System
As in aforementioned generalization of ROC curve and optimal threshold calculation, a

similar generalization can also be applied to the ROC curve under a correlated marker
system. While modification is not required for the calculation of the weighted number of true

positives, it is required for the calculation of the weighted number of false positives.

By classifying the number of false positives into correlated and uncorrelated false positives, it
is in effect converting the FPryg from equation [11] into FPCryg and FPUpyg in equation

[21], and converting the original weight from -1 into a user-definable w, and w,, respectively.
Recognizing these adjustments, the weighted number of false positives can then be calculated

by substituting w.FPCryr and w, FPUryg in place of FPyy into equation [13]:

ZnQTL

i=1 |ai|> [22]

FPryg,, = W.FPCryg + wyFPUryg) * < nQTL

which, when adjusted for increased robustness against the large number of QTL with small
effect size, yields the following:

SIT a1

= .> . l
FPryg,, = WFPCrygp + Wy, FPUryg) * =L min [23]
wt .

nQTL
i= l,a;i=amin
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and the corresponding effect size weighted optimal threshold can be calculated as follows:

nQTL
Zizl,aizamin |a;]
THROptWte = argmax |al| + nQTL - (WCFPCTHR + WUFPUTHR) [24]
i €ETP,ai2amin i=1,a;=amin

The optimal threshold weighed by the proportion of additive genetic variance explained can

also be generalized as follows:

2 Z?ff:zizamm Zpl(l - pi)aiz
THRop,,, = argmax Z 2p;(1 —pa? + ST , (W.FPCrpg + wyFPUryg) [25]

i €TP,a;2amin i=1,a;2amin

The calculation of the generalized weighted optimal tresholds under a correlated marker
system as defined in equation [21], [24] and [25] is provided in Figure 4.3.
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Figure 4.3: The calculation of generalized weighted optimal tresholds featured in section 4.3.4.2. The solid lines
depicts the ROC scores for each of the generalization under varying threshold level, and the dotted vertical line
depicts the optimal thresholds. The blue lines represents the generalization as shown in equation [21], the
orange lines as in equation [24] and green lines as in equation [25]. For all three methods, the sample size was
set at 2,500, with number of markers set at 40,000, the pairwise marker correlation set at 0.8. 200 QTL was
simulated in this example, with the distribution of the QTL effect size follows a gamma distribution
Gamma(0.7,1), and the “trivial effect size” a,,;,, were set at bottom 30% (i.e. only top 70% of all QTL are
considered in the calculation of the power). The ROC scores are calculated with R, = 0.2, w, = 1, w, = 0

andw, = —1.
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4.3.4.3. Calculation of Optimal Threshold for a Highly Polygenic
Trait

An important consideration for the classification of false positives is the effect of the
proportion of null markers that would be classified as correlated with a QTL. As an example,
in a marker array with 100 QTL, if the markers are correlated in such a way that in average
10 markers flanked each side of a QTL has a correlation greater than R?,,, there were
2*10*100 = 2000 markers being marked as correlated, and the FPCyyg Would describe the
number of positives within these 2000 markers. While this is not so problematic if the trait is
oligogenic or if the markers are independent to one another, it might be if both conditions are
not met. This could be the case if the trait is strongly polygenic, which might cause most if
not all the null markers being marked as correlated with a QTL, producing an overly lenient

threshold that fails to exclude the false positives.

Several approaches could be taken to mitigate such an issue. One such approach was to
increase the stringency of the effect size threshold a,,,;,, or the linkage disequilibrium
threshold R2,,, or by increasing the penalty for w, (i.e., a negative value for the weight w,).
A less arbitrary method however is by modifying how the weighting factors are defined, and

one such way is by assigning weights to each marker based on their correlation with a QTL.

Given a marker i € {1,2,3, ..., nSNP}, let 72 be a vector of length nQTL that is defined as

follows:

rczl = [RIZ,D (i,QTLy)ay R%D (i,QTLy)a, R%D (i,QTL3)az .. R%D (i’ QTLnQTL)anQTL]

Where R?, (i, QTL,,) is the squared correlation between marker i and QTL of locus n, and a,,
being the effect size associated with said QTL. Using the linkage disequilibrium and effect
size threshold R?,, and a,,,;,,, the vector is trimmed such that any RZ, (i, QTL,,)a,, that has
R?, less than R, and a,, less than a,y,;,, are removed from the calculation. This is to ensure
that only null markers that have sufficiently strong correlation with a QTL with significant
effect sizes being marked as correlated false positives if the marker is deemed significant in a
GWAS. For the remaining R?, (i, QTL,)a,, the squared correlation component R?, (i, QTL,,)
was extracted, and the maximum of the RZ, (i, QTL,,), denoted as RfDmax, were obtained for
marker i. The R7,  would represents the correlation between marker i and the nearest

QTL. This procedure is then repeated for all nSNP markers. If the marker tested is a QTL of
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significant effect size, it would receive a score Rf;, = 1. If the marker is uncorrelated with

any of the QTL it would receive a score of Rf, = 0.

From the pool of R7, _of all markers, a new vector (denoted as r5) can be built using the
following rules. If the marker is a nontrivial QTL (i.e. RfDmax =1and a, = apx), then the
entry for the new vector was assigned with the value of wy. If the null marker bears no
significant correlation with any significant QTL (i.e. R2,(i, QTL,)a, < R%,; or a, < amin)
then it was assigned with the value of w,,. For the remaining markers, they were deemed as
correlated null markers (i.e. R?, (i, QTL,)a, = R?%,, > 1 and a, > a,,;,) and were assigned
with the median-adjusted RfDmax. In summary, the r2* is a vector built with its entries under

the following rule:

w, Rip =1 A ay 2 QG
ro'(n) = {REp (n) —median(R?p ) ,REHp(i,QTLy)ay = RZye > 1 A ay = Gy [26]
Wy :R%D(iv QTLn)an < Rczut Voa, < Amin

where median(R?p, ) is the median of all R7;, __that fulfils the condition of being a
correlated null marker (i.e. R?, (i, QTL,)a, = R?%,, > 1and a, = a,,;,). The rationale of
using the median is to ensure the balance between the number of correlated null markers with
positive weights and those with negative weights. By this rule, markers that are closer or
more correlated with a QTL were assigned a positive weight, and those that further away with

a negative weight.

Under this new definition of weights, the number of correlated positives for each class can

then be calculated as the sum of r2*(n) of the correlated false positives:
FPCryp = Z (RfDmax(i) - median(RfDm)) [27]
i EFPC

with the index of summation i € FPC denoting a set of correlated null markers being marked
as positive by the GWAS. The optimal threshold can then be calculated as the sum of the

positives weighted by vector r2*:

THR,,, = argmax (Wt Z i+ Z (RfDmax(i) —median(RfDm)) + wy, Z i) [28]
i EFPU

i ETP i EFPC

which can be simplified in terms of r3;*:
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NnSNP
THRopt, = arg max( Z ra(i) nTHR(i)> [29]
i=1
where mtryg IS a vector of size nSNP containing the acceptance-rejection status of all SNP
markers under a threshold THR. Finally, with the weights vector r2*, the effect size weighted
optimal threshold can be calculated as such:
TL
N aisan 14l

THRope,, = z r2 (i) « ap + St tmin L 2 2 (D) [30]

i ETP i=l,a;zamin i e{FPC U FPU}

where the index of summation i € {FPC U FPU} denoting a set of correlated and
uncorrelated false positives. Similarly, the optimal threshold weighted by r2* and proportion

of additive genetic variance explained can be defined as such:

, Y e, 2p,(1-p,)a? ,

THRoptygy = ) 720 *pi(1 - pal + == o ( , M, > o) By
eTP =12y i {(FPC U FPU}

An example of calculation of the generalized weighted optimal tresholds under a correlated

marker system as defined in equations [25], [29], [30] and [31] is provided in Figure 4.4.

4.4, Simulation Study

The optimality of the threshold was evaluated using simulated genotype and phenotype using
Python (version 3.7.3), where the power and false positive rate of the optimal threshold,
alongside with the Bonferroni correction and Benjamini-Hochberg False Discovery Rate
(BH-FDR), are tested under varying parameters and correlation between markers. The true
number of QTL, the distribution of their effect sizes and their locations were assumed to be
known for this chapter (i.e. these quantities have been obtained from raw data through

methods outside this chapter).

4.4.1. Genome Wide Association Study

To simulate a GWAS experiment, a genotype array (denoted as X) with sample size N and
number of markers nSNP was generated, with the distribution of the allele frequencies
following a Beta distribution. The sample size, number of markers and the shape parameters
of the Beta distribution are provided in Table 4.2. The correlation between markers was
generated by copying part of the genotypic state from a marker to the adjacent markers while

90



randomizing the remaining genotypic state for that adjacent marker. The proportion of

copying were the targeted level of correlation, which is provided in Table 4.2.

N 2000 M 40000 Q4000 A0.7L0.8P 0.5
80 A S
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Figure 4.4: The calculation of generalized optimal threshold from section 4.3.4.3 based on varying correlation-
based weighting methods. The solid lines depicts the ROC scores for each of the generalization under varying
threshold level, and the dotted vertical line depicts the optimal thresholds. The red lines denotes the weighting
algorithm as defined in equation [25], the purple lines with equation [29], green lines with equations [30] and
brown lines with equation [31]. For all three methods, the sample size was set at 2,500, with number of markers
set at 40,000, the pairwise marker correlation set at 0.8, repeated 100 times. 4000 QTL was simulated in this
example, with the distribution of the QTL effect size follows a gamma distribution Gamma (0.7, 1), and the
“trivial effect size” a,,,;,, were set at bottom 30% (i.e. only top 70% of all QTL are considered in the calculation of

the power). The ROC scores are calculated with R, = 0.2, w; = 1,w, = 0and w,, = —1.

Some of the markers were marked as QTL and were associated with an effect size. The QTL
effect sizes were generated at random following a gamma distribution, with its shape
parameter provided in Table 4.2. The null markers were assigned an effect size of zero, and
together with effect sizes of QTL, compiled into vector a containing the effect sizes of all
markers. The simulated phenotypes were then generated using the method as defined in

equation [3], with the residual vector e simulated with the following normal distribution:

[32]

o N <O, var(Xa)h*z(l - h2)>
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For this experiment, the narrow sense heritability h? was set at 0.3 for all parameter tested.
Using the simulated genotype and phenotype, a single SNP regression GWAS was
conducted, with their negative logarithmically transformed p-values logpval being recorded.

Based on the QTL effect size and the level of correlation between marker and nearest QTL,
the loci were classified into three classes: true QTL, correlated null markers and uncorrelated
null markers, with the linkage disequilibrium threshold R, set at 0.2 and the trivial effect
size threshold a,,;,, set at bottom 30% of all QTL (i.e., only top 70% of all QTLs were
included in the calculation). The number of true positives T Pryg, correlated false positives

FPCryg and uncorrelated false positives FPUryr Were also recorded.

4.4.2. Threshold Tested in this Experiment

In this experiment, the performance of various thresholds in maintaining the power and false
positive rate were tested. Eight thresholds were tested in this experiment, with six of them
being the variants of the optimal thresholds, and the others being based on the Bonferroni
method and the Benjamini-Hochberg FDR method. The threshold for the Bonferroni method

(THRpoy) is defined as follows:

Type 1 Error
3’?’—) [33]

THRgoy = _10g10( TSNP

Given a set of ordered negative logarithmically transformed p-values logpvalsy,teq, the
threshold for the Benjamini-Hochberg FDR is defined as the smallest logpvalg,,+.q that
fulfil the following inequality (Simes, 1986):

. j * Type 1 Error
logpvalsorted(]) =< —10g10( nSNP )

Where j is the index of the sorted negative logarithmically transformed p-values.

The notations used for the thresholds tested in this experiment, along with their associated

equations, are provided in Table 4.1.

For the optimal threshold testing that utilized QTL-null markers correlation as weighting
factors (i.e., UWTR, WTER and WTQR), the vector r;* was built using the rule as defined in
equation [26], with the weight w;, = 1 and w,, = —1. While for optimal thresholds that did
not use correlation as a weighting factor (i.e., UWT, WTE and WTQ), the true positives,

92



correlated false positives and uncorrelated false positives were assigned weights as w; = 1,

w, = 0and w,, = —1, respectively.

Besides the thresholds, two additional controls were employed. The first control involves

randomly selected markers (henceforth denoted as “RND”) and that involves the calculation

of the same score for all QTL (denoted as “ALQ”). To ensure the comparability of the

controls with the thresholds, the number of markers utilized in both controls equated those

obtained from the most lenient threshold (i.e., threshold that yielded the greatest number of

positives). In the cases when there are more positives in the most lenient threshold than

number of QTL, the ALQ is padded with loci that have the strongest LD with any non-trivial

QTL.

Table 4.1: Notations, description and equations of threshold tested in this experiment.

Notations  Description Equation
UWwWT Unweighted ROC optimal threshold [21]
WTE ROC optimal threshold weighted by effect size [24]
WTQ ROC optimal threshold weighted by additive genetic variance explained [25]
UWTR ROC optimal threshold weighted by weightage vector r4* [29]
WTER ROC optimal threshold weighted by effect size and weightage vector r2* [30]
WTQR ROC optimal threshold weighted by additive genetic variance explained [31]
and weightage vector r2*
BON Bonferroni correction [33]
BHF Benjamini-Hochberg FDR [34]
RND Random control NA
ALQ All-QTL control, padded with null markers with strongest LD with QTL if  NA

needed
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4.4.3. Parameter Tested in this Experiment

The list of parameters tested, alongside with their default and alternative values, are provided
in Table 4.2. When a parameter is tested under its alternative value, default values were used

for other parameters.

Table 4.2: Parameter tested in this experiment.

Parameters Default Value Alternative Values

Sample Size (N) 2500 1000, 4000

Number of Markers (M) 40k 400k

Number of QTL (Q) 1000 200, 4000

QTL Effect Size Distribution (A)  Gamma(0.5,1) Gamma(0.2,1), Gamma(0.9,1)
Pairwise Marker Correlation (L) 0.8 0.1,05

Allele Frequency Distribution (P)  Beta(0.5,0.5) Beta(0.2,0.2), Beta(0.8,0.8)

For the number of markers of 400k, two levels of pairwise marker correlations were also
tested: 0.8 and 0.9779. The latter value was chosen as it is the expected pairwise marker
correlation had the 400k marker density is applied onto a genome that would yield a
correlation of 0.8 if genotyped on a 40k density. The 400k marker test with pairwise marker
correlation of 0.8 will henceforth notated as “400k” and those with correlation of 0.9779 was
denoted as “400k*”.

4.4.4. Testing the Performance of a Threshold

To test the performance of a threshold, two different measures were utilized.

4.4.4.1. Matthews correlation coefficient (MCC)

The first measure is the Matthews correlation coefficient (MCC), which has been used to test
the performance of a threshold as a binary classifier (Boughorbel et al., 2017; Chicco and
Jurman, 2020). The rationale of choosing MCC over other measures of performance is its
insensitivity toward extreme class imbalance, which is important as the number of null
markers in GWAS generally outweighed the number of QTL (Boughorbel et al., 2017).

The MCC is defined as follow (Chicco and Jurman, 2020):
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B TP« TN — FP x FN
J(TP + FN) * (TP + FP) * (TN + FP) * (TN + FN)

McCC [35]

Where TP, TN, FP and FN are the number of true positives, true negatives, false positives
and false negative respectively. For this experiment, only the uncorrelated null markers were

included in the calculation of TN and FP.

The MCC score ranges between -1 and 1, which the extremes represent perfect
misclassification and perfect classification respectively. For random classifier the expected
score would be 0. If equation [35] is undefined due to the denominator being zero, a score of

zero would be assigned as the MCC score (Chicco and Jurman, 2020; Gorodkin, 2004).

It shall be noted that the maximum MCC score attained in this experiment may not
necessarily be 1, even for ALQ. This is due to the fact that ALQ comprises not only all the
QTL but also the neighbouring markers with the strongest LD with any of the non-trivial
QTL. In such a case, the MCC scores for ALQ serves as the maximum score that can be
attained by a threshold given a set number of positives. This also makes ALQ a more
informative control as it is conditioned by the baseline feasibility of detectinga QTL ina
GWAS.

4.4.4.2. Genomic Prediction Accuracy

The second measure utilized to test the performance of the threshold is the accuracy of
genomic prediction with marker selection. Previous studies such as Moghaddar et al. (2019)
suggested that causal loci made up only a small percentage of the genome, which
theoretically allowed markers with low linkage with a QTL to be excluded without
significant impact on the accuracy. For this test the thresholds were used to exclude markers

with low linkage with a QTL.

For this method, a new, unrelated population of the same sample size and genotyping density
as in the test population was simulated. This population was generated using the same
algorithm as in the test population for GWAS and threshold calculation. Using the previously
generated QTL, the additive genetic component of the phenotype was calculated for the new
population as follows:

Ynew = Xnew@ [36]

This additive genetic component of the phenotype was treated as the true breeding value
(TBV) of the new population.
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From each of the thresholds, all the positive loci were obtained. To ensure the full coverage
of the genome for the genomic prediction, and to minimize the variability in accuracy due to
differing number of positives from each threshold, as well as to remove the confounding
effects between the representativeness of selected markers toward kinship between
individuals and the accuracy of genomic prediction, the positive loci were padded with a
number of random markers up to a density of 10k. This is to test how much better a threshold
is in differentiating causal loci from null loci when compared to pure random selection of the
markers. Using the padded genotype array, a Genomic Relationship Matrix (GRM) was built
using the method suggested by VanRaden (2008). With the assumption of the true h? being
known, the GRM would then be used to calculate the estimated breeding value (EBV) of the

new population, using method as suggested by Gondro (2015).

With the true and estimated breeding values, the performance of the threshold was evaluated
as the accuracy of the genomic prediction. The prediction accuracy is defined as the
correlation between the true and estimated breeding value of the new population, with a

higher accuracy indicating improved optimality of the threshold.

For the two controls (i.e., “RND” and “ALQ”), the former involves the building of GRM and
calculating of accuracy using 10k random markers (denoted as “RND”), and the latter
involves the building of GRM using all the QTL, padded with their closest neighbouring null
markers up to a density of 10k (denoted as “ALQ”).

4.4.5. Statistical Test on Effects of Thresholds and Parameters

To ensure the consistency of the results, steps from section 4.4.1 up to section 4.4.4 was
repeated 100 times, and the results presented were the mean from all the repeats. To compare
the significance of differences between thresholds tested, a pairwise t-test was utilized. To
compare the significance of differences between parameter tested, a Welch’s independent t-
test was utilized. A comparison is deemed significantly different if the negative
logarithmically transformed p-value (logpt = —log(p — value;_.s;)) Of the t-test is more
than 3.

4.5. Results
4.5.1. Threshold Calculated

The thresholds calculated from each of the parameter tested are provided in Figure 4.5.
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Generally, the thresholds calculated from the ROC curve tend to be more lenient compared to
the Bonferroni method, with the main exception from a trait with small number of QTL (i.e.
Q = 200) or with small sample size (N = 1000), where the threshold from unweighted ROC

curve is more stringent than those of Bonferroni correction.

Under the default conditions, the threshold from BHF is comparable to UWT (logpt = 4.01)
and UWTR (logpt = 1.07), but is significantly more stringent than other variants of ROC
curve-based thresholds (logpt from 15.67 for WTE to 41.58 for WTQR). This is not the case
for other parameter values tested however; the threshold from BHF becomes significantly
more lenient than some of the ROC-based thresholds when the markers are strongly
correlated to one another (e.g. L = 0.9779 at “400k*” dataset) (logpt from 0.03 for WTQ to
21.20 for UWT), with large sample size (N = 4000) (logpt from 4.14 for WTE to 25.94 for
WTQR), and with more leptokurtic QTL effect size distribution (A = gamma(0.2,1))
(logpt from 0.40 for WTQ to 20.56 for UWT), and become more stringent than ROC-based
thresholds when the trait is oligogenic (Q = 200) (logpt ranges from 9.46 for WTQR to
16.22 for UWT).

The use of weighting factors also has significant effects on the threshold calculated from the
ROC curve. For all parameters tested, the thresholds unweighted by effect sizes or additive
genetic variance (i.e., UWT, UWTR) are more stringent than their weighted counterparts
(logpt from 13.04 between UWTR and WTER to 26.51 between UWT and WTQ under
default set of parameters). The use of effect size as weighting factor in the ROC-based
threshold (i.e., WTE and WTER) has yielded a more stringent threshold compared to those
that utilized additive genetic variance (i.e., WTQ and WTQR) (logpt = 7.87 between WTE
and WTQ; logpt = 6.34 between WTWR and WTQR under default set of parameters). The
use of QTL-null marker correlation as weighting factor (i.e., the vector %) has generally
yielded a slightly more lenient threshold than those unweighted by this weighting factor
(logpt ranges from 0.27 between WTQ and WTQR to 1.22 between UWT and UWTQ).

Besides the type of correction methods and weighting factors utilized, changing parameter
values also have profound effects on the threshold calculated from each of the methods. With
increased polygenicity of a trait, the thresholds calculated from the ROC decreased in
stringency (logpt ranges from 8.66 for UWT to 16.38 for WTQR with the increase in
number of QTL from 200 to 4000). The opposite trend is true for BHF however, with the
threshold increased in stringency with polygenicity (logpt = 34.03). A similar trend is also
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observed as the kurtosis of the effect size distribution decreases; by changing the effect size
distribution from A = gamma(0.2,1) to A = gamma(0.9,1), which reduces the kurtosis of
the distribution by 4.5-folds (Mun, 2012), the ROC-based thresholds significantly decreased
in stringency (logpt from 10.54 for WTE to 24.07 for WTQR), whereas the BHF
significantly increased in stringency (logpt = 24.44).

Increasing the sample size also significantly decreases the stringency for both ROC-based
threshold and BHF (logpt from 3.15 for WTQ to 13.18 for UWT with increase of sample
sizes from 1000 to 4000, logpt = 65.82 for BHF). Increased correlation between markers
significantly decreases the stringency of threshold from BHF (logpt = 83.14), but no
significant changes in ROC-based threshold was observed with changing correlation. The
allele frequency distribution does not have a significant effect on the thresholds. With the
exception of number of markers, the threshold for BON does not change significantly with
varying parameter values. Increasing the number of markers from 40k to 400k increases the
stringency of all ROC-based thresholds, as well as thresholds from BHF and BON.
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Figure 4.5: Threshold of GWAS obtained from simulation under varying parameter values. Thresholds featured in
this figure include: Unweighted ROC-based threshold (UWT), ROC-based threshold weighted by effect size
(WTE), ROC-based threshold weighted by additive genetic variance (WTQ), ROC-based threshold weighted by
correlation weighting factor r5* (UWTR), ROC-based threshold weighted by effect size and correlation weighting
factor (WTER) and ROC-based threshold weighted by correlation weighting factor and additive genetic variance
(WTQR), alongside with threshold from the Bonferroni correction (BON) and Benjamini-Hochberg False
Discovery Rate (BHF).
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4.5.2. Matthews correlation coefficient (MCC)

The effects of varying types of thresholds, weighting factors included, and parameter value
tested are provided in Figure 4.6.

Consistent with the previously published literature, the MCC score for randomly chosen
markers (RND) is effectively zero, whereas maximal MCC scores were observed for all-QTL
control (ALQ). Excluding the controls, for all the parameter tested, the MCC score from
BON threshold is the lowest, and this is followed by those calculated from BHF, and the
significant markers yielded from ROC-based threshold has the highest MCC score. The
decline in MCC scores in BON and BHF could be attributed to the increased stringency of its
threshold. Under default parameter values, the MCC scores from ROC-based threshold
ranges from 48.8% to 54.9% higher than that of BON (logpt from 30.03 for UWT to 35.39
for WTQR), and 7.0% to 11.0% higher than that of BHF (logpt from 1.71 for UWT to 2.77
for WTE). Compared to BON, the MCC score from significant markers from BHF is in
general more similar to those from ROC-based threshold. The main exception is when the
trait is strongly polygenic or when the sample size is small, where in both cases positives
from BHF yielded significantly less MCC score than those of ROC-based threshold (logpt
from 16.17 for UWT to 52.73 for WTQR).

In general, the use of weights in the ROC-based threshold increases the MCC score.
Unweighted optimal thresholds (i.e., UWT and UWTR) in general yielded the lowest MCC
score, and this is followed by those weighted by proportion of variance explained (i.e., WTQ
and WTQR) and finally by effect size (i.e., WTE and WTER), although the differences
between the latter two are generally not considered to be significant. The only exception is
when the trait is polygenic (i.e. Q = 4000) where those weighted by effect sizes have lower
MCC scores than those weighted by proportion of variance explained (logpt = 4.48 between
WTE and WTQ); logpt = 4.67 between WTER and WTQR). The differences in MCC scores

due to correlation weights 5" in the ROC-based threshold calculation are not significant.

Increasing the sample size increases the MCC score for all threshold tested (logpt ranges
from 80.27 for UWT to 102.73 for BHF with an increase in sample size from 1000 to 4000),
while a high polygenicity decreases the score (logpt from 68.36 for WTQR to 75.93 for BHF
with an increase in number of QTL from 200 to 4000). The MCC score also decreases
significantly as the QTL effect size distribution changes from gamma(0.2,1) to
gamma(0.9,1) (logpt from 32.28 for UWT to 69.11 for BON), while increasing the
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pairwise marker correlation from L = 0.1 to L = 0.8 increases the score (logpt from 2.08 for
BON to 12.48 for BHF). Interestingly, increasing the genotyping density from 40k to 400k*
significantly decreases the MCC score for the positives identified for all the threshold tested
(logpt from 11.38 for BON to 31.23 for WTQR). Allele frequency distribution did not have

significant effects on the MCC scores.
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Figure 4.6: MCC scores of the positives obtained through the thresholds under varying parameter values.
Thresholds featured in this figure include: Unweighted ROC-based threshold (UWT), ROC-based threshold
weighted by effect size (WTE), ROC-based threshold weighted by additive genetic variance (WTQ), ROC-based
threshold weighted by correlation weightage factor r5* (UWTR), ROC-based threshold weighted by effect size
and correlation weightage factor (WTER) and ROC-based threshold weighted by correlation weightage factor
and additive genetic variance (WTQR), alongside with threshold from the Bonferroni correction (BON) and
Benjamini-Hochberg False Discovery Rate (BHF). These scores were compared against random control (RND)
and all-QTL control (ALQ).

4.5.3. Genomic Prediction Accuracy

The accuracies of truncated genomic prediction under varying types of thresholds, threshold

weighting factors and parameter values were provided in Figure 4.7.

In general, the accuracies of the truncated genomic prediction from ROC-based thresholds
are significantly higher compared to both BON and BHF (logpt up to 28.63 between WTQR
and BON; logpt up to 6.35 between WTQR and BHF). The main exception was on an
oligogenic trait (i.e. Q = 200), where the threshold from BHF yielded significantly higher
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accuracy than all ROC-based thresholds tested (logpt up to 8.62 for UWT). Compared to
BON, thresholds from BHF have yielded significantly increased accuracy in genomic
prediction in all parameters tested, and is often comparable to unweighted ROC-based
thresholds. The use of ROC-based threshold increases the accuracy by up to 16.8% higher
than that of BON, and up to 7.0% higher than that of BHF. For all parameters tested,

truncated genomic prediction from BON has the lowest accuracy.
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Figure 4.7: Accuracy of truncated genomic prediction calculated from positives obtained from each threshold
under varying parameter values. Thresholds featured in this figure include: Unweighted ROC-based threshold
(UWT), ROC-based threshold weighted by effect size (WTE), ROC-based threshold weighted by additive genetic
variance (WTQ), ROC-based threshold weighted by correlation weightage factor 3" (UWTR), ROC-based
threshold weighted by effect size and correlation weightage factor (WTER) and ROC-based threshold weighted
by correlation weightage factor and additive genetic variance (WTQR), alongside with threshold from the
Bonferroni correction (BON) and Benjamini-Hochberg False Discovery Rate (BHF). These scores were

compared against random control (RND) and all-QTL control (ALQ).

The use of weights in the calculation of ROC-based thresholds significantly increased the
accuracy of the genomic prediction. For all the parameter tested, the accuracies are the lowest
for unweighted optimal thresholds (i.e., UWT and UWTR), and this is followed by those
weighted by effect size (i.e., WTE and WTER), and finally by proportion of variance
explained (i.e., WTQ and WTQR). Compared to unweighted optimal thresholds, the use of
thresholds weighted by proportion of variances led to an average of 5.90% increase in the

accuracy of the genomic prediction under default set of parameters (logpt = 7.97 between
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UWT and WTQ; logpt = 8.36 between UWTR and WTQR). This trend was associated with
a decline in threshold stringency with the use of these weightages. While a slight increase has
been detected with the use of correlation weights r2*, this increment is generally not

considered to be significant.

The accuracies of truncated genomic prediction decrease with increasing polygenicity of a
trait, especially for BON and BHF which by Q = 4000 their accuracies are comparable to
those observed in random control (logpt = 29.58 between Q = 200 and Q = 4000 for
BON; logpt = 59.45 for BHF). A similar observation was made for small sample size
(logpt up to 114.96 for WTQ between N = 1000 and N = 4000). Pairwise marker
correlations increase the accuracy of the genomic prediction for all threshold tested (logpt up
to 141.86 for WTQR between L = 0.1 and L = 0.8), while decreases significantly as the
QTL effect size distribution changes from gamma(0.2,1) to gamma(0.9,1) (logpt up to
43.06 for BHF).

4.6. Discussion

In this study, the algorithm for the calculation of an optimal threshold was provided, and the
performance of this new threshold and its variants were tested in the context of QTL
detection in a GWAS and marker selection for genomic prediction. In both tests of threshold
performance, the threshold from the Bonferroni method consistently had the highest
stringency, and this is associated with the lowest scores for all performance criteria tested.
This is in line with previous publications such as Fadista et al. (2016), Kaler and Purcell
(2019) and Simes (1986), which stated the overconservativeness of the threshold calculated
with the Bonferroni method, which leads to decreased power in GWAS. This is especially
problematic for parameter values that reduce the logpval, which further reduces the number
of QTL detected. This experiment further emphasized the previous notion on the unsuitability
of the Bonferroni method as multiple testing correction method, and this called for a more

lenient threshold such as those suggested by Benjamini-Hochberg FDR.

While the threshold calculated from Benjamini-Hochberg FDR is less conservative than those
by the Bonferroni method, the FDR method also has its own issues. One major issue is that

while the threshold varies with the distribution of logpval, the way the threshold varies does
not always line up with what is required for improved performance for said threshold. This is

due to the fact that the calculation of Benjamini-Hochberg FDR does not take into account
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the behaviour of the logpval under varying parameter values, thus causing the threshold to
blindly follow the distribution of the logpval, resulting in a less optimal change. As an
example, with a polygenic trait, the reduced logpval of the QTL decrease the value of index
j in equation [34], and this would push the right-hand side of the inequality upward, thus
resulting in a more stringent threshold. This has effectively decimated its performance in
binary classification of the markers in a GWAS and truncation for genomic prediction for a
polygenic trait. A similar phenomenon was also observed for the Bonferrroni method, where
its insensitivity toward the effects of parameter changes has also resulted in a less optimal
threshold. This, compounded with the extreme stringency of the threshold, reduces its

performance in binary classification and truncated genomic prediction,

For the calculation of the ROC-based thresholds however, it can and has successfully taken
into account the effects of parameters such as genetic architecture and sample sizes on the
logpval, as the calculation is based on the empirical distribution of the logpval Taking the
case of a polygenic trait as an example, as the large number of QTL has significantly reduced
the logpval of the QTL, the threshold needs to be more lenient in order to detect the same
number of QTL. This has been reflected in the reduced stringency of the threshold from the
ROC-based thresholds, thus lessening the negative impact of increased polygenicity on the
performance scores; by increasing the number of QTL from 200 to 4000, the MCC score
from the ROC-based threshold decreases by 75.27% for WTQR up to 82.84% for UWT,
compared to 95.90% for BON and 92.80% for BHF. In genomic prediction, the accuracy
declined by 15.52% for UWT up to 17.67% for WTE, compared to 16.93% from BON and
23.36% for BHF. This inclusion of the effects of parameters on the p-values means the ROC-
based threshold could make necessary changes to accommodate said effects to maintain its

performance.

The use of effect sizes or proportion of variable explained as weights have the effects of
decreasing the stringency of the ROC-based threshold, often being more lenient than that
suggested by the Bonferroni method or by Benjamini-Hochberg FDR. Despite this, these
lenient thresholds were associated with an increase in both MCC score and the accuracy of
truncated genomic prediction. This suggested that despite its apparent excessive leniency, the
thresholds offered by the ROC algorithm a has higher optimality and performance than both
multi-testing correction methods. This is especially true for the WTE threshold when tested
using MCC score; while the WTE threshold has an intermediate stringency when compared
with UWT and WTQ (threshold stringency WTQ < WTE < UWT). In general, WTE
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threshold had the highest MCC scores between the three. This suggested that the threshold
suggested by WTE is the closest to the optimal threshold as defined by MCC score, thus
being the optimal binary classifiers. Similar arguments can also be made for ROC-based
thresholds that were weighted by correlation (threshold stringency WTQR < WTER <
UWTR, but with WTER having the highest MCC score).

The MCC score did not tell the full story however; when the accuracy of truncated genomic
prediction is assessed, the WTE and WTER thresholds do not yield the highest accuracy, and
instead maximal accuracies were achieved by the most lenient thresholds WTQ and WTQR,
indicating the inequality of thresholds that optimize binary classification with those optimize
accuracy of truncated genomic prediction. This alludes to the subjective nature of the concept
of “optimal threshold” especially when they were asked in the context of differing ulterior
purpose of said threshold. The concept of “optimal threshold” is essentially modelled based
on certain mathematical functions. For example, just as one can define an optimal threshold
based on ROC curve by calculating the point where the tangent of the curve is 1 (Kaivanto,
2008), or maximizing the Youden’s Index (Habibzadeh et al., 2016), one can also define an
optimal threshold based on MCC by maximizing the MCC score, or optimal threshold based
on genomic accuracy by again finding a threshold that maximize such accuracy. In the end,
one can define an optimal threshold by maximizing scores from any mathematical function

that awards true positives while penalizing false positives, thus indicative to its subjectivity.

Perhaps a more objective question that could be asked is “how much a false positive can be
tolerated?” In the context of binary classification such as those of MCC score, as false
positives can easily lead to misidentification, they were penalized in a more severe manner
than in truncated genomic prediction, which could accept a level of false positives as long as
the true positives remained the majority in the pool of positives included into the prediction.
In the context of GWAS, if the aim is to increase the proportion of additive genetic variance
explained by the positive markers, then a lenient threshold might not be deleterious after all.
But if the aim is to maximize the accuracy of loci identified, then a more stringent threshold
might be required (Chicco and Jurman, 2020). For the thresholds suggested in this study, the
use of weighting factors w;, w, and w,, allow the users to set prioritizations for the true and
false positives, with a larger w; promotes the detection of true positives through a more
lenient threshold, and a larger w,, increases the penalization of false positives by increasing

the threshold’s stringency.

104



While this study has suggested an algorithm for calculation of an optimal threshold, one
limitation for this study is that it assumed the homogeneity of the linkage disequilibrium
structure, which might not be the case for a strongly inbred population with small effective
population sizes (Gondro, 2015). This shortcoming could be easily overcome by identifying
the effect of the QTL and their location however, and we believed this is an aspect worth
further studying. Another aspect worth further studying is the estimation of genetic
architecture parameters, such as number of QTL, distribution of QTL effect sizes and their
location from real data, which can then be fed into this method and obtaining an optimal
threshold.

Another limitation for this methodology is the arbitrariness of the trivial effect size cut-off
point and linkage disequilibrium threshold. This is unavoidable as there are no objective
methods of determining these quantities, and these methods involve asking questions that
have no objective answers. Determining the trivial effect size cut-off point involves the
question of “should I consider a locus with effect size X be a detectable QTL?” which is an
ill-defined question as it depends on how much should the detection of the QTL be
prioritized, besides the numerous other factors such as genetic architecture of the trait,
experiment designs, allele frequency of the marker and the QTL and linkage disequilibrium
between QTL and marker. Whereas determining the linkage disequilibrium threshold
involves asking the question “how strong the linkage disequilibrium a null marker should
have with a QTL such that a positive on that marker be counted as a true positive?”” which the
only non-arbitrary answer are either exclusion of all null markers regardless how close the
marker is to a QTL (i.e. linkage disequilibrium threshold of 1.0) or any markers with zero
linkage disequilibrium with any of the QTL (i.e. linkage disequilibrium threshold of 0), both
of which are impractical in a GWAS. Due to the lack of objectivity in these questions, the use
of arbitrary trivial effect sizes cut-off point and linkage disequilibrium threshold is

unavoidable.

In conclusion, an algorithm for the calculation of optimal threshold based on ROC curve that
could take into account the effects of genetic architecture and experiment design has been
developed. Using the algorithm as well as its various generalizations, the calculated threshold
has achieved increased performance in binary classification for identification of causal
variants, and increased accuracy for truncated genomic prediction, when compared to the
Bonferroni and Benjamini-Hochberg FDR under varying genetic architecture and experiment

designs. By showing the inequality in optimal threshold in binary classification and genomic
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prediction, this experiment had also revealed the arbitrary nature of the concept of optimal
threshold, especially in the context of different use of such threshold. Despite this, the full
application of such threshold requires information on the distribution of the QTL effect sizes,
and while previous publications for its estimation are available, they suffered from numerous
shortcomings. Further studies on the robust estimation of QTL effect size distribution would

thus be desirable.
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Chapter 5. A Flexible, Semi-Parametric Algorithm

for Estimation of Genetic Architecture Parameter

Zhi Loh, Julius H. J. van der Werf, Sam Clark

5.1. Abstract

While Genome-Wide Association Study has been used to identify the location and effect size
of the QTL, it failed to detect large portion of the QTL and thus additive genetic variance.
For this reason, alternative approaches that attempted to estimate the genetic architecture
parameters have emerged. Previous methods that attempted such estimation exist, but they
failed to take into account many of the assumptions and phenomenon that would be
encountered if such approach is to be taken, such as reliance on previously published
Genome-Wide Association Study results and effects of confounding factors such as allele
frequency distributions and linkage disequilibrium structures. Thus, the aim of this study was
to develop a method that could estimate the parameters of genetic architecture such as
number of QTL with certain effect sizes, and the shape of QTL effect size distribution, while
taking into account the effects from the aforementioned phenomenon. Using this method, the
estimated number of QTL with effect size 0.1 o, ranges from 69.9% to 167.0% (an average
of 109.8%) of the true number of QTL, and for effect size 1.0 g, the range was from 101.6%
to 175.8% (an average of 123.6%). This method could also provide an estimate of marker
effect sizes, but with consideration from the confounding factors such as allele frequency
distributions, correlation between markers and heterogeneity in linkage disequilibrium
structures. The algorithm would be important for gene discovery and estimation of location
and effect size of the causal loci.

5.2. Introduction

Genome-Wide Association Study (GWAS) has successfully been used in identifying the
causal loci for diseases in human (Pearson and Manolio, 2008; Tam et al., 2019) or
production traits in livestock (Bedhane et al., 2019; Hay and Roberts, 2018). Despite this,
GWAS is generally underpowered in detecting the large number of QTL with small effect
sizes, which led to an underestimation of additive genetic variance explained by the QTL

detected by GWAS compared to the genetic variance estimated from classical analysis of
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variance (Hall et al., 2016). For individual QTL, the estimated effect size obtained through
GWAS is generally overestimated, especially when the QTL has small effect size (Hall et al.,
2016; Xu et al., 2003). The power of GWAS is further burdened by the severe multiple
testing from the sheer number of markers to be tested (Pearson and Manolio, 2008). The
stringent threshold required to exclude the false positives would also mean that the signals
from the QTL with small effect sizes would be buried in the sea of noise from the null
markers, making them effectively undetectable (Tam et al., 2019; Zhang et al., 2018). This is
especially true for a trait with low heritability, where the increased residual variance

contributes into excessive noises for the null markers (Tam et al., 2019).

Perhaps rather than relying on an arbitrary threshold to statistically test the association of the
loci with the trait, an alternative method was estimating the distribution of the QTL effect
sizes. Several previous publications have attempted this; Park et al. (2010) published an
algorithm to estimate QTL effect size distribution by calculating the power of detected QTL
from previously published GWAS. Cheng et al. (2020) and Zhang et al. (2018) utilized an
expectation-maximization (EM) algorithm on summary statistics of GWAS to estimate the
parameters for the mixture model of the proportion of null and non-null markers, while using
an empirical Bayesian approach to estimate the threshold that classifies the markers as null or
non-null. Hall et al. (2016) utilized the proportion of additive genetic variance explained and
detection threshold as a method to estimate the number of QTL associated with a trait. In an
attempt to improve the flexibility of the model used, Zeng and Zhou (2017) specify a
nonparametric prior on the variance in the normal distributions, which in turn used to model
the QTL effect size distribution.

Despite these attempts, there were numerous assumptions being utilized in these methods,
many of which could impact their reliability of the estimation. As an example, the algorithm
suggested by Cheng et al. (2020) relies on user-defined cut-off points between null and non-
null markers, which might not be optimal for varying genetic architectures. Park et al. (2010)
relies on previously published GWAS results, which might not be available. There are also
many aspects and issues worth considering during the estimation of the QTL effect size
distribution, such as the confounding effects of linkage disequilibrium structures that alters
the distribution of estimated marker effect sizes and test statistics of a GWAS, and the
changing allele frequency distributions which affects the error in estimated effect sizes of
GWAS, and these were generally not discussed in previous work. An algorithm that could

take these aspects into account is currently lacking.
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With this in mind, the aim of this study is to propose a method for estimation of parameters
for a genetic architecture, such as number of QTL and the shape and scale parameter for the
QTL effect size distribution. The method was tested using simulated dataset with varying
underlying genetic architectures. It is anticipated this algorithm could provide an estimate of
genetic architecture parameters, which could then be used to estimate the QTL effect sizes of
a marker, a genomic region, or an animal. The strengths, assumptions and weaknesses of this

algorithm would also be evaluated and discussed in this study.

5.3. Preliminary Concepts and Notations

While GWAS is usually used in identifying causal loci, their statistical properties often
revealed more information than just the location and strength of the loci. One such piece of
information is the distribution of the output of the GWAS, which can provide tell-tale
signatures on the underlying distribution of the QTL effect sizes. Indeed, if there are no errors
in the estimation of the effect sizes of each marker, and these markers can accurately reflect
the QTL effect size, then the expected distribution of estimated effect size from a GWAS
would correspond with the underlying QTL effect size distribution. Due to various
confounding factors, such as allele frequency distribution and correlation between markers,
such idealized situation would almost certainly never be achieved. The effects of the
underlying QTL effect size distribution, as well as the effects from these confounding factors,

are discussed in Appendix B.

In many instances in this chapter, there would be discussions on the properties of distribution,
and in a loose sense, treating a sequence of distributions as if it is a sequence of random
variables. Thus, one could discuss concepts such as the distributions of the distributions (i.e.,
how the distributions distribute along the axes) and the test statistics for their equality. For
this chapter, the level of distribution was denoted using the notation d™, where the superscript
denotes the level of distribution. For example, given a sequence of random variables, the
distribution of the random variables was denoted as d*, while the distribution from a
sequence of d! distributions be denoted as d?, and so forth. An illustration of levels of

distribution is provided in Figure 5.1.

There are parallelisms between the concepts from a sequence of distributions with those from
a sequence of random variables; just like a large sequence of random variables allows the
determination of average of their distribution, one can also discuss the concept of “expected

distribution” (denoted as E (d)). The “dispersion of distribution” (denoted as V (d)) can be
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thought of as the distribution version of “variance” in random variables and is defined as the
variability in the form or shape of the distribution around the expected distribution. As in test
statistics in d® can be used in testing the significance of differences of an observed random
variable compared to expected d! (as in test statistics for t-test for hypothesis testing), test
statistics can also be applied to d? which can then be used to test the significance of

differences of an observed distribution d* compared to expected d?.
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Figure 5.1: The different levels of distributions, with (a) showing the individual random variables. The density of
the random variable can then be used to build a histogram that shows the density of the random variable as
featured in Figure (b), which in this paper be denoted as d*. With a sequence of d's, they can be used to build
a distribution of d's as featured in Figure (c), which be denoted as d? in this study. The red line in Figure (c) is
the expected distribution across the sequence of ds, and the dispersion of distributions across the sequence of

d's be manifested as the multi-coloured edge around the red line.

There are several emergent properties in distributions that do not present in singular random
variables. One such examples is the shape of d!, which provides insights on the moments of
the random variables that build the d*. While it might not be meaningful in discussing the
mean and variance of each individual value in the random variables that make up a d?, it is
meaningful to discuss these quantities for each d* that make up a d?. Unlike random
variables, one can also perform calculus operations in each element in d?; as an example, one
can integrate the probability density function of d® to yield its corresponding cumulative
distribution function (CDF), which was denoted as . Finally, while there is only one
operation for testing the equality of two random variables (i.e., subtracting the value of two
random variables), there are multiple operations that could be done in testing the equality
between two distributions, such as maximal distance between two distribution or area
between curves between them (Dowd, 2020). Examples of these tests are provided in
Appendix C.

Perhaps the most familiar analogy for these levels of distributions can be found in the context
of two-sample Kolmogorov-Smirnov test, which aimed to test the equality of distributions
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from two sets of random variables (i.e., two ds). The d's can be integrated into their
empirical cumulative distribution function (ECDF), both of which will be denoted as D!. The
test statistic for the Kolmogorov-Smirnov test (txs) is defined as the supremum distance
between the ECDF of the test distribution (ID}) and the ECDF of theoretical distribution
(]D)},o) (Naaman, 2021; Simard and L’Ecuyer, 2011):

tys = sup|Dj — ]D}-Iol [1]

Hypothetically if we can sample the ECDF of the theoretical distribution ]]))}1,0 m number of
times, we can get a sequence of length m containing the theoretical distributions, which was
denoted as ]DE,O. Similarly, D} can also be sampled n number of times, with the resulting
sequence denoted as D4. The Kolmogorov-Smirnov test can then be applied to each of the
Dy, in D, with each of the Dy in D, which produces an m x n array containing the ty
from each combination of D}, and ID}. This 2-dimensional array was denoted under the
notation tpz in this chapter. Additional subscripts might be appended to indicate the test from

which tp2 originated from, such as in this example tp2. where the subscript KS denotes this

is a tpz from a Kolmogorov-Smirnov test between two D?s.

This chapter will utilize and perform mathematical operations on multidimensional arrays
(i.e., arrays with more than two dimensions). Thus, the following notations will be used:
scalar values will be denoted using regular scripts, which could be in capital or small letters
(as an example, x); 1-dimensional vectors were denoted as bold small letter (as example, x)
or with one bolded subscript (as example, x,); for a two dimensional matrices they were
denoted with a bold capital letter (as example, X) or with one bolded subscript (as example,
X,); and for arrays with three or more dimensions, bolded subscripts were appended to the
bold capital letter to denote the nature of the axes. As an example, the X, 5 . 4 Would be a 5-
dimensional array, with the a in the subscript be denoting the first axis of the array, b be the

second axis of the array, and so on.

5.4. Phenotype Model Assumed in this Method

For this study, the phenotype is assumed to follow a purely additive polygenic model. Given

N number of animals and k number of QTL, the phenotype is defined as follows:

y=Xa+e [2]
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Where y is a column vector of length N containing the phenotypes of the animals; X being a
matrix of size N x k containing the genotypic states of the QTL; a being column vector of
length k containing the QTL effect sizes; and e being a column vector of length N containing
the residual component of the phenotype. The a in this study is assumed to follow a gamma

distribution, and is parametrized as follows:
a~T(ab) [3]

Where a and b are the shape and scale parameters of the gamma distribution. The

distribution of QTL effect size will be denoted as dy,, in this study.

The residual component will be modelled using a normal distribution, and is defined as:

= [4]

1 — h?) xvar(Xa
o (0’ (1 — h?) = var( ))
Where h? is the narrow sense heritability of the phenotype. For this chapter, the value of k, a
and b will be the target of estimation, and the true genetic architecture will be denoted as

follows: Q(k, a, b).

5.5. The Method

The method of estimation of genetic architecture parameters proposed in this study relies on
the internal consistency of the distributions of the marker test statistics from a GWAS. This
internal consistency means, given a set of genotypic data, if there are two sets of phenotypes
with the same underlying genetic architectures, both sets would produce similar marker test
statistics distributions when GWAS is conducted on them (more information provided in
Appendix B). Therefore, if we could propose a set of genetic architecture parameters, one
could use said parameters to simulate a set of QTL and phenotypes, and from which
conducting a GWAS on the simulated phenotypes. If there is another set of observed
phenotypes (with unknown underlying genetic architectures) that when GWAS-tested
produces a set of marker test statistics with a similar distribution with that obtained from the
simulated phenotypes, one could infer that the observed phenotypes have the same genetic
architectures as that from the simulated phenotypes. This observation would become the basis

for the genetic architecture estimation method proposed in this study.

This method uses two sequences of distributions: a sequence of ECDF test statistics derived

from multiple GWAS on observed phenotypes (henceforth denoted as ]D)%Tobs), and a
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sequence of ECDF of test statistics derived from multiple GWAS with simulated phenotypes

(denoted as ]D),%Tsim). The simulated phenotypes will be generated using a set of proposed
genetic architecture models (denoted with a square bracket [k, a, b]). The aim is to minimize
the differences between D7, and D, , , with the [k, a, b] that minimizes said differences

will be denoted as [k, a, b] , . The objective function associated with the minimization will

be the tp test statistics between D7 and Dz, , , which is described in Appendix C.

5.5.1. The Layout of the Method

The algorithm requires three inputs to estimate the Q (I, a, b): the N X M genotype array of
size (denoted as X,,;;), where N is the sample size and M is the number of SNP markers,
encoded in {0,1,2} or (-1,0,1} form, a N x 1 phenotype array (denoted as y ;) and the

additive genetic variance or narrow sense heritability of the trait. An overview schematic for

this method was provided in Figure 5.2.
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Figure 5.2: An overview schematic for the algorithm. The inputs for this algorithm are presented as light grey

rounded rectangles, and the output as the dark grey rounded rectangle at bottom right corner.

5.5.1.1. Estimation the Rank of Significance of Association of a

Genomic Region with Phenotype

The first step in this algorithm is to estimate the rankings for the significance of association

between a genomic region and the phenotype (i.e., how strong a region is associated with the
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phenotype). The ranking would be used to assign the location of the QTL generated from the
proposed model [k, a, b] (further details in section 5.5.1.4). This QTL location assignment
step is done to improve the reliability of the algorithm toward a genotype array with
heterogeneous linkage disequilibrium structures (as an example, in an inbred population
(Gondro, 2015)).

The estimation of rank of significance of association of genomic regions starts obtaining
marker-wise significance of association, which is done by conducting a single SNP linear
regression using the full genotype array X, ;; and full phenotype vector y,;;. As extreme
allele frequencies reduce the reliability of estimated effect sizes, markers with minor allele
frequency (MAF) less than 0.05 will be excluded from the GWAS, with the number of
retained markers denoted as M, . The estimated effect sizes es; and test statistics f¢; of

locus i defined as follows (Gondro, 2015; Kremelberg, 2011):

Cov(xfull*_i: yfull)

var (xfu”*_i)

es; =

[5]

ft, = es;? * var(xfuu*,i) * (N —2) 6]
' var(yfu”) —es;? * var(xfu”*,i)

Where var(xfuu*,i) is the genotypic variance for locus i from the full genotype array,
var(yguu) is the phenotypic variance from the full phenotype vector, and cov(x gy, ,,

yfuu) is the genotypic-phenotypic covariance from both full genotype array and phenotype

vector.

From this operation, two vectors of length M., containing the estimated effect sizes and test
statistics from all filtered markers across full sample size, denoted as es,; and ft sy, will

be generated. The vectors that will be used rank the significance of association of a region of

a genome with the phenotype.

To take into account the bleeding effects from the correlation on the ranking of significance
of genomic regions, the vectors esg,;; and fts,; were deconvolved using an iterative
method. Although developed independently, this deconvolution method is similar to
Hogbom’s CLEAN algorithm (Hogbom, 1974), but with modifications to take into account

the effects of various phenomenon commonly encountered in a GWAS experiment, such as
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the effects of extreme allele frequencies on increasing the error of the estimated marker effect

sizes.

The deconvolution starts by calculating the pairwise marker correlation between each of the
marker pairs, with the resulting array of size M, X M, denoted as R, which each of the

element calculated as follows:

cov (xfuu*,i »Xfull, j)

\/var(xfuu*’i) * var (xfuu*’j)

The top marker within ftg,;; were the identified, from which the locus of the peak, i, was

[7]

Tj =

identified. The estimated marker effect size at locus i, @;, were then kept in a new vector

denoted as es jeconvolved-

Using the matrix R, the contribution of @; onto the estimated effect sizes for all markers,

denoted as @,, were calculated as follows:
a,, = da;*R;, (8]
Where R; , denotes row i of matrix R. The esg,,;; would then be adjusted with @, as follows:
eSfun = eSguy — Gy, [9]

while the locus i in esg,;; be “muted” by assigning it as “NAN” and would no longer
involved in further calculations. This is to prevent overcorrection of estimated effect size for
the locus, which could lead to numerical instability of solution in the deconvolved estimated

effect sizes.

Using the adjusted es,,;, the corresponding adjusted fty,;; was calculated as follows:

(esfull)z * vary(Xpa) * (N = 2)
var(ypun) — (esfull)z * vary (X fu)

ftrun = [10]
Where vary (Xfu”) is defined as taking the variance of Xz, along N (i.e., column-wise)

axis.

The new top marker in this ftg,;; and the corresponding @; was identified. The process was
then iterated until all the markers in esy,;; were assigned as “NAN,” and all the deconvolved

estimated effect sizes were allocated t0 €S jeconvoived- 1 Ne deconvolved test statistics for the
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markers, denoted as ft econvorved, Were calculated using equation [8], With eSgeconvoived

being used in place of esf,;. Loci that have their MAF less than 0.05 were assigned with

“NAN” in €Sdeconvolved and ftdeconvolved-

An illustrative pseudocode for the deconvolution process was provided as follows:

## Input data

X_full # full genotypes
y_full # full phenotypes
M = ncol(X_full)

X_full = MAF_filter(X_full, 0.05) ## remove markers with MAF < 0.05
N, Mmaf = nrow(X_full), ncol(X_full)

var_X = var(X_full, axis=1) # column-wise variance (i.e. genotypic variance)
var_y = var(y_full) # phenotypic variance

## Single SNP Linear Regression (SSR) GWAS to obtain marker-wise significance
es_full, ft_full = SSR_GWAS(X_full, y_full) # estimated effect sizes, F-test statistics

#### deconvolute (de-correlate) the marker effect sizes
## Obtaining pairwise marker correlation matrix (R)

R = matrix(shape=(Mmaf, Mmaf))
for ml in range(Mmaf):
for m2 in range(Mmaf):
r_ij = cov(X_full[:,ml1], X_full[:,m2]) / sqrt(var(X_full[:,m1])*var(X_full[:,m2]))# eqn[7]
R[m1,m2] = r_ij

## de-correlate the markers using matrix R
es_deconvolved = vector(length=Mmaf)
for i in range(Mmaf):
i = which(ft_full == max(ft_full)) # which loci (i) has the highest F-stats
a_i_tilde = es_full[i]
es_deconvolved[i] = a_i_tilde
es_full[i] = NAN # mute the locus to prevent instability in decorrelated solution

R_istar = R[i,:]
a_ri_tilde = R_istar * a_i_tilde # eqn [8]

es_full
ft_full

es_full - a_ri_tilde # egn [9]
es_full~2 * var_X * (N-2) / (var_y - es_full”2 * var_X) # eqn [10]

es_deconvolved = pad_by MAF(es_deconvolved, M, NAN) # pad es_deconvolved with NAN for locus with MAF < 0.05
## at this point the length of es_deconvolved is M (not Mmaf)

ft_deconvolved = es_deconvolved”2 * var_X * (N-2) / (var_y - es_deconvolved”®2 * var_X)

The deconvolved SNP markers were then pruned, which was done by slicing ft econvotved
were then sliced into segments of contiguous SNPs of equal length. Any arbitrary number of
SNPs per segments could be chosen for this method, although the choice would affect the
performance of the ranking process; a segment with a large number of SNPs reduces the
precision of location that would be assigned as QTL from the proposed models, while a
segment with a small number of SNPs increases the method’s vulnerability toward
heterogeneous linkage disequilibrium structures. For this study, 10 SNPs per segments was
chosen for this study. Within each slice, the top test statistics within the slice, excluding the

“NAN,” were recorded into a vector with size 1 x [M/10], denoted as ftgiced-
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Finally, the rank of the significance of association of a genomic region, defined as rank, will
be defined as a vector of indices that would sort ft;c.q, With 1 being the region of least
significance with the phenotype, and maximum value being region of most significance.

Slices with all “NAN” were assigned with an index of 0 in rank.

A simplified example of the ranking process was illustrated in Figure 5.3.
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Figure 5.3: A simplified example of the ranking of significance of genomic region. The raw test statistics in the left
panel was first deconvolved and have the effects of correlation and LD structures removed. The resulting test
statistics (in the right panel) were subsequently sliced (red dotted lines demarcate the slicing points) and having
the test statistics of the top loci (green crosses) recorded in ftgiceq. Each elementin ftg;c.q Were then
assigned a rank in term of their significance, which were kept in rank. In this example, 1000 SNPs were

chosen per slice for clarity; 10 SNPs per slice were used in the actual algorithm.

5.5.1.2. Obtaining D7, from Observed Phenotypes (D7, )

The aim for this step is to obtain a sequence of ECDFs of test statistics from the GWAS
between input genotype and phenotype (]D)%Tobs). These distributions serve as reference
distributions which the algorithm would attempt to fit, with the fitting model parameterized in

term of [k, a, b]. An illustrative figure for this step was provided in Figure 5.4.

This step starts by calculating the distribution of GWAS test statistics lD)}vTobs using the
association between genotype array and the observed phenotypes, which was conducted
through single SNP regression. The rationale behind single SNP regression is its simplicity,
speed of calculation and the capability of being parallelized. As in the previous step, markers
with MAF less than 0.05 were excluded from this GWAS.

Changing the genetic architecture would only produce minute changes in the D1, with such

changes strongly concentrated at the tail region of the distribution (details provided in
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Appendix B). Despite this, it is also noted that ]D)}gTobS IS a noisy distribution; even with the
same underlying parameters (i.e., genetic architecture, allele frequency distribution or
correlation structures), the ]D)};Tobs can vary substantially between each replication. This can
cause problems in the detection of signals from the changing genetic architecture, where the
small amount of data available can be easily overwhelmed by noise. Thus, rather than relying
on one ]D},Tobs, a sequence of ]D)};Tobs will be generated. This is achieved by resampling a
number of individuals (denoted as Nyg4mp) from X,y and y g, Without replacement, with
number of resamples denoted as n,,;. The resampled genotype array is denoted as X, ;- 1,
where subscript o, r and m denote the index for resamples, index of resampled individuals
and index of SNP markers respectively, and X would have the size n,ps X Nysgmp X M, and

the resampled phenotype is denoted as Y., and would have size 1,5 X Nysamp-

The marker test statistics from each of the resamples of genotype and phenotypes were
calculated using equations [5] and [6], but with the X, . ,,, and y, being used in place of
Xguu, and y sy, Where X, . is a vector of length N4, containing the resampled
genotypes and y,, is a vector of length N4, €Xtracted from ¥;. that containing the
resampled phenotype. The resulting test statistics were recorded in a 2-dimensional array,

denoted as FT gps, Of Size ngpg X Mypgy.

The FT,, array is used to build a scaled complement of the empirical distribution function
(MECDF). Given a vector x the MECDF is defined as follows (Singer and Andrade, 2010):

Mmaf

MECDF (x) = Z 104 = %) [11]

Where 1(x) is the indicator function defined as follows:

1;ifxl- EX

1) = {0; if x; €x [12]

Where x is a vector of random variables which may or may not have x; as its element. In
essence the MECDF at x is the number of elements in vector x that have their values equal to

or larger than x.
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Using the equation [11], the MECDF was calculated along n,,s margin of FT,;, and this

resulted in a sequence of ]D)}:Tobs with length n,,, which collectively become ]D)%Tobs. The

FT,,s and ]D%Tobs, as well as X, .., were kept for the subsequent steps.
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Figure 5.4: lllustration on the generation of “observed distributions” ]D)%Tobs. The base (input) genotypes and
phenotypes were first resampled, with Ny, individuals chosen per resamples. GWASes were then
conducted for each pair of genotype-phenotype resamples, from which the scaled empirical cumulative

distribution function (MECDF, which represents the ]D),%Tobs for the algorithm) were generated. The ]D)};Tobss

were then collated into the sequence of observed distributions ]D%Tobs.

5.5.1.3. Sampling for Combinations of ks and as Tested

For the calculation of ECDF for the proposed model, a number of QTL k and shape
parameter for QTL effect size distribution as were sampled. In total n;, number of ks and
ngai, NUMber of as were sampled. From these sampled values, a grid of size ny;, X ng;, that
contains all possible combinations of [k, a] were generated, which will be evaluated by the

method.

As the parameter k can range between 0 and M, this introduces a large parameter space that
needs to be tested, which could impede the feasibility of the method. This however can be
resolved by choosing some of the values of k that would be tested by the method. For this
study, a “geom-linear sequence” of length n;;, will be used. This sequence starts by initially

building a geometric progression that ranges from a starting value up to M, and this is
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followed by linear interpolation between each consecutive pair within the geometric

sequence. A detailed example for the generation of this sequence is provided in Appendix D.

For a shape parameter a, a linear sequence of length n,;, with valuesintherange0 <a <1
will be utilized. This is based on the observation that these are the as that produce the correct
shape for the gamma distribution. A more mathematically in-depth explanation is provided in
Appendix D.

5.5.1.4. Generation of Simulated QTL Effect Sizes Random Variates

For each parameter combinations [k, a], a vector of random variates of length k is generated
(denoted as qg;,,), With the random variates following a gamma distribution I'(a, 1). These
random variates represent the QTL effect sizes from the proposed parameter combinations.
This vector will be padded with M — k zeros, which represents the effect sizes for null
markers. This results in a q;,, vector of length M that contains the effect sizes for all the

markers.

To handle the effects of heterogeneous linkage disequilibrium structures, the q;,, Was
rearranged using the vector rank. The vector is first sliced into segments of equal length,
with the same number of SNP per slice as in the calculation of vector rank (i.e., 10 SNPs
per segment for this study). For each slice of qg;,,,, the effect sizes were summed and, using

these sums, these slices were rearranged based on the indices from the vector rank.

The rearrangement was conducted as follows: the slice of q;,, with the largest sum of effect
sizes is assigned to the region that ranked at the maximum value (i.e., region with the
strongest significance of association, or region with maximum rank value). The slice with
second largest sum is allocated to the second most significant region, and slice with third
largest sum to the third most significant, and so on. This step is to construct a new q;,, that
best describes the Manhattan plot from the GWAS with observed phenotype (i.e., aligning the
slices of g, In accordance with the peaks from the Manhattan plot while ranking the slices
in accordance with the magnitude of the peaks). A simplified example of generation and

rearrangement were provided in Figure 5.5.

To alleviate potential issues caused by noises in the distributions, a sequence of qg;,, were
generated and rearranged, with the number of qg;,,, generated denoted as ng;,,. These qgimS

are then compiled into an array of size ng;,,, X M, which was denoted as Q;,,. T0O ensure the
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compatibility in size between the resampled genotype X, ;. and Qg the ng;,,, was set

equal to n,p;.
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Figure 5.5: A simplified example of generation and reranking of simulated QTL effect sizes. Using a proposed
values of [k, a] (as example in this case, k = 700 and a = 0.8), a set of QTL effect sizes q;,, Were
simulated. At this point, the scale parameter b was kept at 1. Using the same slicing schemes as in Figure 5.3,
the q4;m Was sliced and the effect sizes were summed, and the total effect sizes per slices were ranked. Using
the rank calculated from Figure 5.3, the slices of q;,,, Were rearranged such that resulting ranks correspond
to that of rank. This process was then repeated ng;,,, number of times, from which ng;,,, number of rearranged
qsim Were produced before being compiled into Q;,y,. In this example 1000 SNPs were chosen per slice for

clarity, 10 SNPs per slices was used in the actual algorithm.

5.5.1.5. The Calculation of Simulated Phenotypes

The simulated phenotype Y ;,,, was calculated using the resampled genotype X, ., the effect

sizes of the simulated QTL Qj;y,, as Well as the full observed phenotype y,; and additive
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genetic variance v, , . The simulated phenotype ¥ g, is @ ngim, X Nysqmp 2-dimensional

array. A flowchart for this step was provided in Figure 5.6.

The additive genetic component of ¥ g;,,,, denoted as ¥ gymap=1j, is calculated through the

following multidimensional array multiplication:

M
YsimA[lb):l]Syr = zxs,r,i * Qsims‘i [13]
i=1

Where the subscript s and r are the index of ng;,, and N4, respectively. The additive

genetic variance of the simulated phenotype (denoted as vA[kle]) was calculated as follows:

VAap=1ls — var(ySimA[b=l]s,*) [14]
The resulting VA apon) is a vector of length ng;,,.

It’s worth noting that up to this point the simulated QTL effect sizes in Qg;, Still have their
scale parameter set at b = 1, which might not be the case for the dl,r,, that need to be
estimated. It has been noted however that the sole effect of scale parameter b is that it scales

the random variates of the d,r,, by a fixed amount (Mun, 2012):
I'(a,b)=bxI'(al) [15]

Using this scaling property, one can calculate the expected additive genetic variance of the

phenotype if the d,r;, follows a b other than 1 by simply multiplying it with b?. A vector of

length ng;,, containing estimated s (denoted as b) could thus be calculated, with the sth

entry of b (denoted as b,) defined as follows:

~ Vg
b, = —_flobs [16]
vA[H«,@,ﬂn:l]s

Where v, , is the observed additive genetic variance. This operation has the implication of

reducing the number of parameters that need to be estimated, hence simplifying the method.

From this point onward, only k and a remained that need to be estimated.
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Figure 5.6: Flowchart for the calculation of simulated phenotypes Y g;,,,. Starting from the resampled genotypes

Xo,rm and Qg;m, the unscaled simulated additive phenotypes ¥ s;mamn=1] Were calculated. The scaling factor
b was calculated using the variance of Y simapp=1] @nd observed additive genetic variance v, , , which then be
used to rescale ¥ sjmapp=1] IO ¥ gima. The median of b serves as the estimate for b. The residual component

(Y simE> 9enerated using normal distribution with zero mean and observed residual variance) were finally added

into the ¥ gima, producing the final ¥ g,

The vector b would then be used to scale the vector of additive genetic component of the
simulated phenotype, with the scaled vector denoted as Y ;4. The sth row of Y;,,,4 (denoted

as Yima,) Was scaled as follows:

~

YsimAs = ysimA[lh)=1]5 * By [17]
Where Y gimap=1], is the s™ row of ¥ s;mamm=1].

The residual component for the simulated phenotypes (denoted as Y ;g With size ng;,, X

Nysqamyp) is generated using the following normal distribution:

Ysimg ~ N (0» (var(yfull) - vAobs)) [18]
And finally, the y4;n is calculated by summing Y g;ma and Ygimg:
Ysim = Ysima + Ysime [19]
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The simulated phenotype Y;,,, was utilized in the calculation of ]D)}”Tsim and ]D)%Tsim. For the

vector of the estimated scale parameters b, the median of the vector (denoted as bb) was

calculated and kept for section 5.5.1.8.

5.5.1.6. Obtaining D7, from Simulated Phenotype (D7, )

As in the calculation of ]D),%Tobs and D%Tobs from the observed phenotype, the distributions
from the proposed model, ]D},Tsim and ]D),%Tsim, were calculated using single SNP regression of
the simulated phenotype Y g;,,, on the resampled genotype X, ;. ., and from which an array of
test statistics FT ;,, With size ng;, X M,,,r was generated. The steps taken for the
calculation of FT;,,, D}Tsim and lD),%Tsim is identical to those utilized for the calculation of
FT s, ]D)}Tobs and ]D),%Tobs in section 5.5.1.2 to ensure the consistency and validity during the
comparison of the distributions. The resulting lD),%Tsim is a sequence of D}, distributions with
length ng;,,, and was used in equality testing with ]D)}Tobs. An illustrative figure for this step

was provided in Figure 5.7.
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Figure 5.7: The generation of a sequence of “simulated distribution” ]D)%Tsim. For each resamples of genotypes
X, rm and their corresponding simulated phenotypes Y g;,,,, GWASes were conducted between each genotype-
phenotype pairs, from which the simulated distribution lD)}rTsim was generated. The ]D}Tsim from all the

resamples were collated into simulated distribution sequence ]D%Tsim.
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5.5.1.7. Testing the Equality between D7, and Dy,

In this study, the equality between ]D)%Tsim and lD)%Tobs is defined as the goodness of fit
between the each of the D in D7 and each of Dy in DZ, , . This involves the
calculation of amount of discrepancy between each of the D1,s in ]D)%Tsimand those in
DZr,,.- As there are ng;,, number of Dy in D, and n,ps number of D, in DZ,_, , the
resulting ID? test statistic ¢y that describes the equality between D7, and D , isa
Ngim X Nops 2-dimensional array that contains the pairwise goodness of fit between each of
the Dzrs within D, and that of D7, . An example for the calculation of D?

Kolmogorov-Smirnov test statistic tpz . was provided in Figure 5.8.

Previous publications such as Cirrone et al. (2004) commented the lack of power of some of
the statistical tests such as Kolmogorov-Smirnov test in detecting discrepancies at the tail
region of D1, where the effect of changing genetic architecture is the most observable. This
is further burdened by the reduced amount of data at the tail region, which reduces the
reliability of any statistical test. Another complication on testing the equality of distributions
arises from the fact that ]D),%Tsim and ]D)%Tobs are mixtures of F-distribution and non-central F-
distribution. By Fisher-Darmois-Pitman-Koopman theorem which, loosely stated, given a set
of independent and identically distributed random variables, this set of random variable
would have a sufficient summary statistics that can fully capture all the information
pertaining to said set if and only if the variables follow an exponential family distribution,
provided the support of the distribution do not changes with the parameters (Barankin and
Maitra, 1963; Koopman, 1936). As F-distributions and non-central F-distributions are not
exponential family distribution and yet with fixed supports (i.e. the mixture distributions
range from zero to positive infinity, regardless the parameters), in addition with the lack of
independence between the marker test statistics, all these break the assumption needed for the
Fisher-Darmois-Pitman-Koopman theorem. This means for any summary statistics used on
]D)%Tsim and ]D),%Tobs there would be a loss of information on these distributions, as these
summary statistics failed to capture all the information from these distribution. This in turn
led to a loss of power in detecting the discrepancies between the distribution and increases

the signals’ vulnerability to be drown by noises in the test of equality between ]D)%'Tsim and

2
]D)FTobs'
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To improve the power and reliability of detection, and to capture as much information
pertaining to these distributions as possible, a battery of 703 nonparametric statistical tests
were employed to test the goodness of fit between ]D%Tsim and Dfr_, . Some of the test
statistics used include truncated Kolmogorov-Smirnov Test, Wasserstein’s statistics, DTS
statistics and quantile-based statistics as well as their generalizations. A description for the
battery of statistics is provided in Appendix C.

]DZ
\ FTobs D}, [1] Dir,,.[2] Dir,,,[3]
LD%-TSI'" ¥ ;

. 509.31 49228 | 541.32
D}:Tslnllll "
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Figure 5.8: A simplified example of calculation of pairwise goodness of fit Kolmogorov-Smirnov (KS) test
statistics between lD)%Tsim and ]D%Tobs (denoted as tpz o). For this simplified example, ng;, = nops = 3
distributions were tested. To conduct the KS test between ]D)%Tsim and ]D%Tobs, the KS test was conducted
between each of the lD)}rTobS in ]D%Tobs (blue distributions column-wise) and each of the Dll”Tsim in ]D%Tsim (red

distributions row-wise), from which their test statistics were recorded (numbers at the top right corner for each
subplots). These number were then collated into a matrix of size ng;,,, X n,ps, Which become the test statistics

for KS test between ]D)%Tsim and ]D%Tobs, tp2 - This process was then repeated for all the statistics within the

battery.

From this battery of statistics, a 3-dimensional array of size ng;,, X n.: X nyps (denoted as
Ty al,,,) containing the test statistics from all 703 tests was compiled, with n,, denoting the
number of test statistics used in this experiment (n,;; = 703 in this study). This array was
then used to compare the goodness of fit of the distribution from all the proposed models and
the observed phenotypes. These test statistics can vary significantly in their scale, thus would

need to be normalized in the filtering step in section 5.5.1.9.1.1.
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5.5.1.8. Brute Force Searching the Problem

The procedures from the Step 5.5.1.4 down to Step 5.5.1.7 are repeated for each of the [k, a]
using a brute-force search method. This search method is chosen for its robustness against

noisy statistics and its guarantee in finding a solution if one exists.

For each [k, a] evaluated, a block of test statistics Ty ), , Was calculated, and in total ny;, X

st

Ngix blocks of Ty 4, Were generated. These blocks of test statistics were compiled into a 5-

t,
dimensional array of size n,,s X Ngix X Ngix X Nese X Ngim, Where ny;, and ng;,, are the
numbers of ks and as tested in the method. This array was denoted as S, x q.¢ s, With the
subscript o being the index of n,;, k being the index of n;,, a being the index of ng;,, t
being the index of n,s, and s being the index of ng;,. The S, ;. q.¢s array was then used to
determine the goodness of fit of the distributions generated from a [k, a], with the aim of

finding a [k, a] that best fit the observed distribution ]D)%Tobs.

To feature the patterns observable through the ., X ng;, slices of Sg g 4 ¢ 5, @s Well as the
results from subsequent processing, a 2-dimensional raster plot termed “K-a” plot were used
to visualise the goodness of fit. This type of plot has a vertical axis denoting the value of as
(shape parameter for QTL effect size distribution) and the horizontal axis the value of ks
(number of QTL), and the colour of each of the pixels in this plot represent the goodness of

fits between ]D),%Tsim and ]D)%Tobs of each of the models. An example of this plot is featured in

Figure 5.9.

Besides the test statistics, the estimates of the scale parameter b were compiled into a 2-

dimensional array of size ny;, X N4y, Which was denoted as B.

5.5.1.9. Filtering the Statistics

While brute force search is one of the most robust methods available, the results from any
given statistic could still be unreliable. This is due to the weak signals from the changing
genetic architectures (Figure 5.10). To further improve the reliability of the method, the test

statistics need to be filtered.

5.5.1.9.1. Types of Filters

Two types of filters were employed for this method: Quantile filter and Median-mode filter.
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5.5.1.9.1.1. Quantile Filter

In a similar vein as in the detection of significant markers in a GWAS experiment, the test
statistics within S, . 5.+ s Was filtered using a quantile threshold. The aims of this process are
to amplify the signals from the [k, a] array that minimized the test statistics by nullifying
those that failed the minimization, normalizing the scale of the test statistics, and to improve

the reliability of the statistics caused by the small amount of data at the tail of the distribution.
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Figure 5.9: An example of the “K-a” plot. The colour of pixels featured in this plot signifies the magnitude of test
statistics that test the goodness of fit between ]D)%Tsim and ]D%Tobs for each of the tested model [k, a], with

brighter pixels indicated lower test statistics (i.e., better goodness of fit). The horizontal axis denotes the values

of kk (number of QTL) and the vertical axis the value of a (shape parameter for QTL effect size distribution).
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Figure 5.10: The differing performances of the test statistics. Each of the pixels in these 2-dimensional raster
plots represent the goodness of fits between the distribution from observed phenotypes ]D)%Tobs and distributions
from simulated phenotypes ]D)%Tsim for each of the parameter combination [k, a], with lighter pixel indicates a
higher goodness of fit (i.e., lower test statistics). The red dot on the plots indicated to the true parameter

combinations.
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This quantile filtering would operate along the sheets of 1y, X ngiy IN Sy a5, Which is
denoted as Sy, 4. Using a quantile threshold q.,, = 0.05, the critical values of the test
statistics (denoted as s..,.;;) are obtained by defining as the bottom 5% of all test statistics

recorded within the sheet Sy ,:
Pr(Ska < Scric) = 0.05 [20]

The critical value s.,.;; was used as the filter for the test statistics. From this critical value and
Ska, @ 2-dimensional array of the size ny;, X ng;, was calculated, containing the scores of
acceptance-rejection of the test statistics based on the critical value. Test statistics that have a
value smaller than s,.;; were marked with “1” and they were marked as “0” otherwise. These
2-dimensional arrays were then recompiled into another 5-dimensional array (denoted as

Vo kats) containing all the “votes” (i.e., “1” s) from each of the Sy 4. An example of this

filtering process is provided in Figure 5.11.

To amplify the signals, the V,, j 4. s Were then summed along the ng;,, and n,, axes,

producing a 3-dimensional array of size ny;, X ngiy X ngs denoted as (Vy, q.¢):

Nsim Nobs

Vk,a,t = 2 2 Vo,k,a,t,s [21]

s=1 o=1

The Vi 4 ¢ array contains a tally of votes for each of the model [k, a] from each of the test

statistics across the replicates. An example of the Vy 4 ; is provided in the K-a plots in 5.12.

0.04

Quantile Filter Lo e SA0T 34000
(bottom 5%)

6400 34000

940 6400 34000

Filtered Sy

Figure 5.11: An example of quantile filtering in operation. The plots in the left contained the raw test statistics
sliced from the V, 1. 4,¢.5, While the plots on the right contained the filtered array, with yellow pixels denoted as “1”

i.e., test statistics at the bottom 5%) and dark blue as “0”.
(
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Nsim Mobs

34000
Vo.k,a,t,s

5=1 0=1

——>

5 64 340 940 6400 34000

34000

Filtered S, o Viae

Figure 5.12: The building of the 3-dimensional array V 4 , through the summation of V, 4, 4, <. Note that only a

slice of V, 4, Was featured in this figure.

The steps within the quantile filtering can also be expressed in the form of the following

pseudocode:

## Input for this step : S_okats (5-dimensional array containing all the test statistics from [k, a]
## k is number of QTL, a is shape parameter for the QTL effect sizes

n_obs, n_kix, n_aix, n_tst, n_sim = S_okats.shape

## n_obs: number of observed distribution from input genotype and phenotype

#### (i.e. number of D1_FT_obs in D2-FT_obs)

## n_kix: number of levels of [k] tested

## n_aix: number of levels of [a] tested

## n_tst: number of statistical test on equality of distribution conducted

## n_sim: number of simulated distribution from resampled genotypes and simulated phenotype
#i### (i.e. number of D1_FT_sim in D2_FT_sim)

#### simulated phenotypes calculated from simulated QTL generated from [k,a] and scaled by [b]

V_okats = matrix(@, S_okats.shape) # initialize a 5-d array to contain all the votes, starting values
set at @

for ox in range(n_obs):
for tx in range(n_tst):
for sx in range(n_sim):
S_ka = S_okats[ox,:,:,tx,sx]

# calculating the bottom 5% quantile within S_ka
S_ka_quantile_05 = quantile(S_ka, 0.05)

## for each of the S_ka, a vote is casted to the [k,a] that has its test
## statistics below the 5% quantile (i.e. [k,a] with minimal test statistics)

which_ka_has_minimal_teststats = where(S_ka <= S_ka_quantile_05)
V_okats[ox, :,:,tx,sx][which_S_ka_has_minimal_teststats] =1

## sum V_okats across n_obs and n_sim axis -> V_kat
V_kat = sum(sum(V_okats, axis=0), axis=4)
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5.5.1.9.1.2. Median-mode Consensus Filter

While quantile filtering could amplify the signals, on some occasion the statistics can still be
noisy, and this can be attributed to the dispersion of the distribution, which might cause some
of the statistics to converge toward an outlying result. This is especially problematic for a
polygenic trait, for which the signals from the changing [k, a]s are sufficiently weak that
noises from the dispersion can easily overwhelm the signal, producing a characteristic “lower
right quadrant solutions” where an entire lower right region of the plot is marked as positive
with poor differentiation between the band of solutions and the lower right quadrant (Figure
5.13). For this reason, a “median-mode consensus filter” was employed. This filtering method

is designed in attempt to find a “consensus” among the test statistics.

0.01
0.16
0.31

0.468

Value of [a]

0.63425

0.8005

0.96675

5 55 150 650 2500 7500 35000
Value of [K]

Figure 5.13: An example of the “lower right quadrant solutions” where the entire region in the lower right was

marked as positive, causing poor differentiation in the band of solution and the lower right quadrant.

The median-mode consensus aimed to filter the test statistics based on their empirical
distribution and attempt to achieve a consensus among the statistics by accepting those that
located close to the mode of their empirical distribution. Through this filter, outlying

statistics, which are the major contributor of noise in the solutions, could be weeded out.

5.5.1.9.1.2.1. The Median Phase: Calculation of Median k Given a Test Statistics and a
This filter starts by slicing the vote tally array V 4 ; array along the second (i.e. a) axis,
produces a 2-dimensional array of size ny;, X ny denoted as V.. The filter was then

applied for each individual V , slices.

For the initiation of the median phase, the V, . was further sliced along the column axis (i.e. t

axis). This produces a vector of length n,;, denoted as vy, containing the tally of votes
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for each of the ks for the shape parameter a at index a,, tested using the test statistics
indexed at t,. From this vector, the empirical CDF (denoted as F,, , . ) was constructed using

the following equation:

Zr'lfx Vksi,ayty
Fv,ax,tx(kx) = = 711k(ix t.a ) [22]
2i=1 vkjax'tx
Where the k, is the index of ks tested in the method. The “arg-median” of this empirical
CDF, defined as the argument for a distribution function that produces the median of the
distribution, is obtained by finding k, that fulfil this equation:
Fv,ax,tx(kx) =05 [23]

This calculation was conducted across all n.s, columns of V,,, from which their arg-medians
k. were obtained. These k,s were collected in a vector of length n.,, denoted as k;eq4,. An

example of vy, , and F,, . is provided in Figure 5.14.

The use of median here served two purposes: to estimate the location of the peak of the
empirical distribution and, in a way, “tag” the distribution. The mean does not serve as a
reliable indicator of the peak of the distribution as it is easily influenced by outliers, whereas
the mode is easily influenced by the noise in the distribution. If the distributions are similar in
shape and central tendency, then the median tend to be close together. Using this property, we
can “tag” and classify the distribution based on its medians, thus allowing the identification

of the “consensus” among the test statistics.
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Figure 5.14: The calculation of median of the vy , . vector. In Figure (a) the V , ; array is first sliced along
Nqix @nd 1, (denoted as the red box), which the resulting vector is vy 4, as featured in Figure (b). The
empirical CDF of (b) is then calculated, and the resulting distribution F,, , . are featured in Figure (c). The red

lines in (c) defines the median of the empirical CDF, and the intersection point of the red line with the x-axis

defines the “arg-median” (k,.) of the distribution.
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5.5.1.9.1.2.2. The Mode Phase: Finding the Consensus (Modal) k across all Test Statistics
Given an a

In this phase, the mode of the vector arg-medians of ks, ky,eq,, Was determined, with the
modal k value be denoted as k;;,pqe- The K04 Was assigned to be the consensus k value
among all the test statistics for the value a, and any test statistics that suggested a k that is

proximal with k,,,,4. Would be selected.

The arg-medians of ks are not discrete values however, thus the traditional notion of mode is
not applicable. Thus, the k,,,q4. Were determined using a method based on averaged shifted
histograms proposed by Scott (1985). This involves plotting the histograms of k.4, under

varying bin sizes, and from each of the histograms the ks from a few of the top peaks were
selected (Figure 5.15). These ks were collected into a pool of peak ks denoted as {k},,¢qx.

and the k4. Was defined as the median of {k},¢qx.

bins=61 bins=101 bins=141

404 404

50 30 304

Index of [K] Index of [K] Index of [K]

Figure 5.15: Examples of a series of histograms built from the same k4, under varying number of bins. The

ks from the top few peaks from each of the histogram, demarcated with the red boxes, are then being collected

into a pool denoted as {k}p¢q-

The proximity of k suggested by a statistical test ¢t (denoted as k(t)) with ko4 1S first

calculated as the absolute deviation of k from k,,,,4e:

kgen(t) = “k(t) — Kmodel [24]

The deviation kg, (t) is stored in a vector of length n.,; denoted as kg,.,,. Quantile filtering
was then applied onto k,,,, with the indices of test statistics that has its k,,,, located at the
bottom 5% of kg, (i.e., most proximal from k,,,4.) being selected. The indices of the

chosen test statistics were used to trim V. array.
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5.5.1.9.1.2.3. The Filtering Phase: Filtering the Test Statistics For an a

Using the indices of the chosen test statistics, the V,,, was trimmed along the column (i.e.,
test statistic n;;). This is done by removing columns with outlying test statistics while
retaining columns with indices of the chosen test statistics. The resulting array is a trimmed

vote tally array, a 2-dimensional array of size n;, X Mest pypen where Nest pige is the number of

chosen test statistics, denoted as V, »

This process from Section 5.5.1.9.1.2.1 up t0 5.5.1.9.1.2.3 was repeated for all n,;, slices of

Ve The resulting Viet,s from all slices were recompiled into a 3-dimensional array of size
Nigixe X Naix X Nest denoted as Viat and this is the end result of the median-mode
consensus filter.

The methodology for the median-mode consensus filter can also be expressed in the

following pseudocode:

## Input for median-mode consensus filter: V_kat

n_kix, n_aix, n_tst = V_kat.shape

## n_kix: number of levels of [k] tested

## n_aix: number of levels of [a] tested

## n_tst: number of statistical test on equality of distribution conducted

temp_V_ktf_storage = []

for ax in range(n_aix):
## MEDIAN PHASE: calculation of median [k] given a test statistics and [a]
V_kt = V_kat[:,ax,:] ## shape of V_kt: n_kix * n_tst

# calculating the median [k] value across all test statistics given an [a] value
k_med_t = zeros(n_tst)
for tx in range(n_tst):

v_k_ax_tx = V_kt[:,tx]

## calculation of empirical CDF for v_k_ax_tx across [k]

F_v_ax_tx = cumsum(v_k_ax_tx) / sum(v_k_ax_tx) # eqn [22]
list_of_all_possible_kx = 1:n_kix

median_kx = list_of_all_possible_kx[where(F_v_ax_tx == 0.5)] # eqn[23]

## median_kx can be non-integer; this expression is used here for clarity
k_med_t[tx] = median_kx

# MODE PHASE: Finding the consensus (i.e. modal) [k] across all test statistics

k_peak = ASH_mode(k_med_t) # mode calculated using averaged shifted histogram (ASH) by Scott
## (1985)

k_mode = median(k_peak)

## calculating the deviation of [k] suggested by each test statistics with that of k_mode
k_dev = abs(k_med_t - k_mode) # eqn [24]

k_dev_quantile®5 = quantile(k_dev, 0.05) # fine the 5% quantile within k_dev_t
k_dev_which_has_minimal_deviation = where(k_dev <= k_dev_quantile®5)

## FILTERING PHASE: Filtering the test statistics given an [a]
V_ktf = V_kt[:,k_dev_which_has_minimal_deviation]
temp_V_ktf_storage = temp_V_ktf_storage + [V_ktf] # store the filtered V_kt as temporary list

V_katf = as.array(temp_V_ktf_storage) # recompile the temporary list into 3-d array V_katf
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5.5.1.10. Extracting the Solutions for Estimated Parameters of

Genetic Architecture

For the preparation of extraction of solutions of estimated parameters of genetic architecture,

the Viat, Was summed across the third axis (i.e. t axis), producing a 2-dimensional array of

SIZ€ Ny X Ngiyx, Which was denoted as V4.

ntStfilt

Via= ) Vias, [25]
i=1

The V}, 4 array was used in the extraction of solution for the estimation of the parameters

associated with the genetic architecture.

Using the summed vote tally array V4, the most likely solutions of ks for each of the a
tested was extracted via a consensus approaches. Theoretically the most likely solutions can
be defined as follows: Given a value for parameter a, which ks have successfully minimized
the most test statistics (i.e., column-wise mode of the Vy , array). In practice however,
directly applying the maximum value on the Vy , array has its own issue, as the dispersion of
D, reduces the stability of vote counts in Vy,, and a solution’s reliability (Figure 5.16). For

this reason, further processing on the V , is still required.

For this step, smoothing algorithms were employed. A two-dimensional cubic spline was
utilized on the V}, ,. From this smoothed array, the arguments of the maximum (i.e., the
modal k values) for each column of V, , were recorded into a vector of length n,;, denoted

as &,q,. The index of modal Kk, denoted as k were also recorded for further indexing

Xmode'

purposes. An example of the implementation of the two-dimensional spline is illustrated in
Figure 5.17.

To further smoothen &,.,,, a Savitsky-Golay filter was utilized (Savitzky and Golay, 1964).
There are several advantages of the Savitsky-Golay filter compared to cubic splines; the
Savitsky-Golay filter preserves many of the essential properties of a distribution such as the
moments, width and height of the curve, area under the curve, central tendencies, derivatives
and symmetries of the curve while maintaining a least squared fitting, which made it
preferable over cubic splines for this purpose (Schafer, 2011; Ziegler, 1981). For this reason,

the Savitzky-Golay filter was used to smooth &,,,,, and the resulting vector (denoted as
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K mootheq) Would become the solution of the estimated number of QTL k for a value of a.
An example of application of cubic spline and Savitzky-Golay filter onto the V, , array is

provided in Figure 5.18.

For each of the ks in & moothea they were paired with its corresponding shape parameter for
the QTL effect size distribution a, producing a parameter pair [k, a]. Using the index of a,

ay, and the index for the corresponding modal k, k, . , the estimated scale parameter b

was indexed from B, from row ky. ... and column a,. This b was paired with [k, a], and

d
this produced a triplet of estimated parameter values [k, a, b], comprises of estimated number
of QTL, shape parameter and scale parameter of the QTL effect size distribution. As there are

ngaix NUMber of as tested, there would be same number of triplets, which were compiled into
a 2-dimensional array of size nq;, x 3 denoted as [k a, b] ,_, with each of the columns
containing the estimated number of QTL, shape parameter and scale parameter of the QTL

effect size distribution respectively. This is then the final solution for the estimation of the
genetic architecture parameters.

This proposed method does not attempt to simplify the []T«, a, E]sln any further. This is due to

the non-uniqueness in the solution; there are only two equations available (i.e., the test
statistic distribution d}, and the additive genetic variance V,,,,) but with three unknowns
that need to be estimated (i.e. k, a and b for number of QTL, and shape and scale parameter
for QTL effect size distribution respectively). This causes the phenomenon that for each a
provided, there would be a corresponding b and k that can be assigned that would produce a
set of indistinguishable results (details are provided in Appendix B). Given that any one of

the triplets in the [R a, B] " could be the true underlying set of parameters for the genetic

sl

architecture but with no additional constraints, it might not be appropriate to further restrict

the solutions. Thus, the solution array [k, a, b] ,was the final output of this algorithm.

sl
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An example pseudocode for this step can be expressed as follows:

## Extracting the solution from estimated parameters of genetic architecture

## input for this step: V_katf, B_hat, list_of_k, list of_a

## V_katf : 3-d array that contained filtered number of votes each [k,a] has received

### the more votes the [k,a] had received, the more test statistics that [k,a] has successfully
minimized, this implied a better fit distribution, and more likely being the solution

## B_hat : a 2-d array that contains estimated scale parameter (b_hat) across all [k,a] values
#### b_hat estimated in step 5.5.1.5 and collected across brute-force search in 5.5.1.8

## list_of _k : list of values of [k] tested by the method

## list of_a : list of values of [a] tested by the method

n_kix, n_aix, n_tstf = V_katf.shape

V_ka
V_ka

sum(V_katf, axis=2) # shape of V_ka : n_kix * n_aix
2d_spline(V_ka, 11) ## 2-spline with smoothing parameter set at 11; any value could be used.

k_x_mode = numeric(length = n_aix)

K_fraktur_raw = numeric(length = n_aix)

for ax in range(n_aix):
k_x_mode[ax] = where(V_ka[:,ax] == max(V_ka[:,ax])) # index of the modal k value
K_fraktur_raw[ax] = list_of_k[k_x_mode[ax]]

K_fraktur_smoothed = savitzky_golay(K_fraktur_raw, 11) ## Savitzky-Golay filter
## with degree of polynomial set at 11; any value could be used for smoothing parameter

## extract the [b] from B_hat
b_fraktur = numeric(length = n_aix)
for ax in range(n_aix):
b_fraktur[ax] = B_hat[ax,k_x_mode[ax]]

## final solution of estimated parameters

kab_sln = matrix(@, nrow=length(K_fraktur_smoothed), ncol=3)
kab_s1n[:,0] = K_fraktur_smoothed

kab_sln[:,1] = list_of_a

kab_sln[:,2] = b_fraktur
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Figure 5.16: The K-a plot showing the filtered V ,, array from Figure 5.15, with the overlying red line connecting
the ks that have successfully minimize the most statistics for each of the as. The red dot signifies the true
genetic architecture parameters Q (2000, 0.3, 1) in this example.
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Figure 5.17: The implementation of two-dimensional spline on the V. , array. Featured in figure (a) is the raw
V. q array that was featured in Figure 5.16, and in figure (b) is the V,, 4 array that was smoothened. Figure (c)
illustrated the histogram obtained by slicing the V , array along the n;, axis (in this example, ng;, = 17,
which correspond to a = 0.68), with the blue line obtained by slicing the blue box in the raw V 4 array in (a),
and the orange line obtained by slicing the orange box in the smoothened V, , array in (b). The red line in (b)
denotes the &,.4,,, and the index of modal Lk, denoted as ky, .. 18 defined the red cross in (c), and the
solution of kk, kg, was defined using the black cross in the “Value of [K]" axis in (b). The red dots in (a) and (b)

signifies the true genetic parameter architecture Q (2000, 0.3, 1).
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Figure 5.18: The applications of the smoothing methods on the V , array, with Figure (a) showing the raw V ,
and the associated estimated solutions. Figure (b) shows the V, 4 array that was smoothened by the two-
dimensional cubic splines, with the red line containing &,.4,,. Figure (c) shows the smoothened Vy,q array along

with the red line containing the I solutions smoothened by Savitzky-Golay filter & smoothed:
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5.6. Simulation Study for Testing of the Algorithm
5.6.1. Layout of the Experiment

The method was tested through simulation using Python (version 3.9.7, released 30 August
2021) and R (version 3.6.1, released 5 July 2019). The experiment was conducted using
genotypic array encoded in the format of {0,1,2}, phenotypes and narrow sense heritability,
which the last was assumed to have been estimated using methods outside this chapter. This
experiment was conducted on a PC with the following specification: 8-core Intel i7-8665U at
1.90 GHz with 16 GB RAM, with all 8 cores being used.

For this experiment, genotype arrays of sample size of N = 3000 and M = 50,000 markers
were utilized. Two genotype arrays were used for this test. The first genotype array tested
(denoted as X4) is simulated with homogenous linkage disequilibrium structures, with the
allele frequency distribution following a Beta distribution. Correlations between markers
were generated by copying part of the genotype from a marker to the adjacent markers, with
amount of copying was determined through the level of correlation (denoted as RZ ¢;.4). FOr
this study the RZ,,., Was set at 0.9. The second genotype array (denoted as X,) is generated
through coalescence using the R package “AlphaSimR” (Gaynor et al., 2021). For this
simulation, the command “RunMac2” was used, with effective population size set at 100, and
the mutation rate at 2.5 x 1078 per base pair per generation. The small effective population
size produces heterogeneous linkage disequilibrium structures for this genotype array
(Gondro, 2015), and was used to test the vulnerability of this method toward such

heterogeneity.

At the same time, a number of markers were nominated as the QTL of the phenotype. For
each of these markers a QTL effect size was associated, with the effect sizes follow a gamma
distribution with a shape and scale parameters. The genetic architecture parameters tested
Q(k, a, b) are provided in Table 5.1. These parameter values were designated as the “true
parameter values,” and they were the target of estimation for this method. A vector of effect

sizes of all markers in X,;, denoted as q e, Was also generated.

Using the genotype arrays X r,,;; and the marker effect sizes g, a vector of phenotypes
(¥fuu) Was generated. The phenotypes are assumed to follow a purely additive model, and is

calculated as follows:
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Yrut = Xpui9erue + Ysully [26]

where the residual component y g, is generated using the following normal distribution:

Uar(Xfullqtrue) *(1- hz)) [27]

Yeully, ~ N (0, 2
For this experiment, the h* was set at 0.3 for all the parameters tested. The y,; would

become the “observed phenotypes” mentioned in the previous sections.

The X fuu, Yrun @nd h? were utilized in this method. The genotype array was resampled 27
times (i.e. ng;, = nyps = 27) for this study, and the number of individuals resampled was set
at Nysgmp = 2000. For the number of QTL k tested, the following geom-linear progression

was used:
k € {5,10,16,...94,100,160, ...940,1000,1600, ... 9400,10000,16000, ... 40000,46000,50000} [29]

In total 54 values of k were tested. For the shape parameter of QTL effect size distribution a
tested, linear progression was used, starting from a = 0.04, and the common differences for
a set at 0.04. In total 25 as were tested. This represents a total of 54*25 = 1350 combinations

of [k, a] being tested. From this method an array of estimated values of the genetic

architecture parameter, [k, a, b]_,_, was generated.

5.6.2. Genetic Architecture Parameter Tested

For each of the genotype arrays, the method was tested under varying genetic architecture
parameters, with the default and alternative values of the number of QTL (k), shape (a) and
scale parameter (Ib) of dyr,, provided in Table 5.1. In total, four combinations of genetic

architecture parameters were used.

For each genetic architecture and genotype tested, three replications of the experiment were
done. In total 24 (4*2*3 = 24) tests were conducted in this study.
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Table 5.1: Genetic architecture parameters tested in this experiment, with the first value in Q (Ik, &, b) denotes
the number of QTL, the second and third values denote the shape and scale parameter of the true QTL effect

size distribution.

Genetic Architectures Parameter Value Tested
Defaults 0(300,0.3,1)
Alternatives Q(2000,0.3,1)
0(300,0.8,1)
0(300,0.3,3)

5.6.3. Testing the Performance of the Algorithm

In this study, the performance of the method is defined as the method’s capability of

estimating the true d,r, by producing a solution of [R a, lE]sm that their distributions

accurately reflect said true d,r,,. The closer the estimated distributions (denoted as &QTL) are

to the true dlyr,,, the higher the performance of the method.

Three measures were employed to test the performance of the method. The first measure is a

modified version of Wasserstein’s statistic, which is defined as the area between the 1 — CDF

of the aQTL and dyr, (denoted as @QTL and Dy, respectively).

For this experiment, the area under the curves of @QTL and Dy, (denoted as Ag and Ap)
were defined as follows:

Ap, = 50000 * f Dori, d(QTL size) [28]

Ap = 50000 *J Dyr, d(QTL size) [29]
And the performance of the method in term of the modified Wasserstein’s statistic is defined

as follows:

[50000 * f_oooo I’D\)QTLL' —_ ]D)QTL d(QTL Size)]
[50000 * [ Dyr, d(QTL size)]

Pwas, =1+

where the square brackets [x] mean “round the numbers to the nearest integers.”
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Rather than the absolutize differences between lﬁ)QTL and D7, as in the usual Wasserstein’s
statistic, the raw differences were taken for this statistic. This is to test the level of
overestimation or underestimation of the number of QTL by the method: if the ]ﬁ)QTL matches
perfectly with Dy, the py 45 Would be 1. If py 45 is more than 1, the method has
overestimated the number of QTL, and vice versa. This measure can range from 0, when
lﬁ)QTL is a constant value of 0, up to infinity. The proportionality of this statistics is to

standardize the areas under the curves under varying parameter values.

It is also noted that if the area under the curves of @QTL and Dy, are the same, the measures

would be 1, regardless of how severe the actual discrepancies between the two distributions.
This is the reason for employing the second and third measurements for the performance of

this method, which are the number of QTL with certain effect sizes.

Let the effect size tested be denoted as a,,,,, and the Dy, (acye) and Dyr; (acye) be defined

as the true and estimated number of QTL with effect size of a.,.. The performance of the

method in term of number of QTL was defined as follows:

®QTLi (acut) - DQTL (acut)
Dory (acut)

PoTi=apy, = 1 [31]

As in pyas, the pori=q,,, could ranges from 0, when ]]T)QTLi(acut) = 0, up to infinity, when
Dgry(acy,e) = 0. If the statistic is greater than 1, the method has overestimated the number of

QTL with effect size a.,;, and vice versa. In this study, the second measurement would have

Ayt = 0.1 g, and the third measurement with a.,; = 1.0 g,.

As there are ng;, number of solution triplets in [k, a, lE]sln, the pwas and pgri=q,,, Would

also be a vector of length n,;,.. For this reason, the performance scores were represented by
their median. From each of the replicates, the median of py 45 as well as pori-q,,, With

Ayt = 0.1 0, and a.,; = 1.0 g,. The overall performance for each measurement was defined

as the mean of the medians across all replicates.

5.7. Results
5.7.1. The Performance of the Algorithm

The area under the curve for the 1 — CDF of the true QTL effect size distribution, denoted as

Ap, and the median of the area under the curve for those of estimated QTL effect size
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distribution, denoted as Ag, for genotype array X4, as well as the true and estimated number
of QTL with effect size of 0.1 g, and 1.0 a,, are provided in Table 5.2. The performance of
the method to estimate the parameters of the genetic architecture, measured in terms of areas
between curves and number of QTLs, for genotype array 1, is provided in Table 5.3. For
genotype array X,, the area under the curves for the 1 — CDF of the true and estimated QTL
effect size distribution, as well as the true and estimated number of QTL with effect sizes of
0.1 g, and 1.0 g, are provided in Table 5.4, and the performance of the method in terms of

these measures is provided in Table 5.5.

In general, the method successfully provided an estimate for the number of QTL and the
distribution of its effect sizes. This is evident from the proximity of estimated QTL effect size
distributions with those of true QTL effect size distributions in all genetic architecture tested
for both genotype arrays (Figure 5.19 — 20).

Under default parameters the number of QTL with effect size 0.1 g, estimated by the method
is 148.8% of the true number of QTL for genotype array X, and for genotype array X, it is
133.7% of the true number of QTL. Whereas for QTL with effect size 1.0 g,, the number of
QTL estimated for genotype array X; was 132.4% of the true number of QTL, and for
genotype array X, it was 106.8% of the true number of QTL. Across all genetic architecture
parameters and genotype arrays tested, the estimated number of QTL with effect size 0.1 o,
ranges from 69.9% to 167.0%, with an average of 109.8% of the true number of QTL, and for
estimated number of QTL with effect size 1.0 o, ranges from 101.6% to 175.8%, with an
average of 123.6% of the true number of QTL (Table 5.2 - 5).

5.7.2. Overviews on the Trends of the Outputs

While the method is able to provide an estimate of QTL effect size distribution, the non-
uniqueness in the solution of the estimated parameter values has introduced ambiguity in the
proposed models, which manifested as a thick band of estimated distributions (in red) rather
than one singular distribution (Figures 5.12-5.13). The effects of non-uniqueness in the
solution can also where the solution manifested itself as a band of solutions (in yellow) rather
than one singular spot on the plot, with the width of the band as the distribution around the
estimated parameter values, analogous to a confidence interval (Figure 5.21). This band of

solutions contains combinations of [k, a]s that produces similar QTL effect size distributions.
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Table 5.2: The medians of measures for various genetic architecture parameter tested with Genotype Array X;.
The measures were defined in terms of area under the curves of true and estimated QTL effect size distribution
(Ap and A respectively), as well as the true and estimated number of QTL (D7, and @QTL respectively) with

effect size of 0.1 o, and 1.0 o

Genetic Architecture Representative Medians of Measures
Parameters
Area Under the Number of QTL Number of QTL
Curves with 0.1 o, with 1.0 o,
Ap Ap ]DQTL BQTL ]D)QTL ﬁQTL

Default Q(300,0.3,1) 98.32 134.77 142.67 211.67 27.56 35.77
Alternative  Q(2000,0.3,1) 601.69 662.03 898.78 626.23 159.33 220.23
Q(300,0.8,1) 241.35 335.95 252.00 406.52 86.33 108.64

Q(300,0.3,3) 253.63 398.29 181.89 294.26 70.67 123.61

Table 5.3: The performance of the method in the estimation of genetic parameter architectures in Genotype

Array X, evaluated in term of Wasserstein’s statistics and number of QTL with effect size of 0.1 o, and 1.0 a,.

Genetic Architecture Performance
Parameters :
Wasserstein’s Number of QTL Number of QTL
Statistics with 0.1 o, with 1.0 o,
Default Q(300,0.3,1) 1374 1.488 1.324
Alternative (Q(2000,0.3,1) 1.101 0.699 1.380
Q(300,0.8,1) 1.400 1.613 1.264
Q(300,0.3,3) 1571 1.609 1.758
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Table 5.4: The medians of measures for various genetic architecture parameter tested with Genotype Array X.
The measures were defined in terms of area under the curves of true and estimated QTL effect size distribution

(Ap and A respectively), as well as the true and estimated number of QTL (D7, and @QTL respectively) with

effect size of 0.1 o, and 1.0 o

Genetic Architecture Representative Medians of Measures
Parameters
Area Under the Number of QTL Number of QTL
Curves with 0.10, with 1.0o0,
Ap Ap ]DQTL ]DQTL 1D)QTL ﬁQTL

Default Q(300,0.3,1) 100.19 127.62 142.78 193.42 30.33 32.46
Alternative  Q(2000,0.3,1) 569.79 592.37 866.67 869.39 156.78 169.89
Q(300,0.8,1) 242.68 300.10 252.67 429.99 88.78 89.01

Q(300,0.3,3) 274.29 293.90 173.89 164.78 77.67 82.32

Table 5.5: The performance of the method in the estimation of genetic parameter architectures in Genotype

Array X,, evaluated in terms of Wasserstein’s statistics and number of QTL with effect size of 0.1 o, and 1.0 o,.

Genetic Architecture Performance
Parameters -
Wasserstein Number of QTL Number of QTL
Statistics with 0.1 o, with 1.0 g,
Default Q(300,0.3,1) 1.293 1.337 1.068
Alternative (Q(2000,0.3,1) 1.052 1.018 1.089
Q(300,0.8,1) 1.253 1