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Bee and non-bee insect pollinators play an integral role in the quantity and
quality of production for many food crops, yet there is growing evidence
that nutritional challenges to pollinators in agricultural landscapes are an
important factor in the reduction of pollinator populations worldwide.
Schemes to enhance crop pollinator health have historically focused on
floral resource plantings aimed at increasing pollinator abundance and diver-
sity by providing more foraging opportunities for bees. These efforts have
demonstrated that improvements in bee diversity and abundance are achiev-
able; however, goals of increasing crop pollination outcomes via these
interventions are not consistently met. To support pollinator health and
crop pollination outcomes in tandem, habitat enhancements must be tailored
to meet the life-history needs of specific crop pollinators, including non-bees.
This will require greater understanding of the nutritional demands of these
taxa together with the supply of floral and non-floral food resources and
how these interact in cropping environments. Understanding the mechanisms
underlying crop pollination and pollinator health in unison across a range of
taxa is clearly a win–win for industry and conservation, yet achievement of
these goals will require new knowledge and novel, targeted methods.

This article is part of the theme issue ‘Natural processes influencing
pollinator health: from chemistry to landscapes’.
1. Introduction
Insect pollinators are intricately linked to the production of globally important
crops and the reproduction of wild plants [1,2] and provide critical services
that enhance human welfare and maintain biodiversity. Growing concerns
about declining pollinator populations in a time of increasing production of pol-
linator-dependant crops have highlighted the urgent need to understand the
stressors faced by pollinators in agricultural landscapes [1,3]. The protection of
remnant habitat and introduction of floral food resources on and around farms
is thought to support bees, non-bees and other beneficial insects [4], yet these
actions do not necessarily guarantee improved crop yields or increased pollinator
health, even when they improve bee species diversity [5]. While most conserva-
tion actions have focused on bees, non-bee taxa are also significant pollinators [6],
yet little is currently known about the resource needs of these taxa, both in regard
to the optimal selection of plant species and the types of non-floral resources that
would best support larval, reproductive and nesting needs [7].

Effective crop pollination services arise from the interactions between flower
visitors and plants, resulting in increased yields and/or higher quality produce
[1,8]. Many studies report increased floral-visitor abundances when providing
additional non-crop floral resources [9], however, the addition of non-crop
floral resources per se does not necessarily guarantee yields. This is because pol-
linators do not visit all flowers available, and differences in foraging behaviour
can result in some flowers being used over others [10]. This in turn may
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negatively impact crop pollination via competition if neigh-
bouring non-crop floral resources are used more than crop
flowers, resulting in pollinator dilution [11]. Alternatively,
the addition of non-crop floral resources may result in crop
pollination facilitation by increasing pollinator food quantity
and temporal availability, leading to greater pollinator abun-
dance, but this can depend on plant species composition,
landscape context and field configuration [9,12].

Pollinator health has been recently defined as a multilevel,
spatio-temporally unconstrained measure of the wellbeing,
resilience and ecological functionality of individuals through
to populations of pollinators [13]. Providing additional non-
crop floral resources is thought to support pollinator health
by providing nectar and pollen for diet and reproductive
needs [14,15]. However, little is known about which plants
provide the best quality resources for particular taxa as
rewards from different plant species vary in nutritional value
[16], and some species appear to be detrimental to pollinator
health owing to pathogen transmission [17]. Furthermore,
bees may exhibit foraging preferences for food sources con-
taminated with neonicotinoids even when their health is
compromised [18], and these compounds may mobilize from
crop sites to floral strip plantings [19]. Understanding the
mechanisms underlying crop pollination and pollinator
health together is clearly a win–win for industry and conserva-
tion but will require additional data and novel, targeted
methods.
2. Pollinators and optimal crop production
For insect pollinated crops, optimal crop production is closely
linked toboth thenumberof insect visits to flowers and thequal-
ity of these visits. Crops are pollinated by a wide diversity of
insect taxa, including bees, flies, beetles and moths [6]. Any
given pollinator taxon has a unique set of behavioural andmor-
phological traits,which influence the crop species visited, rate at
which they visit crop flowers and the amount of pollen depos-
ited. The quality of deposited pollen is also important and can
be influenced by cultivar-specific variation in pollen viability
and pollen self-incompatibility, as many crops are obligate
out-crossers [20]. At the field-scale, the abundance and identity
of croppollinators alsomatters.Ahighdiversityof pollinators is
thought toprovide croppollination resiliency [21], and synergis-
tic effects can occur between pollinating taxa [22]; however,
many crops are pollinated by a small number of dominant
species [23]. High pollinator abundance can directly translate
to increased flowervisitationandyield [24], and in cropping sys-
tems, this is often achieved through the addition of managed
taxa such as honeybees.However, achievingoptimal pollination
by increasing pollinator density alone may not translate to
increased yields if the pollinators are ineffective pollinators of
a target crop, prefer non-crop floral resources or perform
poorly in the crop environment [11,24,25]. Conversely, extre-
mely high visitation rates can cause damage to crop flowers
withdetrimental effects onyield [26].Hence strategies to achieve
optimal crop pollination will vary by crop identity, pollinator
assemblage and the environment in which a crop is cultivated.
3. Agricultural impacts on pollinator health
Threats and challenges to pollinators have become increas-
ingly well-known, driven heavily by habitat loss (and hence
loss of suitable forage), pathogens and pesticide usage [27].
Agricultural landscapes are often associated with changes
in pollinator community composition and reductions in pol-
linator abundances and body size, and these changes may
have negative consequences for crop pollination outcomes
[28,29]. One of the major factors affecting pollinators in agri-
culture landscapes is poor nutrition, driven by extensive
monoculture plantings and loss of semi-natural habitat [30].
Negative feedbacks may occur between malnutrition and
pathogens, exacerbating the stresses faced by pollinators [31].

Many efforts to improve pollinator abundance and health
have been undertaken by governments, institutions and
individual farmers [9,12]. These efforts have focused on
providing habitat to support the nutritional and nesting
requirements of pollinators through floral resource plantings.
While overall these objectives have provided evidence that
floral resource additions do support pollinator health in crop-
ping environments [32], the effects on crop pollination service
delivery have been mixed [9,12].

While most studies have focused on managed bees,
knowledge gaps still exist in our understanding of how visi-
tation rate to crop flowers, and ultimately yield, relates to
colony strength and hive density, and surrounding co-
flowering resource abundance. Studies on visitation rates to
flowers suggest there is an optimal level of flower visitation
needed for many crops, and at levels above or below this,
crop production may be negatively impacted, either by insuf-
ficient or excessive visitation [26] or unnecessary investment
in hired pollination services [24]. Colony stocking rate guide-
lines for crops also do not consider the farm-scale variations
in the contributions by, and interactions with, wild pollina-
tors [24], which in some cases can be high [33]. These
factors probably have repercussions for both crop pollination
service delivery as well as pollinator health in cropping
environments and beyond. This is because managed taxa
stocked too highly may result in inter-colony competition
for food resources and greater horizontal pathogen transfer
[34,35], with potential impacts on colony health, wild pollina-
tor populations and surrounding plant community structure
through altered pollination networks [34,36,37]. Migratory
beekeeping, which itself can be detrimental to the health of
managed bees [38], also raise the possibility for off-site effects
extending beyond the crop site, for example, through patho-
gen spread to heterospecifics [39] or through pasturing
depleted colonies in protected areas [40]. To secure crop
pollination, pollinator health and conservation outcomes, it
is critically important that these interactions are examined
further altogether.
4. Crops as floral food resources
To enhance crop pollinator health, it is important to under-
stand the nutritional needs of crop pollinators in tandem
with the type and quality of foods accessed. Crop floral
resources show phenotypic variations in their nutritional con-
tent, at both the inter- and intra-species levels [41]. At the
plant level, spatial and temporal patterns may occur in
floral resource quantity and quality. This may be owing to
plant mating system and crop layout. For example, in the
dioecious crop kiwifruit (Actinidia deliciosa), which lacks
nectar, a small number of male plants are distributed across
orchards and provide high protein pollen, yet the majority
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of plants are female with inviable pollen with lower protein
quantity, creating a restricted nutritional environment [42].
Daily variations also occur in nectar secretion and pollen
dehiscence across many crop types, and these may not
overlap with the foraging periods of some taxa [43]. Com-
pounding the phenotypic variation in nutritional quality
across different crops and cultivars, plant environment [44],
disease [45], florivores [46], agricultural inputs [47], floral
microorganisms [48] and below-ground interactions [49]
also alter the chemical profiles of crop floral resources.
These environmental variations in floral resource quality
can have positive or negative consequences on pollinator
fitness and crop pollination [47,50,51] indicating that man-
agement strategies which support favourable floral
nutritional profiles for crop pollinators may be possible, for
example, by using fungal inoculants or altering fertilizer
regimes. Field and landscape level crop and non-crop floral
diversity and abundance shape the nutritional landscape
for pollinators and these resources fluctuate over seasonal
and annual cycles [52], highlighting the need for long-term
monitoring in crop pollinator studies.

An evaluation of the nutritional value of a crop depends
on the pollinator taxon in question. Specialist crop pollinators
(e.g. the oligolectic squash bees, Peponapis spp.) may obtain
most of their nutritional requirements from single crops, yet
generalist pollinators (e.g. Bombus spp.) fed an exclusive
diet of these crops may develop poorly [53]. In addition,
crop floral resources may be protected by floral morphologies
or deterrent compounds [53,54], limiting their exploitation by
generalist foragers. These differences highlight the need for
greater understanding of the nutritional value of crops to
specific pollinators and for unique bioregional approaches
to pollinator management. For example, supporting endemic
oligolectic crop pollinators may require greater emphasis on
meeting non-floral resource needs, yet beyond their biogeo-
graphical range, mismatches between the nutritional
profiles of crops and the nutritional requirements of general-
ist crop pollinators may result in a greater need to provide
alternative forage. However, even within the range of oligo-
lectic crop pollinators, supporting generalist pollinators is
often essential owing to altered flowering phenology of
plants in cultivation, which may not overlap with the flight
periods of oligolectic pollinators [55].

The most common floral resources provided by crop plants
are pollen and nectar; however, crops may also offer floral
resources in the form of eliasomes (e.g. acerola,Malphigia emar-
ginata [56]), nutritious petals (e.g. feijoa, Feijoa sellowiana [57])
and brood sites (e.g. oil palm, Elaeis spp. [58]). Pollen contains
proteins, free amino acids, lipids, sterols, vitamins, minerals
and also low concentrations of carbohydrates [16]. While
protein quantity is important, protein quality also matters
and depends on the amount of essential amino acids present
in the protein [59]. Crops may provide unsuitable ratios of
essential amino acids or lipids; therefore, pollinators of these
crops may require access to non-crop flowers to obtain ade-
quate dietary requirements and may adjust their foraging
accordingly [60]. Essential fatty acids and sterols are required
by pollinators and must also be obtained from diet [61].
Nectar is primarily composed of water, sugars and low con-
centrations of amino acids [16]. Other trace components in
nectar include minerals and secondary metabolites, and
these substances can have medicinal, attractant or repellent
effects on pollinators [54]. In addition to floral rewards,
pollinators may consume a wide diversity of non-floral nutri-
tional resources, which can be particularly important for non-
bee reproductive and larval needs [6].
5. Nutritional resources: comparing and
contrasting bees and non-bees

One major distinction between bee and non-bee pollinators is
that bees commonly obtain most of their nutritional require-
ments from flowers, whereas non-bees may obtain nutrition
from a variety of non-floral resources and, in contrast to
bees (apart from some wasps), are not reliant on food provi-
sioning by adults [61]. Pollen is the main source of proteins,
lipids and sterols for growth, development and reproduction
in bees. For non-bees that consume pollen, pollen can provide
either essential or supplemental nutrition for reproduction
and egg maturation [62]. For honeybees, essential amino
acids necessary for energy, growth and reproduction have
been documented, and comparisons between these require-
ments and the ratios found in many crops have driven
estimations of the nutritional value of crops for this taxon
[63]. This knowledge will be valuable for future studies in
selecting non-crop floral resources that may complement
the nutritional profiles of crops. Yet, for many important
non-bee pollinators, knowledge is lacking not only in terms
macronutrient requirements but also on which types of
floral or non-floral resources are consumed.

Non-bee pollinators may consume nectar and/or pollen as
larvae, adults or both [62]. For the most common generalist
crop flower visitors—Diptera, Lepidoptera and Coleoptera,
larval nutrition is primarily obtained from non-floral
resources, while adults visit crop flowers for energy needs
and/or to obtain nutrition for reproduction and egg develop-
ment [6]. Many non-bee pollinators are able to use nutritional
stores obtained as larvae for egg maturation [64] and therefore
rely less on supplementary protein or lipids that may be
obtained from pollen—these taxa visit flowers primarily for
energy needs. Despite this, many taxa that can use nutrients
acquired during larval development may still benefit from
additional floral protein, carbohydrates and amino acids for
subsequent egg cycles, as nutritional stores may become
depleted after the first egg cycle [64]. Supporting these taxa
will require understanding of how the quantity and quality
of non-floral resources impact adult fecundity and which
plant species provide suitable floral resources for adults needs.
6. Non-floral nutritional requirements of
pollinators

In addition to pollen, nectar and floral oils, bees may con-
sume honeydew, extrafloral nectar, mycelial exudates and
mineral rich water [7]. For stingless bees, resins in cerumen
may also be a component of honey and pot-pollen [65].
Non-bees may use many of these same resources but also
require additional non-floral resources for mating, egg matu-
ration and larval development. Evidence suggests that the
nutritional value of these resources can vary, and this may
impact the health of non-bee pollinators. For example, in Dip-
tera that visit manure for adult protein needs, dung protein
content which is influenced by livestock forage quality, can
impact egg maturation [66,67]. Veterinary medicines used
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for livestock management may also contaminate manure,
with off-target impacts on beneficial coprohilic insects includ-
ing Diptera [68]. A mixed adult diet can also be important, as
access to plant sugars in addition to animal protein increases
adult longevity and decreases the time taken for ovary matu-
ration in some Calliphoridae [69]. While data are broadly
lacking on the role of non-floral resource quality for non-
bee crop pollinators, it is to be expected that variations in
these resources impact populations of these taxa and is an
area requiring further research.
rnal/rstb
Phil.Trans.R.Soc.B

377:20210170
7. Merging optimal crop production and
pollinator health

(a) Floral resource management
Floral resource management is a key tool to support pollina-
tor health and diversity. Plant species richness is closely
linked to pollinator species richness and increasing floral
diversity around farms can benefit pollinator abundance
and diversity [32,70]. However, the identity and composition
of plant species matters, as not all studies report positive cor-
relations [32] and some plants may facilitate pathogen
transmission [17].

Recent reviews suggest pollinator habitat enhancement
does not consistently increase crop pollination outcomes
[5,9,12]. This highlights the critical need to understand com-
petitive and facilitative pollination interactions between
crops and co-flowering plants, which may include other
crops [71,72]. These interactions arise from the integration
of crops into surrounding plant-pollinator networks, which
shape crop pollination outcomes by influencing the behav-
iour, diversity and demography of shared pollinators [72].
Enhancing crop pollination outcomes therefore requires con-
sideration of crops and surrounding vegetation communities
together, and how these are best structured, managed and
integrated to support pollinator health, ecosystem services
and conservation goals.

Increasingly, efforts are being made to evaluate the nutri-
tional value of specific plants in pollinator enhancement
schemes, which can reveal unexpected patterns and assist in
formulating better guidelines for species mixes that comp-
lement the nutritional profiles of crop flowers [73–75].
Visitation studies suggest that in some cases, relatively few
sown species in habitat enhancement schemes are used by pol-
linators, highlighting the need for broader research into which
plants are most appropriate [10,76]. Some key species in seed
mixtures may be particularly important for bees, non-bee pol-
linators and crop pest predators [77,78]. Selecting plants that
are exclusively used byone group of pollinatorsmay allow tar-
geting of habitat interventions to promote specific ecosystem
functions or enhance conservation of taxa of concern [77]. To
mitigate the risks of exotic plant invasions and support multi-
functional habitat goals, native plants should be prioritized
[78]; however, the value of native plants to pollinators can be
influenced by source provenance [79] and consideration
must also be given to the potential for some species to facilitate
agricultural pests [80]. Trade-offs therefore exist when deter-
mining plant selection criteria, and these may also
encompass economic and practical aspects of sourcing and
establishing propagules, genetic diversity risks of using non-
local provenance plants and limitations regarding available
evidence to support their inclusion [80,81]. These trade-offs
require much greater discussion, especially for biodiversity
hotspots and grower-funded habitat enhancement.

Diverse forage provides opportunities for pollinators to
achieve more balanced nutritional intakes and to obtain
medicinal phytochemicals, which can enhance forager per-
formance, colony health and population densities and
reduce pathogen prevalence or transmission [82–85]. How-
ever, diversity alone may not be sufficient to satisfy the
nutritional requirements of pollinators if those resources pro-
vide inadequate quantities of food resources or are otherwise
unattractive or unavailable to be used by foraging crop polli-
nators [86,87]. In this way, floral abundance, composition and
phenology are also important and have ramifications for
species selection when the land available for habitat
intervention may be limited.

Seasonal bottlenecks may exist in the quantity of nectar or
pollen available in agricultural landscapes and this may
impact social bee colony growth and provisioning, which
may have long-term effects on a colony [88,89]. For solitary
bees and non-bee crop pollinators, floral resource continuity
is important, but its role requires further study [90–92].
Floral resource continuity may be enhanced by the avail-
ability of sequentially flowering crops [71] or through
diverse floral resource plantings, although commercial polli-
nator seed mixes may not provide an adequate range of
flowering phenology [93]. In tropical climates, planting
non-crop plant species with steady-state flowering character-
istics can increase bee species abundances around crop fields,
but positive effects on crop pollination may be limited,
especially when crop floral abundance is low [94]. This
result highlights the need for further study towards under-
standing if tailoring plantings to provide floral continuity,
but with reduced temporal overlap with crop flowering,
can maximize crop pollination facilitation while mitigating
the effects of co-flowering resource competition.

Intensive agricultural practices and landscape simplifica-
tion impact pollinator abundance, a major driver of crop
yields [23]. Mass-flowering crops can increase the abundance
of some pollinators [95] and in some cases, facilitate pollina-
tion of co-flowering crops [71], yet can also negatively impact
surrounding crops by increasing heterospecific pollen depo-
sition and interfering with pollination [96]. Extensive crop
fields and narrow flowering phenology means supporting
sufficient abundances of wild pollinators to provide crop pol-
lination services in mass-flowering systems remains a major
challenge [3]. Strategies for re-designing cropping systems
to mitigate pollinator declines while enhancing crop pollina-
tion include reducing field size, increasing habitat complexity
and connectivity [97], and careful selection and configuration
of pollinator-complementary crops [71]. Configuration of
wildflower strips and semi-natural habitat can also impact
crop pollination outcomes and fields may benefit from
designs which integrate non-crop floral resources within
field centres [98]. Placement of pollinator magnet plants
may enhance pollination of less-attractive neighbouring
plants in some circumstances [72], yet this remains to be
demonstrated in cropping contexts. Adoption of crop pollina-
tor enhancement strategies by stakeholders will require both
clear outcomes and practical pathways that afford flexibility
for growers, and in this regard, attention has to be paid to
encouraging strategies that are also achievable for growers
in the short term.
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Crop pollinator habitat enhancement studies have pri-
marily focused on hedgerows and rotational wildflower
strips composed of commercially available annual and peren-
nial forbs [12], the outcomes of which can vary depending on
initial habitat establishment success [99]. Nitrogen enrich-
ment in agricultural landscapes alters plant community
structure to favour nitrophytic plants, which is a major chal-
lenge in ecosystem rehabilitation efforts [100]. Encroachment
of grasses and other ruderal weeds can result in temporal
declines in the value of these interventions for maintaining
pollinator diversity and abundance [101], yet few studies
have examined the effects of pollinator habitat enhancement
on crop pollination beyond four years since establishment
[9], largely precluding inference about the possible role of
planted trees. Flowering trees can provide early and abun-
dant floral resources within a small footprint [102,103],
while also providing additional non-floral resources such as
nesting sites, resins and shelter [7]. Incorporating trees and
other more permanent habitat features into cropping systems
is key to supporting future multifunctional landscapes, both
in terms of the costs of establishment and maintenance and
through their role in supporting multiple ecosystems services
and biodiversity [104].

(b) Managing non-floral resources
Non-floral resources are required to support populations of
bees and non-bees [7], yet manipulation studies of these
resources in crop pollination contexts are infrequent,
especially for non-bees [105,106]. These resources may
include water bodies, manure, animal carrion, larval plant
or animal host tissues, nesting materials and woody veg-
etation [6,7,107]. Integrating non-floral resource
management into crop production may provide benefits
beyond pollination, for example, through supporting non-
bee crop pollinators that provide multiple ecosystem services
such as nutrient recycling or biocontrol of pests [6]. These
interventions may also come with risks and challenges,
such as the potential for non-bees to disperse away from
crops or to spread livestock pathogens [108]. Decisions to
implement non-floral resource management to support non-
bees will depend on evaluating both the pollinator depen-
dency of a target crop and the pollinator efficiency of crop
flower visitors. This will require the combined skills and
efforts of ecologists, taxonomists and land managers in iden-
tifying which taxa are best targeted for management, their
life-histories and how these can be integrated with crop and
land management practices. As in efforts to enhance bee
health through habitat enhancement, these interventions
must be closely monitored and evaluated to ensure desired
outcomes are being met.

(c) Supplemental feeding with artificial diets
Supplemental feeding of carbohydrates or pollen substitutes
is a common practice among beekeepers and an important
tool in apiary management used to strengthen bee colonies
and manipulate colony foraging behaviour to benefit crop
production [109–111]. Besides the use of artificial diets for lab-
oratory rearing, few studies have examined its role in the
management of non-bee crop pollinators [25]. While sup-
plemental feeding is known to support colony growth and
health [109] and improve crop pollination in some circum-
stances [110,112], pollinator health and crop pollination
outcomes have rarely been examined in tandem. Colony
health outcomes can vary depending on the formulation of
artificial diets [113], suggesting more research is needed
into nutritional profiles and comparisons between outcomes
as a result of supplemental feeding versus the provision of
additional floral resources at crop sites [114]. While sup-
plemental feeding offers the potential to mitigate nutritional
deficiencies impacting pollinator health, it is an intensive
management strategy which adds a substantial financial
burden to beekeepers providing crop pollination services
[111]. Enhancing pollinator habitat around crops together
with better quality artificial feed, have potential to improve
crop pollination and apicultural security.

(d) Reducing crop pollination demand
Crops have been actively bred for greater pollen self-compatibil-
ity and parthenocarpic traits for at least 70 years [115] and this
continues to be an important field of research to reduce crop
pollinator dependency. More recently, biotechnology and
exogenous phytohormone application have emerged as
methods to create or induce parthenocarpy in crops, yet adop-
tion of these practices will depend on the economics of
production for growers and acceptance of these commodities
by consumers [116]. For crops reliant on cross-pollination,
pollen donor identity, spatial arrangement and phenology can
impact the supply of suitable pollen in cropping systems and
this has repercussions for pollinator efficiency and crop yields.
Selecting suitable pollen donors and optimizing their arrange-
ment in crop systems for pollinator-mediated cross-pollination,
for example, through spatially alternating cultivar plantings,
grafting or providing scattered pollen donor bouquets, may
indirectly reduce crop pollinator dependency [117]. Reducing
crop pollinator dependency may improve crop production by
increasing yields independently of pollinator abundance,
which may also translate into reduced competition between
managed taxa and wild pollinators [118]. Different crop culti-
vars can vary in nectar and pollen quality [41] and crop
domestication can alter floral chemistry with potentially nega-
tive impacts on pollinator health [119]. Breeding crop plants
that have high pollinator attractiveness and offer more nutri-
tious rewards may also alleviate some of the pressures faced
by pollinators in agricultural landscapes.

(e) New methods
Given the complexity of pollination ecology, new methods
that increase our understanding of the interactions between
nutritional resources, pollinator health and crop production
are needed. Major technical challenges to this research
include evaluating the nutritional quality of crops and other
resources for specific pollinators, controlling for landscape
and other variables in field studies and the designing of pro-
grammes to evaluate changes in pollinator communities and
pollination over time.

Unmanned aerial vehicle mapping of vegetation [120]
and harmonic radar tracking techniques to monitor pollinator
movements are now available [121] and may enable high
accuracy modelling of the spatial and temporal variations
in pollinator activity and resource availability around crop
sites. When combined with sensitive chemical analytical tech-
niques to determine the chemical profiles of pollen and nectar
[122], these technologies may enable more accurate esti-
mation of the quality and distribution of floral resources
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around farms, which is essential information for field-based
studies on habitat enhancement. To complement field
studies, understanding how specific pollinators respond to
the nutritional profiles of crops is also needed, yet collecting
sufficient pollen for feeding experiments is a major challenge
[75]. Incorporating live plants into enclosed feeding exper-
iments may offer an alternative option and may also
provide valuable insights into how pollinators respond to
enclosed conditions, which are becoming increasingly
common in crop production [25]. Portable remote monitoring
tools are readily available for hives, allowing data collection
in real time at low cost [123], opening the potential for
broad scale studies linking environmental variables to
colony dynamics. Advances in computer vision and video
surveillance may facilitate field-data collection, alleviating
human resource constraints to pollination fieldwork [124].

Methods such as DNA metabarcoding are becoming more
accurate and are decreasing in cost. While limitations exist
[125], these techniques may enable greater resolution of polli-
nation networks and trophic interactions, for example, by
identifying the origins of gut or faeces contents in adult or
larvae non-bees [126]. Biomarkers are used as measures of
honeybee health [13] and efforts to identity biomarkers in
non-bee pollinators may be valuable in monitoring these
taxa. Frameworks such as ecological stoichiometry and nutri-
tional geometry will facilitate our understanding of these
nutritional interactions and how they can be managed to
best support pollinator health and crop production [82,127].

While new methods develop and expand the toolbox
of research and management, we can still draw upon existing
methods to better understand the mechanisms that are at play
in crop pollination. Overcoming geographical and taxonomic
biases in crop pollination research will facilitate our under-
standing of simple, yet fundamental questions that remain in
regard to yield responses and insect visitation [1,128]. Greater
research investment into these neglected areas will probably
provide novel insights into the drivers of pollinator commu-
nity assembly and reveal new pathways of pollinator
management to achieve global human food security.
8. Conclusion
Pollinator nutrition is intricately linked to human food
production through crop pollination service delivery. Enhan-
cing crop pollinator health through nutrition will require a
greater understanding of both the type and quality of
nutritional resources required for specific taxa. Current initiat-
ives aimed at increasing floral diversity around farms provide
clear benefits in terms of conservation and biocontrol outcomes;
however, to secure ongoing future crop pollination services, a
greater understanding of the interaction between crop and
non-crop floral resources is needed. While managed bees will
probably remain important pollinators for many crops, crop-
ping systems that provide the resources to support a diversity
of bee and non-bee crop pollinators and other beneficial organ-
isms will improve conservation outcomes and reduce reliance
onmanaged bees. New research is needed to prioritizemanage-
ment to support the health of pollinator taxa while
simultaneously ensuring pollination outcomes are being met,
and negative spill-over impacts are minimized. Meeting these
objectives will require greater collaboration between industry,
land managers and researchers and greater investment in
understanding the pollination ecology of neglected crops
across different geographical regions. Tailoring habitat enhance-
ment strategies to meet specific crop and pollinator needs and
linking these to broader conservation andmultifunctional land-
scape objectives is the next step towards achieving these goals.
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