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A B S T R A C T

Adoption of artificial intelligence (AI) by the medical community has long been anticipated, endorsed by a stream
of machine learning literature showcasing AI systems that yield extraordinary performance. However, many of
these systems are likely over-promising and will under-deliver in practice. One key reason is the community’s
failure to acknowledge and address the presence of inflationary effects in the data. These simultaneously inflate
evaluation performance and prevent a model from learning the underlying task, thus severely misrepresenting
how that model would perform in the real world. This paper investigated the impact of these inflationary
effects on healthcare tasks, as well as how these effects can be addressed. Specifically, we defined three
inflationary effects that occur in medical data sets and allow models to easily reach small training losses and
prevent skillful learning. We investigated two data sets of sustained vowel phonation from participants with
and without Parkinson’s disease, and revealed that published models which have achieved high classification
performances on these were artificially enhanced due to the inflationary effects. Our experiments showed that
removing each inflationary effect corresponded with a decrease in classification accuracy, and that removing
all inflationary effects reduced the evaluated performance by up to 30%. Additionally, the performance on a
more realistic test set increased, suggesting that the removal of these inflationary effects enabled the model to
better learn the underlying task and generalize. Source code is available at https://github.com/Wenbo-G/pd-
phonation-analysis under the MIT license.
1. Introduction

Over recent years, successful implementations of Artificial Intelli-
gence (AI) in the field of healthcare have become prevalent, yielding
many high-performance models [1,2]. This can be seen in research
surrounding the second most prevalent neurodegenerative disorder,
Parkinson’s disease (PD) [3,4], which affects approximately 1% of the
population aged over 60 years [5] and is associated with impaired
quality of life and an increased mortality rate [6–8]. Currently, a
validated method for diagnosing and tracking the severity of PD that is
free from clinicians’ personal strengths and weaknesses – that is, their
subject expertise – does not exist; diagnosis is made clinically on the
basis of neurological history, motor examination, and response to med-
ication [9], whilst disease tracking is often based on a questionnaire
measure and a clinical motor examination [10]. This means that PD

∗ Corresponding author.
E-mail address: wenbo.ge@anu.edu.au (W. Ge).

cannot easily be managed remotely and that misdiagnoses and delayed
diagnoses are well recognized [11–14].

Voice recordings can be used as a minimally invasive and quan-
tifiable marker to help address these issues, increase the level of ob-
jectivity, allow for remote management, and save clinicians’ time so
that they may focus more on the patient rather than on tests and
data [15]. Research has shown that approximately 90% of patients with
PD are affected with some kind of vocal impairment and that it may be
one of the earliest indicators of the disease [16,17]. Sustained vowel
phonation is similarly affected, and has the benefit of being an easier
patient task that is not limited by language [4,18,19]. There already
exists extensive research that utilizes machine learning (ML) to classify
between patients with PD and healthy controls. Several results from
the literature using one of the most popular data sets in this field, the
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Table 1
PD classification rates through analysis of sustained phonation. Accuracy is shown as percentages (% hidden for brevity). More examples can be seen in Appendix A.

Das [23] Li et al. [24] Polat [25] Zuo et al. [26] Ma et al. [27] Gök [28] Ozkan [29] Caliskan et al. [30] Anand et al. [31] Haq et al. [32]

Accuracy 92.90 93.47 97.93 97.47 99.49 98.46 99.10 93.80 95.00 99.00
‘‘Parkinsons Data Set’’ [20,21], can be seen in Table 1. Although the
results are impressive, they might not be indicative of how the models
would perform in the real world [22].

We believe that much of the literature using AI for healthcare
problems may be affected by artifacts that result in misleadingly high
evaluation performance — so-called ’inflationary effects’, which simul-
taneously act as a barrier to skillful learning. This gives the illusion that
these models will perform well in practice when, in reality, they will
not.

In this paper, we attempt to remove these inflationary effects that
confound the training and evaluation process. The motive for this is
so that: (1) we can assess the impact of each inflationary effect on
evaluated performance, (2) models can learn the underlying task and
become skilled, and (3) performance evaluations are not inflated, and
instead faithfully represent the models’ abilities.

2. Background

Real-world performance can be thought of as how the model would
perform when tested using entirely unobserved data. In an ML context,
this can also be thought of as the generalization performance; that
is, the model’s performance on unseen data. Here, ‘unobserved’ (or
‘unseen’) data is used to mean the set of data that has not been ob-
served, where ‘observed’ refers to the data being available for training,
validation, or evaluation. Their union is referred to as the population
of data. For the specific task of analyzing sustained vowel phonation,
the population of data encompasses the sustained vowel phonation of
all people.

Clearly, it is not possible to directly assess the performance of a
model on all unobserved data; thus, it must be approximated using ob-
served data. In other words, when we evaluate a model, we are simply
trying to approximate its generalization performance using observed
data. Despite the simplicity of this concept, achieving a good estimate
of generalization performance is often quite difficult, especially for
healthcare tasks. This is sometimes referred to as the ‘‘AI chasm’’ [33],
where the performances seen during evaluation do not translate to the
real world. In an ML context, this is synonymous with the model failing
to generalize.

2.1. Inflationary effects

One major reason that performances seen during evaluation do
not translate to the real world is the presence of inflationary effects.
These effects provide models with an avenue to easily reach a low
training loss during the training phase, as models will always learn the
largest and easiest classifying effect, due to the greedy nature of descent
methods. Often, these inflationary effects are large and strong enough
for the model to reach a near-zero training loss, which consequently
halts further learning. This is not picked up as over-fitting the training
set since the inflationary effects present in the training set are also
present in the validation and test sets, meaning that a model which
achieves low training error via inflationary effects will similarly achieve
low validation and test error. This (misleadingly) suggests that the
model has been trained well, will perform well on unseen data, and
is likely to perform similarly well in the real world. In reality, the
inflationary effects have prevented the model from skillful learning, and
it will perform poorly in the real world.
2

We have broken down inflationary effects into three varieties. The
first two seem to be fairly well-known and are occasionally accounted
for in the literature, whereas the last is hardly ever acknowledged.

Digital fingerprinting phenomenon. Healthcare data often includes mul-
tiple samples derived from the same individual, which is further ex-
acerbated when the disease, disorder, or symptom of interest has a
low prevalence. Standard evaluation techniques that partition the data
for training, hyper-parameter tuning, and out-of-sample testing, can
result in different samples from the same individual appearing in
different partitions of the data (such as both the training and test set).
This may cause the model to learn to identify individuals and recall
their class rather than decoding the data to gain insights into their
class. This leads to a model with a low level of skill that will fail in
practice, yet displays an inflated evaluation performance. The digital
fingerprinting phenomenon [19,34] can occur even if an individual’s
identifier is removed, as their identity may be encoded within the data.
Although this effect is relatively well-known, it is often not accounted
for [26,31,35].

Accuracy paradox. The issue of low prevalence can also result in
unbalanced class distributions, such as with classifying PD and many
other healthcare tasks. Failure to account for this during evaluation
can result in the model learning the skew of class distribution, ignoring
the data, and blindly classifying everything as the majority class. This
inflates performance yet results in a model that has no skill. The impact
of the accuracy paradox [36] is well-known, and is often compensated
for by the use of other performance metrics (such as the area under the
ROC curve [37] or Matthew’s correlation coefficient [38]). However,
all performance metrics have flaws [39–41], such as being sensitive
to low sample sizes, as is the case with many medical data sets. More
importantly, using different metrics has no impact on model training,
meaning that inflationary effects will continue to act as barriers to
learning. One solution can be to weight the loss functions [42,43],
which can beneficially alter the training process to handle class im-
balances effectively; however, this does not handle other inflationary
effects, described below.

Second order effects of the accuracy paradox. In the healthcare domain,
the data used for model development (the observed data) is rarely
representative of the population in regard to many factors (such as age,
sex, weight, race, and so on). This imbalance of factors can be exploited
by the model in a similar way to the accuracy paradox. As an example,
consider the task of analyzing sustained vowel phonations to classify
between controls and patients with PD. Suppose that in the observed
data, the majority of patients with PD are female, whilst the majority
of controls are male, a distribution that is not represented in the overall
population (the true prevalence of PD leans slightly more towards
males [44]). Standard evaluation techniques would result in partitions
(such as the training set) that roughly mimic this distribution, from
which the model can then learn the simpler task of detecting whether
an individual is male or female and infer their disease state from this,
ignoring the relevant information in the signal that actually relates
to an individual’s disease state. Such a scenario would yield a small
training loss during the training phase, preventing further learning and
resulting in low validation and test losses, as the same distribution

would be present in both validation and test sets.
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Such an effect remains regardless of class label distributions. Thus
solutions to the accuracy paradox (such as using different performance
metrics or altering the loss function) would do nothing to reduce
the effect outlined here. As long as there are imbalanced factors and
these factors are encoded into the data, this will remain an issue.
Furthermore, even if factors are only slightly skewed, their combination
can cause a strong enough training effect to impede the skillful learning
of a model.

2.2. Generalization performance

Another reason that performances seen during evaluation do not
translate to the real world is that the test sets used are often not
representative of the unobserved data; that is, the test is not similar
to the real world.

Typically, evaluation techniques have the underlying assumption
that the observed data is representative of the population [45], and
thus a random partition maintains those distributions. However, this
assumption does not generally hold in a healthcare context [46]; the
observed data is not always representative of the population, meaning
that both the training and test sets are also not representative. Thus,
what is being evaluated would not be a good approximation of general-
ization performance. In this case (when the test set is not representative
of the population), we call this an evaluation of a model’s specific per-
formance to distinguish it from an evaluation of a model’s generalization
performance. That is, this is an evaluation of how well the model has
learned the discriminative information under the specific guidance of
this training set, from which its generalization performance cannot be
inferred.

We propose that evaluating the generalization performance of a
model should be done with a test set that is distributed similarly to
the unobserved data, and the specific performance should be evaluated
with a test set that represents the specific training set. By having two
distinctly different test sets, the concern of an unskilled model acci-
dentally being tuned to perform well on a given test set is diminished.
Only a model that repeatedly shows high performance on both test sets
demonstrates practical value. Further, when the dataset is augmented
(such as by removing samples to match certain distributions), the
specific test set often veers even further from a good generalization test
set. Consider a dataset that closely matches the prevalence of PD in the
population. In this case, the accuracy paradox poses a significant barrier
to skillful learning. By balancing the classes, we also alter our test set
such that it no longer represents the population, therefore necessitating
the need to have another test set that maintains the distribution of all
unseen data.

There can also be cases where all the considerations outlined above
align: that is, when the distribution of the training set, the specific test
set, and a good generalization test set all have the same distribution.
In this case, there may not be a need to separate the specific and the
general test set; however, this is unlikely to occur often in practice.

3. Methods

The code for this experiment can be found at:
https://github.com/Wenbo-G/pd-phonation-analysis, under the MIT li-
cense.

3.1. Data set

Two data sets were used for this investigation: the ‘‘Parkinsons
Data Set’’ [20,21], and the ‘‘mPower Data Set’’ [47]. Both consist of
3

healthy control participants and participants with PD performing a 2
Table 2
Summary of submissions from the ‘‘Parkinsons Data Set’’ and filtered ‘‘mPower Data
Set’’. Standard deviations are indicated in brackets.

‘‘Parkinsons Data Set’’ ‘‘mPower Data Set’’

PD group Control group PD group Control group

Number of Submissions 147 48 37,047 22,148
Number of Males 97 18 19,646 18,042
Mean Age 68.0 (9.6) 60.3 (8.1) 63.9 (7.9) 40.6 (17.5)
H&Y 2.2 (0.7) n/a n/a n/a
Years diagnosed 6.7 (7.1) n/a 4.7 (5.1) n/a

sustained phonation of the vowel ‘‘aaahh’’. Summary details of both
the ‘‘Parkinsons Data Sets’’ and the ‘‘mPower Data Set’’ can be seen in
Table 2.

The ‘‘Parkinsons Data Set’’, found on the UCI Machine Learning
Repository1 [48], was recorded at the National Centre for Voice and
Speech, Denver, Colorado, and was processed at the University of
Oxford. Released in 2008, this data set has been widely used for
detecting the presence of PD from sustained phonations and has been
cited as many as approximately 9002 times from release to the end
of 2021 (according to SCOPUS). It contains 195 submissions from 31
participants, each submission consisting of 22 features extracted from
the corresponding recordings. Additional data cleaning or filtering has
not been performed on the provided data. The features, along with a
short description, can be seen in Appendix B.1, or in the corresponding
paper [21].

The ‘‘mPower Data Set’’ [47] was recorded via the Parkinson
mPower mobile application as part of the mPower study developed
by Sage Bionetworks. The first six months of the study were released
in 2016, and it has been cited as many as approximately 270 times
between its release and the end of 2021 (according to SCOPUS), though
many of these citations are unrelated to sustained phonation, as the
data set also contains many other types of data. A total of 63,000
submissions from 6,700 participants were recorded, each submission
consisting of a 10-second long audio recording.

We cleaned the ‘‘mPower Data Set’’ by removing submissions that
were either missing vital information (age, sex, or disease status),
corrupted (i.e., the file could not be used), or poor in quality (i.e,
did not perform sustained vowel phonation, or was contaminated with
background noise). The last criterion was assessed by inspecting the
‘‘Degree of Voice Breaks (%)’’ and ‘‘Fraction of Locally Unvoiced Frames
(%)’’ extracted using Praat [49], along with root-mean-square, vari-
ability, and energy of the audio signal (more details can be found in
Appendix B.2). Following this, the same 22 features were extracted
from the valid recordings using the same protocol as the ‘‘Parkinsons
Data Set’’ [20]. Prior to feature extraction, we removed the first 2 s
and final 3 s (leaving a 5-second window between the 2 and 7-second
mark), to eliminate artifacts caused by the participant starting the task
late or running out of breath. Finally, we manually inspected samples
that produced the 20 most extreme values (10 highest and 10 lowest)
for each feature, repeated for all features, to ensure that the assessment
of quality was good.

3.2. Evaluating specific performance and the impact of inflationary effects

To determine the impact of the inflationary effects, several success-
ful models from the literature were chosen to be replicated on both
data sets. First, these models were evaluated on the data without any
modification, to assess the performance when all inflationary effects

1 https://archive.ics.uci.edu/ml/datasets/parkinsons
2 This is the number of citations, excluding duplicates, of both papers [20,

1] that were requested to be cited when using the data set.
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were present. Each inflationary effect was then sequentially removed
to show its marginal contribution across the different models and data
sets.

We looked to The Association of Computing Machinery’s definition
of ‘‘replicate’’ – to be able to obtain the same results when an indepen-
dent group uses the original author’s own artifacts (that is, ‘‘different
team, same experimental setup’’) [50]. Three models from the literature
were chosen: the first achieved an accuracy of 99.1% by reducing the
input space with Principal Component Analysis (PCA) and classifying

ith the 𝑘-Nearest Neighbor algorithm (𝑘-NN) [29]. The second method
achieved an accuracy of 93.79% and classified participants with a
stacked AutoEncoder (sAE), which progressively encodes the features
into a restricted latent space to be used for classification [30]. The
third method achieved an accuracy of 99% by using separate Support
Vector Machines (SVM), one with an L1-loss for embedded feature
selection, and another with an RBF kernel to classify the set of restricted
features [32]. These are referred to in this text as Model A, Model
B, and Model C, respectively. The evaluation method used in the
original papers, repeated 10-fold cross-validation (CV) and repeated
70/30 train/test splits [51], was used here, with 30 repetitions for the
‘‘Parkinsons Data Set’’, and 10 repetitions for the ‘‘mPower Data Set’’.
Grid search was also used to find a good set of hyper-parameters for
each model using the same evaluation methods. All repetitions were
similarly seeded within a given repetition. Additional details of the grid
search can be seen in Appendix B.4.

The marginal impact of each inflationary effect was shown in an ab-
lation fashion. First, the models were evaluated on the data sets without
change, representing a baseline of performance where all inflationary
effects were present. Next, the digital fingerprinting phenomenon was
removed by ensuring that there was no participant cross-over between
each data partition across both the 𝑘-fold CV and train-test split eval-
uation methods. Following this, the impact of the accuracy paradox
was eliminated by removing samples until there was the same number
of samples from each class in all subsets of the data, thus balancing
the class distribution. Finally, the second-order effects of the accuracy
paradox were removed by ensuring that the age distribution for each
combination of sex and class was similar in all subsets of the data.
We did so because the distribution of age and sex in the data set was
imbalanced, and because the age and sex of an individual are likely to
be encoded in their voice/sustained phonation, therefore making these
factors a possible contributor to the inflationary effects of the second
order accuracy paradox. This was accomplished by applying a method
used in Wang et al. [19] to find a ‘‘twin’’ of the opposite class for
every sample: for every submission from a patient with PD of a given
sex and age, a ‘‘twin’’ submission from the control group was found
with the same sex and similar age (± 3 years). If a ‘‘twin’’ could not
be found, that sample was discarded. All pairs were then partitioned
using the standard evaluation methods mentioned previously, resulting
in subsets of data for which the joint distribution of age-sex was similar.
An underlying assumption of this method is that if every single person
had an exact twin, the only difference being the presence or absence
of a disease in the twin, using such a data set would result in the most
skillful learning. Since this is an impossibility, the next best thing would
be to use ‘‘digital twins’’; that is, similar in many factors but different
in disease status.

The pseudo-code for the above can be found in Appendix D. The key
benefits of this method are its robustness to the prior aforementioned
inflationary effects, as well as the potential to handle other inflationary
factors.

The combination of the aforementioned constraints meant that the
original 10-fold CV was no longer viable due to the difficulty in
identifying 10 subsets that met all requirements. Therefore, we used
4

an 8-fold CV for the ‘‘Parkinsons Data Set’’, and a 5-fold CV for the
‘‘mPower Data Set’’. No changes were made to the number of repe-
titions. Additionally, age limitations for the smaller ‘‘Parkinsons Data
Set’’ were relaxed for the female participants, and these participants
were instead paired by hand to their best age match.

In order to determine if any changes in evaluated performance
were attributed to the reduction in training samples as opposed to
the removal of inflationary effects, we performed the same baseline
experiments, but randomly discarded samples until the number of
remaining samples was equal to if all inflationary effects were removed.
This maintained the inflationary effects but corresponded to the same
reduction in the number of samples.

3.3. Generalization performance

The generalization performance (or real-world performance) was
approximated by combining both the ‘‘Parkinsons Data Set’’ and the
‘‘mPower Data Set’’, then setting aside a test set that was representative
of the unobserved data; that is, data the model would see in the real
world. This meant that in the test set, each participant only had one
sample, the prevalence of PD was low, half the controls were male, two-
thirds of the patients with PD were male, and PD was more prevalent
in the older participants. The remainder of the combined data set was
used for training and hyper-parameter optimization through 5 times
repeated 5-fold CV and grid search (details of the search space can
be found in Appendix B.4). The entire process (sampling the test set,
removing the inflationary effects, and the grid search) was repeated 10
times and averaged.

Specifically, the test set consisted of 100 participants: 6 males with
PD, 4 females with PD, 45 males without PD, and 45 females without
PD. The square root of age was used as weighting when sampling
healthy controls, and the square of age was used as weighting when
sampling patients with PD. This was to create a test set in which older
participants were more likely to have PD, and younger participants
were more likely to be healthy controls (similar to the real world).
Note that both weighting methods translated to older participants being
picked more often, but this was less exaggerated for the controls.
Finally, at least 2 controls and 4 patients with PD were taken from the
‘‘Parkinsons Data Set’’, due to the size difference between the two data
sets.

Although the prevalence of PD here remained higher than that of
the real world (approximately 1% of people over 60), a trade-off was
needed due to data limitations. A realistic prevalence would provide a
better approximation of generalization performance, but would neces-
sitate many more samples to allow the model to express its ability in
detecting PD; a test set with 1 PD participant and 99 controls would
not give the model much chance to show its capabilities, whilst a test
set with 10 PD participants and 990 controls would leave little for the
training set. For this reason, we compromised with a 10% prevalence
rate (10 PD participants and 90 controls).

In addition to this, the same experiment was repeated with infla-
tionary effects present. That is, the repetition made no modifications
to the remaining data after the test set had been set aside, to evaluate
the difference in generalization performance.

4. Results and analysis

4.1. Evaluating specific performance and the impact of inflationary effects

The removal of each inflationary effect resulted in a corresponding
decrease in performance, across all models, both evaluation methods,
and both data sets. The removal of all inflationary effects yielded
an average decrease in accuracy of approximately 29.7% for the
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Fig. 1. The marginal impact of each inflationary effect with the ‘‘Parkinsons Data Set’’.
Fig. 2. The marginal impact of each inflationary effect with the ‘‘mPower Data Set’’.
‘Parkinsons Data Set’’, and 19.4% for the ‘‘mPower Data Set’’, shown in
igs. 1 and 2, and in Tables 3 and 4. Notably, the marginal impact of
he second-order effects of the accuracy paradox seemed to be much
reater with the larger data set. Similar results were observed for
ther performance metrics, such as AUROC and Matthew’s correlation
oefficient (MCC) [38], and can be seen in Appendix C.2. It should also
e noted that the removal of the second-order effects of the accuracy
aradox in the ‘‘Parkinsons Data Set’’ (Fig. 1) did not reduce the number
f samples but simply rearranged them, as a match could be found for
ach participant.

Reducing the number of training samples whilst preserving the
nflationary effects indicated that the decrease in performance could
e mainly attributed to the removal of inflationary effects. This can be
een by comparing the first cluster with the two right-most clusters in
igs. 1 and 2. Although removing training samples without removing
5

inflationary effects resulted in a small performance decrease (an av-
erage of approximately 5.4% and 1.1% for the ‘‘Parkinsons Data Set’’
and the ‘‘mPower Data Set’’, respectively), this was minor compared to
removing the inflationary effects . More detailed results can be seen in
Appendix C.2.

4.2. Evaluating generalization performance

An approximation of the generalization performance of each model
can be seen in Table 5. The poor generalization performance, as well as
the low specific performance shown in the prior section, suggests that
the models and methods from the literature would perform poorly in
the real world. It is not clear whether this is due to a lack of information
in the data or a lack of capacity in the models, but it is clear that despite
the overwhelming amount of literature that shows high performances
for this task, much more research is required.



Artificial Intelligence In Medicine 139 (2023) 102524W. Ge et al.

S
A
d

w
s
i
T
i
s
i
p
e
m

4

i
a
S
w
t

Table 3
Average accuracy and AUROC of repeated 𝑘-fold cross validation on the ‘‘Parkinsons
Data Set’’ with and without the presence of inflationary effects, for models A, B, and C.
Accuracy and AUROC are shown as percentages (% hidden for brevity), and standard
deviations are shown in brackets.

Inflationary Effects Model Accuracy AUROC

Present
A 95.6 (0.6) 95.4 (1.1)
B 91.8 (1.8) 96.7 (1.4)
C 94.5 (0.8) 98.2 (0.7)

Removed
A 68.0 (4.4) 67.8 (4.4)
B 62.5 (6.4) 70.3 (8.8)
C 62.3 (4.6) 69.0 (7.9)

Table 4
Average accuracy and AUROC of repeated 𝑘-fold cross validation on the ‘‘mPower Data
et’’ with and without the presence of inflationary effects, for models A, B, and C.
ccuracy and AUROC are shown as percentages (% hidden for brevity), and standard
eviations are shown in brackets.
Inflationary Effects Model Accuracy AUROC

Present
A 72.4 (0.1) 77.6 (0.1)
B 72.8 (0.1) 78.4 (0.1)
C 74.9 (0.0) 80.8 (0.0)

Removed
A 53.4 (0.5) 54.7 (0.7)
B 54.6 (1.0) 57.3 (1.1)
C 54.7 (0.6) 56.9 (0.9)

Table 5
Generalization performance evaluated with a generalization test set. Accuracy is shown
as percentages (% hidden for brevity), and standard deviations are shown in brackets.
𝑛 is the total number of samples used.

Changes to the training set Model Accuracy

Inflationary effects present
[𝑛 = 59, 258]

A 42.6 (5.3)
B 45.8 (6.1)
C 45.4 (4.9)

Inflationary effects
removed [𝑛 = 18, 395]

A 52.3 (4.3)
B 53.8 (8.0)
C 58.8 (5.3)

Fewer samples, inflationary
effects present [𝑛 = 18, 395]

A 42.4 (3.9)
B 43.2 (3.8)
C 42.7 (4.2)

The same process was repeated without removing any samples, as
ell as randomly removing samples until the number of remaining

amples was equal to the number of samples in a data set with the
nflationary effects removed, both maintaining the inflationary effects.
his revealed that the generalization performance was indeed worse

n the presence of the inflationary effects and that the reduced sample
ize did not contribute to the improved performance when eliminat-
ng inflationary effects. This suggests that these inflationary effects
revent skillful learning which would generalize better in a practical
nvironment. However, this trend was not seen with other performance
etrics, shown in Appendix C.3.

.3. Limitations

The findings outlined here are subject to some limitations. The orig-
nal ‘‘Parkinsons Data Set’’ was recorded with specialized equipment in
supervised and controlled environment, whereas the ‘‘mPower Data

et’’ was recorded on a smartphone in an uncontrolled environment,
hich may have affected the quality of the recordings. Furthermore,
6

he data cleaning step for both the ‘‘Parkinsons Data Set’’ and ‘‘mPower
Data Set’’ could not be matched exactly due to different data types
and missing details. Instead, the data cleaning step for the ‘‘mPower
Data Set’’ attempted to filter out the recordings of low quality (such as
recordings that were silent, corrupted with background noise, or incom-
plete due to interruptions). Despite this, several low-quality recordings
may still remain, though this should not have a strong enough learning
effect to impact the model significantly [52]. The feature extraction
method was also slightly different; the correlation dimension (D2)
feature could not be extracted with the original software and was
instead implemented in Python following the same algorithm and
practices [53,54]. Further details of this can be found in Appendix B.3.
Additionally, there may be slight differences in the feature extraction
implementations for both data sets. However, this should not have a sig-
nificant impact when the data sets are used independently and should
only have minor effects when combined due to the differences in size.

5. Discussion

This study revealed the presence of inflationary effects and their
ability to produce a model that appears to perform well when evaluated
with standard machine learning methods but, in reality, has failed to
train skillfully and will perform poorly in the real world. Broadly,
this falls under the category of reproducibility (or lack thereof) in
AI [55]. By investigating the classification of PD patients from healthy
controls using sustained vowel phonation and by modifying the data to
eliminate each individual inflationary effect, we found that the removal
of each inflationary effect corresponded with a decrease in performance
and that the removal of all inflationary effects resulted in a decrease
of up to 30% accuracy. Furthermore, when evaluating with a test set
that was constructed to be similar to the real world, the absence of
inflationary effects resulted in an increased performance compared to
when inflationary effects were present, suggesting that corresponding
barriers to learning were also removed, allowing for the model to train
better and allowing for a more accurate evaluation of generalization
performance, which in turn informs practical value.

Emerging in the literature are experiments that document similar
issues to those we have outlined. Ozbolt et al. [56] uses the ‘‘mPower
Data Set’’ and several other data sets to outline considerations when
detecting PD using phonation of sustained vowels. These issues in-
clude record-wise and subject-wise folds (which we termed the digital
fingerprinting phenomenon) and the age imbalance within each class
(which we have generalized as the second-order effects of the accuracy
paradox). Our research differs from this by outlining the general frame-
work for second-order effects of the accuracy paradox, enabling us to
consider and account for the joint distribution of age and sex across
the classes. This effect of age and sex on speech performance in PD is
further supported by two recent phenotypic studies that have shown
the significant effect of these two factors [57,58].

The contributions outlined in this article aim to bring awareness
to some of the barriers that prevent skillful training of models in a
healthcare context, and also to gain a better estimate of their gen-
eralization performance. We hope this will result in a reduction in
the number of publications that proclaim over-optimistic results in the
literature. There already exists a plethora of experiments that use the
same or similar data sets and seem not to have taken into account
inflationary effects [59–62]. These exude a false sense of confidence
in the real-world performance that the models can offer. Even when
some inflationary effects are appropriately managed (such as the more
commonly known accuracy paradox or digital fingerprinting effect), the
remaining effects still impact the training and evaluation of the model,
resulting in misleading conclusions. In extreme cases, this can cause the
premature adoption of AI models, which can have widespread effects
and severely impact the health of many patients. Using IBM’s Watson
for Oncology [63] as an example, this model was trained with a small
number of ‘synthetic’ cancer cases and often gave multiple unsafe and

incorrect treatment recommendations, verified by medical specialists
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and customers [64,65]. Having a more accurate estimate of the model’s
general ability may have prevented this, which would not only pre-
vent potential harm to patients but also halt the degradation of the
relationship between academia and practice. We must be mindful that
patients come first; nothing should override the stringent requirements
for clinical deployment [66].

In addition to the always-present goal of achieving better perfor-
mance, future works surrounding the classification of PD should aim to
uncover additional factors which may inflate performance through the
second-order effects of the accuracy paradox, as well as determine how
the performance of these models extrapolate to recently diagnosed PD
patients [67]. We must ensure that our evaluation methods are robust,
and we must also remember that there is little clinical use in correctly
classifying PD patients after they have been diagnosed. Once models
show high performance after robust evaluation, the adoption for their
applications (such as for early diagnosis or differential diagnosis) can be
supported through the use of randomized controlled trials, a technique
that is under-utilized within AI for healthcare [68].

6. Broader impacts

These issues also more broadly impact aspects of society, such
as fairness and equality, as the inflationary effects can be present
whenever data are derived from humans [69,70]. An example can be
seen in policing algorithms assessing the recidivism risk (the risk that
a convicted criminal will re-offend) [71]. If the observed data contains
a high proportion of one race in the ‘will re-offend’ class, and a high
proportion of another race in the ‘will not re-offend’ class, standard
evaluation procedures will result in the model learning to unfairly clas-
sify based on race rather than insights within the data. This becomes
more significant when race is not directly given and is encoded in the
data (possibly through the location of arrest, an individual’s address,
or level of education), as it may give practitioners false confidence
that the model is race-agnostic when it is not. This further extends to
minority groupings not defined by race. Such hidden inflationary effects
also become an issue in data-imputation tasks [72] as biases encoded
into the model will likely flow through to the imputation step, biasing
the data even further, compounding the issue. By utilizing the ‘‘twin’’
pairing method [19], along with a separate test set used to evaluate
generalization performance that is representative of the population,
fair treatment is ensured by eliminating the inflationary effects, and
performance in the real world can be more accurately estimated.

In discussing the positive outcomes, we must also discuss the po-
tential harms our methodology may cause. One of these stems from
the difficulty of dealing with the second-order effects of the accuracy
paradox, specifically due to not knowing beforehand which factors are
encoded in the data, exacerbated by a large number of potential factors.
This becomes increasingly difficult if the encoded factors are not part
of the data set. By eliminating the impact of a few factors, we may have
trained the model to learn the underlying task better, but we may also
be forcing the model to rely more heavily on other factors (such as sex
or race). Another potential harm is the possibly biased construction of
the generalization test set. By choosing the data to be representative of
the population in several factors, we may introduce our own biases and
corrupt the purpose of fair evaluation. If a model showed high specific
and general performance under these errors, it might provide enough
false confidence to put into production an unfair model, potentially
causing widespread harm.

To minimize the downsides, we suggest future research in sys-
tematic methods to identify the at-risk factors that may result in
the second-order effects of the accuracy paradox (such as race, sex,
handedness, age, or body-fat percentage), what can be done when these
7

at-risk factors are not known (for example, if the age of the participant
was not given in either data sets used here), and alternative methods
for addressing the inflationary effects (as opposed to the digital ‘‘twin’’
pairing method).

We believe that medical data sets sit in a unique position that can
inform further ethical concerns for AI in general. Unlike many human-
derived data sets for non-medical tasks, medical data sets often contain
additional information about the participants (such as weight, age, and
pre-existing conditions). This allows for the investigation of how to
control exploitable factors best when they are known, which can then
lead to the research of how to control these factors when they are
not known. Such developments are paramount to fairness and equal-
ity in AI. Consequently, we propose supplementing relevant guiding
principles and policies (such as the U.S. FDA’s Good Machine Learning
Practice for Medical Device Development: Guiding Principles [73])
with the findings of this investigation.

We also stress the importance of collaboration between ML experts
who develop the models, medical experts who use the models, and
those who gather the data. This joint effort up front would generate
a frugal and purposeful approach to creating research data [74]; min-
imal data wastage would result because target distribution built with
the intention of having minimal inflationary effects would have been
designed before gathering any data.

To conclude, our experiments indicated that inflationary effects in
AI healthcare tasks can prevent skillful learning by a model which
may yet show good performance. Our investigations also showed that
these effects could be mitigated by removing barriers that prevent the
model from learning the underlying task. We also present an alterna-
tive method to evaluate a model’s generalization, thereby gaining a
better estimate of its practical value and skill. Applying these ideas to
the task of classifying PD patients through their sustained phonation
showed that an overwhelming amount of literature shows inflated
performances, and the reality is that further research is required before
machine learning can be helpful in practice.
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Appendix A. Experimental performances from literature

Here we show the results from several experiments in literature for the same task, that is, distinguishing if a recording of sustained vowel
phonation belongs to a patient with PD or a control. Many of these have used the same ‘‘Parkinsons Data Set’’, but several have used other data
sets consisting of similar features. This is not a comprehensive list, but rather just the results from a simple search of papers that cite the ‘‘Parkinsons
Data Set’’ and a quick scan to determine if the same task was performed. Table A.6 lists several papers, with references.

The following Fig. A.3 shows the number of times the ‘‘Parkinsons Data Set’’ and the ‘‘mPower Data Set’’ has been cited since it was released,
according to SCOPUS, as of June 2022. There are two lines for the ‘‘Parkinsons Data Set’’ (‘‘Little et al. 2009’’ and ‘‘Little et al. 2007’’) as the
authors have requested both papers to be cited when using the data set. The purpose of illustrating this trend is to highlight the fact that research
in this field is increasing, and without proper evaluation methods, inflated performances will continue to flood the literature.

Table A.6
Performance of several papers in the literature performing the same task
of distinguishing if a sustained vowel phonation belongs to a person with
PD or a control. Bold indicates the best 3 performances, whilst italics
indicates to worst 3 performances.

Authors Year Accuracy

Das [23] 2010 92.9
Sakar and Kursun [75] 2010 92.8
Li et al. [24] 2011 93.5
Ozcift and Gulten [76] 2011 84.4
Polat [25] 2012 97.9
Sakar et al. [77] 2013 85.0
Zuo et al. [26] 2013 97.5
Ma et al. [27] 2014 99.5
Gok [28] 2015 98.5
Tang and He [78] 2015 77.7
Abiyev and Abizade [79] 2016 100.0
Ozkan [29] 2016 99.1
Caliskan et al. [30] 2017 93.8
Guruler [80] 2017 99.5
Cai et al. [59] 2018 97.0
Aich et al. [81] 2018 96.9
Ul Haq et al. [32] 2019 99.0
Anand et al. [31] 2019 95.0

Fig. A.3. Number of citations for the ‘‘Parkinsons Data Set’’ and the ‘‘mPower Data Set’’.

ppendix B. Additional parameters in the methods

This section of the appendix outlines several parameters in the methods that were not explicitly stated in the main text for brevity. This is for
he purposes of reproducibility, and contains the values used for filtering recordings, the parameters used to extract the correlation dimension, and
he search space used for the grid search. In addition to these, the code can be found on https://github.com/Wenbo-G/pd-phonation-analysis. This
epository will be released under the MIT license.

.1. Feature names and description

The names of the features used, as well as the descriptions, can be found in Table B.7. This can also be found in the online repository for the
ata (https://archive.ics.uci.edu/ml/datasets/parkinsons), or in the corresponding papers [20,21].
8

https://github.com/Wenbo-G/pd-phonation-analysis
https://archive.ics.uci.edu/ml/datasets/parkinsons


Artificial Intelligence In Medicine 139 (2023) 102524W. Ge et al.
Table B.7
Feature names and descriptions.

Feature name Description

MDVP:Fo(Hz) Average vocal fundamental frequency
MDVP:Fhi(Hz) Maximum vocal fundamental frequency
MDVP:Flo(Hz) Minimum vocal fundamental frequency
MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP,
MDVP:PPQ, and Jitter:DDP

Several measures of variation in fundamental
frequency

MDVP:Shimmer, MDVP:Shimmer(dB),
Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ,
and Shimmer:DDA

Several measures of variation in amplitude

Noise-to-harmonics ratio and
Harmonics-to-noise ratio

Two measures of ratio of noise to tonal
components

RPDE and D2 Two nonlinear dynamical complexity measures
DFA Signal fractal scaling exponent
spread1, spread2, and PPE Three nonlinear measures of fundamental

frequency variation

B.2. Threshold values for filtering recordings

The sustained phonation recordings were filtered to remove those of low quality. This was assessed through several features: ‘‘Degree of Voice
Breaks (%)’’ and ‘‘Fraction of Locally Unvoiced Frames (%)’’ (both extracted from Praat software [49]), as well as the RMS of amplitude for 1 s
intervals, and energy (the integral of the signal squared) for 1 s intervals, between the 2 s and 7 s mark of the audio recording. The thresholds for
each of the features can be seen in Table B.8.

Table B.8
Features and threshold values to filter recordings. The condition and value define
a recording that passes the filter, that is, not a bad recording.

Feature Condition Value

Mean of RMS > 300
Standard deviation of RMS < 2,000
Mean of energy > 50,000
Degree of voice breaks (%) < 30
Fraction of locally unvoiced frames (%) < 30

B.3. Parameters for extracting the correlation dimension

Since the feature D2 (Correlation Dimension) could not be extracted with the same software (TISEAN [53]), we implemented the same algorithm
(the Grassberger and Procaccia algorithm, adapted by Theiler [82,83]) in python. The hyper-parameters were determined through various tests:
the time delay (𝜏) determined through mutual information [84], embedding dimension (𝑚) determined with false nearest neighbors [85], and the
Theiler window (𝑤) was determined with the space time plot [86], as recommended in the original software [53]. The exact values used for these
can be seen in Table B.9.

Table B.9
Parameter values used to extract the Correlation Dimension
(D2) from the recordings in the ‘‘mPower Data Set’’.

Parameter Value

Time delay (𝜏) 18
Embedding dimension (𝑚) 10
Theiler window (𝑤) 30

B.4. Grid search details

This section outlines the search space of the grid search used for all the models (A, B, and C) for each data set (‘‘Parkinsons Data Set’’
and ‘‘mPower Data Set’’), and for each of the different purposes (evaluating the skill and evaluating the generalization performance), shown in
Tables B.10 and B.11. The search space was designed to capture the original best model outlined in the original experiments, as well as searching
a few additional parameters that may be beneficial to explore.

Note that the search space for the generalization performance was much smaller than the search space when assessing the skill of the model.
This is because it was partially informed by the hyper-parameters that performed well during skill evaluation, but also because the goal was not
to find the best-performing model, but rather to compare the differences in performance with the removal of the various inflationary effects. Also
9

recall that the data sets were combined when evaluating the generalization performance, so it was not split into the corresponding data sets.
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Table B.10
Hyper-parameter search space for Models A, B, and C, for evaluating skill. Bold are the hyper-parameters that resulted in the best performance.

Model Hyper-parameter Search space

‘‘Parkinsons Data Set’’

A
Number of principle components 2, 5, 8, 11, 14
Number of neighbors (k) 1, 3, 5, 7, 9, 11
Preprocessing scaler Standard, MinMax

B

Learning rate 0.003, 0.03
Number of epochs 100, 200, 400
Final activation in AutoEncoder Tanh, Sigmoid, ReLU
Latent size 4, 6
Preprocessing scaler Standard, MinMax

C

Kernel Radial basis function, linear
Gamma ‘scale’, ‘auto’, 0.04, 0.075, 0.09, 0.2, 0.4
C 1, 5, 10
Number of features 6, 8, 10, 12, 14, 16, 18, 20, 22
Preprocessing scaler Standard, MinMax

‘‘mPower Data Set’’

A
Number of principle components 5, 8, 12, 16
Number of neighbors (k) 1, 5, 9, 11
Preprocessing scaler Standard, MinMax

B

Learning rate 0.003, 0.03
Number of epochs 10, 50
Final activation in AutoEncoder Sigmoid, ReLU
Latent size 4, 6
Preprocessing scaler Standard, MinMax

C

Kernel Radial basis function, linear
Gamma ‘scale’, ‘auto’, 0.0001, 0.005, 0.1, 0.2
C 1, 10
Number of features 5, 10, 15, 20
Preprocessing scaler Standard, MinMax

Table B.11
Hyper-parameter search space for Models A, B, and C, for generalization performance. Note that there was no best set of
hyper-parameters as they always changed between runs (due to random sampling).

Model Hyper-parameter Search space

‘‘Parkinsons Data Set’’

A
Number of principle components 8, 12, 16
Number of neighbors (k) 5, 9, 11
Preprocessing scaler Standard

B

Learning rate 0.003, 0.03
Number of epochs 50
Final activation in AutoEncoder Sigmoid, ReLU
Latent size 4, 6
Preprocessing scaler Standard

C

Kernel Radial basis function
Gamma ‘scale’, ‘auto’, 0.2
C 1, 10
Number of features 10, 15, 20
Preprocessing scaler Standard

B.5. Female participant matching in ‘‘Parkinsons Data Set’’

Due to the small number of females in the ‘‘Parkinsons Data Set’’, the age limitations were relaxed, and the ‘‘twins’’ were matched by hand for
the best pairing. This is shown in Table B.12. Each row is a pair.

Table B.12
Matching PD and control females for the ‘‘Parkinsons Data Set’’. Each row is a pair.

PD participant Control participant

Participant code Age Participant code Age

S08 48 S10 46
S26 53 S07 48
S06 63 S17 64
S05 72 S42 or S50 66 or 66
S34 or S21 79 or 81 S50 or S42 66 or 66

Appendix C. Additional results

This section of the appendix outlines several additional results not presented in the main text. It contains more details about the data sets used,
the performances resulting from the removal of each inflationary effect, the results of restricting the size of the data sets, and the generalization
performances when training with an unmodified data set. All performances shown here have additional metrics not shown in the main text. If more
details are desired, the confusion matrices (that is, the number of true positives, false positives, true negatives, and false negatives) can be found
in the open-source repo: https://github.com/Wenbo-G/pd-phonation-analysis. The repository will be released under the MIT license.
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C.1. Demographics of the ‘‘Parkinsons Data Set’’ and ‘‘mPower Data Set’’ after inflationary effects were removed

Table C.13 shows a summary of the demographics of both data sets after all the inflationary effects have been removed. Note that the resultant
data set is not always the same as the pairs are chosen randomly. The information shown here is just one instance of the resulting data.
Table C.13
Demographics of submissions in the ‘‘Parkinsons Data Set’’ and ‘‘mPower Data Set’’ after inflationary effects have been removed. Standard deviation indicated in brackets.

‘‘Parkinsons Data Set’’ ‘‘mPower Data Set’’

PD group Control group PD group Control group

# Submissions 48 48 9161 9161
# Males 18 18 7559 7559
Mean Age 63.25 (9.37) 60.25 (8.10) 59.04 (10.33) 58.32 (11.26)
H&Y 2.44 (0.42) n/a n/a n/a
Years diagnosed 7.34 (9.53) n/a 4.52 (4.49) n/a

Additionally, the distribution of the age across the sex and class for the unmodified data set and the modified data set (that is, inflationary
ffects removed) can be seen in Figs. C.4 and C.5. Note that this shows the distribution of the samples, not the distribution of participants.

Fig. C.4. Age distribution across class and sex for the ‘‘Parkinsons Data Set’’.

Fig. C.5. Age distribution across class and sex for the ‘‘mPower Data Set’’.

C.2. Full performance details for experiments

The full results from the removal of each inflationary effect can be seen in Tables C.14 and C.15, for both data sets. The results show that in
almost all cases, the removal of each inflationary effect is accompanied with a decrease in performance. It also shows that reduction in the number
of samples available is not a significant contributor to the reduction in performance. We can see that the decrease in available samples decrease
the performance by an average of 5.39% and 1.06% for the ‘‘Parkinsons Data Set’’ and the ‘‘mPower Data Set’’, respectively. In contrast to this,
the removal of the inflationary effects resulted in an average decrease in performance of 29.76% and 19.21% for the ‘‘Parkinsons Data Set’’ and
11
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Table C.14
Full results with models A, B, and C with the ‘‘Parkinsons Data Set’’. Accuracy and AUROC are percentages (% omitted for brevity). Standard deviations shown in brackets.

Model Evaluation method Accuracy MCC AUROC

Unmodified (no inflationary
effects removed)

A repeated 10-fold CV 95.63 (0.55) 0.89 (0.02) 95.40 (1.12)
repeated train-test split 94.07 (2.77) 0.85 (0.07) 93.25 (3.81)

B repeated 10-fold CV 91.79 (1.78) 0.79 (0.05) 96.75 (1.44)
repeated train-test split 91.47 (3.40) 0.78 (0.09) 95.60 (3.49)

C repeated 10-fold CV 94.54 (0.78) 0.85 (0.03) 98.21 (0.75)
repeated train-test split 93.39 (3.60) 0.83 (0.09) 96.77 (4.21)

Digital fingerprinting removed

A repeated 10-fold CV 77.07 (2.01) 0.37 (0.10) 67.30 (4.55)
repeated train-test split 75.56 (6.84) 0.39 (0.13) 69.67 (8.27)

B repeated 10-fold CV 74.31 (3.73) 0.29 (0.11) 67.00 (9.77)
repeated train-test split 73.67 (10.04) 0.31 (0.28) 67.18 (20.39)

C repeated 10-fold CV 76.74 (2.00) 0.27 (0.09) 66.09 (8.66)
repeated train-test split 75.47 (8.80) 0.28 (0.21) 71.62 (16.50)

Digital fingerprinting and
accuracy paradox removed

A repeated 10-fold CV 68.65 (4.88) 0.39 (0.10) 68.65 (4.88)
repeated train-test split 68.06 (9.62) 0.38 (0.20) 68.06 (9.62)

B repeated 10-fold CV 65.45 (5.11) 0.31 (0.11) 70.54 (7.79)
repeated train-test split 62.92 (10.80) 0.27 (0.23) 67.60 (13.60)

C repeated 10-fold CV 62.47 (4.20) 0.25 (0.10) 66.59 (8.50)
repeated train-test split 61.81 (12.19) 0.25 (0.27) 66.53 (15.37)

All inflationary effects removed

A repeated 10-fold CV 67.98 (4.40) 0.38 (0.09) 67.83 (4.35)
repeated train-test split 65.18 (16.15) 0.33 (0.34) 65.06 (16.15)

B repeated 10-fold CV 62.45 (6.39) 0.26 (0.14) 70.33 (8.84)
repeated train-test split 62.96 (13.10) 0.28 (0.30) 69.78 (19.50)

C repeated 10-fold CV 62.28 (4.62) 0.26 (0.10) 69.03 (7.94)
repeated train-test split 61.59 (13.35) 0.24 (0.31) 64.91 (21.32)

No inflationary effects removed,
but fewer samples

A repeated 10-fold CV 90.35 (3.30) 0.75 (0.10) 88.36 (5.37)
repeated train-test split 89.08 (5.94) 0.72 (0.15) 86.85 (8.52)

B repeated 10-fold CV 87.19 (2.95) 0.67 (0.08) 90.96 (4.20)
repeated train-test split 83.79 (8.21) 0.56 (0.20) 85.76 (11.22)

C repeated 10-fold CV 89.51 (2.92) 0.71 (0.09) 92.67 (4.33)
repeated train-test split 88.28 (4.67) 0.69 (0.12) 89.47 (11.81)

Table C.15
Full results with models A, B, and C with the ‘‘mPower Data Set’’. Accuracy and AUROC are percentages (% omitted for brevity). Standard deviation shown in brackets.

Model Evaluation method Accuracy MCC AUROC

Unmodified (no inflationary
effects removed)

A repeated 10-fold CV 72.44 (0.07) 0.39 (0.00) 77.63 (0.05)
repeated train-test split 72.14 (0.31) 0.39 (0.01) 77.25 (0.33)

B repeated 10-fold CV 72.83 (0.07) 0.40 (0.00) 78.36 (0.05)
repeated train-test split 72.79 (0.32) 0.40 (0.01) 78.23 (0.35)

C repeated 10-fold CV 74.88 (0.04) 0.45 (0.00) 80.82 (0.05)
repeated train-test split 74.85 (0.15) 0.45 (0.00) 80.65 (0.22)

Digital fingerprinting removed

A repeated 10-fold CV 65.78 (0.47) 0.26 (0.01) 68.35 (0.49)
repeated train-test split 67.17 (1.85) 0.27 (0.02) 69.44 (1.47)

B repeated 10-fold CV 69.50 (0.56) 0.34 (0.01) 74.17 (0.68)
repeated train-test split 70.72 (2.69) 0.35 (0.04) 74.96 (2.55)

C repeated 10-fold CV 69.25 (0.45) 0.33 (0.01) 73.32 (0.56)
repeated train-test split 70.65 (2.45) 0.35 (0.03) 74.08 (2.12)

Digital fingerprinting and
accuracy paradox removed

A repeated 10-fold CV 63.22 (0.34) 0.27 (0.01) 68.01 (0.53)
repeated train-test split 63.50 (1.20) 0.27 (0.02) 68.30 (1.30)

B repeated 10-fold CV 66.64 (0.49) 0.33 (0.01) 73.33 (0.68)
repeated train-test split 66.34 (1.15) 0.33 (0.02) 72.90 (1.58)

C repeated 10-fold CV 66.71 (0.39) 0.34 (0.01) 73.07 (0.47)
repeated train-test split 66.74 (1.22) 0.34 (0.02) 73.14 (1.28)

All inflationary effects removed

A repeated 10-fold CV 53.37 (0.49) 0.07 (0.01) 54.75 (0.67)
repeated train-test split 52.76 (1.45) 0.06 (0.03) 54.09 (1.67)

B repeated 10-fold CV 54.55 (1.03) 0.09 (0.02) 57.26 (1.14)
repeated train-test split 54.02 (2.18) 0.08 (0.04) 56.44 (2.27)

C repeated 10-fold CV 54.73 (0.64) 0.10 (0.01) 56.86 (0.86)
repeated train-test split 54.32 (1.49) 0.09 (0.03) 55.98 (1.67)

No inflationary effects removed,
but fewer samples

A repeated 10-fold CV 70.91 (0.24) 0.36 (0.00) 75.28 (0.23)
repeated train-test split 70.97 (0.50) 0.36 (0.01) 75.14 (0.48)

B repeated 10-fold CV 72.10 (0.17) 0.39 (0.01) 77.43 (0.28)
repeated train-test split 72.07 (0.97) 0.39 (0.02) 77.43 (0.77)

C repeated 10-fold CV 73.80 (0.26) 0.43 (0.01) 79.32 (0.16)
repeated train-test split 73.64 (0.54) 0.42 (0.01) 79.13 (0.57)
12
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C.3. Additional experiments on generalization performance

The generalization performance was also investigated in the presence of inflationary effects, that is, once the generalization test set has been
removed, the remaining data set is not modified before being used for model training. The results shown in Table C.16 indicate a noticeable
reduction in accuracy as a result of not removing the inflationary effects.

Table C.16
Evaluating the generalization performance in the presence and absence of inflationary effects. Accuracy and AUROC are percentages (% omitted
for brevity). Standard deviations shown in brackets.

Changes to the training set Model Accuracy MCC AUROC

Inflationary effects present
[𝑛 = 59, 358]

A 42.60 (5.32) 0.12 (0.08) 66.54 (8.36)
B 45.80 (6.09) 0.14 (0.07) 68.92 (7.45)
C 45.40 (4.90) 0.14 (0.07) 69.58 (6.83)

Inflationary effects
removed [𝑛 = 18, 495]

A 52.30 (4.30) 0.11 (0.10) 64.37 (11.39)
B 53.80 (7.98) 0.14 (0.10) 67.33 (7.19)
C 58.80 (5.29) 0.18 (0.07) 69.53 (9.11)

Fewer samples, inflationary
effects present [𝑛 = 18, 495]

A 42.40 (3.88) 0.17 (0.05) 72.46 (6.52)
B 43.20 (3.79) 0.16 (0.05) 71.94 (7.34)
C 42.70 (4.17) 0.14 (0.08) 71.42 (8.44)

Appendix D. Pseudo-code

Below outlines pseudo-code for the ‘‘virtual twins’’ method described in Section 3.2. Only the main method and the methods used in main are
defined. The behavior of the remaining helper methods are written in plain English.

def main(participants):

# get the "twins" of participants
paired_participants = get_paired_participants(participants)

# expand the "twinned" participants into samples
paired_samples = participant_pairs_to_sample_pairs(paired_participants)

# use the paired_samples for training, evaluation, testing. Each pair in paired_samples will
# not always have the same number of samples. Splitting the data must be done with this in mind.
evaluate(paired_samples)

def get_paired_participants(participants):
"""Finds a set of pairs of participants."""

paired_participants = []
participants = shuffle(participants)
pd_participants, control_participants = split_by_class(participants)

for p in pd_participants:
candidate_matches = find_matches(p, control_participants)
if len(candidate_matches) > 0: # is not empty

match = choose_from_candidates(p, candidate_matches)
paired_participants.append((p, match))
control_participants.drop(match) # so that control cannot be matched again

return paired_participants

def participant_pairs_to_sample_pairs(paired_participants):
"""Expands the pair of participants into pair of samples from those participants."""

paired_samples = []
for pd_p, control_p in paired_participants:

pd_samples, control_samples = get_samples(pd_p, control_p)
paired_samples.append((pd_samples, control_samples))

return paired_samples

def shuffle(participants):
13
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"""Randomly shuffles the participants"""
return shuffled_participants

def split_by_class(participants):
"""From all the participants, split them into the PD class and the control class"""
return pd_participants, control_participants

def find_matches(participant, available_participants, factors):
"""Returns a list of possible matches for a `participant` from `available_participants`, given
a list of `factors` to consider.

A possible match is only considered if `check_if_all_factors_are_similar` returns True for the
participant and candidate."""
return candidate_matches

def choose_from_candidates(participant, candidate_matches):
"""Randomly picks a match from `candidate_matches`, with the addition that the choosing is
weighted by the similarity of the number of samples between participant and candidates.

The more similar the number of submissions between participant and candidates, the higher the
weight. The purpose for this is to get the most out of the data set."""
return candidate

def get_samples(pd_participant, control_participant):
"""Gets random samples from each participant.

The number of samples retrieved is `n = min(len(pd_samples),len(control_samples))`, where
`pd_samples` are the samples belonging to `pd_participant`, and `control_samples` are the
samples belonging to `control_participant`."""
return n_pd_samples, n_control_samples

def is_similar(factor_pd, factor_control, tolerance):
"""Returns True if `factor_pd` and `factor_control` are similar, False if not.

Similar means that, if the factors are of type `float`, tolerance is used. If factors are of
type `str`, strict equality is used."""
return if_factors_are_similar

def check_if_all_factors_are_similar(candidate, participant, factors):
"""Returns True if all the factors for a candidate and a participant are similar, False if not.

Iterates through the list of factors, applying the `is_similar` method to determine if all
factors are similar."""
return if_all_factors_are_similar
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