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Abstract
Key message The reaction norm analysis of stability can be enhanced by partitioning the contribution of different 
types of G × E to the variation in slope.
Abstract The slope of regression in a reaction norm model, where the performance of a genotype is regressed over an 
environmental covariable, is often used as a measure of stability of genotype performance. This method could be developed 
further by partitioning variation in the slope of regression into the two sources of genotype-by-environment interaction (G × E) 
which cause it: scale-type G × E (heterogeneity of variance) and rank-type G × E (heterogeneity of correlation). Because the 
two types of G × E have very different properties, separating their effect would enable a clearer understanding of stability. 
The aim of this paper was to demonstrate two methods which seek to achieve this in reaction norm models. Reaction norm 
models were fit to yield data from a multi-environment trial in Barley (Hordeum vulgare), with the adjusted mean yield 
from each environment used as the environmental covariable. Stability estimated from factor-analytic models, which can 
disentangle the two types of G × E and estimate stability based on rank-type G × E, was used for comparison. Adjusting the 
reaction norm slope to account for scale-type G × E using a genetic regression more than tripled the correlation with factor-
analytic estimates of stability (0.24–0.26 to 0.80–0.85), indicating that it removed variation in the reaction norm slope that 
originated from scale-type G × E. A standardisation procedure had a more modest increase (055–0.59) but could be useful 
when curvilinear reaction norms are required. Analyses which use reaction norms to explore the stability of genotypes could 
gain additional insight into the mechanisms of stability by applying the methods outlined in this study.

Introduction

Genotype-by-environment interactions (G × E) occur when 
the performance of a genotype is dependent on the environ-
ment it exists in. The performance of some genotypes can be 
more sensitive to environmental factors, whilst others show 
greater stability across a range of environments. Genotypes 
that combine high overall performance with stability are 
appealing for their greater marketing potential and utility in 
mitigating the effects of climate change on crop production 

(Powell et al. 2012). Therefore, there is a need to understand 
the models available to estimate genetic variation and select 
parent genotypes for stability in plant breeding programs.

Reaction norm (RN) models have been a popular choice 
for modelling G × E and the stability of genotypes across 
environments (Kraakman et al. 2004; Kusmec et al. 2017; 
Lacaze et al. 2009; Li et al. 2019; Ly et al. 2018; Sjoberg 
et al. 2020). In RN models, the performance of a genotype 
is regressed across an environmental covariable (EC), which 
describes the quality of the environment as a continuous 
value (Woltereck 1913). If the EC is centred with a mean of 
zero, the intercept represents performance in the average EC, 
whilst the slope of the regression captures the stability of 
the genotype. The regression can be either fixed or random; 
random regression is more common, as additive relation-
ships can then be accounted for via pedigree or genomic 
data, which enables the estimation of additive genetic breed-
ing values and genomic predictions of stability. The cur-
rent paper focuses on modelling additive genetic random 
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regression RN models, although the concepts are relevant 
to all types of RN models.

There are two types of G × E which can contribute to vari-
ation in the slope of a RN model, and both have very dif-
ferent properties. Rank-type G × E occurs when the genetic 
correlation between environments is less than unity. A cor-
relation significantly less than unity means that between 
environments, genotypes re-rank and the relative effect of 
the underlying genes changes (Falconer 1952). In contrast, 
scale-type G × E occurs when the genetic variance changes 
between environments. This “scales” the breeding values 
such that the differences between genotypes get larger or 
smaller, but it does not affect the genetic correlation (James 
2009). Separating the two sources of variation in the slope of 
a reaction norm would enable a clearer picture of re-ranking 
between genotypes, and how the genetic architecture of a 
trait varies across the EC. If the effect of scale-type G × E 
was removed from the reaction norm slope, the resulting 
slope would capture how much the genotype re-ranks across 
the EC, or its “rank-stability”. This could assist breeders to 
select genotypes which combine high overall performance 
with a stable ranking across a given EC, or alternatively, 
genotypes with adaptation to a specific EC level.

A method suggested by Falconer (1990) proposes that for 
a linear RN model with the intercept placed at the average 
EC, the square of the correlation between the intercept and 
slope (r2) represents the proportion of variance in the slope 
that is due to scale-type G × E. As such, the proportion of 
variance in slope due to rank-type G × E can be estimated 
as (1–r2). A genetic regression can also be used to derive 
breeding values for the reaction norm slope that is independ-
ent of the intercept variance (thus independent of scale-type 
G × E), as recently applied in the reaction norm analysis of 
body weight in sheep (Waters, Clark, et al. 2022).

A drawback of Falconer’s method is that it is limited to 
a linear function, which might not adequately describe the 
response of a genotype across the EC in some situations. 
This could be addressed by directly standardising the breed-
ing value of genotypes across the EC to a constant genetic 
variance, thereby removing variation in stability due to 
scale-type G × E. For a given genotype, the change in stand-
ardised breeding value could then be used as an estimate of 
stability due to rank-type G × E.

Factor-analytic (FA) models can also separate scale-type 
and rank-type G × E when analysing the stability of geno-
types across environments (Smith and Cullis 2018). Whilst 
RN models employ a single user-defined environmental 
covariable, FA models generate an unsupervised set of c 
common factors that represent unobserved environmental 
covariables which explain changes in genetic effects across 
environments (Meyer 2009). The slopes of regression on 
the common factors can be used to derive breeding values 
for stability whilst accounting for G × E (Smith and Cullis 

2018). A downside of using FA models is that they reveal 
unobserved environmental factors which may not always be 
interpretable. Therefore, the model is less useful than RN 
models when investigating a specific environmental factor, 
such as in designed experiments. However, the ability of 
FA models to separate scale-type and rank-type G × E could 
be leveraged to investigate scale-correction methods for RN 
models.

The aim of this study was to apply the two methods for 
separating variation due to scale and rank-type G × E when 
estimating breeding values for stability from random regres-
sion RN models. The dataset involves a MET from an Aus-
tralian barley breeding program with large amounts of scale-
type and rank-type G × E. The resulting breeding values for 
stability from the RN models were compared with those 
derived from FA models to test how well they accounted for 
scale-type G × E. We use genomic data to model the additive 
genetic relationships amongst genotypes.

Methods

Phenotypic data

The data were provided by InterGrain Pty Ltd (www. inter 
grain. com) and consisted of plot yields from 52 partially 
replicated trials distributed across 15 locations throughout 
Western Australia, New South Wales, Victoria, and South 
Australia. The trials took place in 2019 (10 trials) and 2020 
(42 trials).

There were 3460 unique genotypes with yield pheno-
types, although 2734 of the genotypes were only represented 
in one environment and did not have single nucleotide poly-
morphism (SNP) data. The remaining 726 genotypes were 
almost fully replicated across the 15 environments and had 
SNP data.

SNP data

The SNP data were collected using the Illumina Infinium 
Wheat Barley 40 K SNP array Version 1.0 and was imputed 
to a set of 410 499 SNPs, as described in Keeble-Gagnère 
et al. (2021). After imputation, SNPs with a minor allele 
frequency less than 0.05 (103 489 SNPs) and with more than 
12.5% heterozygosity (202 SNPs) were removed, leaving a 
total of 306 808 SNPs for the 726 genotypes.

Analysis

Because there was a large number of genotypes without 
replication across environments, a two-stage analysis was 
used (Smith et al. 2001) rather than a usually preferable 
single stage. This allowed all the genotypes to be used for 

http://www.intergrain.com
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modelling spatial variation within the trials in the first stage, 
whilst avoiding the inclusion of 2734 uninformative geno-
types to model G × E across environments in the second 
stage. All the models were fit using restricted maximum 
likelihood (REML) in ASReml-R (Butler et al. 2018).

In the first stage, trials were analysed independently to obtain 
best linear unbiased estimates (BLUEs) of yield for each geno-
type, along with the corresponding weights. For each trial, the 
initial model consisted of an independent random genotype 
effect and a first-order separable autoregressive term for the 
error variance structure using the row and column dimensions 
of the trial. Based on this model, plots with mean yields deviat-
ing more than four standard deviations from their expectation 
were removed. Additional random ‘row’ and ‘column’ terms 
were fitted based on a log-likelihood ratio test with a threshold of 
p = 0.05. Once the final model was determined, the BLUEs and 
their corresponding weights were obtained by fitting genotype as 
a fixed effect, following the methodology of Smith et al., (2001).

In the second stage, the performance of genotypes across 
the environments was analysed with RN and FA models 
utilising the BLUEs of yield and corresponding weights 
obtained in the first-stage analysis. Only the 726 genotypes 
with replication across environments and SNP data were 
considered in this stage. Of the 726 genotypes, 74 were 
removed from the analysis, as they were heterozygous for 
more than 12.5% of their SNPs. This left 652 genotypes, of 
which 606 were replicated across all 15 environments, with 
an additional 45 genotypes replicated in 14 environments. 
The remaining genotype was replicated in only six 
environments but was included in the analysis since it would 
contribute information through its genomic relationship to 
the population.

Reaction norm models

The RN models require an environmental covariable 
(EC) that captures the environmental quality. Whilst 
it is increasingly common for ECs to consist of real 
environmental covariables, this was not available in our 
dataset. Instead, a joint-regression analysis was used 
(Eberhart and Russell 1966; Finlay and Wilkinson 1963; 
Perkins and Jinks 1968), where the adjusted mean yield of 
each environment was used as the EC. RN models based 
on JR analysis have been used widely to investigate the 
genetic basis of stability for yield and quality traits in 
cereal crops (Calderini and Slafer 1999; Kraakman et al. 
2004; Li et al. 2019; Sandhu et al. 2021; Tan et al. 2020). 
Because the distribution of genotypes across environments 
was slightly unbalanced in our dataset, the direct mean 
of yield in each environment would be a slightly biased 
estimator of the EC. To account for the unequal use of 
genotypes across environments, a simple model which 
fit genotypes as an independent random effect and 

environment as a fixed effect was used to obtain a BLUE 
of yield for each environment, which formed the EC. The 
EC values ranged from 1.45 to 4.84 tonnes per hectare (t/
ha) and were standardised to values with a variance of one 
and a mean of zero for the RN analysis. The distribution 
of genotypes along the EC is given in Fig. S1.

The first RN model was a standard linear reaction norm 
(RN-L), which modelled the genetic effect of each geno-
type as a linear function of the EC. The second RN model 
used cubic polynomials (i.e. a nonlinear function) to model 
the genetic effect across the EC and was denoted RN-NL.

The linear RN-L in simple matrix form was:

where � was a vector of BLUEs for each genotype, � was an 
incidence matrix linking records to the fixed effects � , and �1 
and �2 were design matrices linking records to the genomic 
estimated breeding values (GEBVs) for the intercept ( �0 ) 
and slope ( �1 ), with �1 containing 1’s on the diagonal and 
�2 containing the EC value corresponding to each BLUE in 
� on the diagonal, and � was the residual variance.

The environment was fitted as the only fixed effect to 
account for differences in the mean yield between environ-
ments, and residual variance was estimated independently 
for each environment. The genetic variance of �0 and �1 
was modelled according to:[

�0
�1

]
∼ N(0,�⊗�) , where � =

[
�2

a0
�a1a0

�a0a1 �2

a1

]
 and G 

was a relationship matrix based on SNP data, constructed 
using the first van Raden method (VanRaden 2008) and ⊗ 
refers to a Kronecker product of matrices.

For RN-NL, a cubic polynomial was fitted to describe 
the genetic effects across the EC. The model was a simple 
extension of RN-L:

where �3 and �4 were design matrices linking records to the 
GEBVs for quadratic ( a2 ) and cubic ( a3 ) components, with 
the diagonal of �3 and �4 containing the square and cube of 
the EC value corresponding to the BLUE in y , respectively. 
The remaining componentsy , X , b , Z1 , Z2 , a0 , a1 and e were 
the same as in (1). The genetic variance of a0,a1 , a2 and a3 
were also modelled in the same way as in RN-L, where:

⎡⎢⎢⎢⎣

�0
�1
�2
�3

⎤⎥⎥⎥⎦
∼ N(0,�⊗�), where

� =

⎡⎢⎢⎢⎢⎣

�2

a0
�a1a0 �a2a0 �a3a0

�a0a1 �2

a1
�a2a1 �a3a1

�a0a2 �a1a2 �2

a2
�a3a2

�a0a3 �a1a3 �a2a3 �2

a3

⎤⎥⎥⎥⎥⎦
.

(1)� = �� + �1�0 + �2�1 + �

(2)� = �� + �1�0 + �2�1 + �3�2 + �4�3 + �
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r both RN models, the genetic (co)variance matrix ( � ) 
across the EC was obtaining using:

In RN-L, � was a 15 × 2 matrix containing a vector of 
1’s in the first column and a vector of the EC values for 
each environment. In RN-NL, � was a had an additional 
two columns (15 × 4) consisting of the EC values squared 
and cubed, respectively.

RN overall breeding value and stability estimates

In both RN-L and RN-NL, the GEBV for the intercept ( a0 ) 
was treated as the overall GEBV for each genotype. The 
slope GEBV ( �1 ) in RN-L captured how much the overall 
GEBV of each genotype changed across the EC and was 
therefore used as a GEBV for stability. This is the standard 
model for deriving stability from linear RN models (e.g. de 
Souza et al. 2020; Kusmec et al. 2017; Lacaze et al. 2009), 
so it was treated as the control measure of stability. None 
of the GEBVs in RN-NL could be directly interpreted as 
stability. Stability could only be estimated in RN-NL using 
the second scale-correction method (outlined later).

The slope GEBV ( �1 ) could include variation due to both 
scale-type and rank-type G × E. The following two methods 
aim to remove the variation due to scale-type G × E, so that 
the resulting GEBVs describe variation due to rank-type 
G × E across the EC.

The first method was derived from Falconer (1990). Here, 
the correlation between the intercept and slope is attributed 
entirely to scale-type G × E, whilst the remaining variation 
that is independent of the correlation is attributed to rank-
type G × E. We can obtain GEBVs for the slope that are 
independent of the genetic correlation between the intercept 
and slope by using a genetic regression:

where �0 and �1 are the GEBVs for the intercept and slope, 
respectively, � 2

a0
 is the variance in intercept, and �a1a0 is the 

covariance between the intercept and slope. The resulting 
GEBVs ( �∗

1
 ) are the essentially the residuals of a genetic 

regression between the intercept and slope components. This 
method, referred to hereafter as the genetic regression, was 
only applied to RN-L, as it cannot be used for reaction norms 
with higher-order polynomials (i.e. RN-NL).

The second method also attempts to remove variation 
in the reaction norm slope arising from scale-type G × E 
whilst allowing the use of RN models with higher-order 
polynomials. Briefly, the GEBVs of genotypes along the EC 
are standardised to a constant genetic variance to remove 
scale-type G × E. After standardisation, the change in GEBV 

(3)� = ����

(4)�∗
1
= �1 −

�a1a0

�2
a0

�0

for each genotype across the EC is used to estimate stability. 
This method, hereafter referred to as the standardisation 
method, was applied independently to both RN-L and RN-NL.

In more detail, the GEBV for genotype i at EC value t in 
a RN model is a function of the GEBVs for each regression 
coefficient ( a0 … ap ) and was calculated as follows:

Likewise, the genetic variance at the different values of 
t can be calculated using � = ���� , as described in Eq. 3. 
The GEBV for each genotype at each value of t can then be 
standardised (SGEBV) based on the genetic variance:

where Vat is the genetic variance at EC value t . By perform-
ing this across the range of EC values in the data, the SGE-
BVs for each genotype can be plotted across the EC. The 
resulting standardised reaction norm describes the breeding 
value of each genotype across the EC whilst being adjusted 
for changes in the scale of the genetic variance. The SGE-
BVs only represent relative performance and do not carry 
units. Since the SGEBVs are not linear with respect to t , 
there is not a simple measure for stability. A solution is to 
use the change in SGEBV over a specified interval across 
the EC to estimate the stability ( �):

where tx and ty represent the maximum and minimum EC values 
in the specified interval. It is therefore possible to estimate the 
stability of each genotype for different segments of the EC. This 
could be used to explore whether different genotypes are more 
sensitive to different parts of the EC. The current study used an 
interval containing the entire range of the EC. Therefore, � was 
interpreted for each genotype as the change in GEBV relative 
to the population across the range of the EC and was calculated 
using both RN-L and RN-NL.

Factor‑analytic models

Unlike RN models, FA models ‘find’ environmental 
variables, called common factors, that explain patterns of 
G × E across environments. The regression on these common 
factors can be used to estimate the stability of genotypes 
across environments. If the EC used in the RN models is a 
major driver of G × E, we can expect estimates of stability 
and overall performance to be similar between these 
methods. Since FA models have special properties which 
allow the user to measure the amount of scale-type G × E in 
the regression coefficients for the environmental variables, 

GEBVit = a0i + a1i × t +…+ api × tp

SGEBVi,t =
GEBVi,t√

Vat

(5)Si =
SGEBVi,tx

− SGEBVi,ty

tx − ty
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we used stability estimated from FA models as a reference to 
compare the effectiveness of the two RN correction methods 
to account for scale-type G × E.

The first FA model (FA-2) used two common factors to 
model genetic effects that were common across the environ-
ments, along with specific genetic and residual variances for 
each of the 15 environments. FA-2 was described in matrix 
notation as follows:

where � , X and b were the same as in Eq. 1, �� was a design 
matrix linking records to the random effects, �� = [��1 , ��2] 
was a b × 2 matrix of estimated loadings for the b environ-
ments and first ( ��1 ) and second ( ��2 ) common factors, and 
�� was an n × n identity matrix, where n was the number of 
genotypes, �� = (�

�

�1
, �

�

�2
)
�

 was a n × 2 vector of genotype 
regression coefficients for the first ( ��1 ) and second ( ��2 ) com-
mon factor, �� = (�

�

�1,
, �

�

�2
,… , �

�

��
)
�

 was a n × b vector con-
taining the specific genetic effects ( ��� ) for the b environ-
ments, and � was the residual variance. The residual variance 
was estimated independently for each environment.

The variance of the common factors and specific effects 
was modelled according to:

where Ica was an identity matrix of order two, � was the 
genomic relationship matrix as calculated for the RN mod-
els, and �a was a n × n diagonal matrix with elements �aj , 
which were the specific genetic variances for individual 
environments.

The matrix � , which describes the additive genetic vari-
ance and covariance between the b environments, was cal-
culated following:

The second FA model (RR-2) was a reduced-rank imple-
mentation of FA-2. RR-2 was identical to FA-2, except 
that the specific genetic variances for each of the 15 envi-
ronments ( �aj ) were assumed to be zero. RR-2 was fitted 
because RN models also implicitly assume that the specific 
genetic effects are zero. Therefore, the results from RR-2 
should account for the effect of estimating specific genetic 
effects when comparing the RN and FA models.

FA models with more than two common factors were not 
considered. This was because RN models essentially capture 
the performance of a genotype in two components: intercept 
(overall breeding value) and slope (change in breeding value 
over a unit change in EC). Similarly, the first common factor 
in a FA model usually represents the overall breeding value 
(comparable to the intercept), with the second common 

(6)� = �� + ��

(
�� ⊗ ��

)
�� + ���� + �

[
fa
δa

]
∼ N

([
0

0

]
,

[
�⊗� 0

0 �� ⊗�

])

� = ���
�

�
+��

factor capturing stability (comparable to the slope). Going 
beyond two common factors would make it difficult to 
compare stability between FA and RN models and was not 
required to achieve the objective of the study, which was 
to test how well the RN model scale corrections accounted 
for scale-type G × E. For reference, the two common factors 
accounted for on average 72.8% of the additive genetic 
variance (see results section), whilst fitting a third common 
factor explained an additional 9.14% (results not shown).

Overall breeding value and stability in FA models

Breeding values for overall performance and stability for 
each genotype were derived from FA-2 and RR-2 based 
on the methods outlined in Smith and Cullis (2018). This 
involved first rotating the loadings and regression coeffi-
cients for each common factor using singular value decom-
position to make them orthogonal. After rotation, the load-
ings were analysed to ascertain how much scale or rank-type 
G × E contributed to the regression coefficients for each 
common factor.

The sign of the loadings represents contrasts between the 
environments (Smith and Cullis 2018). Since all genotypes 
have the same intercept for each common factor (0,0), there 
is no re-ranking of genotypes (or no contrast) across a com-
mon factor when the loadings all have the same sign. In 
this case, the regression coefficients will exclusively capture 
scale-type G × E.

When there is a mix of positive and negative loadings, the 
regression coefficients capture at least some variation due to 
rank-type G × E, because the genotypes pass through (0,0) 
and re-ranking occurs. The degree to which the regression 
coefficients represent rank-type G × E can be assessed by 
comparing the absolute mean of the positive and negative 
loadings (or average contrasts), respectively, for the com-
mon factor. When the average contrasts are very different 
(Fig. 1a), most of the variation in the regression coefficients 
will be due to scale-type G × E, because the variance of 
GEBVs for the common factor will be very different between 
the average contrasts. When the absolute mean of the posi-
tive and negative loadings is equal, the variance of GEBVs 
for the common factor at the average contrasts will also be 
equal (Fig. 1b), so the variation in regression coefficients 
will be mostly due to rank-type G × E.

According to Smith and Cullis (2018), the loadings for 
the first common factor are usually the same sign, whilst 
the remaining common factors tend to be a mix of positive 
and negative loadings. This experience was reflected in 
our analysis (see results). This meant that the breeding 
value for overall performance across environments ( �� ) 
could be calculated as a function of the first common 
factor, since it represented a genetic effect common to 
all environments with no re-ranking. Therefore, �� was 
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calculated as the mean additive genetic effect across the 
loadings for the first common factor:

where λ̃∗
a1j

 was the rotated loading for the first common fac-
tor for environment j, and f̃ ∗

a1i
 was the rotated regression coef-

ficient for genotype i on the first common factor.
Because the second common factors in FA-2 and RR-2 

contained a mix of positive and negative loadings that 
were similar in magnitude, they captured variation in 
stability due to rank-type G × E. Therefore, the respon-
siveness of genotypes to the second common factor ( �2 ) 
was used as the GEBV for stability and was calculated as 
follows:

where �2+ and �2− represent the mean of the rotated positive 
and negative loadings for the second common factor, 
respectively. A smaller value of �2 indicated a genotype 
with greater stability in rank. The GEBVs for �2 were used 
as the reference estimate of stability to which the various 

OPi =
1

b

b∑
j=1

λ̃∗
a1j
f̃ ∗
a1i

R2i = (λ2+ − λa2−)f̃
∗
a2i

GEBVs for stability estimated from the RN models were 
compared.

The percentage of genetic variance in FA-2 that was 
explained by common factor d (either 1 or 2) in environ-
ment j in was calculated using:

where λ̃∗
adj

 was the rotated loading for common factor d in 
environment j, and ψaj

 was the specific genetic effect in envi-
ronment j. The average value of vad across the j environments 
was used to calculate the mean genetic variance explained 
by the common factors.

Results

Model summary

The FA models provided a better fit to the data than the 
RN models based on the Akaike information criterion 
(AIC), Bayesian information criterion (BIC) and log 
likelihood (Table 1). The linear RN model (RN-L) was 

vadj = 100(̃λ∗
adj
)
2

/(
2∑

s=1

(̃λ
∗

asj
)
2

+ ψaj

)

Fig. 1  Schematic example of 
the regression of four geno-
types (coloured lines) across 
a common factor, ‘x’ in a FA 
model. The vertical black 
lines represent the variation 
in GEBVs for the common 
factor ‘x’ at the average of the 
positive and negative loadings 
(or average contrasts). In a, the 
average negative and positive 
loading are − 0.15 and 0.7 units, 
respectively, and in b, − 0.7 and 
0.7 units respectively
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a significantly poorer fit that the cubic RN model (RN-
NL) (ΔAIC = 139), whilst the reduced-rank factor-analytic 
model (RR-2) provided a poorer fit than the factor-analytic 
model (FA-2) (ΔAIC = 1037).

Overall, the first and second common factors in FA-2 
explained 50.6 and 22.4% of the genetic variance across 
the environments, respectively (72.8% in total, Table S1). 
The percent of genetic variance explained by each com-
mon factor within the environments is also reported in 
Table S1. The genetic (co)variance of the random regres-
sion coefficients for RN-L and RN-NL are given in 
Table S2, along with correlations. The genetic correla-
tion between the intercept and slope (r) in RN-L was high 
(0.76), indicating that genotypes with larger intercepts also 
tended to have larger slopes. Based on the r2, this also 
implied that 57.8% of the variation in slope was due to 
scale-type G × E, whilst 42.2% was due to rank-type G × E.

Despite the differences in model fit, the correlations 
between GEBVs for overall performance in the RN 
models ( �0 ) and FA models ( �� ) were high, ranging 
between 0.93 and 0.95 (Table 2). The lowest correlation 
between GEBVs for overall performance was between the 
RN models (0.90). Although not shown, the correlation 
between GEBVs for stability in FA-2 and RR-2 (R2) was 
also very high (0.96).

Magnitude of G × E

Genetic variance increased along the EC in RN-L and 
RN-NL by 430% and 486%, respectively, indicating strong 
scale-type G × E (Fig. 2). A smoothing spline fitted to the 
genetic variance of FA-2 and RR-2 also revealed similar 
increases in genetic variance across the EC. Overall, FA-2 
estimated approximately 30–45% more genetic variance 
across the EC compared to RR-2, which was due to model-
ling specific genetic effects for each environment. The RN 
models estimated slightly less genetic variance across the 
EC compared to RR-2.

Genetic correlations between low and high yielding envi-
ronments in the RN models were close to zero, indicating 
substantial levels of rank-type G × E (Table 3). The FA mod-
els tended to estimate lower genetic correlations between the 
environments.

Table 1  Summary of model fit. The number of parameters excludes 
those which fixed to zero during the model fitting process

a RN-L linear reaction norm; RN-NL Nonlinear reaction norm; RR-2 
Reduced-rank factor-analytic model with two common factors and 
zero specific genetic effects; FA-2 Factor-analytic model with two 
common factors and specific genetic effects
b Akaike information criterion
c Bayesian information criterion

aModel Number of 
parameters

bAIC cBIC Log likelihood

RN-L 18  − 8076.89  − 7947.08 4056.445
RN-NL 25  − 8215.64  − 8035.35 4132.818
RR-2 44  − 8565.06  − 8247.76 4326.532
FA-2 58  − 9601.79  − 9183.52 4858.896

Table 2  Pearson correlations between GEBVs for overall perfor-
mance in the RN models ( �

0
) and FA models ( ��)

a RN-L Linear reaction norm; RN-NL Nonlinear reaction norm; FA-2 
Factor-analytic model with two common factors and specific genetic 
effects; RR-2 Reduced-rank factor-analytic model with two common 
factors and zero specific genetic effects

aModel RN-L RN-NL FA-2 RR-2

RN-L 1 0.90 0.93 0.95
RN-NL 1 0.94 0.95
FA-2 1 0.99

Fig. 2  Additive genetic variance (Va) across the environmental covar-
iable (EC) for the four models. In the RN-L and RN-NL, the line con-
nects the estimates of Va for each environment, whilst a smoothing 
spline was fitted to the estimates of Va across the EC in RR-2 and 
FA-2. RN-L: linear reaction norm; RN-NL: nonlinear reaction norm; 
RR-2: reduced-rank factor-analytic model with two common factors 
and zero specific genetic effects: FA-2: factor-analytic model with 
two common factors and specific genetic effects

Table 3  Minimum (min), maximum (max) and mean pairwise corre-
lations between the 15 environments for the four models. The mean 
correlation was calculated using Fisher’s Z-transformation

a RN-L linear reaction norm; RN-NL Nonlinear reaction norm; FA-2 
Factor-analytic model with two common factors and specific genetic 
effects; RR-2 Reduced-rank factor-analytic model with two common 
factors and zero specific genetic effects

aModel RN-L RN-NL FA-2 RR-2

Min 0.08 0.02 – 0.43 – 0.51
Max 1.00 1.00 0.97 1.00
Mean 0.96 0.89 0.50 0.86
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Loadings of factor‑analytic models

The average of the negative loadings for the first common 
factor was 92.0 and 90.4% smaller than the average of the 
positive loadings in FA-2 and RR-2, respectively (Table 4). 
Additionally, only one loading in RR-2 and two loadings in 
FA-2 were negative for the first common factor (Table S3). 
Therefore, the first common factor captured variation that 
was almost entirely due to scale-type G × E in both models. 
The average of the negative loadings for the second com-
mon factor were only 34.1 and 1.9% smaller than the aver-
age of the positive loadings in FA-2 and RR-2, respectively. 
Because the magnitude of the average positive and negative 
loadings was similar (especially in RR-2), the second com-
mon factor captured variation primarily due to rank-type 
G × E. Therefore, we can expect the regression on the second 
common factor, �2 , to capture variation due to rank-type 
G × E.

Comparison of stability measures

The GEBVs for slope in RN-L ( �1 ) were lowly correlated 
with �2 estimated in both FA-2 (−0.24) and RR-2 (−0.26) 
(Fig. 3a and b). Therefore, the standard method for determin-
ing stability in RN models gave very different results to the 
FA models. However, applying a genetic regression to the 
GEBVs (Eq. 4) for slope ( �∗

1
 ) more than tripled the correla-

tion with �2 , to −0.80 in FA-2 and −0.85 in RR-2 (Fig. 3c 
and d). Estimating stability after standardising the genetic 
variance in RN-L ( � ) also increased the correlation with �2 
relative to �1 , although the increase was more modest than �∗

1
 

(Fig. 3e and f). Using the same standardisation method with 
RN-NL ( � ), which used cubic polynomials, did not increase 
the correlation with �2 compared to RN-L (Fig. 3g and h). 
Note that the sign of the correlations is arbitrary, as the load-
ings and regressions in FA-2 and RR-2 can be multiplied 
by + 1 or − whilst retaining their meaning (Smith and Cullis 
2018). They will be reported as absolute values herein.

Relationship between overall performance 
and stability in different models

In RN-L, the genetic correlation between the intercept and 
slope (0.76, Table S2) and the correlation between GEBVs 
for the intercept ( �0 ) and slope (�1 ) (0.73, Fig. 4a) was 
high. This indicated that genotypes with a larger intercept 
tended to have larger change in GEBV across the EC and 
were therefore less stable. When the reaction norm slope 
was adjusted for scale-type G × E using the genetic regres-
sion ( �∗

1
 ), the correlation with overall performance was close 

to zero (−0.08) (Fig. 4b). This was also the case in FA-2 
and RR-2 (Fig. 4c and d). Although this was expected since 
�∗
1
 and �2 were both estimated orthogonally to the over-

all performance, the correlation between � and �0 was also 
much smaller than 0.73 and made no assumption about the 
relationship between the intercept and slope (RN-L: 0.40, 
Fig. 4e).

The correlation between � and �0 in the cubic RN-NL was 
comparably high (0.71, Fig. 4f). However, the individual 
standardised reaction norms in this model were very noisy 
(see next section). This could cause the estimates of � (and 
therefore the correlation with �0 ) to be very sensitive to 
small changes in the interval which it was evaluated over 
( tx and ty ), making interpretation of the correlation difficult.

Reaction norm scale‑corrections methods

To explore reaction norm scale-corrections methods in more 
detail, the reaction norms for RN-L and RN-NL were plot-
ted before and after applying the two correction methods 
(Fig. 5). The two genotypes with very poor performance 
at low EC levels (coloured blue and black, Fig. 5a, c) were 
‘check’ varieties with lots of yield records and were not 
considered outliers in the analysis. Before the applying the 
correction methods, there was greater variation in GEBVs 
at higher mean yields and individual reaction norms crossed 
over, demonstrating both scale-type and rank-type G × E, 
respectively (Fig. 5a, c and f). When the slope of reaction 
norm was given by the genetic regression ( �∗

1
 ), the variation 

in GEBVs was more constant across the EC, although there 
was slightly more variation in the low-yielding environments 
(Fig. 5b). This was likely because the mean EC (3.56 t/ha), 
which was the intercept, was slightly larger than the mid-
point of the EC range (3.14 t/ha). The slope of regression 
changed direction for some genotypes.

When the GEBVs were standardised by the genetic 
variance, the reaction norms for RN-L were no longer 
linear, whilst the variation of GEBVs was also constant 
across the EC in both models (Fig. 5d and g). This can be 
seen more clearly in Fig. S2, which shows the variance of 
the GEBVs across the EC before and after standardisa-
tion. A linear approximation of the standardised reaction 

Table 4  Absolute value of the mean REML estimates of the positive 
and negative loadings for the two common factors in FA-2 and RR-2

a RN-L Linear reaction norm; RN-NL Nonlinear reaction norm; FA-2 
Factor-analytic model with two common factors and specific genetic 
effects; RR-2 Reduced-rank factor-analytic model with two common 
factors and zero specific genetic effects

aModel Common factor Mean positive 
loading

Mean nega-
tive loading

FA-2 1 0.273 0.022
2 0.126 0.083

RR-2 1 0.231 0.022
2 0.105 0.103
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norms, which used the SGEBV when EC = 0 as the inter-
cept and � as the slope, revealed that scale-type G × E was 
greatly reduced for RN-L (Fig. 5e) but to a lesser extent 
for RN-NL (Fig. 5h). The individual standardised reaction 
norms in RN-NL tended to be more erratic with very steep 
curves. This could indicate that the model was attempt-
ing to capture more complex G × E effects, rather than the 
general pattern across environments.

Discussion

The MET dataset contained large differences in the genetic 
variance (scale-type G × E) and low genetic correlations 
(rank-type G × E) between environments across the 
EC, which is expected in populations where G × E is 
significant. This level and type of G × E is typical of METs 

Fig. 3  Scatterplots between 
stability GEBVs from RN 
models ( �

1
 , �∗

1
 and � ) compared 

with GEBVs for responsiveness 
to the second common factor 
(R2) in FA-2 and RR-2. The 
correlations are printed in each 
frame. RN-L: linear reaction 
norm; RN-NL: nonlinear reac-
tion norm; FA-2: factor-analytic 
model with two common factors 
and specific genetic effects; 
RR-2: reduced-rank factor-ana-
lytic model with two common 
factors and zero specific genetic 
effects
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collected in Australian plant breeding programs (Smith 
et al. 2021). Hence, the data were a good resource for 
testing the scale-correction methods in this study.

The standard estimate of stability in a RN model is the 
breeding value for the slope. The slope GEBVs 

(
�1
)
 were 

very lowly correlated (0.24 to 0.26) with stability GEBVs 
estimated in the FA models ( �2 ) (Fig. 3). This is interesting, 
as the RN and FA models would produce vastly different 
rankings of genotypes based on stability. Likewise, the SNP 
effects that underly the GEBVs would also be very different, 
which could lead to conflicting accounts of the genetic archi-
tecture of stability. However, correcting the slope GEBVs 
using a genetic regression (�∗

1
 ) tripled the correlation with 

�2 (0.80 to 0.85). Because �2 captured mainly rank-type 
G × E (Table 4), we can conclude that 1) �1 was lowly cor-
related with �2 because it contained variation due to scale-
type G × E and 2) �∗

1
 was highly correlated with �2 because 

the variation due scale-type G × E in �1 was successfully 
removed by the genetic regression.

The GEBVs estimated using the standardisation method 
( � ) were also more highly correlated with �2 compared to 
�1 , although the increase was less than with �∗

1
 . Therefore, 

it appears that the genetic regression is a more suitable 
approach for accounting for scale-type G × E in linear reac-
tion norms. The correlation with �2 was higher when � was 
estimated using the linear RN model (RN-NL) compared to 

Fig. 4   Relationships between 
overall performance ( �

0
 and 

�� ) and stability ( �
1
 , �∗

1
 , � and 

�2 ) within the RN and FA 
models. The correlations are 
printed in each frame. RN-L: 
linear reaction norm; RN-NL: 
nonlinear reaction norm; FA-2: 
factor-analytic model with two 
common factors and specific 
genetic effects; RR-2: reduced-
rank factor-analytic model with 
two common factors and zero 
specific genetic effects
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the cubic RN model (RN-L). However, we would expect the 
linear reaction norm to be more closely related to �2 than a 
cubic reaction norm, because �2 is also a linear regression. 
Therefore, it was difficult to evaluate the merit of estimating 
� in either RN-L or RN-NL based on these results. Never-
theless, the standardisation method should still be useful 
to account for scale-type G × E in situations which require 
curvilinear reaction norms.

The intercept and slope GEBVs were highly correlated in 
RN-L (Fig. 4a, Table S2), indicating that genotypes with a 
larger intercept tended change more in GEBV across the EC 
and were therefore less stable. However, the correlation was 
close to zero when scale-type G × E was accounted for using 
a genetic regression and factor-analytic models (Fig. 4b, c 
and d), indicating there was no relationship between overall 
performance and stability due to rank-type G × E. This is 
similar to other analyses of stability which account for scale-
type G × E (Smith and Cullis 2018; Tolhurst et al. 2019). 
This highlights the importance of understanding how stabil-
ity is defined when interpreting its relationship with overall 
performance in different studies.

The additional benefit gained by applying the scale cor-
rections is that the remaining slope variation should repre-
sent rank-type G × E, which arises when the genetic correla-
tion between environments is less than unity. This could be 
used to explore how the genetic architecture of a trait varies 
across an EC. This phenomenon was highlighted in a reac-
tion norm study in Australian sheep (Waters et al. 2022), 
where a seemingly pleiotropic quantitative trait loci affected 
both the intercept and slope but disappeared when a genetic 
regression was used. Instead, a new region which contained 
a group of genes previously associated with environmental 
sensitivity in livestock was identified. It would be interest-
ing to see if similar reports of pleiotropic genes affecting 
overall performance and stability in plants using reaction 
norms (e.g. Li et al. 2019) also change if additional analysis 
to account for scale-type G × E is used.

There are exciting prospects for the improvement of yield 
stability in breeding programs using the genomic models in 
this study. Genomic breeding values derived from a training 
population such as routine METs could be used in com-
bination with a speed-breeding program to fast track the 
creation of stable genotypes (Watson et al. 2018). In MET 
data, stability GEBVs derived from factor-analytic models 
would be recommended over the reaction norm models 
due to their superior ability for capturing the multifactorial 
causes of G × E in these settings (Kelly et al. 2007). This 
was realised in our analysis based on the AIC, BIC and the 
log likelihood. Additionally, FA-2 estimated between 30 and 
45% more genetic variance within environments compared 
to the remaining models, indicating that it could disentan-
gle G × E more efficiently. Despite this, the GEBVs from 
both models were highly correlated for overall performance 

(0.93–0.95) and stability (0.80 to 0.85) after scale-type G x 
E was accounted for. This is important, considering that the 
linear reaction norm required approximately two minutes 
to converge, compared to approximately 1 h 10 min (RR-2) 
and 6 h 4 min (FA-2) for the factor-analytic models. As the 
number of genotypes and environments in routine analysis 
grow, the value of using genomic reaction norms for their 
speed also could increase. Examples of reaction norm mod-
els being used to efficiently fit dense genomic analyses with 
hundreds of thousands of genotypes can be found in live-
stock and human studies (Carvalheiro et al. 2019; Lee and 
van der Werf 2016; Ni et al. 2019).

It is increasingly common for METs to collect environ-
mental information to understand the causal factors under-
lying G × E (Cooper et al. 2021). A common way to incor-
porate the large number of resulting ECs is through (co)
variance structures which describe the relationships between 
the environments based on the ECs (Jarquín et al. 2014; 
Raffo et al. 2022). Because these models implicitly regress 
phenotypes on ECs, the have also been interpreted as reac-
tion norm models. Whilst these models have demonstrated 
increased predictive ability over models which lack ECs 
(Cuevas et al. 2017; Lopez-Cruz et al. 2015), it is unclear 
whether they can reveal the stability of genotypes across 
the ECs due to the implicit nature of their fit. If methods to 
extract the regressions of genotypes across the ECs become 
available, the impact scale-type G × E should be explored 
when estimating stability.

Another promising example for modelling this type of 
data integrates measured ECs into factor-analytic mod-
els (Tolhurst et al. 2022). In this study, the ECs explained 
mostly rank-type G × E, whilst the unobserved common fac-
tors explained scale-type G × E. Therefore, genotypes could 
be ranked based on their stability to the important ECs in the 
model. These models also outperformed equivalent reaction 
norms, which fit implicit random regressions on the indi-
vidual environmental factors. Despite this, reaction norms 
should be the most efficient method for analysing stability 
when the EC is known and controlled (e.g. Houshmandfar 
et al. 2019; Paschke et al. 2003; Sadras et al. 2012), or the 
main source of G × E for the trait (Li et al. 2018; Millet et al. 
2019).

Conclusion

This study investigated the ability of two methods to parti-
tion variation in the slope of a reaction norm model into 
the two types of G × E (rank-type and scale-type) which 
underly it. Stability estimated from factor-analytic models, 
which explicitly disentangle rank-type and scale-type G × E, 
was used for comparison. The two methods substantially 
increased the correlation with stability estimated from the 
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factor-analytic models, indicating that they removed varia-
tion in the reaction norm slope that originated from scale-
type G × E. The genetic regression method appeared to be 
the most effective, yielding estimates of stability that were 
highly correlated (0.80—0.85) to those estimated from the 
factor-analytic models. Although the standardisation method 
had a more modest increase, it could still be useful in situ-
ations where curvilinear RN models are required. Analyses 
which use reaction norms should consider implementing the 
scale corrections outlined in this study to gain additional 
understanding of the nature of G × E and stability in their 
population.
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