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Abstract
Many national genetic evaluation systems have transitioned to single-step genomic BLUP (SS-GBLUP) 
for breeding value estimation utilising variance components estimated from pedigree-based REML. The 
genomic and numerator relationship matrices are often weighted in SS-GBLUP by a parameter λ, that 
minimises bias and increases accuracies and is set to 0.5 in Australian sheep analyses. This study estimates 
variance components from genomic relationship matrices weighted by λ ranging from 0 to 1 by genomic 
REML. The impact of using these variances for each λ was then examined in SS-GBLUP models via cross-
validation metrics. Data on terminal sire sheep in Australia were analysed using univariate models for 
carcase and live weight traits. We found that the maximum log-likelihood was estimated at lambda values 
between 0.5 and 0.875, while cross-validation results suggest that increasing accuracies can be achieved 
with increasing λ towards one and no significant change to bias using estimated variance components.

Introduction
National genetic evaluations have largely transitioned to single-step genomic BLUP where sufficient 
genotypes are available. This transition occurred for Australian sheep in 2017 (Brown et al., 2018). Variance 
components for these analyses have often reused the same components that were derived from, and used 
in pedigree-based BLUP analyses. Further, it was identified that blending the genomic relationship matrix 
(G) with part of the numerator relationship matrix (A22 for genotyped animals) (λG + (1 – λ)A22) helped 
to increase accuracy and reduce the bias that was observed when including genomic data (McMillan 
and Swan, 2017; Zhang et al., 2017), either correctly weighting the genomic and pedigree information, 
or underutilising the genomic information. Recent studies have investigated using either sampling-based 
methods or genomic REML (GREML) based methods to fit two effects simultaneously to examine how 
the variance partitions between the two effects (with the ratio between the two effects being λ), a pedigree-
based genetic effect using the numerator relationship matrix and a genomic-based genetic effect using 
the single-step relationship matrix H (Samaraweera et al., 2021; Torres-Vázquez et al., 2021). This study 
investigates the impact of G constructed for a range of λ values on variance component estimates, log-
likelihood values, and SS-GBLUP cross-validation metrics to determine what is the optimal value of λ for 
use in SS-GBLUP analyses.

Materials & methods
Data for 9,688 terminal sire sheep were extracted from the Sheep Genetics LAMBPLAN terminal sire 
analysis, along with pedigree information on their ancestors. These animals were selected for simultaneous 
phenotypic recording for carcase and live weight traits including intramuscular fat (IMF, %), shear force 
(SF5, newtons), carcase eye muscle depth (CEMD, mm), carcase c-site fat (CCFAT, mm), carcase weight 
(CWT, kg) and post-weaning weight (PWT, kg). These animals are mostly from the Sheep Cooperative 
Research Centre Information Nucleus Flock (van der Werf et al., 2010) and the Meat and Livestock 
Australia Resource Flock populations which form the genomic reference population for Australian sheep, 
so all animals were genotyped and were recorded for all phenotypes Phenotypes were pre-adjusted as part 
of routine evaluation for combinations of birth type, rearing type, age of measurement, age of dam, and 
hot carcase weight, depending on the trait. Contemporary groups for IMF, SF5, CEMD, CCFAT, and CWT 
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were based on kill group, while PWT was based on breed, flock, management group and sex. A breed-
adjusted genomic relationship matrix was constructed (Makgahlela et al., 2013), which utilised multiple 
sets of allele frequencies to reduce breed level misalignment between pedigree and genomic relationship 
matrices.

Univariate variance component estimation was performed using MTG2 (Lee and Van der Werf, 2016). The 
model used was y = Xβ + Zu + ZQg + Zm + ε where y is the vector of pre-adjusted phenotypes for fixed 
effects; X is the design matrix for the fixed effects (contemporary groups); β is the vector of contemporary 
group solutions, Z is the design matrix for the random effects associated with breeding values for individual 
animals (animals with records by breeding values), which in this case is I; u is the vector of random additive 
genetic effects with 𝑎𝑎

2N(𝟎𝟎𝟎 𝟎𝟎𝑤𝑤σ ); Gw is the weighted G Gw = λG + (1 – λ)A22); Q is the matrix of genetic 
group proportions, defined by the breed of origin from the pedigree; g is the vector of random genetic 
group effects with 𝑔𝑔

2𝑁𝑁𝑁𝑁𝑁𝑁𝑸𝑸𝑸𝑸′σ ) ; M is the design matrix for the random maternal permanent environment 
effects; m is a vector of random maternal effects only fitted for two weight traits (CWT and PWT) with 

𝑚𝑚
2𝑁𝑁𝑁𝑁𝑁𝑁𝑴𝑴𝑴𝑴′σ ) and ε is the vector of residuals effects with 𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑒𝑒2). All random effects were fitted as an 

animals by animals matrix, to accommodate MTG2. For GREML, the value of λ was varied between 0 and 
1 in steps of 0.05.

The single-step cross-validation was performed as a 5-fold analysis. The 9,688 animals were randomly 
allocated into one of the five folds, stratified by breed and sire family. This process was repeated five times 
resulting in five replicates of five-folds and 25 SS-GBLUP analyses, where the phenotypes for the validation 
animals were removed from the analysis and EBVs calculated. These cross-validation analyses followed the 
same model as the GREML analyses, except that the inverse of the appropriate joint relationship matrix, 
H-1, was used instead. Five cross-validation metrics are presented, for which we define the following for the 
validation animals: y* as the phenotypes adjusted for contemporary group solutions from the model with 
appropriate λ; ûp as the EBVs from the partial analyses (data removed for the validation animals); ûw as the 
EBVs from the whole analyses (data retained for the validation animals), K as the subblock of H for the 
validation animals, and 𝜎𝜎𝑎𝑎2,∞ as the genetic variance at equilibrium in a population under selection, assumed 
for simplification to be 𝜎𝜎𝑎𝑎2 and h is the square root of the heritability. Traditional accuracies were calculated 
as cor(y*,ûp)/h and the dispersion as the regression of phenotype on EBV. Metrics based on Legarra and 
Reverter (2018) using the method LR (from ‘linear regression’) were also calculated: LR accuracies as:

√ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝒖𝑝𝑝,�̂�𝒖𝑤𝑤)
�̅�𝑲(�̅̅�𝑑𝑖𝑖�̅̅�𝑖�̅̅�𝑔(̅̅�̅̅�𝑲)̅− )×𝜎𝜎𝑔𝑔2; 

LR bias as (�̂̅̅̅�𝒖𝑝𝑝 − �̂̅̅�𝒖�̅̅�𝑤)/𝜎𝜎𝑎𝑎 and LR dispersion as 𝑐𝑐𝑐𝑐𝑐𝑐𝑐�̂�𝑐𝑝𝑝, �̂�𝑐𝑤𝑤)/𝑐𝑐𝑣𝑣𝑣𝑣𝑐�̂�𝑐𝑝𝑝).

Results
The variance components estimated for each value of λ are presented in Figure 1, along with a vertical 
dotted line at the value of λ where the maximum log-likelihood value was observed, between 0.5 and 0.85 
across the six traits. The genetic variance increased from a pedigree only model (i.e. λ=0), reaching a peak 
around λ=0.25 and decreasing as λ continued to increase. The residual variance followed an inverse pattern 
to the genetic variance. For most traits, the maximum log-likelihood was observed at the λ value where the 
genetic variance was similar to that observed at λ=0. It should also be noted that the genetic group variances 
were not, as is often assumed, equal to the genetic variances. For IMF, SF5 and CEMD, the ratio of genetic 
group variance to the genetic variance was between 0.06 and 0.6, while for the two weight traits (CWT and 
PWT) the ratio was between 1.97 and 4.4. The only trait where the ratio crossed one over the range of λ was 
CCFAT, which was between 0.76 and 1.52.

 h
ttp

s:
//w

w
w

.w
ag

en
in

ge
na

ca
de

m
ic

.c
om

/d
oi

/p
df

/1
0.

39
20

/9
78

-9
0-

86
86

-9
40

-4
_3

21
 -

 W
ed

ne
sd

ay
, J

ul
y 

19
, 2

02
3 

7:
33

:4
7 

PM
 -

 I
P 

A
dd

re
ss

:1
29

.1
80

.8
2.

13
1 



Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP) 1350

For the cross-validation analyses (Figure 2), both the phenotypic and LR accuracies show a mostly linear 
increase as the value of λ increases, although for λ values <0.3 for some traits a slight increase in accuracy 
is observed. For most traits except CWT, slight increases in traditional dispersion were observed as λ 
increased. This was not observed in the LR dispersions, with these dispersions being consistent over the 
range of λ. Finally, the LR biases were largest for CWT, CCFAT and PWT, though the latter decreased 
slightly at higher values of λ. No significant patterns concerning λ were observed.

Figure 1. Variance components estimated for each value of λ. Vertical dotted lines indicate the λ value where the 
optimal log-likelihood value was estimated. Trait abbreviations are defined in the Materials & methods.

Figure 2. Cross-validation metrics calculated as the mean of the metric within each cross-validation group. Trait 
abbreviations are defined in the Materials & methods. h
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Discussion
Of note here is that the log-likelihood results and the cross-validation results provide different indications 
to the optimal model, due in part to the decreasing genetic variances as λ approaches one. Methods for 
accommodating individual λ values per trait optimally have been developed by Meyer in a paper submitted 
to this congress. It is unclear why the highest genetic variances were estimated around λ=0.25 which warrants 
further investigation. A more diverse set of traits would need to be studied to determine if the estimated 
heritabilities always decrease with high λ. These results would also need to be verified in models that utilise 
other methods for aligning A and G, e.g. metafounders and other scaling parameters (Christensen, 2012; 
Legarra et al., 2015) and in other datasets, including for different traits and different genomic structures. 
The genetic group variances estimated here are of note, suggesting that where genetic groups are fitted as 
random, variances should be estimated for this effect and used in SS-GBLUP.

This paper finds that while log-likelihood values presented here suggest that individual λ values per trait are 
optimal, cross-validation suggests that using only genomic information is optimal if variance components 
are used that were estimated for the G used in SS-GBLUP. Further work is warranted to validate these 
results in other datasets.
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