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The habituation–dishabituation (H–D) paradigm is an established measure of sensory perception in
animals. However, it has rarely been applied to canine olfaction. It proposes that animals will lose inter-
est in, or habituate to, a stimulus after successive exposures but will regain interest in, or dishabituate
to, a novel stimulus if they can perceive it. This study assessed an H–D test’s practicability to determine
dogs’ olfactory detection thresholds (ODTs) for a neutral odorant. A random selection of mixed-breed
pet dogs (n = 26) participated in two H–D tests in a repeated-measures crossover design. They were
first habituated to a carrier odor and then presented with either ascending concentrations of n-amyl
acetate in the known ODT range (experimental condition) or repeated carrier odor presentations
(control condition). No single odor concentration elicited dishabituation in the majority of the dogs.
However, individual dogs dishabituated at differing experimental concentrations significantly more
often than in the control condition (p = .012). These findings provide some tentative support for using
this method in studying canine olfaction. However, further assessment and refinement are needed
before it can be a viable alternative to traditional ODT measurement.
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There has been considerable interest in
canine olfaction potential and realized applica-
tions in service roles such as in the detection of
drugs, explosives and biosecurity hazards
(e.g., Arner et al., 1986; Gadbois & Reeve, 2014;
Helton, 2009; Kokoci�nska-Kusiak et al., 2021;
Moser et al., 2019; 2020; Pickel et al., 2004; Price
et al., 2020). Dogs are known to have remarkably
sensitive olfactory abilities, the limits of which
have not yet been fully explored (Thorne, 1995;

Wackermannov�a et al., 2016). Olfactory sensitiv-
ity can be measured by determining the percep-
tible lowest concentration of odorants, known as
the olfactory detection threshold (ODT), through
behavioral and neurological testing (e.g., Hirano
et al., 2000; Marshall & Moulton, 1981; Moulton
et al., 1960).

Traditional discrimination training-based
tests involve training an animal to respond to
an odor, with either aversive (e.g., Krestel
et al., 1984) or rewarding (e.g., Walker et al.,
2006) consequences for incorrect or correct
choices. They might also involve systematic
decreases in the concentration of the odor
until the animal no longer responds above
chance performance (Angle et al., 2014;
Hilliard, 2003; Johnston et al., 1994; Marshall &
Moulton, 1981; Moulton et al., 1960; Polg�ar
et al., 2016; Waggoner et al., 1997). However,
this process is time-intensive, can be con-
founded by several variables, and is restrictive
in the dogs that can participate (due to train-
ability, motivation, or availability, for example).
Furthermore, training improves odorant sensi-
tivity due to perceptual learning, which likely
influences the resulting detection thresholds
(Engen, 1960; Hall et al., 2016; Helton, 2009;
Moulton et al., 1960; Spence, 2019).
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There has been considerable variation in how
studies have sought to determine the ODT of
dogs. Studies have differed in their experimental
preparations, such as using experimental cham-
bers to present samples (e.g., Krestel et al., 1984)
or by using multiple-choice line-ups for the dogs
to select from (e.g., Concha et al., 2019), and in
their criteria for threshold detection such as des-
ignating chance performance as 50% sensitivity
(e.g., Johnston et al., 1994), a lower sensitivity
based on inconsistently-determined probability
(e.g., Krestel et al., 1984; Marshall & Moulton,
1981; Walker et al., 2006), or by a failure to
meet a nominated raw number of correct
responses (e.g., Hall et al., 2016).
The ODT of dogs is generally determined by

operant conditioning and discrimination testing.
Studies using operant methods to determine
olfactory sensitivity have yielded varying results;
for example, estimates of ODTs of dogs for n-
amyl acetate (nAA) range from 32.6 parts-per-
billion (ppb; Krestel et al., 1984) to 1.9 parts-
per-trillion (ppt; Walker et al., 2006). Note this
organic compound has a scent similar to
bananas which makes it a suitable compound
for testing with dogs where there may be some
applied implications in biosecurity detection.
However, this has some important limitations,
such as the need for time-consuming training
and the selection of trainable participant dogs.
An alternative approach, a habituation–

dishabituation (H–D) test, may offer a more
rapid and straightforward way of determining
dogs’ ODT for different odorants than other
methods. This paradigm has been used across
different sensory stimuli, including visual, audi-
tory, tactile, and chemical, and with various spe-
cies, including humans, other mammals, birds,
fish, and insects (e.g., Farrow et al., 2020;
Hostachy et al., 2019; Lejeune et al., 2021;
Messina et al., 2020; Rørvang et al., 2017). It is
based on the notion that animals tend to ignore
familiar, irrelevant stimuli and show more inter-
est in novel stimuli (Groves & Thompson, 1970;
Pavlov, 1927; Rankin et al., 2009). The para-
digm involves exposing an animal to a particu-
lar stimulus repeatedly until the animal
habituates to it—specifically, when they stop
responding to the stimulus presentation; follow-
ing this, a novel stimulus is presented, and it is
expected that if the animal can perceive a dif-
ference they would dishabituate to the stimulus
and respond to its presence (Wilson, 2009; Zou
et al., 2015). This approach has been used to

investigate olfactory discrimination in mammals
(e.g., Cleland et al., 2002; Gregg & Thiessen,
1981; Mandairon et al., 2006; Price et al., 2020;
Wesson et al., 2010; Yang & Crawley, 2009; Zou
et al., 2015). Furthermore, the use of this
approach to measure ODT has been demon-
strated in rodents (Mandairon et al., 2009;
Perez-Villalba et al., 2015; Qiu et al., 2014), and
more recently with pigs (Aviles-Rosa et al.,
2020), but has not been tested in dogs.
Although an H–D test appears to be a promis-
ing approach for this purpose, its outcomes are
impacted by experience, expectation, or arousal
(Siddle & Lip, 1997; Steiner & Barry, 2014). It
therefore requires further study and scrutiny.
Some studies have utilized H–D type prepara-
tions to investigate the impact of steroids on
canine olfaction and if those manipulations
altered the ODT of different substances,
although these were not described as traditional
H–D tests (e.g., Ezeh et al., 1992; Myers, 1991).

The goal of the present study was to test the
limits of olfactory sensitivity by determining
the lowest concentration perceptible—the
ODT of dogs for nAA in a liquid phase using
an H–D test. This odorant was chosen due to
its previous use in tests of olfactory sensitivity
with dogs (Concha et al., 2019; Hirano et al.,
2000; Krestel et al., 1984; Walker et al., 2006),
with which the findings of the present study
could be compared and validated. If an H–D
test can be used to estimate ODTs, we
expected most dogs to dishabituate and
respond in the presence of liquid dilutions of
between 50 ppb and one parts-per-million
(ppm) which we considered to be a conserva-
tive floor in the present experiment.

Method

Animals
Privately-owned pet dogs (N = 35) were rec-

ruited from 18 different owners in Armidale,
Australia. The inclusion criteria for participation
were that dogs were aged between 1 and 8 years
with no apparent illness. They needed to be
comfortable to be left with unfamiliar people
and vaccinated against parvovirus, distemper,
hepatitis (C3) and causes of kennel cough (CC).
Of the recruited dogs, several were removed
from the experiment due to the following rea-
sons: consistently not approaching the vial due
to apparent avoidance, disinterest, or fatigue (n
= 4); appearing too distressed when confined (n

317Canine Olfactory Sensitivity
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= 2); experimenter error that compromised the
test results (n = 2; in once instance the vial was
dropped and in the other the camera did not
record the session); or inability to undertake
both tests due to rehoming (n = 1). Removing
participants due to “fussiness” or not wanting to
participate has been found not to systematically
impact H–D test results in infants (Slaughter &
Suddendorf, 2007).
All other dogs (n = 26; 22 female, 4 male)

aged from 1–8 years (M = 3.53, SD = 2.23) suc-
cessfully participated in both tests and were
represented by 14 breeds and breed mixes
(Beagle [n = 6]; Kelpie X [n = 4]; Labrador
Retriever [n = 2], Miniature Dachshund [n =
2], Great Dane [n = 2], Old English Sheepdog
[n = 2]; German Shepherd X [n = 1]; Jack
Russell Terrier [n = 1]; Border Collie [n = 1];
Border Collie X [n = 1]; Siberian Husky [n =
1]; Siberian Husky X [n = 1]; Lhasa Apso X [n
= 1]; and Silky Terrier X [n = 1]); these were
categorized into “scent hound”, “herding”, and
“other” breed categories. Dogs were randomly
allocated to treatments such that half of the
dogs (n = 13) took part in the control condi-
tion before experiencing the experimental con-
dition, whereas the other half (n = 13)
experienced the experimental condition first,
before experiencing the control condition.
This research was approved by the Univer-

sity of New England’s Animal Ethics Commit-
tee (approval number: AEC20-014). Privately
owned pet dogs participated in the study with
their owners’ fully informed written consent.

Materials and Apparatus
Experimental odors were plain mineral oil

(MO; Sigma Aldrich; M8410) and liquid dilu-
tions of nAA (pentyl acetate; CAS #628-63-7;

Sigma Aldrich; W504009) in MO. MO was cho-
sen because it is a preferred solvent for olfac-
tory testing (Cometto-Muñiz et al., 2003;
Philpott et al., 2004) and for consistency with
the most recent canine experiment on olfac-
tory sensitivity of nAA (Concha et al., 2019).

A serial dilution procedure was used to cre-
ate dilutions of one part nAA to 105, 106, 2 x
107, 4 x 107, and 1.5 x 109 parts MO (Fig. 1).
The two lowest concentrations, 1:1.5 x 109 and
1:4 x 107, were chosen based on the estimated
ODT range of amyl acetate in previous
research with trained dogs (Concha et al.,
2019). The highest concentration was
expected to be perceptible for all dogs.

Stock solutions of the liquid dilutions were
prepared on the same day and stored in new
200 mL polypropylene jars with screw-top lids
(Sarstedt, Inc). For presentation to the dogs,
1 mL of each odor sample was pipetted into
new 5 mL polypropylene vials (Sarstedt, Inc).
The estimated vapor-phase concentrations of
nAA were calculated using vapor pressure data
provided by Cometto-Muñiz et al. (2003). How-
ever, these are tentative estimations, reflecting
the vial’s equilibrated headspace; the head-
space above the vial would be expected to have
lower vapor concentrations.

The research was undertaken at the Laureldale
Dog Research and Training Facility (University of
New England, Armidale, Australia). Experiments
were conducted indoors on sealed concrete floor-
ing. The temperature in the testing pen was
20 � 4� C. Each trial was carried out in a 1.45 x
2.45 m pen with an exhaust fan and plastic
boards to block extraneous views or odors from
the sides (see Fig. 2). A clamp was attached to
the front of the pen’s door to hold the odor vial,
usually at the height of 310 mm, but reduced to
160 mm for extra-small dogs (e.g., Miniature

Figure 1

A Flowchart Depicting the Odors Presented in Each of the Eight Trials in the Experimental Condition

Note. The first three (E1-E3) were habituation trials, and the following five (E4-E8) were odor trials during which the exper-
imental odor of amyl acetate was introduced in increasing concentrations in the liquid phase. Increasing color intensity
reflects increasing odor intensity. nAA: n-amyl acetate; MO: mineral oil; EVC: estimated vapor concentration.
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 19383711, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jeab.788 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [16/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Dachshunds) and increased to 470 mm for extra-
large dogs (e.g., Great Danes). A video camera
(GoPro) was attached by another clamp on the
side of the pen and controlled remotely.
A 1.85 x 2.70 m “resting” pen was also set

up with two rubber trampoline beds and an ad
libitum supply of water during intertrial
intervals.

Procedure
Dogs were brought inside and were leash-

walked around the indoor facility, during
which they were permitted to explore and
habituate to the surroundings. They were then
put in the trial pen to habituate to the odors
and surroundings for approximately 1 min
and then placed in the resting pen before the
first trial. For the duration of the test, the par-
ticipating dog was the only dog indoors.
At the beginning of each trial, dogs were

led into the trial pen, the leash unclipped,
and the door closed. Video recording began,
and the experimenter, wearing gloves, fas-
tened the vial containing the odor into the
clamp. The experimenter called the dog’s
name and tapped the clamp to attract their

attention. The experimenter then stood back
2 m and timed 30 s, after which the experi-
menter removed the vial from the clamp,
praised the dog, and disposed of the vial in a
separate room, separated by a closed door.
Between each trial, there was a 3-min intertrial
interval (ITI) that was used in an attempt to
attenuate the risk of over-habituation in which
the animal would cease to investigate the stim-
ulus altogether, as has been suggested by
others (Perez-Villalba et al., 2015). Approxi-
mately half of the interval was spent walking in
the indoor kennel area on a leash, and the
other half was spent in the resting pen. This
arrangement was the most accommodating for
pet dogs uncomfortable with long periods of
confinement. Eight trials were repeated in
the same manner, comprising a single test.
Each session took approximately 24 minutes in
total.

The experimenter then wiped the pen’s
clamps and front bars with 100% isopropyl
alcohol. The exhaust fan was run for at least
10 minutes to dissipate any residual odor
before the next dog commenced the test. The
testing pen was cleaned with hot water and
detergent at the end of each day.

Figure 2

The Front View of the Testing Pen

319Canine Olfactory Sensitivity
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All dogs participated in both control and
experimental conditions of an H–D test in a
repeated-measures crossover design, with a
minimum of 7 days between the two tests. In
the experimental condition, dogs were pres-
ented with MO for three trials, followed by five
consecutive trials with increasing concentra-
tions of nAA in MO (Fig. 1). Dogs were pres-
ented with MO only for all eight trials in the
control condition.
Video recordings were reviewed to deter-

mine the amount of time the dogs spent inves-
tigating the odor vials by an observer blinded
to the treatments. Investigation period was
defined as the time spent actively sniffing, lick-
ing, or chewing the vial (e.g., Fig. 3). Specifi-
cally, an investigation (dishabituation) was
coded if the dog’s snout was oriented towards
the vial combined with active head bobbing,
audible sniffing, or physical contact with the
vial. If the dog did not show any apparent
active investigation behavior towards the vial
but brought their nose within approximately
30 cm of it (and therefore could feasibly have
sampled it), this was recorded as 0.01 s. If the
dog did not approach the vial to this distance,
indicating no interest, this was recorded as 0 s
(no response).

Results

To determine intrarater reliability, the pri-
mary investigator double-coded a random

selection of 20% of the recordings, blinded to
the trial condition. This yielded high intra-
rater reliability, as determined by a nonpara-
metric concordance coefficient, ICC = 0.93;
95% CI = 0.91, 1; p < .00001, calculated in R
(R Core Team, 2019) using the nopaco pack-
age (v1.0.6; Kuiper et al., 2019; Rothery,
1979). Additionally, a reliability coder who was
blind to the experimental design coded inves-
tigation period in a random selection of 20%
of the recordings, yielding high interrater reli-
ability, ICC = 0.90; 95% CI = 0.87, 1;
p < .00001. Therefore, the data from the pri-
mary investigator was considered reliable and
was used for analyses conducted using JMP®,
Version 14.2.0 (SAS Institute, Cary, NC, 2019).

Altogether, 416 trials were included in analyses.
Dogs did not approach the vial in 9.6% of these
trials. Dogs showed only minimal, nonactive inves-
tigation (0.01 s) in 19.2% of trials. Across all trials,
dogs’ investigation periods averaged 1.25 s (SD =
1.91, Mdn = 0.60, IQR = 1.65). Investigation
periods were not normally distributed (Shapiro–
Wilk test: W = 0.640; p < .0001) and were hetero-
scedastic across the trials (Levene test: F(15, 400)
= 4.908; p < .0001). As such, nonparametric tests
were used.

Dogs significantly decreased their overall
investigation period from the first to the third
trials in both the experimental (first Mdn =
1.89; third Mdn = 0.63; paired Wilcoxon
signed-rank: W = -116; p < .0001) and control
(first Mdn = 2.01; third Mdn = 0.54; paired

Figure 3

A Participant Dog Investigating the Odor Vial During a Trial

Ariella Y. Moser et al.320
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Wilcoxon signed-rank: W = -107; p < .0001)
conditions (Fig. 4). This suggests that habitua-
tion occurred as expected. However, no signif-
icant increases in the investigation period
were observed across the experimental or con-
trol trials, suggesting that no trial elicited con-
sistent dishabituation across the sample.
It was a reasonable expectation that individual

dogs with differing olfactory sensitivity would
demonstrate different ODTs and therefore dis-
habituate in other trials, possibly masking an
effect at the group level. Thus, putative individ-
ual dishabituations were also considered. An
investigation period increase was considered a
dishabituation if it was greater than one stan-
dard deviation above the mean of the post-
habituation trial of the control condition (M =
0.74, SD = 0.95) to differentiate the effect of
more extended investigation periods from ran-
dom variability. By this measure, an increased
investigation period of ≥1.69 s was considered a
dishabituation on an individual level.
When examining individual animal

responses, there was a significant difference
between the number of dogs that dishabituated
in the experimental (11/26) compared to the
control (3/26) conditions, χ2(1, n = 52) =
6.26, p = .012. As expected, dogs dishabituated
only once per condition, although two dogs dis-
habituated in both the experimental and the
control conditions (Fig. 5).

Other factors appeared to also influence
dogs’ overall investigation period. Dogs investi-
gated for significantly longer periods in their
first test condition (Mdn = 1.06) than in their
second test (Mdn = 0.285), regardless of con-
dition (2-sample Wilcoxon test, Z = -6.52;
p < .0001). However, the number of individual
dogs that dishabituated did not differ signifi-
cantly between the first (9/26) or second
(5/26) test, χ2(1, n = 52) = 1.56, p = .211).

Individual dogs had significantly differing
overall investigation periods, 1-way Wilcoxon
test χ2(25) = 74.4; p < .0001). Breed category
appeared to influence the length of investiga-
tion periods, with beagles (Mdn = 1.72) inves-
tigating significantly longer than herding
breeds (Mdn = 0.51); Wilcoxon test: Z = 5.38,
p < .0001) or other breeds (Mdn = 0.52);
Wilcoxon test: Z = 3.73, p < .0006), corrected
using the Steel-Dwass method (q* = 2.34, α =
0.05). There was no significant difference in
investigation periods between younger dogs
(less than 3 years old) (Mdn = 0.53), and
older dogs (Mdn = 0.53); (1-way Wilcoxon
test: Z = 1.89; p = .058).

Discussion

This study is the first to assess an H–D
method’s validity to determine the detection
threshold of an odorant in dogs. It was

Figure 4

Boxplots Depicting the Medians and Ranges of Investigation Periods for Each Trial in the Control (Left) and Experimental (Right) Con-
ditions

321Canine Olfactory Sensitivity
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expected that an increase in investigation
time, suggesting dishabituation, would be
observed during the trial with the concentra-
tion corresponding to dogs’ ODT range for
nAA. Our results showed mixed, tentative sup-
port for using an H–D test for this purpose.
Overall, dogs habituated as expected by the

third trial, consistent with previous research
(e.g., Escanilla et al., 2012). However, there
was no single trial in which group-wide dis-
habituation was measurable. This might be
explained by dogs responding in different tri-
als due to differing individual levels of olfac-
tory sensitivity, masking a group-wide effect.
Considerable interdog variation in olfactory
detection thresholds has been observed in pre-
vious studies (e.g., Concha et al., 2019;
Hilliard, 2003; Marshall & Moulton, 1981;
Phelan & Barnett, 2002; Waggoner et al.,
1997). On an individual level, significantly
more dogs dishabituated in the experimental
condition than in the control condition,
although at differing concentration levels.

The absence of a group-wide dishabituation
effect in the present experiment conflicts with
some reported H–D tests reported using other
species, such as rodents (e.g., Escanilla et al.,
2012; Mandairon et al., 2009) and pigs (Aviles-
Rosa et al., 2020). However, previous studies
have tended to present stronger concentra-
tions of odorants, which may be above the true
ODT, and all have used genetically homoge-
nous animals (Aviles-Rosa et al., 2020;
Escanilla et al., 2012; Perez-Villalba et al.,
2015); both factors which would be expected
to reduce variability in responses. While a
stronger odor would be more likely to engen-
der a larger change of behavior, this may not
reflect animals’ actual ODT, particularly if not
validated against other measures of ODTs.
Conversely, Qiu et al. (2014) have successfully
observed group-wide dishabituation in a
homogenous rodent sample, validated against
an operant ODT measure. An olfactometer
was used in a testing chamber with automati-
cally coded investigation times (Qiu et al.,

Figure 5

The Number of Individual Dogs Showing Dishabituations in Each Trial in the Control (Left) and Experimental (Right) Conditions

Note. Different patterns represent the number of dogs from each breed category.

Ariella Y. Moser et al.322
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2014). This apparatus is likely to provide a
more sensitive measure and may be adapted
for use with dogs. However, methods that do
not require specialized equipment are pre-
ferred to improve accessibility and the subse-
quent reproducibility of experiments.
A subset of dogs (43%) demonstrated indi-

vidual dishabituation behavior at concentra-
tion thresholds within the expected range in
the present study. That these dogs did this is
consistent with a handful of studies that have
reported using a similar procedure to deter-
mine individual dogs’ ODTs, although these
were not described as traditional H–D tests
(e.g., Ezeh et al., 1992; Myers, 1991). In these
experiments, odors were presented to dogs in
order of ascending concentration while mea-
suring behavioral investigation and electroen-
cephalographic (EEG) responses. EEG results
were slightly more sensitive than behavioral
indications, but both found similar first
responses to odor concentrations (Ezeh et al.,
1992). The methodology in these experiments
differed from the present study, with odor vials
brought directly to recumbent dogs’ noses and
held. Our method sought to remove human
influence from the odor presentation as far as
possible, but these findings suggest that this
might be a viable alternative methodology.
Most dogs (n = 8) that dishabituated to

nAA did so within 25 ppb to 1 ppm. The
observed detection range was well within the
previously reported estimates of ODT, based
on some findings with trained dogs (Concha
et al., 2019; Krestel et al., 1984), with some
adjustment to subtract perceptual learning
imparted through training (Yee & Wysocki,
2001). However, it is considerably less than
Walker et al. (2006) found in two dogs. EEG
findings have suggested that naïve dogs (n = 6,
beagles) demonstrate an ODT of 1 ppm nAA
in propylene glycol (Hirano et al., 2000); how-
ever, this is a less effective solvent for odorant
dispersal and could be an underestimation for
MO dilutions (Philpott et al., 2004). In the pre-
sent study, one dog (Labrador retriever) dis-
habituated at 0.7 ppb, which was more sensitive
than expected for naïve dogs, but not extraor-
dinary (e.g., Concha et al., 2019; Walker
et al., 2006).
Conversely, two dogs dishabituated at

100 ppm, which was hypothesized to be higher
(less sensitive) than their ODT for this odor-
ant, while several dogs did not dishabituate at

any presented concentration. Finally, we
observed three instances in which dogs dis-
played spontaneous dishabituation in the con-
trol condition without any change in odor.
Spontaneous interest recovery after a period
of elapsed time has similarly been observed in
neurobiological research of the H–D para-
digm (Wilson, 2009). This variability and error
suggest that individual dishabituation should
not be taken prima facie as evidence of olfac-
tory detection for an individual, although
group patterns may be compelling.

Notably, this study’s fluctuations in investiga-
tion time were subtle, meaning that differenti-
ating true dishabituations from chance
variability was difficult. Alternatively, using
intrinsically motivating social odors, such as
pheromones (e.g., Aviles-Rosa et al., 2020;
Laska et al., 2006) or conspecific urine
(e.g., Qiu et al., 2014), are thought to elicit a
more robust investigatory response upon
detection. In the present study, the odorant
was neutral and nonsocial and also of a very
low concentration. The odorant may need to
be either salient or intrinsically motivating to
show large, consistent behavioral differences
in an H–D test.

This study contributes some insight for the
future application of olfactory H–D tests with
dogs. In particular, repeated measures
impacted investigation behavior, with dogs
investigating significantly less in their second
test despite at least a week interval between
sessions. This may limit the number of tests
that can be carried out per dog before they
become over-habituated and cease investigat-
ing thoroughly, which would pose issues with
test–retest reliability. Secondly, although most
H–D studies do not include a control condi-
tion, in this case, a control condition was valu-
able for comparing investigation behavior and
determining the range of chance fluctuation
and variability, which was considerable. It fur-
thermore allowed for appropriate blinding.
Finally, dogs were tested in a relatively large
pen, with the passive presentation of the odor,
where the source was out of their direct reach.
Our findings were that dogs investigated the
vial in most trials, with at least a close
approach in 90.4% of trials and active investi-
gation in 61.6% of trials. This was considered
preferable to presenting an odor source that
may elicit play or tactile engagement. How-
ever, while a smaller pen may encourage dogs
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to remain closer to and spend longer time
investigating the odor source, it would also
limit participation to dogs that do not have an
aversion to being confined. Future research
might elucidate whether certain individual
dogs are more reliable in their responses for
this testing method, perhaps due to differ-
ences in temperament or previous training.

Conclusion
Overall, while dogs did not respond consis-

tently to a particular concentration threshold,
several individual dogs appeared to dis-
habituate within the range of expected ODTs.
Further testing and refinement of this meth-
odology may produce more definitive results.
H–D tests are appealing because they offer a
more rapid and economical way of screening
dogs’ olfactory sensitivity without extensive
training or the impact of variables related to
learning (e.g., Gadbois & Reeve, 2014; Salvin
et al., 2012). Although this is a promising
beginning, the lack of clear validation suggests
that operant-response testing remains the best
behavioral approach for determining dogs’
ODT at this stage. As yet, there is not sufficient
evidence that an H–D test can validly and reli-
ably predict ODTs of dogs.
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