
UNIVERSITY OF NEW ENGLAND 

 

 

Mapping Soil Salinity and Its Impact on Agricultural 

Production in Al Hassa Oasis in Saudi Arabia 

 

 

 

Submitted by 

Amal Allbed 

 

BGeog. University of Dammam 

MGISc. University of New England 

 

 

 

 

A thesis submitted in fulfilment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

June 2018



  

 i 

Abstract 

Soil salinity is considered as one of the major environmental issues globally that restricts 

agricultural growth and productivity, especially in arid and semi-arid regions. One such region 

is Al Hassa Oasis in the eastern province of Saudi Arabia, which is one of the most productive 

date palm (Phoenix dactylifera L.) farming regions in Saudi Arabia and is seriously threatened 

by soil salinity. Development of remote sensing techniques and modelling approaches that can 

assess and map soil salinity and the associated agricultural impacts accurately and its likely 

future distribution should be useful in formulating more effective, long-term management 

plans. The main objective of this study was to detect, assess and map soil salinity and and its 

impact on agricultural production in the Al Hassa Oasis. 

The presented research first started by reviewing the related literature that have utilized the use 

of remote sensing data and techniques to map and monitor soil salinity. This review started by 

discussing soil salinity indicators that are commonly used to detect soil salinity. Soil salinity 

can be detected either directly from the spectral reflectance patterns of salt features visible at 

the soil surface, or indirectly using the vegetation reflectance since it impacts vegetation. Also, 

it investigated the most commonly used remote sensors and techniques for monitoring and 

mapping soil salinity in previous studies. Both spectral vegetation and salinity indices that have 

been developed and proposed for soil salinity detection and mapping have been reviewed. 

Finally, issues limiting the use of remote sensing for soil salinity mapping, particularly in arid 

and semi-arid regions have been highlighted.  

In the second study, broadband vegetation and soil salinity indices derived from IKONOS 

images along with ground data in the form of soil samples from three sites across the Al Hassa 

Oasis were used to assess soil salinity in the Al-Hassa Oasis. The effectiveness of these indices 

to assess soil salinity over a dominant date palm region was examined statistically. The results 
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showed that very strongly saline soils with different salinity level ranges are spread across the 

three sites in the study area. Among the investigated indices, the Soil Adjusted Vegetation 

Index (SAVI), Normalized Differential Salinity Index (NDSI) and Salinity Index (SI-T) 

yielded the best results for assessing the soil salinity in densely vegetated area, while NDSI 

and SI-T revealed the highest significant correlation with salinity for less densely vegetated 

lands and bare soils. 

In the third study, combined spectral-based statistical regression models were developed using 

IKONOS images to model and map the spatial variation of the soil salinity in the Al Hassa 

Oasis. Statistical correlation between Electrical Conductivity (EC), spectral indices and 

IKONOS original bands showed that the Salinity Index (SI) and red band (band 3) had the 

highest correlation with EC. Integrating SI and band 3 into one model produced the best fit 

with R2 = 0.65. The high performance of this combined model is attributed to: (i) the spatial 

resolution of the images; (ii) the great potential of SI in enhancing and delineating the spatial 

variation of soil salinity; and (iii) the superiority of band 3 in retrieving soil salinity features 

and patterns. Soil salinity maps generated using the selected model showed that strongly saline 

soils (>16 dS/m) with variable spatial distribution were the dominant class over the study area. 

The spatial variability of this class over the investigated areas was attributed to a variety factors, 

including soil factors, management related factors and climate factors. 

 

In the fourth study, Landsat time series data of years 1985, 2000 and 2013 were used to detect 

the temporal change in soil salinity and vegetation cover in the Al Hassa Oasis and investigate 

whether there is any linkage of vegetation cover change to the change in soil salinity over a 28-

year period. Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) 

differencing images were used to identify vegetation and salinity change/no-change for the two 

periods. The results revealed that soil salinity during 2000-2013 exhibited much higher increase 
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compared to 1985-2000, while the vegetation cover declined for the same period. Highly 

significant (p < 0.0001) negative relationships between the NDVI and SI differencing images 

were detected, confirming the potential long-term linkage between the changes in soil salinity 

and vegetation cover in the Oasis.  

In the fifth study, the effects of physical and proximity factors, including elevation, slope, soil 

salinity, distance to water, distance to built-up areas, distance to roads, distance to drainage and 

distance to irrigation factors on agricultural expansion in the Al Hassa Oasis were investigated. 

A logistic regression model was used for two time periods of agricultural change in 1985 and 

2015. The probable agricultural expansion maps based on agricultural changes in 1985 was 

used to test the performance of the model to predict the probable agricultural expansion after 

2015. This was achieved by comparing the probable maps of 1985 and the actual agricultural 

land of 2015 model. The Relative Operating Characteristic (ROC) method was also used and 

together these two methods were used to validate the developed model. The results showed 

that the prediction model of 2015 provides a reliable and consistent prediction based on the 

performance of 1985. The logistic regression results revealed that among the investigated 

factors, distance to water, distance to built-up areas and soil salinity were the major factors 

having a significant influence on agricultural expansion.  

In the last study, the potential distribution of date palm was assessed under current and future 

climate scenarios of 2050 and 2100. Here, CLIMEX (an ecological niche model) and two 

different Global Climate Models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), were 

employed with the A2 emission scenario to model the potential date palm distribution under 

current and future climates in Saudi Arabia. A sensitivity analysis was conducted to identify 

the CLIMEX model parameters that had the most influence on date palm distribution. The 

model was also run with the incorporation of six non-climatic parameters, which are soil 

taxonomy, soil texture, soil salinity, land use, landform and slopes, to further refine the 
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distributions. The results from both GCMs showed a significant reduction in climatic suitability 

for date palm cultivation in Saudi Arabia by 2100 due to increment of heat stress. The lower 

optimal soil moisture, cold stress temperature threshold and wet stress threshold parameters 

had the greatest impact on sensitivity, while other parameters were moderately sensitive or 

insensitive to change. A more restricted distribution was projected with the inclusion of non-

climatic parameters. 

Overall, the research demonstrated the potential of remote sensing and modeling techniques 

for assessing and mapping soil salinity and providing the essential information of its impacts 

on date palm plantation. The findings provide useful information for land managers, 

environmental decision makers and governments, which may help them in implementing more 

suitable adaptation measures, such as the use of new technologies, management practices and 

new varieties, to overcome the issue of soil salinity and its impact on this important economic 

crop so that long-term sustainable production of date palm in this region can be achieved. 

Additionally, the information derived from this research could be considered as a useful 

starting point for public policy to promote the resilience of agricultural systems, especially for 

smallholder farmers who might face more challenges, if not total loss, not only due to soil 

salinity but also due to climate change.  
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 Introduction.  

Soil salinity refers to the accumulation of soluble salts in the plant zone or at the surface or 

near-surface of soil horizon (Tanji, 2004). Soil salinity is a serious environmental issue on a 

global scale, however, it is most common in the arid and semi-arid regions. According to a 

report published by FAO in 2000, it is estimated that approximately 397 million hectares in the 

world are saline soils (Crouch, 2000). In arid and semi-arid regions, there is insufficient rainfall 

to flush the soluble salts from the soil via leaching, thus the soluble salt accumulates, causing 

soil salinity. In addition, the buildup of salts in the soil profile is driven by the high evaporation 

rate which removes water from the soil profile while leaving salts behind. Unfortunately, it has 

been reported that water shortages and droughts in arid and semi-arid areas are likely to become 

more frequent and severe in the future (Seager et al., 2007; Cayan et al., 2010), thus increasing 

soil salinity threats. In arid and semi-arid regions, the quality of irrigation water in irrigated 

lands is an important contributor to soil salinity. Therefore, excessive irrigation with water 

containing high levels of soluble salts coupled with poor drainage leads to a rise of the water- 

table, which enhances salt movement through the soil profile, and consequently increases salt 

accumulation within the root zone and soil surface. It has been reported that approximately 

50% of all existing irrigated lands in the arid and semi-arid regions are adversely affected by 

soil salinity (Abrol et al., 1988). 

Soil salinity is among the leading global environmental hazards, affecting irrigated agriculture 

and causing billions of dollars in crop damages every year. As an example, it has been reported 

that in Uzbekistan, up to 53% of irrigated lands are exposed to varying degrees of soil salinity, 

which ultimately have led to low or no annual crop profits (Djanibekov et al., 2012). In 

addition, regardless of the physiological cause (ion toxicity, water deficit, and/or nutritional 

imbalance), high salinity in the root zone severely inhibits plant growth and development, 

resulting in reduced crop productivity or total crop failure. It has been estimated that globally, 
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each year 10 million ha of agricultural irrigated lands are abandoned due to the adverse impacts 

of soil salinity (Szabolcs, 1987). Increased salinization of arable land is expected to cause 30% 

land loss within the next 25 years and up to 50% by 2050, as reported by Wang et al. (2003).  

Crops vary greatly in their tolerance to soil salinity, yet excessive salt can cause significant 

reductions in the growth, yield and fruit quality even in the high salt tolerant crops such as date 

palm (Phoenix dactylifera L.). For example, Al-Abdoulhadi et al. (2011) found that an increase 

in soil salinity levels caused leaf injury and adversely impacted on growth and biomass of date 

palm. Additionally, a study conducted by Alrasbi et al. (2010) indicated that at electrical 

conductivity (EC) of 18 dS/m, date palm trunk height, number of fronds, leaf length and trunk 

girth decreased by 53, 48, 39 and 46%, respectively. Ayers and Westcot (1985) reported that 

the minimum EC for maximum date palm yield is 4·0 dS/m, while at EC of 32 dS/m no yield 

is achieved. Hence, it is clear that the growth and productivity of date palm plants are negatively 

affected when soil salinity extends beyond its tolerance potential. Therefore, to better manage 

the threat soil salinity poses to the agricultural sector, producers, agricultural land users and 

managers, and policy makers need reliable and up-to-date information about soil salinity. 

It is difficult to secure up-to-date knowledge of soil salinity extent, spatial distribution, nature 

and magnitude by using the traditional point sampling techniques because these techniques are 

very costly, time consuming and also limited with respect to the temporal and spatial 

variability, meaning that frequent field studies would be required. To this end, remote sensing 

has a great potential to identify, map, monitor and assess different dynamic processes including 

soil salinity and its impact on land cover, in particular, vegetation cover, as it has the ability to 

provide a broad and repetitive view of the earth objects without making physical contact. A 

range of different satellite borne sensors have been developed and used to collect information 

about the earth’s surface in the last four decades, each of which has unique spatial, spectral and 

temporal resolution coverage characteristics (Gardi, 2017). Different types of satellite data 
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have been used to detect and monitor soil salinity, including coarse spatial resolution data such 

as that from Moderate Resolution Imaging Spectroradiometer (MODIS), medium spatial 

resolution data such as that provided by Landsat images and high spatial resolution data such 

as that from the IKONOS satellite.  

In general, all objects (including soil) have unique spectral features (reflectance or emission 

regions), and they can be identified from remote sensing imagery according to their unique 

spectral characteristics. Accordingly, soil salinity can be assessed directly from the spectral 

reflectance patterns of salt features visible at the soil surface, or indirectly using the vegetation 

reflectance since it impacts vegetation. Increased reflectance in visible (VIS) bands and 

reduced reflectance in near-infrared (NIR) bands is indicative of unhealthy vegetation and as 

such could provide an indirect measure of soil salinity levels. For example, Peñuelas et al. 

(1997) found that the reflectance of barley was lower in the NIR and higher in the VIS regions 

as a result of increasing salinity. Both approaches have been applied in a number of studies by 

using different spectral salinity indices that relate reflectance characteristics to saline soil and 

vegetation indices (VIs) that relate reflectance characteristics to vegetation state and 

composition, with mixed success in arid and semi-arid areas across the world (Ivushkin et al., 

2017). On the basis of the saline soil or stressed vegetation-related spectral features, some 

researchers have employed remote sensing and modelling techniques to develop quantitative 

model for predicting the variability of soil salinity and mapping its spatial distribution (Meng 

et al., 2016; Morshed et al., 2016). Usually a quantitative model relates soil salinity to remote 

sensing data reflectance in the form of a single spectral band, multi-band or spectral 

enhancements (e.g., Normalized Difference Vegetation Index (NDVI), Principal Components 

Analysis (PCA)), or a combination of both. For example, Luleva (2007) used Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectra coupled with the 

Partial Least Squares Regression (PLSR) method for mapping different soil properties, 
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including soil salinity and organic matter, in southeast Tunisia. Bouaziz et al. (2011b) found 

that incorporating salinity index with NIR derived from MODIS into a multiple linear 

regression allowed researchers to gain great insight into the spatial detection of the spread of 

soil salinity.  Other researchers have taken the advantages of the long record and free of charge 

satellite data such as Landsat datasets (i.e 40 years’ coverage) to detect and track the spatio-

temporal changes in soil salinity over large-areas on a long-term basis using a series of multi-

temporal data (Wu et al., 2008; Matinfar et al., 2013; El Harti et al., 2016; Afrasinei et al., 

2017).  

The degradation of agricultural soil in the Al Hassa Oasis, one of the Saudi’s most important 

date palm agricultural areas, is a good example of such phenomenon (soil salinity). Date palm 

is one of the most important cash crops that contributes significantly to agro-ecosystems in 

Saudi Arabia and plays a major role in the national economy and agricultural sector, through 

its contribution to economic growth, and meeting local market needs. Saudi Arabia is 

considered one of the top three date producing countries in the world. In 2013, date production 

in Saudi Arabia reached 1 065 032 tonnes from 3.7 million trees (FAOSTAT, 2013). In the Al 

Hassa Oasis, where there is no native vegetation in this region, due to the arid climate with low 

rainfall, high temperatures and evaporation rates, date palm cultivations are heavily dependent 

on salty underground water for irrigation. The harsh arid climate and combination of irrigation 

practices and the absence of adequate drainage systems have affected in inducing soil salinity 

which have led to a decrease in land productivity in this region. Therefore, soil salinity has 

become a serious problem across this region. In this regard, it is an important concern to detect 

soil salinity, assess and monitor the degree of its severity and extent in time, spatial distribution, 

and determine its impacts on vegetation cover regularly. Proper and timely decisions can 

implement or support effective soil reclamation programs that minimize or prevent future 

increases in soil salinity that can protect date palm outputs, sustain agricultural lands and 
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natural ecosystems and avoid further adverse environmental, social and economic effects in 

such regions. Accordingly, this thesis reports on investigations into using geographic 

information system and remote sensing technologies to assess and map soil salinity and its 

impact on vegetation cover in Al Hassa Oasis. 

This study is important because it adds positively to the areas of soil salinity, agriculture, 

geographic information systems (GIS) and remote sensing. Based on the known research, while 

progress has been made in detecting and mapping soil salinity in agricultural lands across a 

wide range of plant species using different spectral indices derived from multispectral satellite 

images, none has investigated whether vegetation and salinity indices from high spatial 

resolution images could assess soil salinity in agricultural areas which are covered mainly by 

date palm. Hence, this study is the first to assess soil salinity using soil salinity and vegetation 

indices extracted from IKONOS high-spatial resolution imageries in Al Hassa Oasis, which is 

a date palm dominated region. Also, based on the known research, this study is the first to 

use high spatial resolution multispectral images to develop combined spectral-based statistical 

models to predict and map spatial variation in soil salinity of community vegetated mostly with 

date palm. To date, despite the fact that soil salinity poses a negative threat on vegetation cover, 

most published studies have looked at either vegetation cover change or soil salinity change in 

isolation, and few attempts have been made to link vegetation cover change to soil salinity 

change, especially in date palm-dominated arid and semi-arid regions. This study will fill some 

of these gaps and attempts to detect the temporal change in vegetation cover and soil salinity 

in the Al Hassa Oasis and determines whether the change in vegetation cover is a case of soil 

salinity change over a given period. In addition, agricultural expansion is a spatio-temporal 

dynamic process controlled by various driving forces including soil salinity during which both 

the spatial expansion and the drivers vary over time and space. Thus, in a saline environment, 

like Al Hassa Oasis, understanding the past, current and future spatial distribution of 
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agricultural expansion and its underlying drivers along with their relationships is a crucial 

prerequisite, as information on existing agriculture expansion patterns and changes over time 

plays an important role in the decision-making process to mitigate the negative effects and 

promote desired outcomes. Added to this, climate change represents a massive threat to plant 

and crop distribution globally. Saudi Arabia is one of those countries that is highly vulnerable 

to the adverse effects of climate change, and it has been reported that yield of different types 

of field fruit trees and crops will experience losses as a consequence of climate change. Thus, 

information on the potential distribution of date palm as an important cash crop in Saudi Arabia 

and the relative abundance under projected future climate scenarios is essential as it will enable 

environmental managers to prepare appropriate strategies to manage the changes and achieve 

long-term sustainable production of this crop. For Saudi Arabia, to date, there have been no 

published studies to determine the potential distributions of date palm under future climates 

and non-climatic parameters. 
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 Aims and Objectives 

The principle aim of this research was to detect, assess and map soil salinity and its impact on 

agricultural production in the Al Hassa Oasis in the eastern province of Saudi Arabia. 

Specifically, the objectives of the research were: 

1. To document the use of remote sensing technology in mapping and monitoring soil 

salinity in arid and semi-arid regions; 

2. To assess soil salinity in a date palm dominated region using soil salinity and vegetation 

indices derived from high-spatial resolution imageries;  

3. To map and model spatial variation in soil salinity in the Al Hassa Oasis based on remote 

sensing indicators and regression techniques; 

4. To detect soil salinity and vegetation cover changes from multi-temporal remotely sensed 

imagery in the Al Hassa Oasis;  

5. To examine the effect of physical and proximity factors on the direction of the 

agricultural expansion in 1985 and 2015 in the Al Hassa Oasis; and  

6. To model the potential future spatial distribution of date palm in Saudi Arabia using 

climate and non-climatic variables. 

 Thesis Structure 

The thesis is structured in a manuscript style (as a series of journal papers) in which each 

chapter is treated individually. The thesis starts with a review of literature related to the use of 

remote sensing techniques to monitor and map soil salinity (Chapter Two). It explores the most-

used data and methods from previous studies on the subject and highlights the most important 

issues limiting the use of remote sensing for soil salinity mapping, particularly in arid and semi-

arid regions. This chapter has been published in Advances in Remote Sensing. 
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Chapter Three assesses the soil salinity levels in the Al-Hassa Oasis and investigates the 

effectiveness of some existing vegetation and soil salinity indices that derived from broadband 

satellite images for assessing soil salinity over an area vegetated mainly by date palms. The 

result of this chapter provides basic information which may help decision makers and land 

planners decide where to implement salinity action plans at a regional level to avoid further 

adverse environmental effects in the future. In addition, the outcome of this chapter emphasized 

that since study sites vary in terms of levels of salinity, vegetation cover and density, study 

sites should be assessed according to the strengths and weaknesses of the proposed indices 

before appropriate remote sensing-based indices are used for soil salinity mapping and 

assessing. This chapter has been published in Geoderma. 

Chapter Four develops statistical regression models based on different spectral indices which 

were calculated from original bands of IKONOS images to predict and map spatial variation 

in soil salinity in Al Hassa Oasis, a region dominated by date palms. The simplicity of the 

developed combined model in this chapter offers a quick method which can contribute greatly 

to soil salinity prediction and mapping, at lower costs than conventional approaches, which 

will help farmer and other decision makers to manage soil salinity problems in early stages to 

prevent soil salinity from becoming prevalent, sustaining agricultural lands and natural 

ecosystems. This chapter has been published in Remote Sensing. 

Chapter Five determines the changes in soil salinity and vegetation cover in Al Hassa Oasis 

over the past 28 years using Landsat time series data and investigates whether there is any 

linkage between vegetation cover change and change in soil salinity. The findings reported in 

this study provide an information base for better management practices to control and mitigate 

salinity to protect the date palm outputs and avoid further adverse environmental, social and 

economic effects. The outcomes of this chapter are relevant for agricultural workers, scientists 

and policy makers. This chapter has been published in Geocarto International. 
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Chapter Six investigates the effect of physical and proximity factors, including elevation, slope, 

soil quality, distance to water, distance to built-up areas, distance to roads, distance to drainage 

and distance to irrigation on agricultural expansion in Al Hassa Oasis using a logistic regression 

model for two time periods of agricultural change in 1985 and 2015. This chapter has been 

submitted to ISPRS International Journal of Geo-Information for review and publication.   

Chapter Seven develops a niche model to estimate the potential spatial distribution for current 

and future date palm cultivation in Saudi Arabia using climate and non-climatic variables. The 

information in this chapter have addressed the importance of incorporating climatic and non-

climatic parameters to achieve better accuracy and more robust results when assessing the 

impact of climate change on predicting the future distribution and fate of economically 

important crops, such as date palm, since the results must satisfy more extensive requirements. 

The results of this chapter provide early warning scenarios for how environmental managers 

should respond to changes in the distribution of the date palm in Saudi Arabia. This chapter 

has been published in The Journal of Agricultural Science. 

The final chapter, Chapter Eight, presents the general conclusions of the thesis and describes 

the main findings of each chapter. Research implications are described and future research 

needs are highlighted. 
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 Abstract 

Soil salinity is a serious environmental problem especially in arid and semiarid areas. It either 

occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth 

and productivity leading land degradation ultimately. Thus, it is important to monitor and map 

soil salinity at an early stage to enact effective soil reclamation program that help lessen or 

prevent future increase in soil salinity. Remote sensing has outperformed the traditional method 

for assessing soil salinity offering more informative and professional rapid assessment 

techniques for monitoring and mapping soil salinity. Soil salinity can be identified from remote 

sensing data obtained by different sensors by way of direct indicators that refer to salt features 

that are visible at the soil surface as well as indirect indicators such as the presence of 

halophytic plant and assessing the performance level of salt-tolerant crops. The purpose of this 

paper is to 1) discuss some soil salinity indicators; 2) review the satellite sensors and methods 

used for remote monitoring, detecting and mapping of soil salinity, particularly in arid and 

semi-arid regions; 3) review various spectral vegetation and salinity indices that have been 

developed and proposed for soil salinity detection and mapping, with an emphasis on soil 

salinity mapping and assessment in arid and semi-arid regions; and 4) highlight the most 

important issues limiting the use of remote sensing for soil salinity mapping, particularly in 

arid and semi-arid regions.  

Keywords: Soil Salinity, Remote Sensing, Halophytic Plant, Salinity Index. 

 Introduction 

According to the U.S. Salinity Staff Laboratory, soils with conductivity of the saturation extract 

(EC) > 4 deciSiemens per meter (dS/m) at 25˚C, Exchangeable Sodium Percentage (ESP) < 15 

and pH (soil reaction) < 8.5 are referred to saline soils (Richards, 1954b). Salt in the soil mostly 

derives from the weathering of rocks and primary minerals, which formed in situ or transported 
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by water or wind (Shrestha and Farshad, 2008). Other causes of soil salinity are topography, 

irrigation and dryland salinity, which occur due to forest clearance, overgrazing, and cutting 

bushes that cause water-tables to rise and bring saline groundwater close to the land surface. 

Thus, soil salinity categories are either primary salinity which is naturally occurring or 

secondary salinity which is human-induced.  

Soil salinity is a prevalent environmental hazard in arid and semiarid regions around the world 

(Hillel, 2000). The United Nations Food and Agriculture Organization (FAO) has estimated 

that saline soil cove 397 million hectares of the total land area of the world (Koohafkan, 2012). 

Africa, Asia, Australia, Europe, Latin America, Near East and North America are the most 

affected areas (Koohafkan, 2012). According to the most recent estimates from a survey of 

farmers, about 2 million hectares and 20000 farms across Australia alone showed some signs 

of salinity (Statistics, 2002). A recent study conducted by McFarlane et al. (2004) has estimated 

that, in Western Australia alone, secondary salinity covers about 10% of the land, and could 

reach 23% if action is not taken to stop its spread.  

Soil salinity adversely affects plant growth, crop production, soil and water quality, and 

eventually results in soil erosion and land degradation (Rhoades and Loveday, 1990; Zhu, 

2001; Corwin and Lesch, 2003). Soil salinity impacts are not limited only to the environment 

but extend to the economy. For instance, the economic losses due to secondary salinization in 

Batinah region in Oman have been estimated at US$ 1,604 ha-1 (28%) when the salinity 

increases from low to medium level and US$ 4,352 ha-1 (76%) if it jumps from low to high 

level (Naifer et al., 2011).  

Basically, soil salinity is a dynamic process with severe consequences for the soil, hydrological, 

climatic, geochemical, agricultural, social, and economic aspects. Therefore, for greater 

development and implementation of sufficient soil reclamation programs and preventing any 
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further salinization to sustain agricultural lands and natural ecosystems, information on the 

spatial extent, nature and distribution of soil salinity is becoming very essential. Thus, timely 

detection of soil salinity, monitoring and assessment of its severity level and extent become 

very important in its beginning at local and regional scales. 

Conventionally, soil salinity has been measured by collecting in situ soil samples and analyzing 

those samples in the laboratory to determine their solute concentrations or electrical 

conductivity. However, these methods are time-consuming and costly since dense sampling is 

required to adequately characterize the spatial variability of an area (Dent and Young, 1981; 

Dehaan and Taylor, 2002; Nanni, 2006; Brunner et al., 2007). Ghabour and Daels (1993) 

agreed that detection soil salinity traditionally is time consuming, but remote sensing data and 

techniques offer more efficiently and economically rapid tools and techniques for monitoring 

and mapping soil salinity.  

Remote sensing data and techniques have been progressively applied to monitor and map soil 

salinity since 1960s when black- and-white and color aerial photographs used to delineate salt-

affected soils (Dale et al., 1986). Multispectral data such as Landsat, Satellite Pour 

l'Observation de la Terre (SPOT), IKONOS, QuickBird and the Indian Remote Sensing (IRS) 

series of satellites, as well as hyperspectrl data such as EO-1 Hyperion and HyMap have been 

found to be useful in detecting, mapping, and monitoring soil salinity (Farifteh, 2007; Dwivedi 

et al., 2008; Weng et al., 2008b; Setia et al., 2011; Dehni and Lounis, 2012; Koshal, 2012; 

Teggi et al., 2012). Generally, remote sensing uses the electromagnetic energy reflected from 

targets to obtain information about the Earth’s surface with different levels of detail. So, based 

on this concept, the spectral reflectance of the salt features at the soil surface has been widely 

studied using remote sensing and used as a direct indicator for soil salinity detection and 

mapping. However, when the soil moisture is high or the crust salt is invisible on the soil 

surface or mixed with other soil constituents this direct approach becomes complicated and 
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may yield unreliable results since these factors influence the soil spectral reflectance. But, the 

present scattered vegetation or halophytes on the soil surfaces can serve as a sign of the salinity 

problem, making it possible to indirectly detect and map areas that are affected by soil salinity 

using the reflectance from vegetation. Normally, unhealthy vegetation has a lower 

photosynthetic activity, causing increased visible reflectance and the reduced near-infrared 

reflectance (NIR) from the vegetation (Weiss et al., 2001). This pattern has been found in 

various plants subjected to salinity stress (Tilley et al., 2007). Therefore, based on this finding, 

several vegetation indices (VIs) such as Normalized Differential Vegetation Index (NDVI) and 

Soil Adjusted Vegetation Index (SAVI) have been used as indirect indicators assess and map 

soil salinity. Similarly, a number of researchers have developed different salinity indices to 

detect and map soil salinity such as Normalized Difference Salinity Index (NDSI) and Salinity 

Index (SI). 

This review concentrates on the problem of soil salinity and discusses some soil salinity 

indicators and how remote sensing data and technologies are used for monitoring and mapping 

soil salinity. Additionally, it will discuss the most current vegetation and salinity indices used 

for soil salinity detecting and mapping and highlights some of the limitations and problems of 

using remote sensing for monitoring and mapping this hazard with an emphasis on soil salinity 

mapping and monitoring techniques for arid and semi-arid regions. 

 Soil Salinity and Remote Sensing 

2.3.1 Soil Salinity Symptoms 

Soil salinity can be detected directly from remotely sensed data through salt features that are 

visible at the soil surface, such as bare soil with white salt crusts on the surface (Teggi et al., 

2012; Matinfar et al., 2013) or indirectly from indicators such as the presence of halophytic 
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plant, the performance level of salt-tolerant crops (Alhammadi and Glenn, 2008; Aldakheel, 

2011; Iqbal, 2011; Zhang et al., 2011). 

2.3.1.1 Salt Features at the Soil Surface 

The dynamic processes at the surface of saline soil limit the monitoring and assessment of the 

salinization process because they influence the spectral, spatial and temporal behavior of the 

salt features (Metternicht and Zinck, 2008a). Via the physico–chemical properties of soil such 

as soil moisture content, organic matter, soil texture, types of clay color and surface roughness 

soil spectral reflectance is determined (Baumgardner et al., 1985; De Jong, 1992; Demattê et 

al., 2004; Shrestha et al., 2005; Brown et al., 2006). Due to salinity these soil properties change 

which affect the spectral reflectance of features that occur at the soil surface, including salt 

crusts and efflorescence besides variations in surface texture and structure (Schmid et al., 2008; 

Thomas, 2011). For example, Schmid et al. (2008) found that crusted saline soil reflects 

strongly in the visible and near-infrared (NIR) bands; moreover, Rao Singh and Sirohi (1994) 

noted that a crusted saline soil surface is generally smoother than a non-saline surface and 

exhibits high reflectance in the visible and NIR bands, which has been confirmed by Rao et al. 

(1995). On the other hand, Metternicht and Zinck (1997) found that the reflectance in the 

visible and NIR bands is highly affected by both the crust color and surface roughness factors.  

Despite the effects of salt features on the soil surface on the spectral reflectance, they have been 

considered good direct indicators of soil salinity. For example, Fernandez-Buces et al. (2006) 

used surface features to predict soil salinity. They found that the correlation coefficient between 

surface colors, EC and the sodium adsorption ratio (SAR) were statistically significant, which 

suggested that efflorescence color is a promising surface indicator with which to estimate soil 

salinity.  

  



  

17 

2.3.1.2 Presence of Halophytic Plants 

Halophytic plants (salt-tolerant plants) are plants that tolerate high salt concentrations of the 

soil and can be grown on a salt affected land (Glenn et al., 1999). Although halophytic plants 

are common in saline areas, not all have been found to be good remote sensing indicators of 

soil salinity. For instance, Metternicht (1998) found the spectral reflectance curve with high 

absorption in the visible range and high reflectance in the NIR range of halophyte 

Chenopodiaceae in Bolivia, to be equivalent to that of chlorophyll-rich vegetation. In contrast, 

due to lower chlorophyll content the spectral reflectance curve of date palm (Phoenix 

dactylifera L.), also a halophyte, increased continuously in the visible and NIR bands. This 

study concluded that halophytic plants were promise indicator to distinguish saline areas from 

non-affected ones. 

2.3.1.3 Crop Performance 

The performance of some crops that can be grown on saline soils, such as alfalfa, barley, and 

cotton, reflect the severity of soil salinity. Cotton is largely cultivated on irrigated land, is 

therefore considered an ideal indirect indicator for soil salinity, so it has been used as salinity 

indicators in a variety of studies (Metternicht and Zinck, 2008a). For example, based on the 

high correlations between the Normalized Difference Vegetation Index (NDVI) values of 

cotton, sugarcane crops and the EC, Wiegand et al. (1994; 1996) successfully assessed the 

severity and extent of soil salinity in terms of the economic impact on crop production and also 

distinguished saline soils from non-affected soils. This strong relationship most likely exists 

only where salinity is the major factor that causes crop yield variability; lands that suffer from 

soil salinity are likely to have other factors that affect yields as much or more than salinity, 

such as high or low temperatures, topography and land management. Therefore, deduction 

of the relationship between a number of saline fields and an entire landscape is likely to result 



  

18 

in large errors, so the possible use of this indicator for determining the level of soil salinity 

must be checked carefully. To overcome this issue, some researchers have proposed using 

average crop production over a series of years to mask out the noise from non-soil factors that 

differ from year to year. For example, Lobell et al. (2007) warn of the use of inter-annual 

changes on crop yield as an indirect indicator of soil salinity at regional scales because yield 

mapping that is limited to only one year does not always give a reliable estimator of soil 

salinity, particularly when strongly saline soils are scarce. Thus, through the use of a 6-year 

temporal series of satellite images of yield, they obtained a strong correlation between yield 

losses and soil salinity; they highlighted that yield loss in agricultural regions could be 

primarily due to several factors, including soil salinity.  

 Mapping and Monitoring Soil Salinity Using Remote 

Sensing Data 

Advantages of using remote sensing technology include saving time, wide coverage (satellite 

remote sensing provides the only source when data is required over large areas or regions), are 

faster than ground methods, and facilitate long term monitoring. These techniques provide 

multispectral image with resolutions that can be ranged from medium to high, as well as 

hyperspctral image. These remotely sensed data have been successfully used for monitoring 

and mapping soil salinity for decades with mixed results. Many researchers have used different 

techniques to monitor and map soil salinity using remote sensing data, as discussed below.  

2.4.1 Multispectral Satellite Sensors for Mapping and Monitoring 

Soil Salinity 

Extensive research using satellite imagery for mapping and monitoring soil salinity has been 

conducted over the last three decades, mostly with multispectral sensors. These include Landsat 

Thematic Mapper (TM), Landsat Multispectral Scanner System (MSS), Landsat Enhanced 
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Thematic Mapper Plus (ETM+), SPOT, Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (Terra-ASTER), Linear imaging self-scanning sensor (LISS-III) and 

IKONOS (Verma et al., 1994; Dwivedi, 2001; Dwivedi et al., 2008). For example, in the United 

States of America (USA), Elnaggar and Noller (2010) used Landsat TM imagery integrated 

with decision-tree analysis (DTA) to map soil salinity in central Malheur County. They found 

that there was a significant relationship between EC values and reflectance in Landsat bands 

1, 2, 3 and 4 as well as the Brightness (BI) and Wetness (WI) indices. Maximum likelihood 

supervised classification was used to classify the image into non-saline soils (EC < 4 dS/m) 

and saline soils, with accuracies of 97% and 60% respectively, whereas DTA predicted five 

classes of soil salinity with an overall accuracy of approximately 99%. Their results indicated 

that the use of Landsat TM imagery effectively identified bare soils that were characterized by 

high spectral reflectance due to a high salt content on the surface, and the approach of 

integrating DTA with remote sensing data was more accurate and effective compared to using 

remote sensing analysis alone.   

Many researchers, including Katawatin and Kotrapat (2004), Mehrjardi (2008) and Yu et al. 

(2010b) have investigated the utility and effectiveness of ETM+ data for soil salinity mapping 

and monitoring. For example, in Thailand, Katawatin and Kotrapat (2004) investigated the use 

of Landsat-7 ETM+ with different combinations of three sources of ancillary data (topography, 

geology, and underground water quality) for soil salinity mapping. A maximum likelihood 

classification method was employed in this study. Their results showed that the use of Landsat 

ETM+ data bands 4, 5 and 7 in combination with all three types of ancillary data yielded the 

most accurate soil salinity map, with 83.6% overall accuracy. Additionally, Douaoui et al. 

(2006), Farifteh et al. (2006) and Eldeiry and Garcia (2008) agreed that an integrated approach 

using remote sensing techniques in addition to ancillary data such as field data, topography and 
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spatial models geophysical surveys can improve the development of high quality soil salinity 

maps. 

Using multispectral sensors for soil salinity research has also been studied by Goossens et al. 

(1993). Their study examined and compared the accuracy of Landsat TM, MSS, and SPOT XS 

imagery for soil salinity mapping. They found that Landsat TM was optimal for soil salinity 

mapping. Another comparative assessment of the suitability of multisensor data for soil salinity 

studies was conducted in Pakistan by Ahmed and Andrianasolo (1997). They compared the 

performance of Landsat TM and SPOT XS in mapping salinity at a semi-detailed level. Their 

results were completely opposite to that of Goossens et al. (1993). They found that the SPOT 

XS data were more helpful than Landsat TM as it provided finer details of various thematic 

variables.  

Thermal band has proven to be a useful tool in soil salinity studies. It has a key role in 

differentiating saline soils, especially in areas of bare soil or sparse and similar vegetation.  For 

example, Verma et al. (1994) demonstrated that the addition of the thermal band of Landsat 

TM to the visible–NIR bands helped overcome spectral similarity issues with saline soils. 

Furthermore, thermal band was used to discriminate salt and sodium-affected soils by 

Metternicht and Zinck (1997). They found that the incorporation of the thermal band allowed 

for better salt and sodium detection. Furthermore, in a case study in Iran, Alavi Panah and 

Goossens (2001) found that the addition of the thermal band to the best Landsat TM visible-

NIR band combination had great potential for separating saline soil from gypsiferous soil. This 

study confirmed the result obtained by Goossens et al. (1999), who reported the key role of the 

TM thermal band in separating gypsiferous soil from saline soils. In China, Huang et al. (2005) 

used Terra ASTER imagery to identified saline areas dominated by sodium chlorides and 

sodium sulfates. Their results showed a good correlation between surface salt concentrations 

and band 1 of the ASTER sensor, followed by bands 2 and 3. 
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It cannot be denied that medium or low spatial resolution of the satellite images can limit the 

mapping and detection of saline regions, particularly when the affected areas are smaller than 

the pixel size. Thus, high resolution multispectral sensors with pixel size of less than 5 m are 

becoming an essential for soil salinity studies (Dwivedi et al., 2008). However, only limited 

attempts have been made to identify and map soil salinity problems using fine spatial resolution 

(0.6 m – 4 m) images that are available from IKONOS (4 bands) and Quickbird (4 bands) 

satellites, as well as WorldView-2, which has 8 multispectral bands at 1.84 m spatial resolution 

and one panchromatic band at 0.5 m spatial resolution (Navulur, 2006). This is most likely due 

to the higher cost of this higher-resolution imagery and these sensors being more recently 

developed systems. Elhaddad and Garcia (2005) have used IKONOS satellite imagery and crop 

reflectance to identify the severity level of soil salinity and its effect on crop yield in Arkansas 

River Basin, Colorado. Image enhancement was used to separate the crop condition into several 

classes, and supervised classification was applied to delineate the different levels of soil 

salinity. They concluded that the superior effectiveness of their approach was primarily due to 

the use of high spatial resolution imagery. On the other hand, Dwivedi et al. (2008) conducted 

a comparative study on the performance of IKONOS imagery and imagery from the IRS-ID 

LISS-III sensor for mapping salt-affected soils. Different image classification and 

transformation techniques were used in their study, and an overall accuracy of 92.4% was 

gained when using IKONOS data compared to an overall accuracy of 78.4% and 84.3% 

obtained when using the IRS-ID LISS-III multispectral sensor, which indicates the great 

potential of high spatial resolution IKONOS images for soil salinity mapping and detection. In 

South Australia, Setia et al. (2011) detected and mapped soil salinity in an agricultural area 

using QuickBird imagery. They found that 99% of the variation in spectral values occurred in 

bands 2 and 4. Furthermore, they found that by dividing the image into hundreds of paddocks 

(small fields) and performing an unsupervised classification using a paddock-by-paddock 
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approach, which is a procedure where each individual paddock is classified and mapped 

separately, they were able to map soil salinity severity levels more accurately. Thus, they 

concluded that a paddock-by-paddock classification approach for QuickBird imagery is a 

promising method for detecting degrees of salinity severity at a farm level. However, in spite 

of these promising results, it should be noted that it would extremely difficult to assess the 

validity and reliability of this approach at regional scales because it is a time-consuming and 

labor-intensive procedure. Thus, further investigations will help to elucidate whether and how 

a paddock-by-paddock classification approach will work at regional scales. 

2.4.2 Limitations of Multispectral Satellite Sensors in Soil Salinity 

Mapping and Monitoring 

Multispectral satellite sensors have been and still are the preferred method for mapping and 

monitoring soil salinity. This is primarily due to the low cost of the imagery (e.g., Landsat, 

SPOT) and the ability to map extreme surface expressions of salinity. Nevertheless, 

multispectral data has limited diagnostic capability because of its coarse spatial and spectral 

resolutions (Spies and Woodgate, 2005). For example, Furby et al. (1995) and Howari (2003) 

reported that direct mapping of soil salinity with multispectral imagery had major limitations 

that arise, especially where there are no salt features on the soil surface and where saline soils 

are dominated by halophyte plants. Additionally, Furby et al. (1995) stated that multispectral 

satellite sensors caused confusing reflectance, as they found that non-saline soils were confused 

with bare, extremely saline areas. In the case of Landsat imagery, Fraser and Joseph (1998) 

reported that the spectral resolution of Landsat was insufficient due to the difference between 

the spectra of saline land and waterlogged land not being sufficient to allow spectral separation, 

as well as the variable spectral response of saline soil. Additionally, Hick & Russell (1987) 

state that the ability of discriminating plant species and plant health conditions is challenging 
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with Landsat imagery due to the absence of narrow bands in the range of 700-730 nm, 730-760 

nm and 900-1100 nm. 

2.4.3 Hyperspectral Remote Sensing Data 

Most of the studies discussed above have attempted to map and monitor soil salinity using 

different multispectral satellite sensors. However, the use of such sensors is restrictive, as their 

spectral resolution influences the quality and quantity of the information they provide. The 

development of airborne and satellite-based hyperspectral sensors has overcome some of the 

spatial and spectral limitations of multispectral satellite imagery for monitoring and mapping 

soil salinity, both regionally and locally. Hyperspectral sensors offer a large number of spectral 

bands with high spatial resolution that allow the discrimination of halophyte plants from non-

halophyte plants as well as the identification of surface salt features in more detail than the 

multispectral sensors (Gupta, 2003; Dutkiewicz, 2006). Taylor et al. (1994) demonstrated the 

possibility of using airborne hyperspectral data to map salinity in the soil. They described the 

use of visible–NIR and shortwave infrared (SWIR) hyperspectral data that were collected with 

airborne Geoscan sensor to map soil salinity at Pyramid Hill, Victoria, Australia. They found 

that differentiation of salt-affected soils based on the mapping of halophytic plants simply 

achieved via the employing of the principal component analysis of Geoscan imagery. The 

potential of the HyMap airborne hyperspectral sensor, which captures images within a spectral 

range of 450–2500 nm in 128 bands, for soil salinity studies has been tested by Dehaan and 

Taylor (2002; 2003). They concluded that HyMap has considerable potential for mapping 

saline areas that characterize the variety of salinity levels and scattered halophyte plants. 

Likewise, Farifteh et al. (2007) measured reflectance spectra from multiple sources 

(experimental, field, and airborne datasets) to predict salt concentrations with Partial Least 

Squares Regression (PLSR) and Artificial Neural Networks (ANN) and mapped soil salinity 
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using airborne hyperspectral data acquired with HyMap. Their results indicated that both PLSR 

and ANN enabled good mapping of soil salinity.  

After the year 2000, two experimental hyperspectral sensors were launched, CHRIS and 

Hyperion (Metternicht and Zinck, 2008b). Compared to airborne hyperspectral remote sensing, 

very limited numbers of studies on soil salinity have been conducted with these space-borne 

hyperspectral data. In Turkey, soil salinity was assessed by Satir et al. (2000) using CHRIS 

PROBA sensor imagery and the spectral characteristics of indicator crops. Their study showed 

a strong correlation between the spectral wavebands of CHRIS PROBA and the reflected 

signals of cotton and wheat for detecting soil salinity, which confirmed that the condition of 

cotton and wheat crops is a good indirect indicator of soil salinity. On the other hand, a study 

by Dutkiewicz (2006) evaluated the performance of Hyperion imagery for mapping surface 

symptoms of dryland salinity using mixture-tuned matched filtering in southern Australia. She 

found that the hyperspectral imagery was unable to distinguish halophytic samphire vegetation 

at slight or moderate levels of salinity; however, it could be used to map high to very high and 

extremely high salinity. In China, Weng et al. (2008b) have investigated the potential of data 

from the spaceborne Earth Observing 1 (EO-1) Hyperion sensor for the prediction of soil 

salinity. Partial Least-Squares Regression (PLSR) and Stepwise Linear Regression (SWR) 

were used as prediction models. Their results indicated that the PLSR model produced more 

accurate estimations of soil salt content than SWR and could overcome the difficulties that 

were caused by high dimensionality and strong correlation among input variables as well as 

noisy data. Thus, they concluded that PLSR was a promising approach for the quantitative 

mapping of soil salinity with Hyperion data over a large area. These results suggest that further 

studies need to be conducted to examine prediction models based on nonlinear regression 

methods, and the spectral noise of hyperspectral data should be taken into consideration to 

increase the accuracy of soil salinity mapping. In addition, a more recent study was conducted 
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in Iran by Hamzeh et al. (2012b) to investigate the ability of Hyperion spaceborne hyperspectral 

data for mapping salinity stress in sugarcane fields. Different classifications such as Support 

Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and 

Maximum Likelihood (ML) were used with different band combinations to classify soil salinity 

into three classes (low, moderate and high salinity). Their results indicated that SVM 

classification using all bands as input data yielded a salinity map with good accuracy, with an 

overall accuracy and kappa coefficient of 78.7% and 0.68, respectively.  

 Using Vegetation and Soil Indices in Soil Salinity 

Studies 

2.5.1 Vegetation and Soil Indices 

As mentioned previously, halophytic plants grow naturally in saline soil, and can be adapted 

to high soil salinity. Therefore, vegetation has been used as an indirect indicator to predict and 

map soil salinity. Accordingly, numerous researchers have conducted studies on the mapping 

and delineation of soil salinity using different Spectral Vegetation Indices (SVI). Among the 

vegetation indices, NDVI, SAVI, Ratio Vegetation Index (RVI) and Tasseled Cap 

Transformation that consisted of the Soil Brightness Index (SBI), the Green Vegetation Index 

(GVI), and the Wetness Index (WI) have been used in soil salinity studies (Wang et al., 2002a; 

Eldeiry and Garcia, 2008; Jabbar and Chen, 2008; Lobell et al., 2010; Aldakheel, 2011; Zhang 

et al., 2011; Matinfar et al., 2013). 

Due to absorption in the visible range and high reflectance in the NIR range of the 

electromagnetic spectrum, the NDVI (Table 2.1) has been widely used to map soil salinity by 

monitoring halophytic plants (Fernandez-Buces et al., 2006; Jabbar and Chen, 2008; Elnaggar 

and Noller, 2010). The difference in reflectance between the visible and NIR bands is divided 

by the sum of the two bands’ reflectance (Table 2.1). This normalizes differences in the amount 
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of incoming light and produces a number from -1 to 1; the range of actual values is 

approximately 0.1 for bare soils to 0.9 for healthy vegetation (Deering and Rouse, 1975). In 

Mexico, Fernandez-Buces et al. (2006) found a significant correlation between NDVI, EC and 

SAR. Moreover, Pérez González et al. (2006) have correlated the NDVI of halophytic 

vegetation with the spatial variability of the chemical and physical properties of a transect to 

identify saline hydromorphic soils. Their results showed the NDVI to be very proper in 

detecting halophytic plant and relating it to saline soils. Additionally, Bannari et al. (2008) have 

stated that because plant growth declines due to soil salinity, salt stress could be predicted using 

the NDVI. However, researchers such as Metternicht and Zinck (2008b) and Zhang, et al. 

(2011) argue that detecting soil salinity using the NDVI is challenging because the presence of 

vegetation could cause spectral confusion with the reflectance properties of salt and also 

because the NDVI is considered an unreliable indicator, as it is also correlated to other yield 

variables such as chlorophyll content, biomass and leaf area. Liu and Huete (1995) have 

developed a modification of the NDVI to reduce the atmospheric and canopy background 

noise, the enhanced soil and atmosphere resistant vegetation index (EVI) (Table 2.1). A 

comparison study of the efficiency of the EVI and NDVI calculated from Multi-year Moderate 

Resolution Imaging Spectroradiometer (MODIS) imagery for assessing soil salinity in the Red 

River Valley, United States has been conducted by Lobell et al. (2010). They found that the 

EVI is a more reliable indicator of salinity than the NDVI. The use of the RVI (Table 2.1) to 

measure the spectral reflectance of soybean canopy and elephant grass under different salinity 

and irrigation treatments was investigated by Wang et al. (2002a) and Wang et al. (2002b). In 

both studies, the results showed that the canopy spectral reflectance in the NIR region was 

reduced as salinity level increase. 

Furthermore, SAVI (Table 2.1) was developed by Huete (1988) to eliminate soil-induced 

variation and for use in areas where soil backgrounds differed, and the low canopy cover was 
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present. Depending on the crop density, the L factor generally ranges from 0 for higher 

densities and 1 for lower densities (Huete, 1988). The resulting SAVI values in the classified 

image are either positive, negative or zero. A positive SAVI value indicates that there is a 

decrease in the vegetation, while a negative value indicates an increase in vegetation. A zero 

value indicates no change in vegetation. The effectiveness of this index for soil salinity 

detection and mapping has been studied by several researchers, including Zhang et al. (2011), 

Alhammadi (2010), Koshal (2010), Elnaggar and Noller (2010) and Masoud and Koike (2006). 

For example, in the United Arab Emirates (UAE) Alhammadi and Glenn (2008) used the SAVI 

index for detecting date palm health under soil salinity. They found that the SAVI values 

decreased with increasing soil salinity; for instance, the SAVI value was 0.155 at the lowest 

salinity level of 6900 parts per million (ppm), whereas the value decreased to 0.104 at the very 

high salinity of 41000 ppm. These results showed the potential of using the date palm, which 

is a halophytic plant, as an indirect indicator of soil salinity as well as the effectiveness of the 

SAVI in detecting plant stress related to severe salinity and thus permitting the identification 

and mapping of saline areas indirectly. Recently, Zhang et al. (2011) have proposed four Soil-

adjusted Salinity Indices (SASIs) through the most sensitive bands in a SAVI form. For 

halophyte plants, SASIs produced better results compared to other selected vegetation indices 

such as the NDVI and SAVI. These results indicate that in highly saline areas that are covered 

mainly by halophyte plants, SASIs would give superior results, whereas VIs such as NDVI and 

SAVI would only be proper to assess salinity in low saline areas covered by salt-sensitive 

plants.
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Table 2.1 Vegetation and soil salinity Indices that have been proposed and used for soil salinity monitoring and mapping 

Indices Equation References 

1 
Normalized Differential Vegetation 

Index 
NDVI = (NIR − R)/(NIR + R) (Deering and Rouse, 1975) 

2 Enhanced Vegetation Index EVI = 2.5 ( NIR − R)/(NIR +  6 R – 7.5 BLUE +  1) (Liu and Huete, 1995) 

3 Soil Adjusted Vegetation Index SAVI = ((NIR − R)/(NIR + R + L)) × (1 + L) (Huete, 1988) 

4 Ratio Vegetation Index RVI= NIR/R (Major et al., 1990) 

5 Normalized Differential Salinity Index NDSI = (R − NIR)/(R + NIR) 

(Khan et al., 2005) 6 Brightness Index BI = √R2 + NIR2 

7 Salinity Index SI = √BLUE × R 

8 Salinity Index SI1 = √G × R 

(Douaoui et al., 2006) 9 Salinity Index SI2 = √G2 + R2 +  NIR2      

10 Salinity Index SI3 = √G2 + R2 

11 Salinity Index SI-1 = ALI9/ALI10 

(Bannari et al., 2008) 

12 Salinity Index SI-2 = (ALI6 –  ALI9)/ (ALI6 +  ALI9) 

13 Salinity Index SI-3 = ((ALI9 –  ALI10))/(ALI9 +  ALI10) 

14 Soil Salinity and Sodicity Indices SSSI-1 = (ALI9 –  ALI10) 

15 Soil Salinity and Sodicity Indices SSSI-2 = ((ALI9 ×  ALI10 –  ALI10 × ALI10))/ALI9 

16 Salinity Index S1 = Blue/ R 

(Abbas and Khan, 2007) 

17 Salinity Index S2 = (Blue − R)/(Blue + R) 

19 Salinity Index S3 = (G × R)/Blue 

20 Salinity Index S4 = √Blue × R 

21 Salinity Index S5 = (Blue × R)/G 

22 Salinity Index S6 = (R × NIR)/G 
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Similarly, various spectral salinity indices have been developed for salt mineral detection and 

mapping. Douaoui et al. (2006) have proposed three salinity indices (Table 2.1) produced from 

SPOT XS imagery to detect and map soil salinity hazards in a semi-arid environment in 

Algeria. They found that those indices were strongly correlated with measured values, but 

considerably underestimated the salinity of areas with high levels of surface salt. Besides, Khan 

et al. (2005) have proposed three spectral salinity indices: the Brightness index (BI), 

Normalized Difference Salinity Index (NDSI) and Salinity Index (SI) (Table 2.1) from the 

LISS-II sensor of the IRS-1B satellite to assess hydrosalinized land degradation in Pakistan. 

Among these indices, they found that NDSI yielded the most acceptable results in identifying 

different salt classes. Another study conducted by Vidal et al. (1996) and Vincent et al. (1996) 

looked at salinity by differenting vegetated from non-vegetated areas using NDVI; then the BI 

was computed to identify the moisture and salinity status of fallow land and deserted fields. 

Furthermore, three different salinity indices, SI-1, SI-2 and SI-3 (Table 2.1) from the EO-1 ALI 

spectral bands, have been proposed by Bannari et al. (2008) to discriminate slight and moderate 

soil salinity and sodicity in Morocco. Although the results showed that SI-3 had the highest 

correlation (46.9%), the result from this index was not adequate to provide precise information. 

Therefore, they devised another two Soils Salinity and Sodicity Indices (SSSI) (Table 2.1). 

Their results indicated that these SSSI indices were likely to increase the identification 

accuracy in areas with low and medium salinity because they offered the most significant 

correlation (52.9%) with the ground EC measurement. In Pakistan, Abbas and Khan (2007) 

have suggested an integrated approach based on the spatial analysis of both ground and satellite 

data to assess soil salinity. Remotely sensed data-based salinity indices and a Principal 

Components Analysis (PCA) were developed to detect soil salinity. Their result showed that 

out of the six salinity indices (Table 2.1) S3 produced the most promising result compared to 
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ground measurements. Moreover, they concluded that PCA and salinity indices are promising 

techniques for soil salinity prediction based on satellite images.  

Looking at these vegetation and soil salinity indices in the literature, a number of results stand 

out. Utilizing vegetation indices in the assessment and mapping of soil salinity in areas of 

densely vegetated soils will yield promising results, whereas on bare soils, the identification of 

salt based on vegetation indices will not work. Thus, soil salinity indices will be the appropriate 

method in the case of bare soils or soils with very low scattered vegetation cover, providing 

super results. These observations are in agreement with Bouaziz et al. (2011b) and Fan et al. 

(2012). Bouaziz et al. (2011b) found that vegetation indices such as SAVI, NDVI and EVI had 

a low correlation with EC due to an insufficient density of vegetation cover, whereas soil 

salinity indices indices exhibited higher correlations with EC. Additionally, Fan et al. (2012) 

found that NDVI values had a significant negative relationship with soil salinity in soils 

covered by vegetation, whereas this relationship was not clear on bare soil.  

 Issues in Mapping Soil Salinity in Arid and Semi-Arid 

Regions Using Remote Sensing  

The spatial, temporal and vertical variability in the soil profile are the limiting factors in the 

assessment and mapping of soil salinity using remote sensing data because the spectral 

reflectance is unable to provide information on the whole soil profile, as it only observes the 

soil surface (Schmugge et al., 2002; Sethi et al., 2010). Moreover, the surface characteristics 

in many cases may not be representative of the deeper soil profile (Dewitte et al., 2012). 

However, combining remote sensing data with geophysical surveys and simulation models can 

be an alternative option (Farifteh et al., 2006). 

The direct detection of soil salinity becomes applicable and much easier for bare soils and/or 

whenever salt-related symptoms (e.g., crusts) and scattered vegetation are visible on the 

http://thesaurus.com/browse/applicable
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surface; in these cases, information such as salt types and quantity as well as the crust thickness 

can be provided based on the soil surface spectral signatures (Howari, 2003; Ghrefat et al., 

2007). Yet, the direct deduction of soil salinity in arid and semi-arid regions that are 

characterized by dense vegetation cover would be difficult, as the vegetation will cause spectral 

mixing (Kaleita et al., 2005; Ding et al., 2011). 

On the other hand, different studies such as Tashi et al. (2010), Fernandez-Buces et al. (2006)   

have successfully used indirect indicator to map soil salinity through monitoring the vegetation 

condition by using NDVI. Generally, these methods assume that soil salinity is the only stressor 

decreasing and damaging the crop condition, whereas other factors such as inappropriate soil 

management and water quality are neglected. Moreover, reductions in vegetation growth and 

vigor could be related to a lack of necessary nutrients rather than the occurrence of salt. 

Additionally, different plants generally grow in different levels of salinity, so that the NDVI is 

considered an uncertain indicator for soil salinity monitoring and mapping. Besides, the 

existence of halophytic plants may confuse soil salinity detection based on the NDVI due to 

mixing with the spectral signature of salt, which then will lead to classification errors (Sethi et 

al., 2010). Hence, to overcome this issue and remove classification errors to some degree, the 

SAVI index and other indices and enhancement models have helped to separate soil and 

vegetation signals (Mulder et al., 2011).  

Additionally, low spectral resolution satellite images limit the direct detection and mapping of 

soil salinity, primarily due to their inability to detect particular absorption bands of some salt 

types and the frequent occurrence of problems with mixed spectral signatures that come from 

a variety of surface components (Mougenot et al., 1993; Dehaan and Taylor, 2003). 

Nevertheless, the advance of hyperspectral sensors has enabled spectral features associated to 

the characteristic absorption bands of salt minerals to be mapped with more detail (Cloutis, 

1996). The above shortcomings indicate that detecting and mapping soil salinity in arid and 
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semi-arid regions using remote sensing is challenging. This is primarily attributed to the 

weakness of the spectral signals from saline soils compared to the noise caused by other factors. 

Obviously, there is no agreed-on best approach to this technology for monitoring and mapping 

soil salinity, as many researchers have used and applied different tools and techniques to map 

and monitor saline soils with varying degrees of success. For example, in the case of vegetation 

indices, some researchers like Elnaggar and Noller (2010) have found that vegetation indices 

(NDVI, SAVI, and GVI) had a weak correlation with the EC measurements, which suggests 

that halophytes could not be used to identify salt-affected soils under vegetation cover. Sethi 

et al. (2006) in a study in India, found the same, whereas Pérez González et al. (2006) found 

the NDVI to be very useful in detecting halophytic plants and relating it to saline soils. Despite 

these varying results of using halophytic plants as indirect indicators for soil salinity detection 

and mapping, it is ineffective to monitor and map soil salinity through non-halophyte plants, 

as they cannot live in highly saline areas. Thus, taking into consideration the spectral 

reflectance of halophytic plants is necessary for soil salinity detection and mapping, 

particularly in highly saline areas.  

 Conclusion 

Soil salinity, either naturally occurring or human-induced is a serious global environmental 

problem, especially in arid and semi-arid regions. This is a complex dynamic process with 

serious consequences for the soil environment as well as, geochemical, hydrological, climatic, 

agricultural, and economic impacts. Being a severe environmental hazard, the frequent 

detection of soil salinity and assessment of its extent and severity at an early stage become very 

important at both local and regional scales. Traditionally, soil salinity was assessed via 

collecting in situ soil samples and analyzing those samples in the laboratory. Undertaking this 
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method, especially over a large area, is expensive and time consuming. Remote sensing 

represents a good alternative for monitoring and mapping changes in soil salinity. 

Remote sensing data have been used extensively to identify and map saline areas, and the 

potential of remote sensing for assessing and mapping soil salinity is enormous. Multispectral 

satellite sensors are the preferred method for mapping and monitoring soil salinity, largely due 

to the low cost of such imagery and the ability to map extreme surface expressions of salinity. 

However, multispectral data have limited capabilities due to their spatial and spectral 

resolution. Hyperspectral imagery, with its fine spatial and spectral resolutions, allows soil 

salinity mapping in greater detail and represents another alternative. 

Surface reflectance is highly affected by soil’s moisture content, salt content, color, and surface 

roughness. High salt concentrations can be identified through the existence of characteristic 

vegetation types and growth patterns or by the salt efflorescence and crust that are present on 

bare soils. Similar to vegetation indices, researchers have developed different salinity indices 

to detect and map soil salinity. As discussed, these indices have been applied with varying 

degree of success. Field sites differ in terms of levels of salinity and the amount of vegetation 

cover; hence, a single selected index may not perform best in all cases. Each site needs to be 

assessed regarding the strengths and weaknesses of the proposed indices before appropriate 

remote sensing-based indices are used for soil salinity mapping and assessing.  
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 Abstract 

In saline soils, the spectral reflectance of either salt features at the surface or of vegetation that 

was negatively affected by salt varies with different salinity levels. Thus, several indices for 

vegetation and soil salinity have been developed. This study was conducted to assess the soil 

salinity levels in the Al-Hassa Oasis, which is dominated by date palm vegetation, in the eastern 

province of Saudi Arabia. Ground and remote sensing data were used to determine if any 

existing vegetation and soil salinity indices could be used to assess the soil salinity of 

communities vegetated with date palm. A systematic regular grid-sampling approach was used 

to collect a total of 149 composite soil samples from the study area. Thirteen broadband indices, 

which encompassed vegetation and soil salinity indices, were extracted from IKONOS satellite 

images. The predictive power of these indices for soil salinity was examined. The study area 

was dominated by areas of high salinity. Among the investigated indices, the Soil-Adjusted 

Vegetation Index (SAVI), Normalized Differential Salinity Index (NDSI) and Salinity Index 

(SI-T) yielded the best results for assessing the soil salinity of cultivated lands with dense and 

uniform vegetation. In contrast, the NDSI and SI-T exhibited the highest significant correlation 

with salinity for less densely vegetated lands and bare soils. Generally, the soil salinity in the 

areas that were dominated by date palms was successfully assessed by broadband vegetation 

and soil salinity indices that were extracted from the IKONOS satellite images. 

Keywords: Soil salinity, Vegetation indices, Soil salinity indices, Date palm 

 Introduction 

The buildup of soluble salts at or near the soil surface is referred to as soil salinity. Generally, 

salt accumulation is measured by determining the Electrical Conductivity (EC) of a solution 

extracted from a water saturated soil paste (Richards, 1954b). Saline soils are characterized by 

an EC of > 4 deciSiemens per meter (dS/m), an Exchangeable Sodium Percentage (ESP) of < 
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15% and a pH (soil reaction) of < 8.5 (Richards, 1954b). Soil salinity is a severe environmental 

hazard in most arid and semi-arid regions, including Saudi Arabia (Tripathi, 2009). 

In the Al-Hassa Oasis (situated in the eastern province of Saudi Arabia) soil salinity is a serious 

problem that threatens sustainable agriculture (Al-Taher, 1999). The Al-Hassa Oasis is 

dominated by date palms (Phoenix dactylifera L.) and is considered one of the most productive 

date palm production regions in Saudi Arabia (Al-Abdoulhadi et al., 2012). This region 

provides a significant source of income for farmers and the government (Jain et al., 2011). The 

date palm is highly tolerant of salinity (Zaid and Arias Jiménez, 1999). Nevertheless, the 

growth and productivity of date palms in this Oasis are negatively impacted by increasing soil 

salinity. Therefore, it is important to assess the severity of soil salinity in this Oasis to 

implement effective soil reclamation programs that minimize or prevent future increases in soil 

salinity. The remote sensing technique is one rapid assessment technique that can be used for 

this purpose. 

Remote sensing uses the electromagnetic energy that is reflected from targets to obtain 

information about the Earth’s surface (Khorram et al., 2012). Because soil salinity impacts 

vegetation, remotely sensed vegetation reflectance can be used as an indirect indicator of soil 

salinity (Metternicht and Zinck, 2008a; Zhang et al., 2011). Healthy vegetation has a low 

reflectance in the visible region due to absorption by chlorophyll, which is used for 

photosynthesis, and a high reflectance in the Near infrared (NIR) region due to the cellular 

structure of plant leaves (Kumar et al., 2002). In contrast, unhealthy vegetation has less 

chlorophyll and thus shows an increased reflectance in the visible region and reduced 

reflectance in NIR region. These reflectance changes were observed for various plants during 

salinity stress (Peñuelas et al., 1997; Wang et al., 2002b; Fernandez-Buces et al., 2006; Tilley 

et al., 2007; Elmetwalli et al., 2012). Consequently, several studies have assessed soil salinity 

with vegetation reflectance using a variety of vegetation indices. In addition, a number of 
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spectral soil salinity indices were developed to detect and map mineral salt deposits. Table 3.1 

contains some of the most commonly used spectral indices that were found in the literature. 

The relationships between the actual soil salinity and the different vegetation and salinity 

indices derived from broadband satellite images have been found to vary considerably.  

The spatial resolution of the satellite imagery is an important factor should be considered when 

mapping and assessing soil salinity (Ben-Dor et al., 2008b; Schmid et al., 2008). Manchanda 

(1984) has used Landsat Multispectral Scanner System (MSS), for soil salinity mapping and 

observed that Landsat-MSS was of limited use to identify saline areas due to its low spatial 

resolution. Additionally, Bouaziz et al. (2011b) declared that the low spatial resolution of the 

Moderate-resolution Imaging Spectroradiometer (MODIS) data is one of the main reasons for 

the weak correlation between soil salinity data and MODIS data. The efficiency of different 

medium spatial resolution imageries (Landsat and Indian Remote Sensing Satellite (IRS-ID 

LISS-III)) and high spatial resolution (IKONOS and SPOT) in soil salinity mapping and 

detection has been conducted by several researchers. For example, Ahmed and Andrianasolo 

(1997) compared the performance of Landsat Thematic Mapper (TM), and SPOT XS in 

mapping salinity at a semi-detailed level, and found that the SPOT XS data were more helpful 

than Landsat TM as it provided finer details of various thematic variables. Beside, Dwivedi et 

al. (2008) found that delineation of soil salinity based on IKONOS high spatial resolution data 

scored better results than the IRS-ID LISS-III, due to increasing spatial resolution. Moreover, 

a comparative study on the performance of two spatial models using the IKONOS and Landsat 

images for detecting soil salinity in agricultural areas was conducted by Eldeiry and Garcia 

(2008). Their results revealed that satellite image spatial resolution plays a key role in soil 

salinity detection. They found that results derived from IKONOS images were better than those 

obtained from Landsat images for detecting soil salinity. Thus, these studies confirmed that 

high spatial resolution images outperform medium spatial resolution in mapping and detecting 
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soil salinity due to their high spatial resolution which has a significant effect on the capacity to 

identify soil salinity. 

Although significant progress was made for assessing soil salinity using vegetation and soil 

salinity indices that were derived from different broadband satellite images, however, to date, 

no research has assessed the soil salinity in the date palm dominated Al-Hassa Oasis based on 

such methods. Furthermore, no studies have investigated the effectiveness of vegetation and 

soil salinity indices that derived from broadband satellite images for assessing soil salinity in 

areas that are dominated by date palms. Therefore, this research was conducted to assess soil 

salinity in the Al-Hassa Oasis, which is situated in the eastern province of Saudi Arabia. In 

addition, this research evaluated the efficiency of some existing vegetation and salinity indices 

by using IKONOS satellite images to assess soil salinity over an area that was vegetated mainly 

by date palms.  

 Materials and Methods 

3.3.1  Study Area 

Al-Hassa Oasis is one of the largest and oldest oases in the Arabian Peninsula (Al-Dakheel and 

Massoud, 2006).  Al-Hassa Oasis is situated approximately 70 km inland of the Gulf coast 

between a latitude of 25° 05’ and 25° 40’ N and a longitude of 49° 10’ and 49° 55’ E (Figure 

3.1). This Oasis covers an area of approximately 20,000 ha and is at an altitude of 

approximately 130 to 160 m above sea level (Al-Dakheel and Massoud, 2006; Al-Zarah, 2011). 

The Al-Hassa Oasis is L-shaped and is actually composed of two separate oases. Both of these 

oases are slightly sloped to the north and east (Hussain, 1982; Al-Barrak and Al-Badawi, 1988; 

Citino, 2012).  

Currently, the total cultivated land area within the Oasis is approximately 8,000 ha, of which 

92% is planted in date palm (Al-Zarah, 2008). The main Oasis water sources include the 
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Neogene groundwater aquifer and several free flowing springs that are distributed across the 

area (Al Sayari et al., 1984). Of the springs, only 32 are useable and productive. Since 1971, 

these springs were managed by the Al-Hassa Irrigation and Drainage Authority (HIDA) for the 

Al-Hassa Irrigation and Drainage Project (IDP) (Hussain and Sadiq, 1991; Al-Zarah, 2008). 

The Oasis groundwater is primarily used for domestic, irrigational and industrial purposes. The 

main drainage direction follows the natural eastward slope in the eastern part of the Oasis and 

the natural northern slope in the northern part of the Oasis (Al-Barrak and Al-Badawi, 1988; 

Shaltout and El-Halawany, 1992). 

This area is characterized by an arid climate with a high potential evaporation rate that exceeds 

the annual average precipitation of approximately 488 mm. The absolute ambient temperature 

exceeds 45 °C during the summer season (from June to August). During the winter, (December, 

January and February) the temperature is between 2 and 22 °C. 

3.3.2  Site Selection 

Based on visual interpretation of a false color composite from a satellite image, ground truthing 

and the division of the oasis, the three following sites were selected: site "A" in the northern 

Oasis at Al-Uyoun city, site "B" in the middle of the Oasis at Al-Bataliah village, and site "C" 

at the town of Al-Umran in the eastern Oasis (Figure 3.2). 

3.3.3 Soil Sampling  

Soil sampling was conducted during the dry season (January and February) of 2012 with a 

systematic regular grid-sampling scheme that was generated with the ESRI® ArcGIS 9.3® 

software. This procedure was designed to collect composite soil samples in the field. Prior to 

sampling, the coordinates of each composite soil sample in the three sites were recorded with 

the Global Positioning System (GPS). Each composite soil sample consists of four core sub-

samples were collected at a distance of 20 m north, south, east and west of the center sampling 
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point. The sub-samples were collected at a depth of 0 to 20 cm with a hand auger and were 

crushed and mixed together to form one sample. Each composite sample was placed into a 

plastic bag, sufficiently dried and labeled for examination in the laboratory. A total of 149 

composite soil samples were collected from the three defined sites. Soil salinity was determined 

by measuring the EC from the soil saturation extracts in the laboratory, as described by 

Richards (1954a). 

3.3.4 Satellite Image Data  

High spatial resolution cloud-free IKONOS satellite images were used in this study and were 

acquired near the actual soil sampling date on April 20th, 2012. These data were obtained from 

the King Abdul-Aziz City of Science and Technology in Saudi Arabia. These IKONOS satellite 

images have a dynamic range of 8 bits per pixel and a pixel size of 1 m. The IKONOS images 

contain 4 bands that record the reflected or emitted radiation from the Earth’s surface in the B, 

G, R and NIR ranges of the electromagnetic spectrum (Dial, 2003). The spectral ranges of these 

bands are as follows: band 1 (B) 0.40 - 0.52 µm, band 2 (G) 0.52 - 0.60 µm, band 3 (R) 0.63 - 

0.69 µm and band 4 (NIR) 0.76 - 0.90 µm. The images were geo-rectified to the Universal 

Transverse Mercatore (UTM) coordinate system with the datum World Geodetic System 

(WGS) 1984 and zone 39 north. Atmospheric correction was performed using Dark-Object 

Subtraction (DOS) technique (Chavez, 1996).  

 

.
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Figure 3.1 Location of the study area 

Figure 3.2 Study sites, (a) site A, (b) site B and (c) site C 
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3.3.5 Broadband Indices Selection  

One vegetation and 12 soil salinity broadband indices that were derived from the IKONOS 

images were examined based on their potential for assessing soil salinity. These broadband 

indices were selected according to their relative importance for determining soil salinity. The 

vegetation index SAVI was chosen because it minimizes the spectral variation that is caused 

by the soil background (Huete, 1988). A soil adjustment factor (L) of 0.5 was used to account 

for soil background variation of vegetation with an intermediate density (Huete, 1988). A 

positive SAVI value indicates that the vegetation decreased with time and a negative SAVI 

value indicates that the vegetation increased with time. A SAVI value of zero indicates that no 

change in vegetation occurred. The soil salinity indices included NDSI, BI, SI, SI1, SI2, SI3, 

S1, S2, S3, S5, S6, and SI-T (see Table 3.1 for details). 

Table 3.1 Summary of the most widely used vegetation and soil salinity indices for soil salinity assessments 

Index Formulation Reference 

Soil-Adjusted Vegetation Index (SAVI) (NIR − R)/(NIR +  R +  L) (1 + L) (Huete, 1988) 

Salinity index (SI-T) (R/NIR) × 100 
(Tripathi et al., 

1997) 

Brightness Index (BI) √R2 + NIR2 

(Khan et al., 
2005) 

Normalized Differential Salinity Index 
(NDSI) 

(R − NIR)/(R + NIR) 

Salinity Index (SI) √B × R 

Salinity Index 1 (SI1) √G × R 
(Douaoui et al., 

2006) 
Salinity Index 2 (SI2) √G2 + R2 +  NIR2      

Salinity Index 3 (SI3) √G2 + R2 

Salinity Index (S1) B/ R 

(Abbas and Khan, 
2007) 

Salinity Index (S2) (B − R)/(B + R) 

Salinity Index (S3) (G × R)/B 

Salinity Index (S5) (B × R)/G 

Salinity Index (S6) (R × NIR)/G 
B: Blue band, G: green band, R: red band, NIR: Near infrared band.  

L is a soil adjustment factor; and a, b and γ are the soil line parameters. 
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3.3.6 Calculation and Extraction of the Index Values 

The Band Math function of the Environment for Visualizing Images (ENVI) 4.8 was used to 

compute the selected broadband indices. Separate enhanced images were obtained for each 

selected index. The spectral range of these estimated indices is summarized in Table 3.2. 

Due to the spatial uncertainty that is associated with the accuracy of the images geo-referencing 

and the GPS, the sample points were not represented by a single pixel image. Therefore, a 

convolution low pass filter with a kernel size of 5×5 was applied to each classified image. This 

filter, known as a smoothing filter, removes high spatial frequency details and preserves the 

low frequency components (Lasaponara and Masini, 2012). This filter contains the same 

weights in each kernel and replaces the center pixel value with an average of the surrounding 

values.  

Next, the spectral average values for the 4 sub-sample points were extracted from all of the 

enhanced images and the overall average values for the composite soil samples were computed. 

Finally, a Pearson correlation coefficient (R) was calculated between the EC estimated values 

using broadband indices and the actual EC ground measurement values in the R® software. 

 Results  

3.4.1  EC Ground Measurements  

Five salinity classes were established using the EC values based on the Food and Agriculture 

Organization (FAO) soil salinity classification system as follows: 1) very strongly saline, >16 

dS/m; (2) strongly saline, 8-16 dS/m; (3) moderately saline, 4-8 dS/m; (4) slightly saline, 4-2 

dS/m; and (5) non-saline, 0-2 dS/m (Abrol et al., 1988). Table 3.2 contains the EC ground 

measurement summary statistics of the total composite samples from the three sites. The EC 

values ranged from very strongly saline to non-saline. Overall, the very strongly saline class 
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(EC >16 dS/m) was dominant at all three sites and accounted for approximately 87.50, 60 and 

67.35% of the total samples at sites "A", "B" and "C" respectively (Figure 3.3).  

 

3.4.2 Soil spectral reflectance 

The spectral reflectance of soil samples were examined over the visible and NIR wavelength 

ranges. Spectral reflectance is increased as soil salinity increased. Figure 3.4 illustrates that 

moderately saline soil shows higher reflectance than non-saline soil, whereas strongly saline 

soil presents higher spectral response than moderately saline soil. Overall, the strongly saline 

soil reflects the highest amount of radiation as compared to the other soil salinity levels.   

 

Figure 3.4 Spectral reflectance of different soil salinity classes selected randomly from the data sets  
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3.4.3 The Broadband Indices 

Table 3.3 shows the relationships between the selected broadband indices and the EC. For site 

"A", the correlation analyses showed that a significant positive relationship occurred between 

EC and the NDSI and SI-T indices (p < 0.001). However, all other indices were not significant. 

For site "B", the correlations between EC and SAVI, NDSI and SI-T were slightly higher. In 

addition, a significant negative correlation (p < 0.001) occurred between EC and the S1 and S2 

salinity indices. Moreover, the analyses for site "C" revealed that a significant negative 

correlation (p < 0.001) occurred between the SAVI, S1 and S2 indices, and a highly significant 

positive correlation (p < 0.001) occurred between the SI-TN, NDSI and EC. Generally, the 

correlation coefficients for site "C" were greater than those for sites "A" and "B". Among all 

of the assessed indices, S6 was the poorest predictor of salinity at all sites. Figure 3.5 illustrates 

some of the studied indices. 
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Table 3.2 Descriptive statistics of the actual EC and the broadband indices 

Site  EC 
(dS/m) 

SAVI NDSI BI SI SI1 SI2 SI3 S1 S2 S3 S5 S6 SI-T 

A
 (

A
l-

U
yo

un
) 

(N
=

56
) Mean 75.26 -0.03 0.02 189.14 115.93 137.35 234.23 194.24 0.72 -0.16 191.77 97.3 129.24 104.39 

SD 54.61 0.04 0.02 15.54 9.12 11.93 18.97 16.85 0.02 0.02 21.17 7.53 11.32 4.67 
Min. 3.4 -0.06 -0.08 159.69 96.03 111.55 198.73 157.91 0.69 -0.18 146 80.19 106.57 85.3 
Max. 190.4 0.12 0.04 212.25 129.22 154.74 262.41 218.84 0.79 -0.12 222.55 108.22 145.64 108.46 

B
 (

A
l-

B
at

al
ia

h)
 

(N
=

44
) Mean 51.84 0.09 -0.06 148.97 89.6 103.1 184.26 146.32 0.82 -0.1 131.96 74.71 102.13 89.54 

SD 49.75 0.07 0.05 9.41 7.36 9.77 13.14 13.42 0.05 0.03 17.22 6.51 6.34 8.4 
Min. 1.43 0.01 -0.15 135.59 77.53 87.71 165.8 124.76 0.75 -0.14 104.1 63.54 93.26 73.75 
Max. 154.2 0.23 0 172.3 104.9 125.15 213.4 174.41 0.91 -0.05 167.02 87.87 118.35 99.33 

C
 (

A
l-

U
m

ra
n)

 
(N

=
49

) Mean 90.53 0.03 -0.02 180.99 107.79 126.95 221.94 179.6 0.74 -0.15 174.71 90.3 126.9 96.61 
SD 75.74 0.07 0.05 17.39 11.64 15.15 21.92 21.38 0.03 0.02 26.93 9.87 12.12 9.13 
Min. 1.62 -0.04 -0.12 157.94 92.5 107.11 196.98 151.69 0.68 -0.19 138.55 77.05 105.25 81.13 
Max. 202 0.16 0.03 217.41 130.9 157.1 267.98 222.18 0.8 -0.11 226.95 109.37 150.66 105.98 

 

Table 3.3 Correlation coefficients between the actual EC values and the broadband indices 

Site                                                                                                    Variables 
  SAVI NDSI BI SI SI1 SI2 SI3 S1 S2 S3 S5 S6 SI-T 

A (Al-Uyoun) EC (dS/m) -0.51ns 0.51*** 
0.10n

s 
0.21ns 0.20ns 0.14ns 0.20ns -0.23ns -0.23ns 0.20ns 0.22ns 

0.02n

s 
0.51*** 

B (Al-Bataliah) EC (dS/m) -0.67*** 0.67*** 
0.24n

s 
0.44** 0.45** 0.26ns 0.44** -0.59*** -0.58*** 0.46** 0.47** 

0.14n

s 
0.67*** 

C (Al-Umran) EC (dS/m) -0.78*** 0.77*** 0.28* 0.50*** 0.49*** 0.35** 0.49*** -0.59*** -0.58*** 0.50*** 0.51*** 
0.09n

s 
0.78*** 

                   Significant: *p <0.05; **p < 0.01; ***p < 0.001; ns = not 
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Figure 3.5 Outputs of selected indices 
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 Discussion 

3.5.1 Soil Salinity Analyses 

Strongly saline soils with an EC value of more than 16 dS/m generally dominated the three 

selected Oasis sites. These soils mainly occurred on uncultivated or abandoned stretches of 

land that were locally referred to as sabkhas or (more precisely) inland sabkhas. "Sabkha" is 

an Arabic term for describing a saline and flat area that is subjected to high evaporation. These 

areas are often crusted with salts and occur on sand, silt or clay soils (Al-Amoudi, 1995). When 

flooded by rain or rising groundwater, these sites may temporarily turn into salt lakes. When 

these salt lakes dry, they produce the sabkha saline soil. Some sabkha surfaces in these study 

sites were covered by a thin crust or by puffy soils with a crust. Other surfaces consisted of 

gravel, which was associated with fine-grained sediments, dead plant matter and snail shells. 

These results suggest that swamps were previously present. These swamps dried up, which 

resulted in the death of the plants and snails. In addition, salt tolerant plants were scattered 

across some of these inland sabkhas. Thus, this finding indicates that the extensive very 

strongly saline soils that occupy these three sites were attributed to the abundance of inland 

saline sabkha soils on these uncultivated lands in combination with the high evaporation rates 

and the low rainfall in the area. 

The lower observed salinity on cultivated lands may occur because the cultivated lands are 

subjected to leaching. Nevertheless, there were pronounced salinity differences occurred 

between the three sites on cultivated lands. These differences were potentially caused by terrain 

topography diversity, soil type and structure, poor drainage and irrigation water quality.  
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3.5.2 Soil Spectral Reflectance 

Within the visible and NIR range, the samples represented in Figure 3.6 show a good distinction 

between the different salinity classes from the IKONOS data. In general, as shown in Figure 

3.6 and as Rao et al. (1995), Karavanova et al. (2001), Schmid et al. (2008) and Bouaziz et al. 

(2011b) revealed, reflectance in the visible and NIR regions of the spectrum increases with 

increasing quantity of salts at the terrain surface. According to the investigated samples in this 

study, strongly saline soil shows a higher spectral response in the visible and NIR range 

compared to the other salinity levels. The amount of salt crystal formation on the surface of the 

strongly saline soil contributes directly to this high surface spectral reflectance. This finding is 

consistent with those of Everitt (1988), Abdel-Hamid and Shrestha (1992), and Setia et al. 

(2011) who found that well developed saline efflorescence and crusts are associated with high 

reflectance in the visible and NIR spectra. On the other hand, the good structure and high 

organic matter are most likely to account for the decrease of the spectral reflectance of the non-

saline soil; therefore, this result is supported by those of Bannari et al. (2008).  

Besides, in this study, saline soil of a dry, smooth and light salt crust surface showed higher 

spectral reflectance in the visible region of the spectral (especially red) band, in contrast to 

saline soil characterized by wet, coarse and dark puffy salt crust exhibiting a decrease in 

spectral reflectance in this band (Figure 3.6). These findings are in agreement with those of 

Schmid et al. (2008) and Fallah Shamsi et al. (2012) and confirm the fact that saline soil 

reflectance results from spectral properties such as presence of salt crust, roughness, color and 

moisture content, which have a combined effect on the amount of reflectance. 
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Figure 3.6 Influence of moisture content, salt quantity, colour and surface roughness on the reflectance of saline 

 

3.5.3 Relationships between Soil Salinity and Broadband Indices  

The correlation analysis indicated that the relationships between soil salinity and the selected 

broadband indices were different between the three sites. At site "A", NDSI and SI-T were the 

only useful soil indices. However, in some studies, significant correlations between soil salinity 

and other soil salinity indices were observed (Douaoui et al., 2006; Abbas and Khan, 2007; 

Bouaziz et al., 2011b; Noroozi et al., 2012). The good performance of the NDSI and SI-T 

indices most likely resulted from the red and NIR bands that were used to retrieve the soil 

salinity patterns and features, such as the surface crust (Howari et al., 2002; Metternicht and 

Zinck, 2008a). The red and NIR spectral regions have been found to be relevant for the 

identification of soil minerals that are formed during salt stress and in crusts (Clark et al., 1990; 

Ben-Dor et al., 1999; Ben-Dor et al., 2002; Zhang et al., 2011). In addition, satisfactory results 

for assessing soil salinity at sites "B" and "C" could be achieved by using the NDSI and SI-T 

indices. These findings are supported by those of Tripathi et al. (1997) and Khan et al. (2005), 

who found that the NDSI and SI-T indices provided satisfactory results for determining 

Legend  
               Dry, smooth and light salt crust  
               Wet, coarse, dark and puffy salt crust 
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different salt concentrations on soil surfaces. However, the results of Bannari et al. (2008) 

indicated that the NDSI index was a poor indicator for salt concentrations.  

In contrast, the SAVI vegetation index yielded poor results for assessing soil salinity at site 

"A". This finding suggested that the density of vegetation cover was insufficient for assessing 

soil salinity. This result agrees with the results obtained by Bouaziz et al. (2011b) and Fan et 

al. (2012), who found that SAVI, NDVI and EVI vegetation indices were poorly correlated 

with EC values due to insufficient density of vegetation cover, while the soil salinity indices 

were more strongly correlated with the EC values. However, the SAVI index performed very 

well and yielded good results for assessing soil salinity at sites "B" and "C". This result likely 

occurred due to the lower sensitivity of the SAVI index to external factors, such as soil 

background, and the dense uniform vegetation cover that occurred at those sites. In most cases, 

the SAVI values at sites "B" and "C" decreased as the soil salinity increased. Similarly, 

Alhammadi and Glenn (2008) found that the SAVI values for date palm were high for low 

salinity levels and decreasing for areas of high salinity. These differences permitted the 

identification of salinity. Thus, these findings verify that SAVI is a promising vegetation index 

for assessing soil salinity in strongly saline areas that are dominated by halophytic plants with 

an open canopy structure (such as date palm). In addition, these results are supported by those 

of Alhammadi and Glenn (2008), but not by those of Zhang et al. (2011). Zhang et al. (2011) 

stated that SAVI is only suitable for assessing the salinity of low saline areas that are dominated 

by salt sensitive plants. 

Accordingly, based on this study and on previous studies that assessed soil salinity with 

vegetation and soil salinity indices, it is clear that these indices are applied with varying degrees 

of success. Hence, it should be noted that, although vegetation and salinity indices are helpful 

for assessing soil salinity, no particular vegetation or soil salinity index could be used across 
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all environmental conditions with satisfactory results. These indices vary with different 

environmental conditions, soil types, and vegetation cover and density. 

 Conclusions  

Very strongly saline soils are spread across the study area. The salinity of these soils varies 

significantly throughout the area. This variation is likely caused by several environmental and 

human-induced factors, including topography, poor drainage, poor irrigation water quality and 

mismanaged agricultural practices. Hence, additional research is needed to investigate the 

factors that enhance and cause soil salinity in this Oasis. This basic information may help 

decision-makers and land planners determine where to implement salinity action plans at a 

regional level to avoid further adverse environmental effects. 

Overall, the SAVI, NDSI and SI-T indices that were extracted from the IKONOS satellite 

images were the most useful for assessing the soil salinity in the areas that were dominated by 

date palm. However, using these indices at other sites may produce variable results because 

their performance varies with different environmental conditions, soil, vegetation cover and 

density. Generally, this study indicated that it would be better to use the NDSI and SI-T indices 

in arid areas with low vegetation cover to assess soil salinity. In addition, vegetation indices, 

such as the SAVI index, would yield better results for assessing soil salinity in densely 

vegetated areas. Thus, before appropriate remote sensing-based indices are used for soil salinity 

assessment, the study site should be assessed to determine which index should be used. The 

amount of vegetation cover will impact which index will work best at a given site.  

Although this study contains promising results for assessing soil salinity in this Oasis with 

broadband indices that were extracted from the IKONOS high-spatial resolution imageries, 

additional research is needed. For example, narrow-band indices derived from hyperspectral 

images should be investigated because they may yield a greater degree of accuracy. Besides, 
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modeling the variability of soil salinity and mapping its spatial distribution are becoming 

increasingly important in order to implement or support effective soil reclamation programs 

that minimize or prevent future increase in soil salinity. Thus, this study can be extended in the 

future by developing predictive models for soil salinity based on remote sensing indicators and 

regression techniques.  
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 Abstract 

Soil salinity is one of the most damaging environmental problems worldwide, especially 

in arid and semi-arid regions. An integrated approach using remote sensing in addition 

to various statistical methods has shown success for developing soil salinity prediction 

models. The aim of this study was to develop statistical regression models based on 

remotely sensed indicators to predict and map spatial variation in soil salinity in the Al 

Hassa Oasis. Different spectral indices were calculated from original bands of IKONOS 

images. Statistical correlation between field measurements of Electrical Conductivity 

(EC), spectral indices and IKONOS original bands showed that the Salinity Index (SI) 

and red band (band 3) had the highest correlation with EC. Combining these two remotely 

sensed variables into one model yielded the best fit with R2 = 0.65. The results revealed 

that the high performance of this combined model is attributed to: i) the spatial resolution 

of the images; ii) the great potential of the enhanced images, derived from SI, by 

enhancing and delineating the spatial variation of soil salinity; and iii) the superiority of 

band 3 in retrieving soil salinity features and patterns, which was explained by the high 

reflectance of the smooth and bright surface crust, and the low reflectance of the coarse 

dark puffy crust. Soil salinity maps generated using the selected model showed that 

strongly saline soils (>16 dS/m) with variable spatial distribution were the dominant class 

over the study area. The spatial variability of this class over the investigated areas was 

attributed to a variety factors, including soil factors, management related factors and 

climate factors. The results demonstrate that modelling and mapping spatial variation in 

soil salinity based on regression analysis and remote sensing data is a promising approach 

as it facilitates timely detection with a low-cost procedure, and allows decision makers 

to decide what necessary action should be taken in the early stages to prevent soil salinity 

from becoming prevalent, sustaining agricultural lands and natural ecosystems. 
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 Introduction  

Soil salinity refers to surface or near-surface accumulation of salts (Tanji, 2004). It is a 

worldwide environmental problem that mainly occurs in arid and semiarid regions and causes 

soil degradation (Jordán et al., 2004). The spatial variability of soil salinity over the landscape 

is highly sensitive and controlled by a variety factors. These factors include soil factors (parent 

material, permeability, water table depth, groundwater quality and topography), management 

factors (irrigation and drainage) and climatic factors (rainfall and humidity) (Douaik et al., 

2008). The characterization of soil salinity is generally done measuring the electric 

conductivity (EC) in a saturated soil paste or in aqueous extracts with different soil/water ratios 

and using a spectrometer (Ben-Dor et al., 2008a; Goldshleger et al., 2013). To elaborate 

detailed maps, density of soil samples using the previous technique is required, through an 

extensive design, which makes mapping time consuming and expensive. 

In recent decades, there has been a widespread application of remote sensing data to map soil 

salinity either directly from bare soil or indirectly from vegetation in a real time and cost 

effective manner at various scales (Metternicht and Zinck, 2008a). Beside, assessing soil 

salinity spatial modelling, which is the utilization of numerical equations to simulate and 

predict real phenomena and processes, has followed several approaches. The approaches used 

range from artificial neural network (Patel et al., 2002; Farifteh et al., 2007; Fethi et al., 2010; 

Akramkhanov and Vlek, 2012), to classification and regression tree (Tóth et al., 2002; 

Taghizadeh-Mehrjardi et al., 2014), to fuzzy logic (Malins and Metternicht, 2006), to 

generalized bayesian analysis (Douaik et al., 2004), to geostatistics (e.g., Kriging, CoKriging 

and regression kriging) (Triantafilis et al., 2001; Douaoui et al., 2006; Tajgardan et al., 2010; 
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Eldeiry and García, 2011) and statistical analysis (e.g. regression, ordinary least squares) 

(Douaoui et al., 2006; Eldeiry and Garcia, 2008; Fethi et al., 2010; Fan et al., 2012; Judkins 

and Myint, 2012). An overview of these techniques and how they provide optimal results under 

certain circumstances is given in the review papers of McBratney et al. (2003) and Scull et al. 

(2003). 

An integrated approach using remote sensing in addition to various statistical methods has great 

potential for developing soil prediction models. In the case of soil salinity, statistical analysis, 

in particular linear regression, has created a tremendous potential among other techniques for 

improvement in the way that soil salinity is modelled, because of its rapid, practical and cost-

effective manner (Lesch et al., 1995; McBratney et al., 2003). A variety of statistical models 

based on remote sensing data has been developed and has revealed reasonable predictors of 

soil salinity in the literature (Eldeiry and Garcia, 2004; Douaoui et al., 2006; Fernandez-Buces 

et al., 2006; Shrestha, 2006; Wang et al., 2007; Mehrjardi et al., 2008; Weng et al., 2008a; 

Yonghua et al., 2008; Afework, 2009; Tajgardan et al., 2010; Judkins and Myint, 2012; 

Noroozi et al., 2012; Pakparvar et al., 2012; Shamsi et al., 2013). In Thailand, Shrestha (2006) 

developed several salinity prediction models containing spectral variables including 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Salinity Index 

(NDSI), the eight original bands of Landsat Enhanced Thematic Mapper plus (Landsat ETM+) 

and soil properties. The results indicated that mid-infrared (band 7) and near-infrared (band 4) 

had the highest association with the measured EC. Combining these variables yielded salinity 

prediction models to infer soil salinity over a large area. In contrast, Mehrjardi et al. (2008) 

found that among the Landsat ETM+ bands 1, 2,3,4,5 and 7, band 3 (red band) had the highest 

correlation with EC, and based on that result, a regression model fitted to relate EC to band 3 

and the exponential relation was found to be the best type of model.  
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A regression model based on image enhancement techniques (spectral indices, Principal 

Components Analysis (PCA) and Tasseled Cap Transformation (TCT)) have also been 

extensively used to predict soil salinity and to improve the characterized variability of salinity. 

For example, Tajgardan et al. (2007) combined Principal Components Analysis (PCA) 

techniques and regression analysis to predict and map soil salinity from data collected by the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at the north of 

the Aq-Qala Region in northern Iran. From this study, a suitable regression model was 

developed with electrical conductivity (EC) to predict and map soil salinity. Similarly, 

Afework (2009) built a reliable model to predict soil salinity in the Metehara sugarcane farms 

in Ethiopia by relating EC to the Normalized Difference Salinity Index (NDSI) using linear 

regression.  

Other researchers found that incorporating satellite images spectral bands with enhanced 

images has great promise for soil salinity modeling and mapping. Bouaziz et al. (2011b) 

conducted a study to detect soil salinity based on the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and a multiple linear regression. They found that incorporating 

Salinity Index SI2 with near-infrared (NIR) (band 3) into a statistical model allowed 

researchers to gain great insight into the spatial detection of the spread of soil salinity. Recently, 

Judkins and Myint (2012) found that Landsat band 7, Transformed Normalized Vegetation 

Index (TNDVI) and Tasselled Cap 3 and 5, derived from TCT, provided high correlation to the 

variation in soil salinity. Combining these spectral variables into a multiple linear regression 

model enabled them to predict and map soil salinity surface variation levels efficiently.  

Most of the reviewed studies and others found in the literature modelled soil salinity using 

statistical analysis and multispectral images with moderate spatial resolution (e.g. Landsat, 

MODIS, etc.), while only in limited studies multispectral high spatial resolution images such 

as IKONOS were used (Eldeiry and Garcia, 2008). Moreover, several studies have been 
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undertaken for mapping and modelling soil salinity over vegetation species other than date 

palms and so far a limited study has been undertaken to map soil salinity in a primarily date 

palm region. One such region is Al Hassa Oasis in the eastern province of Saudi Arabia which 

is the most productive date palm (Phoenix dactylifera L.) farming regions in Saudi Arabia and 

is seriously threatened by soil salinity. Although the date palm is highly tolerant of soil salinity, 

the growth and productivity of date palms in this Oasis are being negatively impacted by an 

increasing soil salinity problem (Al-Abdoulhadi et al., 2011). Thus, predicting the variability 

of soil salinity and mapping its spatial distribution are becoming increasingly important in order 

to implement or support effective soil reclamation programs that minimize or prevent future 

increases in soil salinity. 

The overall aim of this study was to develop effective combined spectral-based statistical 

regression models using IKONOS high-resolution images to predict and map spatial variation 

in soil salinity in the Al Hassa Oasis, a region dominated by date palms. 

 Materials and Methods 

4.3.1 Study Area  

The Al Hassa Oasis is situated approximately 70 km inland of the gulf coast between a latitude 

of 25° 05’ and 25° 40’ N and a longitude of 49° 10’ and 49° 55’ E (Figure 4 1). This Oasis 

covers an area of approximately 20,000 ha and is at an altitude of approximately 130 to 160 m 

above sea level (Al-Dakheel and Massoud, 2006; Hussain et al., 2012). The Al Hassa Oasis is 

L-shaped and is actually composed of two separate oases (Al-Naeem, 2011). The main water 

sources include the Neogene groundwater aquifer and some free flowing springs that are 

distributed across the area (Al Tokhais and Rausch, 2008). The Oasis groundwater is primarily 

used for domestic, irrigation and industrial purposes. The Oasis is characterized by an arid 

climate with a high potential evaporation rate that goes above the annual average precipitation 
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of approximately 488 mm. The absolute ambient temperature exceeds 45 °C during the summer 

season (from June to August). During the winter (December to February), the temperature is 

between 2 and 22 °C. The study area covers six different soil types, which are Torripsamments, 

Torriorthents, Calciorthids, Salorthids, Gypsiorthids and Haplaquepts (Elprince, 1985; AI-

Barrak, 1990). The particle size distribution reveals that soils are sandy loam in texture.  

4.3.2 Field Sampling 

Three sampling sites were selected based on the division of the Oasis and different amounts of 

vegetation. The first site was located in the northern part of the Oasis at Al-Uyoun city, which 

is characterised by low vegetation cover. The second site, in the middle of the Oasis at Al-

Bataliah village, had high vegetation cover. The last set of samples was collected under 

Figure 4.1 Study area with the location of the study sites 
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medium vegetation cover in the eastern Oasis, which is located in the town of Al-Umran 

(Figure 4.1). 

Composite soil sampling was performed during January and February (the dry season) of 2012 

following the sampling procedures of Bouaziz et al. (2011a). The exact coordinates of each 

composite sample were registered using a global positioning system (GPS) with an accuracy 

of ± 5 m. Each composite soil sample was comprised four core sub-samples that were collected 

at a distance of 20 m north, south, east and west of the centre sampling point. The sub-samples 

were collected from the surface horizon (0-20 cm) with a hand auger (10 cm diameter) and 

were crushed and mixed together to form one sample. A total of 149 composite soil samples 

were collected from the three defined sites. Soil salinity can be measured directly by measuring 

the EC in the field and remotely including the lab measurement. However, since the aim of this 

study is to establish a relationship between EC and satellite spectral band and extrapolate point 

information to generate a soil salinity map of study area, soil salinity direct measurement was 

performed by measuring the EC in the soil saturation extracts in the laboratory, as described 

by Richards (1954a). 

4.3.3 Satellite Data Acquisition and Processing 

High spatial resolution cloud-free IKONOS satellite images were used in this study and were 

acquired near the actual soil sampling date on April 20th, 2012. The IKONOS images include 

multispectral bands (blue, 0.40 - 0.52 µm; green, 0.52 - 0.60 µm; red, 0.63 - 0.69 µm; near-

infrared (NIR), 0.76 - 0.90 µm) and record the reflected or emitted radiation from the Earth’s 

surface (Dial et al., 2003). The images were geo-rectified to a Universal Transverse Mercator 

(UTM) coordinate system using World Geodetic System (WGS) 1984 datum assigned to north 

UTM zone 39. Atmospheric correction was performed using the Dark-Object Subtraction 
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(DOS) technique (Chavez, 1996). All the remote sensing data processing was performed using 

the Environment for Visualizing Images (ENVI) version 4.8 software.  

4.3.4 Data Analysis, Model Generation and Selection 

Initially, the EC data was tested to establish whether it conformed to a normal distribution. The 

normality test exhibited that EC data had positive-skewed frequency distributions, thus Box-

Cox transformation was carried out to improve sample symmetry and to stabilise the spread. 

As part of the model generation process, various spectral soil salinity indices were tested for 

assessing and enhancing the variations in surface soil salinity. Out of all indices tested, the 

Salinity Index (SI) (Equation (4.1)), which has been proposed by Tripathi et al. (1997), was 

used to create enhanced images for soil salinity in this study due to its very highly significant 

correlation with EC. To ascertain the spatial location of the soil samples, a convolution low 

pass filter with a kernel size of 5×5 was applied to the enhanced images, then digital values 

were extracted at the location of sample points over those enhanced images.  

 

Salinity Index (SI) =
R

NIR
× 100                                 (4.1) 

 

where R is the red band and NIR is the near-infrared band of the IKONOS image.  

Subsequently, Pearson Correlation analysis between the four bands (blue, green, red and near-

infrared) and SI with EC were conducted to reveal the relationship between these variables and 

assess their efficiency in predicting soil salinity. The explanatory variables chosen were those 

showing the highest significant correlations with EC.  
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To build the regression model, samples were randomly split into two subsets. One subset was 

used for training (n=98), the other for testing purposes (n=51). Deciding which explanatory 

variables to include in the regression model is not always easy, and increasing the number of 

variables in a model may lead to an over-fit and provide poor prediction when used with a 

different data set (Royston and Sauerbrei, 2008). To overcome these issues, stepwise regression 

was used to determine the variables that best explained most of the variability of the dependent 

variable, which was EC. Once all the developed regression models were tested, models with i) 

a high R2, signifying a strongly linear relationship; ii) low standard errors of the model's 

variables; and iii) few variables with a p-value of < 0.05, were selected for evaluation using the 

testing data. Consequently, the best performed regression model that met all the model 

selection and validation criteria was chosen and used to predict and map the spatial variation 

in soil salinity. All statistical analyses were undertaken in JMP®10 (JMP statistical discovery 

software from SAS), and significance levels set to p < 0.05. 

4.3.5 Model Validation 

The performance of the developed regression models that met the model selection criteria was 

quantified using the testing subset to ensure that they not only worked on one particular data 

set but also yielded an accurate result on different data sets. Two quantitative criteria between 

measured and predicted values were calculated (Table 4 1). R2 values indicate the strength of 

the statistical linear relationship between measured and predicted soil salinity values, and Root 

Mean Square Error (RMSE) indicates absolute estimation errors (Moriasi et al., 2007). In 

addition to these criteria, histograms, normal probability plots and Shapiro–Wilk tests (W) 

were employed to assess whether or not the residuals present a normal distribution. If the W 

test is significant (p <0.05) or highly significant (p < 0.001) then the distribution is non-normal 

(Field et al., 2012a).  
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Table 4.1 Statistical criteria for evaluating the regression model 

Function name Equation Equation number 

Coefficient of determination 𝑅2 =

[
 
 
 

∑ (𝜒𝑖 − 𝜒)(𝛾𝑖 − 𝛾̅)𝑛
𝑖=1

√∑ (𝜒𝑖 − 𝜒)𝑛
𝑖=1

2
+ ∑ (𝛾𝑖 − 𝛾)𝑛

𝑖=1
2

]
 
 
 
2

 (2) 

Root Mean Square Error 
 𝑅𝑀𝑆𝐸 = √

∑ (𝜒𝑖 − 𝛾𝑖)2𝑛
𝑖=1

𝑛
 (3) 

* χi and γi are measured and predicted values, respectively; 𝜒 ̅and 𝛾̅ represent the means of the measured and predicted values, 
respectively; 𝑛 is the number of samples 

 Results  

4.4.1 Data Analysis 

The main statistical parameters for EC data are given in Table 4 2. According to the soil salinity 

classification of the Food and Agriculture Organization (FAO), EC values of the study area 

vary from very strongly saline (>16 dS/m) to non-saline (0-2 dS/m). The high Co-efficient of 

Variation (CV) of 85.39% confirms the variations of the EC values over the study area. About 

73% of the total samples were classified as very strongly saline soil, signifying that this is the 

dominant soil salinity class. Correlation analysis showed a significant positive correlation (p 

<0.001) between EC and remotely sensed data of the blue (B1), green (B2), red (B3) and SI 

respectively, but not with near-infrared (B4) (Table 4.3).  

 

Table 4.2 Descriptive statistics of EC 

 Mean Max Min SD CV (%) 

EC 73.37 202 1.43 62.65 85.39 
Max: Maximum; Min: Minimum; SD: Standard deviation; CV: Coefficient of variation 

 

Table 4.3 Correlation coefficient between EC and remotely sensed data 

Variables B1 B2 B3 B4 SI 
EC 0.41*** 0.42*** 0.45*** 0.06ns 0.70*** 

Significant: *p <0.05; **p < 0.01; ***p < 0.001; ns = not 
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4.4.2 Models Development and Valuations 

Remotely sensed data with a significant correlation to EC were considered for developing the 

regression models. The developed regression models are shown in Figure 4.2 and their 

statistical results are summarized in Table 4.4, showing how well spatial variation in soil 

salinity can be predicted by applying the different developed regression models. All the 

developed regression models were highly significant; however, models 1, 2, 3, 4 and 9 were 

best able to predict soil salinity spatial variation as they met all the model selection criteria. 

Among these models, model 4, which combines SI with B3, provided the best fit overall. It had 

the highest R2, signifying a strongly linear relationship between estimated and predicted EC 

and indicated that 65% of the variance in the EC values could be explained by this model with 

relatively low standard errors for its variables at 29.99, 0.52 and 0.26 respectively. Each of 

these variables had significant p-values indicating a strong correlation with EC.  

 

The validation results for the best regression models (1, 2, 3, 4 and 9) are shown in Figure 4.3. 

The results show that model 4 was most accurate whereas model 2 was the worst. Model 4 

outperformed the other regression models with regard to the normality test of the residuals. 

Furthermore, the W test for model 4 upgraded to 0.98 with a non- significant p-value (p<0.05), 

and the bell–shaped histogram indicates the normal distribution of the residuals. Furthermore, 

values of R2 equaling 0.34 and RMSE of 39 dS/m indicate that this regression model had the 

best fit compared to the others. Values of R2 of 0.28 and RMSE values of 42 dS/m for 

regression model 9 indicate that this model would not predict soil salinity with high accuracy 

using remotely sensed data. Thus, these statistical results reveal that regression model 4 met 

both the model selection and model evaluation criteria.  
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4.4.3 Spatial Variation in Soil Salinity Maps 

Maps of the study areas generated using the selected model (model 4) are presented in Figure 

4.4. In general, these maps show that most of the areas with very strongly saline soil (>16 

dS/m) are non-vegetated, and areas with vegetation have soils with lower salinity levels, 

although still in the >16 dS/m class.  
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Figure 4.2 Scatter plots of predicted versus measured EC using the developed regression models 
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Table 4.4 Developed regression models to predict EC based on remotely sensed data 

Model 
Variable 

Regression 
coefficient 

Standard Error p-value 

1 Intercept -239.49 29.82 <0.0001*** 
SI 3.52 0.31 <0.0001*** 

R = 0.76***            R2 = 0.58*** 

2 Intercept -205.25 29.95 <0.0001*** 

SI -1.77 0.511 0.0008*** 

B1 4.83 0.48 <0.0001*** 

R = 0.79***            R2 = 0.62*** 
3 Intercept -239.60 28.31 <0.0001*** 

SI 4.83 0.48 <0.0001*** 

B2 -1.011254 0.30 0.001** 

R = 0.79***            R2 = 0.62*** 

4 Intercept -269.13 29.99 <0.0001*** 
SI 4.87 0.52 <0.0001*** 

B3 -0.83 0.26 0.002** 

R = 0.81***            R2 = 0.65*** 

5 Intercept -193.18 83.48 0.02* 

SI 4.81 0.49 <0.0001*** 

B1 -2.39 4.04 0.5559 
B2 0.36 2.35 0.8771 

R = 0.79***            R2 = 0.62*** 

6 Intercept -136.12 93.24 0.1476 

SI 4.64 0.54 <0.0001*** 

B1 -3.59 2.38 0.1356 

B3 0.95 1.21 0.4355 
R = 0.79***            R2 = 0.63*** 

7 Intercept -115.70 84.33 0.1734 

SI 4.31 0.59 <0.0001*** 

B2 -4.97 2.56 0.0551 

B3 3.49 2.24 0.1226 
R = 0.79***            R2 = 0.63*** 

8 Intercept -130.65 93.04 0.1636 

SI 4.23 0.62 <0.0001*** 

B1 1.93 4.95 0.6983 

B2 -6.80 5.36 0.2077 

B3 4.12 2.78 0.1412 
R = 0.79***            R2 = 0.63*** 

9 Intercept 320.95 74.94 <0.0001*** 

B2 -14.25 2.78 <0.0001*** 

B3 12.914 2.3 <0.0001*** 

R = 0.65***              R2 = 0.42*** 

10 Intercept 165.52 100.03 0.1013 
B1 13 5.69 0.02* 

B2 -25.44 5.61 <0.0001*** 

B3 16.02 2.62 <0.0001*** 

R = 0.67***             R2 = 0.45*** 
Significant: *p <0.05; **p < 0.01; ***p < 0.001; ns = not
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Figure 4.3 Validation of the developed regression models; a) scatterplots of predicted versus measured EC; b) histogram of residuals; c) 
normal plot of residuals 
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(c) (b) (a) 

Figure 4.4 Soil salinity maps for different sites in the study region; (a) site one; (b) site two and (c) site three 



 

75 

 Discussion  

4.5.1 The Developed Regressions Models 

The efficiency of the selected regression model to predict and map the spatial variation in soil 

salinity is shown by the good relationship (R2=0.65) at the 99% probability level, RMSE of 39 

dS/m and the normality of the residuals. This is in part due to the high spatial resolution of the 

IKONOS images. The selected model in this study showed superiority in the prediction power 

(R2 =0.65) of soil salinity over those reported by Shrestha (2006) (R2 =0.23) and recently by 

Shamsi et al. (2013) (R2 =0.39), which have been developed using different moderate spatial 

resolution satellite images. Moderate spatial resolution images, such as the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate Resolution 

Imaging Spectroradiometer (MODIS) and Landsat, are economically priced or free, more 

accessible, and typically offer broader spatial coverage than more expensive high spatial 

resolution imagery. Nonetheless, differences in spatial resolution can have a high impact on 

predicting soil salinity. Our finding that the prediction of soil salinity based on IKONOS 

images yields better results than those based on moderate resolution images is in agreement 

with Eldeiry and Garcia (2008). Given this concern, it is important to take into account spatial 

resolution as one of the key factors to consider when using satellite imagery to infer soil 

salinity.  

Moreover, the good performance of the selected model in this study is due to the enhanced 

images efficacy in highlighting information from soil salinity and suppressing the other details. 

Image enhancement is data processing that aims to increase the overall visual quality of an 

image or to enhance the visibility and interpretability of certain features of interest in it (Gao, 

2008). Several studies have shown that image enhancement techniques consisting of spectral 

indices (e.g. NDVI, SI, NDSI, TNDVI) have a great potential in enhancing and delineating soil 
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salinity detail in an image (Khan et al., 2005; Fernandez-Buces et al., 2006; Odeh and Onus, 

2008; Naumann et al., 2009; Lobell et al., 2010; Iqbal, 2011; Hamzeh et al., 2012a; Noroozi et 

al., 2012). For example, Tripathi et al. (1997) found and emphasized that identifying salt-

affected soils based on the image enhancement method, represented by the salinity index, yields 

better results than individual bands due to its ability to enhance the saline patches by 

suppressing the vegetation. Recently, Shamsi et al. (2013) conducted a study to characterise 

soil salinity in the south-east of Fars Province, Iran, using remote sensing and statistical 

analysis, and found that using an image enhancement method (Salinity Index (SI)) reduced 

estimation errors and increased the model’s efficiency. 

Beside this, the superiority of the visible red band over the other bands in retrieving soil salinity 

has contributed to improving the regression model. This result is supported by those of Arasteh 

(2010) and Mariappan (2010) who found that the visible red band performs best among the 

Landsat ETM+ bands at characterizing the pattern and features of soil salinity due to its high 

correlation with EC ground measurements. Soil salinity spectral reflectance is affected by the 

physical–chemical properties of soil: quality and mineralogy of salt, together with soil 

moisture, colour and surface roughness (Metternicht and Zinck, 2008b). Salts influenced 

surface features are crusts without or with only a little evidence of salt; thick salt crusts and 

puffy structures. Salt causes variations in the surface roughness which induces variation in the 

soil spectral reflectance (Ben-Dor et al., 2008a; Goldshleger et al., 2012; Goldshleger et al., 

2013). Most salt-affected soils can be identified by a white salt crust that will form on the soil 

surface; thus, these soils tend to increase spectral reflectance (Ben-Dor et al., 2003; Panah et 

al., 2008; De Jong et al., 2011). Crusted soil, which affects soil structure and reduces the soil 

infiltration rate (Agassi et al., 1985) is characterized with significant spectral changes due to 

the structural crust formation and colour (Ben-Dor et al., 2003). Salt crust at its inception (high 

infiltration rate) presents low spectral reflectance, whereas in intense salt crust soil the spectral 
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reflectance will be significantly higher (Ben-Dor et al., 2003). Besides, smooth crust surfaces 

have higher spectral reflectance than rougher crust surfaces (Ben-Dor et al., 2003; Metternicht 

and Zinck, 2003; Goldshleger et al., 2004; Elnaggar and Noller, 2010).  

According to the investigated samples in this study, saline soils with a smooth and light salty 

crust surface show high spectral reflectance in the red band, in contrast saline soils 

characterized by coarse dark puffy surface crust exhibit a decrease in spectral reflectance 

(Figure 4.5). These findings are in agreement with the those of Metternicht and Zinck (1997), 

Schmid et al. (2008) and Shamsi et al. (2013), and confirm the fact that saline soil reflectance 

results from spectral properties such as the presence of salt crust, soil colour and moisture 

content, which have a combined effect on the amount of reflectance. 

Thus, it is clear that a combination of spectral bands and image enhancement yield a better 

result than the actual band used for modelling and mapping soil salinity alone. This finding is 

consistent with those of Tajgardan et al. (2007), Eldeiry and Garcia (2008), Bouaziz et al. 

(2011b), Judkins and Myint (2012) and Noroozi et al. (2012), who found that this method of 

combining spectral bands with enhanced images in a single model is a promising tool for soil 

salinity detection and mapping. That is to say, the combination is the key, giving better results 

than either spectral band alone or image enhancement alone. 
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4.5.2 Mapping Spatial Variation in Soil Salinity  

Factors causing soil salinity include inappropriate and excessive irrigation without an adequate 

drainage system, irrigation water quality, a rising water table, climate, rainfall history, local 

topography, soil composition and farming practices (Chhabra, 1996; Hillel, 1998; Sparks, 

2003; Shi et al., 2007; Braimoh and Vlek, 2008). Therefore, increasing soil salinity at the 

surface is most likely to vary according to the distribution of these different factors across the 

landscape. For example, Bilgili (2013) found that the spatial distribution of saline soils in the 

Harran Plain, southeast Turkey, is likely due to inappropriate irrigation coupled with high 

evaporation and topographical factors.  

In this study, soil salinity maps that were generated using the selected model showed large 

surface areas with very strongly saline soil (>16 dS/m). The spatial distribution in this soil 

Figure 4.5 Spectral reflectance of saline soils differs due to surface roughness, crusting and colour 

Puffy Crust  Salty Crust  
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salinity class was variable over the investigated areas. Patches with strongly saline soil along 

the three sites were most pronounced in non-vegetated wet and dry areas. Wet areas, shown in 

red and orange colours in the maps (Figure 4), form due to a rising water table and are 

characterized by a moisture-filled soil (Keddy, 2010). The rising water table brings salt from 

deep in the soil up to the surface causing salt accumulation (Ashraf et al., 2009). On the other 

hand, dry lands, which are shown in a colour graduation from yellow to light blue, occurs when 

a saline water table comes close to the ground level and a high evaporation rate leaves salts at 

the soil surface (Jardine et al., 2007). Thus, these findings suggested that a rising water table 

and salt accumulation at the surface combined with a high evaporation rate are one of the most 

likely factors that have resulted in the spatial variation in soil salinity over these lands. Similar 

results in an arid region, Sultanate Oman, were found by Hussain et al. (2006).  

On the other hand, vegetated areas occupy strongly saline soil but within lower salinity levels 

compared to the non-vegetated areas. The lower observed salinity levels on the vegetated areas 

may occur because vegetated areas are subjected to a leaching process which reduces salinity 

levels. In spite of this, there were pronounced salinity differences between the three sites over 

the vegetated areas. These differences were potentially caused by variation in topography, soil 

type and structure, poor drainage and irrigation water quality. All of these parameters are 

known to affect soil salinity distribution across the landscape (Thiruchelvam and Pathmarajah, 

1999; Cetin and Kirda, 2003; Hussain et al., 2006; Zheng et al., 2009; Sakadevan and Nguyen, 

2010). However, while irrigation water quality can be problematic, this can be overcome by 

proper irrigation management. Therefore, the observed salinity differences in the salinity levels 

on vegetated areas could be caused by different irrigation management practices, including 

irrigation scheduling. For example, instruments that measure and monitor soil moisture were 

not used for irrigation scheduling at any of the three study sites as farmers were not aware of 

them and/or lacked the required skills for use. In addition, many farmers cannot afford these 
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instruments and no extension services are available to encourage their use. Consequently, 

excessive water applications and poor timing result in various levels of salt build-up in these 

soils which adversely affect date palm. Several studies have found that soil salinity can cause 

significant effects on date palm growth and productivity, even though date palm is a high salt-

tolerant crop (Hussein et al., 1993; Ramoliya and Pandey, 2003; Alhammadi and Glenn, 2008; 

Alhammadi and Edward, 2009). Recently, Al-Abdoulhadi et al. (2011) conducted a study to 

describe the effects of soil salinity on date palms. The results of their study revealed that salinity 

depressed plant growth and the biomass of date palms, and as the salinity increased the leaf 

length of the fronds was significantly reduced. 

This study shows how regression analysis, coupled with high spatial resolution remote sensing 

images, could successfully predict and map spatial variation in soil salinity over an area 

vegetated mainly with date palms. Thus, the information presented here can help agricultural 

workers, scientists and engineers to manage soil salinity problems affecting the ecosystem. 

Additionally, the simplicity of this approach, with its satisfactory accuracy, can contribute 

greatly to soil salinity prediction and mapping, at lower costs than conventional approaches.  

While, this study focuses on mapping and modelling soil salinity on a spatial variation basis at 

one point in time, further research requires investigating the temporal variation of soil salinity 

in this Oasis in order to assess the pattern of soil salinity change over time as soil salinity is a 

space-time variation phenomena. This timely detection of soil salinity, prediction and mapping 

of its severity and extent, will enable decision makers to decide what necessary actions should 

be taken, especially in areas of strongly saline soils, to protect the date palm outputs, sustain 

agricultural lands and natural ecosystems.  

Besides, although this study contains promising results for modelling and mapping soil salinity 

based on regression analysis and IKONOS high spatial resolution images, the absence of the 
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thermal band, which has been found a useful tool in several soil salinity studies (Verma et al., 

1994; Metternicht and Zinck, 1997; Alavipanah and Goossens, 2001), and the poor spectral 

resolution of the images, most likely limit the model capability. Thus, this study can be 

extended in the future by using hyperspectral images and investigating how this can increase 

the accuracy of spatial variation in similar modelling and mapping environments. Different 

studies have reported that hyperspectral images have a promising potential in the assessment 

and mapping of soil salinity (Ben-Dor et al., 2002; Lu et al., 2005; Farifteh et al., 2007; Weng 

et al., 2008b; Yonghua et al., 2008; Zhang et al., 2011; Hamzeh et al., 2012b). For example, 

Weng et al. (2008b) found that soil salinity can be predicted and mapped successfully based on 

Partial Least Squares Regression (PLSR) techniques with Hyperion hypespectral data in a large 

area. More recently, in the Jezre'el Valley, northern Israel, Goldshleger et al. (2013), based on 

PLSR techniques, assessed the relationships between salinity in tomato plants and soil spectral 

reflectance obtained using a hyperspectral radiometer and found that the results promising. 

They concluded that a hyperspectral radiometer is useful for characterizing salinity in growing 

vegetation and assessing its salt quality. To the best of our knowledge, hyperspectral remote 

sensing data have never been used to model and map soil salinity in communities vegetated 

mainly with date palms in the remote sensing domain. Therefore, further research is needed to 

investigate the capability of hyperspectral remote sensing data in mapping and modelling soil 

salinity under such conditions.  

 Conclusion 

The present study demonstrates that combining the IKONOS red band and the salinity index 

into a regression model offers a potentially quick and inexpensive method to map and model 

the spatial variation in soil salinity of communities vegetated mostly with date palm. The 

combination of these remotely sensed variables into one model were able to explain 65% of 
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the spatial variation in the soil salinity of the study area. The great capacity of this combined 

model over the other developed models is attributed to the enhanced images and the red band 

efficacy in highlighting information from soil salinity. The developed model’s simplicity and 

acceptable degree of accuracy makes it a promising tool for continued use in soil salinity 

prediction. Thus, this model can be used by the decision makers in Al Hassa Oasis municipality 

and similar regions to implement or support effective soil reclamation programs that minimize 

or prevent future increases in soil salinity.  

 

Although this study demonstrates that soil salinity mapping and modelling can be undertaken 

with good accuracy based on high spatial resolution multispectral images, further research is 

needed to focus on investigating the possibility of hyperspectral data in mapping and modelling 

soil salinity over areas dominated by date palm and investigating whether it can increase the 

accuracy of modelling and mapping process.  
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 Abstract 

Detecting soil salinity changes and its impact on vegetation cover are necessary to understand 

the relationships between these changes in vegetation cover. This study aims to determine the 

changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and 

investigates whether the salinity change causing the change in vegetation cover. Landsat time 

series data of years 1985, 2000 and 2013 were used to generate Normalized Difference 

Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image 

differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity 

during 2000-2013 exhibits much higher increase compared to 1985-2000, while the vegetation 

cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) 

negative relationships found between the NDVI and SI differencing images, confirmed the 

potential long term linkage between the changes in soil salinity and vegetation cover. 

 Keywords: Soil salinity. Vegetation cover. Differencing image. Change detection. Al Hassa 

Oasis.   
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 Introduction 

Soil salinity represents a major threat in arid and semiarid regions (Valipour, 2014), and this 

has serious negative impacts on several aspects of agriculture and environmental sustainability. 

Likewise elsewhere, it inhibits plant growth and subsequent agricultural output, it also has 

similar impact in the Al Hassa Oasis in the eastern part of Saudi Arabia (Al-Taher, 1999; 

Pitman and Läuchli, 2002). This Oasis is a primarily date palm (Phoenix dactylifera L.) region 

and is regarded as one of the leading date palm producing regions in Saudi Arabia, providing 

an important source of income for the government and farmers (Jain et al., 2011; Al-

Abdoulhadi et al., 2012). Although date palm is considered a fairly salt tolerant tree (some date 

palm varieties can adapt to very high levels of soil salinity (up to 12.8 dS/m, and in few cases 

up to 34 dS/m) (Ramoliya and Pandey, 2003; Alhammadi and Kurup, 2012), their growth and 

yield get impacted (Erskine et al., 2004). Long term experiments showed significant fruit yield 

reduction in the saline soil of 4.7 dS/m, and accumulation of salts over long periods can reduce 

the production and extinction rate of new leaves by 50% day and 30% day, respectively 

(Jaradat, 2016). This caused a substantial reduction in productivity growth, delayed 

ripening of fruit, and ultimately led to loss of salt-sensitive or vulnerable cultivars (Jaradat, 

2016). In Al Hassa Oasis, the growth and productivity of date palm have negatively impacted 

by the dynamic process of soil salinity, which changes in space and time because of the effects 

of biological and physical, chemical processes operating at various scales and adversities 

(Metternicht and Zinck, 2008a). In this context, detecting and tracking the temporal change in 

soil salinity, especially on long-term basis, and determining its impacts on vegetation cover 

seems useful for understanding this process in the study area, which can aid management in 

preventing further salinization in order to maintain sustainable agriculture. 

Detecting long term environmental changes required repeatable and consistent data which are 

available over many years. Multi-temporal Landsat data from different sensors (Multispectral 
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Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+), 

Operational Land Imager (OLI) with a spatial resolution of 30×30 m have become a major 

source of data for such applications, and have been widely applied in the soil salinity and 

vegetation cover change studies using different change detection techniques (e.g., Wang and 

Jia, 2012; Matinfar et al., 2013; Rahimi et al., 2015). The effective use of Landsat individual 

bands for soil salinity studies have been investigated by several researchers. Landsat’s single 

bands, especially visible and Shortwave Infrared (SWIR) bands, have been widely 

acknowledged as a powerful tool in soil salinity detection. For example, TM bands 1-5, 7 was 

found good for identifying salt minerals by Menenti et al. (1986), while Madani (2005) found 

a robust relationship between the difference of TM SWIR band and near-infrared (NIR) band 

with soil salinity. Shrestha (2006) found SWIR of ETM+ to be superior in terms of closest 

correlation with soil salinity compared to the other bands. Bannari et al. (2008) also found 

SWIR has varying degrees of sensitivity to slight and moderate levels of soil salinity. In 

addition, a number of researchers have shown the potential of the image enhancement 

techniques to develop spectral indices for soil salinity studies (e.g., Fernandez-Buces et al., 

2006; Lobell et al., 2010; Allbed et al., 2014a; Allbed et al., 2014b), and their findings justified 

the usefulness of indices in yielding improved results compared to original bands. For example, 

Al-Mulla and Al-Adawi (2009) applied different image enhancements to determine temporal 

change in soil salinity in Al-Rumais region of Oman. Tripathi et al. (1997) reported that using 

salinity index to detect salt-affected soils leads to better results compared to a single band 

because of its capability in enhancing the saline soils through repressing the vegetation. Al-

Khaier (2003) found that salinity index composed of two SWIR bands allowed the detection 

and mapping of soil salinity effectively. Similarly, the application of the normalized difference 

ratio of SWIR bands enabled Nield et al. (2007) to map salt-affected soils efficiently. All these 
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studies implied that the spectral region between 1.5 and 2.5 nm is suitable to show the presence 

of salts in the soils on remote sensing data.  

For vegetation cover, various studies have shown the usefulness of the Normalized Difference 

Vegetation Index (NDVI) for detecting changes in vegetation cover (e.g., Lunetta et al., 2006; 

Wang et al., 2009; Lhermitte et al., 2011). Among these techniques, NDVI image differencing 

has been one of the most popular change detection methods and proven to be a valuable 

approach for the detection of change in vegetation cover (e.g., Sinha and Kumar, 2012, 2013; 

Mancino et al., 2014). For example, Lyon et al. (1998) compared different vegetation indices 

in vegetation change detection with Landsat images. They established that the NDVI 

differencing techniques achieved the best results for vegetation change detection purposes. 

Besides, since saline soil is usually characterized by poorly vegetated areas, the potential of 

NDVI to demonstrate the inhibitory effects of soil salinity on vegetation cover has been 

recognized in many studies (e.g., Turhan et al., 2010; Platonov et al., 2013). Recently, Goto et 

al. (2015) found that area where vegetation is affected by salinization, a reduction in NDVI is 

observed. Also, Brunner et al. (2007) stated that NDVI has a potential to reveal salt stress as 

plant growth is inhibited by soil salinity. 

The above studies represent a body of evidence that shows remote sensing techniques to be an 

important tool for change detection, particularly in soil salinity and vegetation cover 

applications. However, despite the fact that soil salinity has a negative threat on vegetation 

cover, most recent studies have looked at either vegetation cover change or soil salinity change 

in isolation, and limited studies have attempted to link vegetation cover change to soil salinity 

change especially in date palm dominated arid and semi-arid regions. The current study 

attempts to fill some of these gaps and aims to detect the temporal change in vegetation cover 

and soil salinity in the Al Hassa Oasis and determines whether there is any linkage of vegetation 

cover change to the change in soil salinity over a 28-year period. The study is important in 
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investigating the implications of these changes in agricultural output in the future in this Oasis. 

The results from this work can help farmers, scientists, agricultural workers and engineers in 

various decision making processes such as: (a) identifying priority areas for implementation of 

soil salinity plans to protect the vegetation cover, particularly date palm outputs; and (b) 

sustaining agricultural lands and avoiding further adverse environmental, social and economic 

effects. 

 Materials and Methods 

5.3.1 Study Area 

The Al Hassa Oasis is L-shaped area located between a latitude of 25° 05’ and 25° 40’ N and 

a longitude of 49° 10’ and 49° 55’ E (Figure 5.1), at an altitude of approximately 130 to 160 m 

above sea level (Hussain et al., 2012). The overall area is composed of two separate oases that 

are somewhat sloped to the north and east (Abderrahman, 1988; Citino, 2012). The Oasis is 

considered one of the important agricultural regions in Saudi Arabia covering an area of 

approximately 20,000 ha. The total cultivated area in this Oasis is approximately 7000 ha, 

where about 92% date palms of 40 different varieties are grown (Elprince et al., 1982; Al-

Barrak, 1986). In the northern Oasis the date palms plantation covers an area of 1800 ha, 

whereas in the eastern Oasis (5200 ha) (Elprince et al., 1982). The climate in this area is 

typically arid with an ambient temperature exceeding 45°C during the summer and a high 

evaporation rate that exceeds the annual average precipitation of approximately 488 mm. The 

soil is sandy loam in texture and covers six taxonomic classes such as Gypsiorthids, 

Haplaquepts, Calciorthids, Torripsamments, Salorthids and Torriorthents (AI-Barrak, 1990).  

The Neogene aquifer is the primary water source of agricultural and other uses. The Al Hassa 

Irrigation and Drainage Project (IDP) of about 1482 km comprises networks of concrete canals 

and drainage (Abderrahman, 1988) is the sources of irrigation water in the study area. The Al 
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Hassa Oasis is considered the largest and most important natural agricultural date palm Oasis 

in Saudi Arabia because of its contribution to the economic growth and fulfilling the local 

market’s needs. However, date palms growth and productivity in this Oasis are being 

negatively impacted as many farms have been abandoned due to soil salinity problem. 

 

Figure 5.1 Standard False Color Composite (RGB: 432) of the year 2013 and location of Al Hassa Oasis in Saudi Arabia 

 

5.3.2 Image Acquisition and Pre-processing 

Three multi-temporal Landsat images in winter season were acquired for the study area (Figure 

5.2). The 1985 (TM) and 2000 (ETM+) images were of January months, while Landsat 8 (OLI) 

of 2013 image was acquired in the December. Care was taken to acquire images of the same 

time period, and a month difference in the image acquisition dates was considered not posing 

much impact on this study results since the change detection was performed mainly for 

perennial vegetation. All remote sensing data pre-processing and digital image analysis were 
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performed by using environment for visualizing images (ENVI) version 4.8 software. Image 

pre-processing was carried out to make images from different dates as similar as possible so 

that they can be considered taken under the same environmental conditions (Hall et al., 1991). 

The images were georeferenced to a Universal Transverse Mercator (UTM) coordinate system 

using World Geodetic System (WGS) 1984 datum assigned to north UTM zone 39. A relative 

radiometric normalization was undertaken in order to make the temporal images acquired on 

different dates radiometrically similar by normalizing the difference in atmospheric conditions, 

solar irradiance condition and other properties (Yuan and Elvidge, 1996). Yang and Lo (2000) 

used a linear regression method to normalize two images captured on different dates by 

assuming image pixel values on date 1 to be a linear function of the values of the same pixel 

on date 2. For this purpose Landsat 8 OLI image was selected as the base image because of its 

highest sun angle. To develop accurate regression models normalization targets were selected 

from a varied range of dark and bright pixels. Then, a linear regression equation was applied 

to TM and ETM+ images to match a given pixel’s DN with the corresponding pixel’s DN on 

the base image. Finally, through the equation suggested by Chander et al. (2009) all the three 

multispectral image Digital Number (DN) values were converted to Top of Atmosphere (TOA) 

reflectance values. Dark-Object Subtraction (DOS) was also carried out for radiometric and 

atmospheric normalization (Canty et al., 2004; Vicente-Serrano et al., 2008). While the 

radiometric normalization process does not account for atmospheric interference, it provides a 

standardized measure directly comparable between images (Price, 1987). 



 

93 

 

Figure 5.2 Multi-spectral satellite remote sensing data for Al Hassa Oasis: (a) Landsat 5 TM, January 1985, (b) Landsat 7 ETM+, 
January 2000, and (c) Landsat 8 OLI, December 2013 

5.3.3 Image Processing 

5.3.3.1 NDVI Difference Image 

The Vegetation Index (VI), which is defined as the arithmetic combination of two or more 

bands related to the spectral characteristics of vegetation (Pallé and Rodríguez, 2010), has been 

widely used for detecting vegetation cover condition. Among existing VIs, NDVI is the most 

commonly used index because of its ratio properties that compensates large proportion of the 

noise caused by changing topography, sun angles and other atmospheric conditions. In this 

study, NDVIs for three change years (1985, 2000 and 2013) were computed as a normalized 

ratio of the reflectance in the red and NIR bands of the electromagnetic spectrum as NDVI = 

(NIR − Red) ∕ (NIR + Red). During photosynthesis, red light is absorbed by the green vegetation 

while NIR light is scattered due to the internal structure of the leaves, making these two spectral 

regions ideal for NDVI calculation (Tucker, 1979). Also, in these two spectral bands, the 

contrast among vegetation and soil is at a maximum. NDVI values range from −1 to +1. NDVI 

of healthy vegetation is normally tend to high positive values (0.3 to 0.9), depending upon the 
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vegetation greenness. Soils generally exhibit a NIR reflectance somewhat higher than the red, 

therefore tend to generate slightly small positive NDVI values (0.1 to 0.2) (Adams and 

Gillespie, 2006). 

Image differencing technique, which is a process of pixel-by-pixel subtraction of different 

images bands in a time-series, is often used in research as an efficient method for land-cover 

change detection (Kleynhans et al., 2011; İlsever and Ünsalan, 2012; Sinha and Kumar, 2012, 

2013). The brightness values of the difference images are approximately Gaussian, where no-

change pixel brightness’s are distributed around the mean, and change pixels are found in the 

two tails of the distribution (Wolter et al., 1995). The method is relatively simple and the 

resultant image is easy to interpret; however, defining appropriate threshold values is critical 

to distinguishing change areas from no-change areas. In this study, NDVI difference image 

(∆NDVI) was created for the two change periods (1984-2000) and (2000-2013) by subtracting 

one date of NDVI value from those of the previous date as ∆NDVI = NDVI (t1) − NDVI (t2). 

The resulting image will have positive values indicating increasing proportions of green 

vegetation (change increase), whereas negative values indicate decreasing proportions of green 

vegetation (change decrease) and near zero values representing no change in vegetation 

(Coppin et al., 2004) between the two change periods.  
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5.3.3.2 Salinity Index (SI) Differencing Images 

The usefulness of the spectral index for soil salinity assessment and mapping is widely 

highlighted in the literature as mentioned earlier (e.g., Abbas and Khan, 2007; Lobell et al., 

2010; Allbed and Kumar, 2013; Allbed et al., 2014a; Elhag, 2016). The efficiency of different 

soil salinity indices derived from IKONOS high-spatial resolution imageries (1×1 m) for 

detecting and mapping soil salinity for a subsection of this study area has been reported in 

earlier work by the authors Allbed, Kumar and Aldakheel (2014a). The result showed that the 

Soil Adjusted Vegetation Index (SAVI), Normalized Differential Salinity Index (NDSI) and 

Salinity Index (SI) provided optimum results compared to the other indices investigated. In the 

absence of the IKONOS imageries for entire study area for selected change period, the SI based 

on the two SWIR Landsat bands was used in this study. These two bands have been found 

highly suited for soil salinity determination (e.g., Al-Khaier, 2003; Bannari et al., 2008; Meng 

et al., 2016). The SI generally attempts to enhance the spectral contribution of saline soils by 

minimizing and suppressing the spectra related to the vegetation. The SI for the 1985, 2000 

and 2013 change years were calculated using the equation: SI = (SWIR1 – SWIR2) / (SWIR1 + 

SWIR2). Soil salinity difference image (∆SI) for the two change periods was created by 

subtracting one date of SI value from those of the previous date as: ∆SI = SI (t1) − SI (t2). On 

the resulting ∆SI image the positive values indicated increasing proportions of salinity, whereas 

negative values indicated decreasing proportions of salinity and near zero values represented 

no change in salinity between the two change periods.  

5.3.4 Reference Data  

In absence of historical reference data for changes in the study area, a visual interpretation 

method based on combination of primary colours (RGB) of similar brightness was used to 

develop reference data for change evaluation in this study (Cohen et al., 1998). The method is 
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based on the fact that any combination of primary colours of similar brightness makes a 

complementary colour as a change (Sader and Winne, 1992; Lillesand et al., 2014). Therefore, 

if NDVI images of three different dates are displayed in sequence as R, G and B, then an area 

with no-vegetation (cleared) on dates 1 and 2, but with vegetation (regrow) before date 3, can 

be seen as blue colour and so on. Thus, to develop the reference data for change pixels, NDVI 

of years 1985, 2000 and 2013 was displayed as red (R), green (G) and blue (B), respectively 

as RGB composite. The combination of three primary colours allowed to establish a three-date 

(1985–2000–2013) classification system (Table 5.1) to highlight changes. On this classification 

system, ‘Y’ represents presence of vegetation cover in a given area and ‘N’ for no-vegetation 

area. Therefore, on three date change system, the NYN code represents clearing of vegetation 

cover on or before 1985 (i.e., ‘N’), regrow between 1985 and 2000 (i.e., ‘Y’) and again cleared 

between 2000 and 2013 (i.e., ‘N’). Finally, the entire change and no-change data were grouped 

into the overall change and no-change classes. A total of 800 sample points were finalized as 

reference data for vegetation cover change/no-change classes for 1985-2000-2013 period. To 

determine the reference samples between two change periods (i.e., 1985-2000 and 2000-2013), 

the three-date reference points were re-grouped into two parts by merging similar classes on 

two successive dates into one. For example, code NNY was split as NN (i.e., no change 

between date 1 and date 2 as ‘no change’) and NY (i.e., no-vegetation cover to vegetation cover 

to as ‘positive change’ between dates 2 and 3). The details of this change detection 

classification system are explained in Table 5.1. Merged reference pixels were used for the 

evaluation of changes between 1985 and 2000 and also between 2000 and 2013, separately. 

Similar procedure was followed for soil salinity change identification error evaluations by 

generating separate 800 sample points from SI for 1985, 2000 and 2013, each displayed on 

RGB composite to create three-date change systems, and similar interpretations were made for 

identification of soil salinity changes between dates. 
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Table 5.1 Interpretation of the RGB–NDVI images 

Additive 
colour 

1985 
(R) 

2000 
(G) 

2013 
(B) 

Code Interpretation of change 
1985-2000 2000-2013 

Change classes 

Red Y N N YNN 
Decrease between dates 1 and 2, 
no change between dates 2 and 3 

negative 
change 

no change 

Green N Y N NYN 
Increase between dates 1 and 2, 
decrease between dates 2 and 3 

positive 
change 

negative 
change 

Blue N N Y NNY 
No change between dates 1 and 2, 

increase between dates 2 and 3 
no change 

positive 
change 

Yellow Y Y N YYN 
No change between dates 1 and 2, 
decrease between dates 2 and 3 

no change 
negative 
change 

Magenta Y N Y YNY 
Decrease between dates 1 and 2, 
increase between dates 2 and 3 

negative 
change 

positive 
change 

Cyan N Y Y NYY 
Increase between dates 1 and 2, 
no change between dates 2 and 3 

positive 
change 

no change 

Black N N N NNN No change in no vegetation no change no change 
Gray/white Y Y Y YYY No change in high vegetation no change no change 

 

5.3.5 Threshold Determination of the Differencing Images and 

Accuracy Evaluation 

Ideally, the differences between feature brightness values are the places highlighting the 

changes, however, to quantify and separate change from no-change areas, a threshold value is 

required (Fung and LeDrew, 1988). The selection of an optimal threshold value is a key 

procedure to distinguish the change and no-change areas, as it affects the binary image 

classification accuracy and robustness of the final change detection accuracy. Several methods 

to determine the optimal threshold value have been proposed to separate changed from 

unchanged areas (e.g., Mas, 1999; Bruzzone and Prieto, 2000). The methods were found 

subjective and based on a trial-and-error process to select appropriate thresholds values. In this 

study, the mean and the standard deviation (SD) for each differencing image were computed 

and used in formula Mean ± C × SD to determine the threshold values. Different thresholds 

(C-values) were tested, ranging from 0.2 to 3 with interval of 0.2 using reference data for 

change and no-change classes. At each threshold (C-value), a binary (change/no-change) 

classified image was generated which was then evaluated with respect to change/no-change 

accuracy using reference data collected for positive, negatives and no-change areas. For each 
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classified image an error matrix in terms of producer’s error, user’s error and overall accuracy 

was produced for the change/no-change classification accuracies assessment. A coefficient of 

agreement between classified images and reference data was also calculated using Kappa 

coefficient. It takes into account non-diagonal elements and has been recognized as a powerful 

method for analyzing a single error matrix and comparing different error matrices (Congalton, 

1991; Smits et al., 1999). The Kappa coefficient (K) was computed as follows: 

 

𝑘 =
∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖 + 𝑥 + 𝑖)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖
𝑟
𝑖=1 + 𝑥 + 𝑖)

                             (5.1) 

 

where r is the number of rows in the matrix, xii is the number of observations in row i and 

column i, xi+ and x+i are the marginal totals of row i and column i, respectively, and N is the 

total number of observations. Finally, the optimal threshold for differentiating change/no-

change areas was determined based on highest kappa value or overall accuracy (OA) (e.g., 

Fung and LeDrew, 1988; Sinha and Kumar, 2012, 2013). 

5.3.6 Soil salinity–Vegetation Cover Change Linkage   

To understand the soil salinity-vegetation cover changes relationship, a Pearson correlation 

analysis was performed on random points (n = 220) selected from ∆NDVI and ∆SI images 

across the study area. The statistical analysis was performed using JMP®10 (JMP statistical 

discovery software from SAS), and the level of significance was set to p < 0.05. 
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 Results 

5.4.1 Vegetation Cover and Soil Salinity Change Detection 

The difference images of the NDVI (∆NDVI) and SI (∆SI) is shown in Figure 5.3(a) and (b) 

for the change periods 1985-2000 and 2000-2013. The brighter pixels indicating positive 

change between the change period (i.e., increase in vegetation cover or salinity), while darker 

pixels representing negative change for the same period.  Grey pixels represent no-change area.  

Figure 5.4 shows the process of optimal threshold identification for the ∆NDVI and the ∆SI 

images for the change period 1985-2000 and 2000-2013, respectively using Mean ± C × SD. 

The optimal threshold value was determined by highest kappa value or OA determined at 

different C-values. The optimal C-value for ∆NDVI image of 1985-2000 and 2000-2013 

periods, can be set to 1.8 and 2.0 respectively, as kappa or OA was the highest in the series at 

these values. The bi-directional change/no-change maps for ∆NDVI image of the two change 

periods based on optimal threshold values is presented in Figure 5.5(a). The figure 

demonstrates a noticeable change in vegetation cover over the 28 years mostly in the northern 

and southern regions of the study area between the two change periods. For 1985-2000 period, 

a decrease in vegetation cover was observed more towards the northern part of the study area, 

however, for 2000-2013 period, the vegetation decrease was more spread out with change 

concentration situated in north and central part of the study area. The increase in vegetation 

cover occurred throughout the study area for 1985-2000 period, while it was mostly towards 

northern and southern portion between 2000 and 2013 periods. Table 5.2 summarizes the area 

(ha) and percentage change in the NDVI values between years 1985-2000 and 2000-2013. Over 

7% of the total study area experienced positive change (increasing vegetation cover) between 

1985 and 2000, whereas nearly 3% of showed negative change, that is decline in vegetation 

cover for the same period. However, between the 2000 and 2013 period, the positive changes 
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decreased to 6.98%, while the negative changes increased to 6.30%, indicating much 

vegetation loss during this period in the study area. 

The optimal C-value for ∆SI image of both 1985-2000 and 2000-2013 periods can be set at 1.6, 

as kappa or OA were the highest in the series at these values (Figure 5.4). The change/no-

change maps for ∆SI image of the two change periods, based on the optimal threshold values 

are presented in Figure 5.5(b). The change detection results for soil salinity areas are presented 

in Table 5.2. Between 1985 and 2000 soil salinity increased by 3.76%, while for 2000-013 

period there was a much higher increase of soil salinity by 15.11% of the total area. On the 

other hand, the decline in soil salinity between 1985 and 2000 was 5.74% of the study area, 

which was further down to about 3.89% between 2000 and 2013. Thus, overall there was much 

increase in salinity in the study area than reduction over the change period (1985-2013). 

5.4.2 Change Detection Accuracy Assessment 

Change/no-change classification accuracies of ∆NDVI and ∆SI for the two change periods are 

summarized in Table 5.3. The highest overall accuracy was achieved of ∆NDVI for 2000-2013 

with (94.24%, Kappa 0.91), while it was a bit lower in the case of ∆NDVI in 1985-2000 with 

overall accuracy of 94.09 (Kappa 0.90). High accuracies were also obtained with all change 

periods for the ∆SI. In general, the user’s and producer’s accuracies of ∆NDVI and ∆SI change 

classes were high in the two change periods. Overall, the positive change class for ∆NDVI and 

∆SI in both change periods showed the highest user's and producer's accuracies. 

5.4.3 Soil Salinity-Vegetation Cover Change Relationship 

Figure 6 illustrates the correlations between soil salinity and vegetation cover change detected 

in the two change periods, 1985-2000 and 2000-2013. The analysis reveals highly significant 

correlation (p < 0.0001) with a strong negative linear relationship between the soil salinity-veg 

etation cover changes (R2 Adj of 0.83 and 0.80, respectively) in the two change periods.  
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Figure 5.3 The difference images of: (a) the NDVI (∆NDVI) for the change periods 1985–2000 and 2000-2013, and (b) SI (∆SI) for 
the change periods 1985-2000 and 2000-2013 
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Figure 5.4 Change/no-change thresholds based on Mean ± C*SD at different C-values for 1985-2000 and 2000-2013 change 
periods. The optimal threshold values were determined by highest Kappa value or OA. The figure shows that an optimal C-value 
for ∆NDVI image for 1985-2000 and 2000-2013 periods can be at 1.8 and 2.00, respectively, and the optimal C-value for ∆SI image 

in both change periods can be at 1.6 
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Figure 5.5 Change/no-change maps of: (a) ∆NDVI for the change periods 1985-2000 and 2000-2013, and (b) ∆SI between for the 
change periods 1985-2000 and 2000-2013 
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Table 5.2 NDVI and SI change area for the two different change periods 
 

Change class 

NDVI  SI 

1985-2000  2000-2013  1985-2000  2000-2013 

(ha) (%)  (ha) (%)  (ha) (%)  (ha) (%) 

Change decrease 3318.03 3.73  5605.38 6.31  5101.83 5.74  3457.62 3.89 
No change 78599.43 88.45  77041.26 86.71  80410.77 90.50  71972.1 81.00 

Change increase 6936.12 7.81  6206.94 6.98  3340.89 3.76  13423.86 15.11 

 

 

Table 5.3 Change no-change classification accuracy of ∆NDVI and ∆SI for the two changes 

 

 

 
 

Figure 5.6 The relationship between soil salinity and vegetation cover changes in: (a) 1985-2000 change period, and (b) 2000-
2013 change period 

 

 

  

Change class 
1985-2000  2000-2013 
∆NDVI  ∆SI  ∆NDVI  ∆SI 

PA% AU%  PA% UA%  PA% UA%  PA% UA% 

Change decrease  84.38 95.07  95.38 91.16  86.75 94.42  95.18 97.32 
No change 96.68 91.90  93.56 93.21  95.68 93.00  92.19 94.13 
Change increase  98.63 97.77  91.00 96.17  98.88 96.58  93.13 87.75 

OA  94.09  93.38  94.24  93.22 
Kappa Coefficient 0.90  0.89  0.91  0.89 

PA= producer’s accuracy; UA= user’s accuracy; OA= overall accuracy. 
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 Discussion 

 This study has attempted to detect soil salinity and vegetation cover changes, and to determine 

whether the vegetation cover change is associated with soil salinity change in Al Hassa Oasis. 

Vegetation cover and soil salinity change detection was carried out based on temporal image 

differencing of three Landsat images spanning 15 and 13 years acquired from 1985 to 2013.  

Based on prior understanding and previous study (e.g., Allbed and Kumar, 2013) on absorption 

in the visible range and high reflectance in the NIR range of the electromagnetic spectrum, this 

study used the NDVI to map soil salinity by monitoring halophytic plants (e.g., date palm) 

conditions for different time periods. The salinity index (SI) computed using the two SWIR 

bands in this study was found capable of enhancing the spectral contribution of saline soils by 

minimizing and suppressing the spectra related to the vegetation. The results were found in 

accordance with other similar studies which showed the usefulness of the two SWIR Landsat 

bands for soil salinity determination (e.g., Al-Khaier, 2003; Bannari et al., 2008; Nawar et al., 

2014; Meng et al., 2016). For example, Nawar, et al. (2014) found the two SWIR Landsat 

bands, particularly SWIR1 (Band 5) band had highest contribution to the assessment of soil 

salinity. They found a high correlation between the Landsat spectral bands and resampled 

spectra reflectance values (R2 > 0.93) indicating that the reflectance values derived from 

Landsat have great potential for predicting and mapping soil salinity. In another study, Fourati 

et al. (2015) used Landsat 8 OLI data to model soil salinity within a semi-arid region using 

spectral analysis and found the highest correlations correspond to band 6 (1600 nm) and band 

7 (2200 nm) confirming the usefulness of mid-infrared (SWIR) bands for detection of salt 

features. Bannari, et al. (2008) studied the potential of OLI spectral bands to discriminate soil 

salinity levels in Morocco and noticed that SI derived from the two SWIRs provided the best 

correlation. In this study, the soil salinity change identified for 1985-2000 and 2000-2013 
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periods highlighted area undergone increase or decrease in salinity level and also for no-chance 

area. 

The main necessities here are to highlight the areas where soil salinity brightness values have 

decreased or increased (mostly due to changes in soil salinity concentration) or remained 

unchanged during the change period. However, determination of suitable thresholds to identify 

change/no-change areas is a critical factor that effects change detection result accuracy. The 

use of image differencing and determination of optimal thresholding in both directions 

(positive and negative changes) in this study were found very effective and useful for 

identification of change/no-change areas based on a simple concept and easy computation 

technique. The method has advantage in terms of selection of threshold values that produce 

highest accuracy in change/no-change identification and also provided details on the directional 

change through quantification of spectrally increased and decreased areas along with no change 

areas. In addition, the study used a method of selection of historical reference data for changes 

in the study area through visual interpretation of RGB composite based on combination of 

primary colours of similar brightness where complementary colour reflected as a change. The 

three-date classification system further allowed to determine the reference samples between 

two change periods by re-grouping the three-date reference points into two parts by merging 

similar classes on two successive dates into one. The method was found very effective and 

useful for change evaluations from historical data in absence of reference data related to 

changes.  

The analysis results showed a remarkable change in vegetation cover as well as soil salinity 

accrued. The soil salinity has undergone variable change over the two change periods and can 

be attributed to different factors, including poor irrigation water quality (Sparks, 2003; Hussain 

et al., 2006). This study area is primarily dominated by date palm plantations, irrigated mainly 

with ground water. Several studies from Al-Zarah (2008); Al-Naeem (2011) and Hussain, et 
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al. (2012) conducted to investigate the irrigation water quality in the Al Hassa Oasis. They 

found that the EC of the ground water ranged between 1.46 and 16.17 dS/m, which is classified 

as high (C3) to very high salinity (C4), according to Regional Salinity Laboratory, U.S., water 

classification scheme, leading to serious effects on soil. Further, the harsh arid climate (high 

temperatures, low rainfall and high evaporation rates) probably also has effects in inducing soil 

salinity in the study area. For example, Howari and Goodell (2008) found that the combined 

effect of high temperature and infrequent rainfall results in significant evaporation and 

contributes to high soil salinity. Wu et al. (2014) reported similar results in an arid region of 

Iraq recently. 

Significantly high relationships between vegetation cover change and soil salinity were 

detected for the two change periods (Figure 5.6). Overall, the vegetation cover change 

increased as soil salinity decreased and vice versa in the study area. These findings suggest that 

the noticeable change of vegetation cover may be likely due to soil salinity change, which have 

negatively impacted the vegetation cover. Studies have shown the negative impacts of soil 

salinity on agriculture include decreased plant growth, yield and nutrition (Bernstein, 1975). 

Raes et al. (2002) reported that excess watering in saline soils can cause loss of essential plant 

nutrients out of the root zone and soil salinization, which results in limited growth and yield 

reductions. The side effects of the observed increase in soil salinity in this study area were 

pronounced in the decrease in the vegetation cover, which is covered mostly by date palm. 

Though date palm can adapt to high levels of soil salinity, several studies have shown that soil 

salinity has considerable negative impacts on date palm productivity and growth (e.g., 

Alhammadi and Edward, 2009; El-Khawaga, 2013; Sperling et al., 2014). A detailed survey in 

Algeria showed that date palm potential yield was far below expected when it was grown under 

saline soil conditions (Daddi Bouhoun et al., 2011). Recently, Al-Abdoulhadi, et al. (2012) 

investigated the impacts of soil salinity on date palms, their results showed that the fronds and 
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leaf length were significantly reduced as the salinity increased and that the reduction in growth 

was related to soil salinity. Also, Tripler et al. (2007) and Darwesh (2013) found that soil 

salinity stress reduced water uptake and growth of date palm in terms of plant height. 

In some parts of the study area, there was an apparent decrease in soil salinity over the change 

period which had possibly led to an increase in the vegetation cover. There might be different 

factors that have contributed to this change such as leaching application to the soil surface, use 

of modern irrigation system and management practices, etc. For example, Mostafazadeh-Fard 

et al. (2008) found that leaching utilization had a significant effect on improving soil salinity 

via decreasing the salt stress, which caused significant improvement in yield. In addition, use 

of modern irrigation systems (e.g., drip, sprinkler, flood and bubble) as suggested by similar 

studies (e.g., Bustan et al., 2004; Malash et al., 2005; Ali et al., 2007) may have controlled soil 

salinity to some extent resulting in improved vegetation cover conditions.  

Overall, there was more increase in soil salinity level and decline in vegetation cover, 

particularly during 2000-2013 period, than decrease in soil salinity level. The observed changes 

in this area will have significant implications on agricultural output in the future if these 

processes continue as increase in soil salinity level was found one of the reasons contributing 

to the decline in vegetation cover change. Consequently, the loss of vegetation cover will 

enhance evaporation and promote more salinity. The two mutually inclusive effects will result 

in reduction of suitable land for future agricultural use and will have economic and social 

impacts as these regions are important source of income for the government and local farmers 

(Jain et al., 2011). For example, in Oman it was estimated that annual losses due to soil salinity 

and abandoned date palm farms ranges between 7.3 and 14.0 million Omani rials per annum 

(Ahmed et al., 2013). Thus, the finding reported in this study can be considered a useful starting 

point to help agricultural workers, scientists and engineers understanding the effects of 

vegetation cover and soil salinity changes in order to protect the vegetation cover, especially 
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date palm outputs, sustain agricultural lands and avoid further adverse environmental, social 

and economic effects.  

 Conclusion  

Soil salinity is a dynamic process that changes over time and has harmful impacts on 

agriculture. Thus, knowledge of the change in soil salinity dynamics over time and its impacts 

on vegetation cover is required in order to support decision makers to work on different actions 

needed to control soil salinity and sustain the vegetation cover. From this viewpoint, this study 

was conducted to detect soil salinity and vegetation cover changes in Al Hassa Oasis; and to 

investigate whether the change in vegetation cover is a case of soil salinity change based on 

multi-temporal Landsat imagery. With NDVI and SI difference images, changes in the 

vegetation cover and soil salinity were detected. A strong inverse relationship was found 

between the NDVI and SI values, indicating that there is a potentially strong linkage between 

the vegetation cover change and soil salinity change over the study area. Overall, the soil 

salinity level has experienced remarkable changes in Al Hassa Oasis in the past 28 years 

probably due to improper land use and poor management practices (e.g., poor irrigation system, 

fertilizer application, etc.). The increased soil salinity will have long consequences in terms of 

decline in the vegetation cover and date farm production causing serious environmental, 

economic and social impacts. Thus, better management practices are required to mitigate these 

changes and to improve soil conditions. 

The medium resolution remote sensing data and the analysis techniques used in this study to 

investigate vegetation and soil salinity changes showed satisfactory results. However, the 

results can be improved with higher spatial/spectral resolution remote sensing images and a 

subsequent study has been proposed to use of such data for the study area. Nevertheless, the 

study showed the usefulness of time-series remote sensing data for soil salinity and vegetation 
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change detection. The results will help the managers in identifying problem areas and in taking 

appropriate actions to control and mitigate salinity to protect the date palm outputs and avoid 

further adverse environmental, social and economic effects.   
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 Abstract 

The agricultural industry is vital not only for providing food but also through its contribution 

to economic growth and environmental sustainability. Understanding agriculture’s underlying 

driving factors, as well as how agricultural areas have expanded and where the growth will 

occur in the future, are important for sustainable development plans. In the current study, the 

effects of the following factors on agricultural expansion in the Al Hassa Oasis were 

investigated: physical and proximity factors, including elevation, slope, soil salinity, distance 

to water, distance to built-up areas, distance to roads, distance to drainage and distance to 

irrigation. A logistic regression model was used for two time periods of agricultural change- in 

1985 and 2015. The probable agricultural growth maps based on agricultural changes in 1985, 

was used to test the performance of the model to predict the probable agricultural expansion 

after 2015. This was achieved by comparing the probable maps of 1985 and the actual 

agricultural land of 2015. The Relative Operating Characteristic (ROC) method was also used 

and together these two methods were used to validate the developed model. The results showed 

that the prediction model of 2015 provides a reliable and consistent prediction based on the 

performance of 1985. The logistic regression results revealed that among the investigated 

factors, distance to water, distance to built-up areas and soil salinity were the major factors 

having a significant influence on agricultural expansion. Such results will contribute to a deeper 

understanding of the process of agricultural expansion and provide a scientific basis for future 

forecasting and decision-making processes regarding sustainability. 

Keywords: agricultural growth; driving forces; logistic regression; GIS; remote sensing  
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  Introduction 

In most countries of the world, whether underdeveloped, developing or even developed, 

agriculture plays a vital role not only in regard to food security and rural sustainable 

development, but also in making contributions to economic growth (Diao et al., 2010; 

Izuchukwu, 2011; Raza et al., 2012). It has been reported that the most direct contribution of 

agricultural growth is through generating higher incomes for farmers (Irz et al., 2001), 

expansion of marketable surplus, as well as the development of material (e.g., industry), and in 

the non-material production sectors, which contribute substantially to the overall economic 

development of the country. Agricultural expansion, which is considered as one of the main 

dynamics of land cover change, is a spatio-temporal dynamic process controlled by various 

driving forces (socio-economic, physical and proximate), their interactions and processes, 

during which both the spatial expansion and the drivers vary over time and space (Mitsuda and 

Ito, 2011). Like elsewhere, Al Hassa Oasis in the eastern part of Saudi Arabia is regarded as 

one of the main agricultural regions in Saudi Arabia providing a significant source of income 

for farmers and the government (Jain et al., 2011; Al-Abdoulhadi et al., 2012). However, with 

the change in land use it has been reported that agricultural distribution in this Oasis has 

experienced remarkable alteration (Al-Jabr, 1984; Akkad, 1990), yet the physical and 

proximate driving forces behind this change in agricultural expansion have not been studied. 

Hence, understanding the past and current spatial distribution of agriculture and its underlying 

drivers along with their relationships, is a crucial prerequisite, as information on existing 

agriculture patterns and changes over time play an important role in the decision-making 

process to mitigate the negative effects and promote desired outcomes. 

Remote sensing in conjunction with the advancement of geographic information systems (GIS) 

and the increasing quality and spatial coverage of global resource databases have enabled 

modelling of the changes in land use/land cover (LULC) at a variety of spatial scales (Aspinall, 
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2004; Tayyebi et al., 2014; Paudel et al., 2016). A range of empirical models which use 

statistical analysis to compute LULC changes probabilities, indicating the likelihood of 

occurrence of a specific LULC type at a location (Almeida et al., 2008), have been developed 

and have been used to uncover the interaction between the dynamic changes and the driving 

factors based on historical data. Amongst these approaches, a logistic regression model has 

been the most popular for empirically predicting probabilities of events in multiple applications 

due to its efficiency in handling binary dependent variables. In the case of LULC, change in 

the influence of independent variables can readily be identified, and its results can be directly 

used to predict the locations of future change (Cheng and Masser, 2003; Dubovyk et al., 2011; 

Li et al., 2013). For example, Li, et al. (2013) examined the effects of physical, socioeconomic, 

and neighborhood factors on urban expansion in Beijing using binary logistic regression. 

Similarly, Newman, et al. (2014) adopted a logistic modelling technique to investigate the 

driving forces of both deforestation and reforestation in the Cockpit Country, Jamaica. In many 

cases, this model fits spatial processes and LULC change outcomes reasonably well. 

In comparison to the extensive studies using binary logistic regression models (Cheng and 

Masser, 2003; Hu and Lo, 2007; Tayyebi et al., 2010; Nong and Du, 2011; Achmad et al., 

2015; Alqurashi et al., 2016), studies that have been conducted all around the world to 

understand the spatial patterns and the driving factors of land use change, in particular urban 

expansion, agricultural expansion as a form of land cover change has received relatively little 

attention. Even less research has sought to use agricultural expansion modelling by developing 

a logistic regression model based on physical and proximate driving factors. Accordingly, this 

paper aims to conduct, using a logistic regression model, the first known spatio-temporal 

modelling of agricultural expansion in the Al Hassa Oasis in 1985 and 2015 to: (1) identify 

drivers of past and present spatial distribution of agricultural land cover, with a goal of 
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identifying the key drivers’ factors that have shaped the expansion of the agricultural land cover 

at two years, and (2) predict agricultural expansion after 2015. 

  Materials and Methods  

6.3.1  Study Area 

Al-Hassa Oasis is located between a latitude of 25° 05’ and 25° 40’ N and a longitude of 49° 

10’ and 49° 55’ E in the eastern province of Saudi Arabia (Figure 6.1), at an elevation range of 

about 130 to 160 m above sea level. This Oasis covers an area of approximately 20,000 ha that 

are made up of two separate oases that are somewhat sloped to the north and east. It is an 

agricultural land, mainly dominated by date palms (Phoenix dactylifera L.); while alfalfa, rice 

and other vegetables are also cultivated. The ground water is the main water source for 

agricultural and other uses in this Oasis and comes from the Neogene groundwater aquifer and 

several free flowing springs that are distributed across the area (Al Sayari et al., 1984). The 

main drainage direction follows the natural northern and eastward slope in the eastern and 

northern Oasis (Al-Barrak and Al-Badawi, 1988; Shaltout and El-Halawany, 1992). The Al-

Hassa Oasis is characterized by an arid climate with an ambient temperature that exceeds 45°C 

during the summer and has a high evaporation rate that exceeds the annual average 

precipitation by approximately 488 mm. During the winter the temperature is between 2 and 

22 °C. 

The Al Hassa Oasis is considered one of the largest and most productive agricultural regions 

in Saudi Arabia. It is dominated by date palm farming, providing a significant source of income 

for farmers and the government. The key issue that influences the agricultural growth and 

productivity in this Oasis is soil salinity, due to the local weather conditions, along with 

improper land use and poor management practices. These include poor irrigation water quality, 

poor irrigation systems and fertilizer application. 
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Figure 6.1 Location of the Al Hassa Oasis in Saudi Arabia 

6.3.2  Image Acquisition and Pre-processing 

Landsat Thematic Mapper (TM) image for January 1985 and Operational Land Imager (OLI) 

image for December 2015, obtained from the United States Geological Survey (USGS), were 

used to quantify the rate of agricultural change in the study area. Ideally, the images should 

have been taken during the same time period; however, this was not possible due to 

unavailability of data. It is considered that such a small difference in the image acquisition 

dates should not significantly affect results. These data sets are located on satellite path 164 

and row 42. The images were geo-referenced to a Universal Transverse Mercator (UTM) 

coordinate system using World Geodetic System (WGS) 1984 datum assigned to north UTM 

zone 39. A relative radiometric normalization was conducted to remove radiometric distortions 

and make the images comparable. For this purpose, Dark-Object Subtraction (DOS) was 

carried out for radiometric and atmospheric normalization (Canty et al., 2004; Vicente-Serrano 
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et al., 2008). The multispectral image Digital Number (DN) values were converted to Top of 

Atmosphere (TOA) reflectance values through the equation suggested by Canty, et al. (2004). 

Finally, image subsets were extracted for the study area. The entire data pre-processing and 

digital image analysis were carried out using Environment for Visualizing Images (ENVI) 

version 5.3 software. 

6.3.3  Image Classification and Accuracy Assessment 

To derive land cover information from remotely sensed images, image classification was 

carried out to obtain the thematic maps of the two time periods. Several classification 

techniques, such as maximum likelihood, decision tree and neural network classifiers, have 

been developed since the first Landsat image was acquired. In this study, the classification 

process was performed using spectral indices and the Support Vector Machines (SVM) 

classifier, both of which were derived from statistical theories and are commonly used in land 

cover classification studies. Normalized Difference Vegetation Index (NDVI), and Normalized 

Difference Water Index (NDWI) were used to extract the agricultural lands and waterbodies 

from the images.  

SVM has often been found to provide higher classification accuracies than other widely used 

techniques (Akbani et al., 2004). In brief, SVM is a supervised non-parametric statistical 

learning technique (Mountrakis et al., 2011) in which the optimization algorithms are employed 

to specify the optimal boundaries between classes (Huang et al., 2002). Built-up areas and bare 

soil are not linearly separable in the study area. Thus, misclassification errors are an inherent 

problem when using traditional classification algorithms such as maximum likelihood 

classifiers. However, SVM increases the margin width between classes and consequently 

minimizes the quantity of proportional to the number of misclassification errors (Pal and 

Mather, 2005). Zakeri, et al. (2017) have applied SVM and maximum likelihood classifiers to 
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detect built-up areas and bare soil in Tehran city in Iran, and they found that SVM produced a 

higher accuracy than the maximum likelihood classification. Therefore, the SVM approach was 

selected to classify built-up areas and bare soil for 1985 and 2015. Since the aim of this paper 

was to analyze agricultural growth, the other three classes - water, built-up and bare soil were 

reclassified as non-agriculture areas. Thus, the final results presented two categories, 

agriculture and non-agriculture areas, which were then used in the statistical analysis. 

Accuracy assessment is an important component of image classification. In this study, stratified 

random sampling methods were applied to evaluate the classified images. The results indicated 

a high overall accuracy (average overall accuracies were 88.09% and 90.56% in 1985 and 2015 

respectively) and kappa coefficient (average kappa coefficients were 0.82 and 0.87 in 1985 and 

2015 respectively), which show good agreement between the referenced and classified images.  

6.3.4 Potential Driving Factors of Agricultural Expansion 

To determine the potential driving factors of agricultural expansion, a total of eight factors 

within two main categories, physical and proximity, were selected. The physical factors 

considered were elevation, slope and soil salinity, while the proximity factors comprised the 

distance to water, distance to built-up areas, distance to roads, distance to drainage and distance 

to irrigation. These factors were selected based on their effects as described in previous studies 

(Akkad, 1990; Mitsuda and Ito, 2011). Figure 6.2 shows the variables used as potential driving 

factors in binary logistic regression models.  

Topography-related factors, elevation and slope, play a vital role in agricultural expansion as 

they determine the extent of soil erosion, transport facilities and cultivation methods 

(Somashekar, 2003). Generally, an increase in elevation and slope make agricultural practices 

quite difficult, or even impossible, with related costs becoming higher. However, in flat areas 

there is no such problem, with these areas more suitable for agricultural development (Scherr 
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et al., 1997). The role of soil salinity is also important (Kersten et al., 2000; Somashekar, 2003) 

as agricultural production depends on soil health. Usually high levels of soluble salts in soil 

inhibit plant growth and subsequent agricultural development. Accordingly, elevation, slope 

and soil salinity, which is a major problem in this region as mentioned previously, were selected 

as the physical factors. Both elevation and slope were derived from the 30-m resolution digital 

elevation model (DEM) that was obtained from the USGS site for the study area. The slope 

was calculated as a percentage, dividing the rise by the run and multiplying by 100. Soil salinity 

maps were obtained from the Ministry of Agriculture. 

Since agricultural production is a biological process, its growth is not possible without water. 

The distance to sufficient water resources is considered a fundamental determinant of the 

extent, the spatial distribution, and the spatial expansion of agricultural land. Greater distance 

to water resources is expected to have a negative impact on agricultural expansion. Thus, in 

the study area the distance to water bodies’ locations was calculated using the Euclidean 

distance algorithm in ArcGIS 9.2. 

From an environmental perspective, built-up areas and roads that penetrate into agricultural 

land are the biggest peril, since they often promote large-scale agricultural loss (Laurance et 

al., 2014). Therefore, the greater the proximity to the built-up areas or the roads, the less the 

probability of lands being attractive to farmers to expand or establish new plantations. 

However, high quality roads that connect existing agricultural areas with markets may reduce 

degradation, and such roads can act as magnets that attract farmers to areas that are already 

dominated by human beings, and away from vulnerable frontier areas (Weinhold and Reis, 

2008). These roads could promote greater agricultural productivity while enhancing farmers 

economically. For each year in this study, the distance to built-up areas was generated by 

extracting the urban class from the classified images and running the Euclidean distance 

algorithm on the output. As roads are usually temporally dynamic, road layers were delineated 
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using heads-up digitizing from the time-series Landsat images for each year then the distance 

from roads was calculated using the Euclidean distance algorithm. 

While irrigation is a key factor for increasing agricultural production, excessive irrigation with 

poor quality water in places without proper drainage systems poses many hazards to 

agricultural production. Scientists agree that one of the biggest threats to irrigated agriculture, 

such as in this study area, is salinity (Hoffman et al., 2007). In light of this, where irrigation 

and drainage canal systems with appropriate management exist, the lower the likely salinity 

intensity would be and higher agricultural growth is to be expected. In this study, the layers for 

both irrigation and drainage canals were obtained from Al Hassa Irrigation and Drainage 

Authority (HIDA), then the distance from the irrigation and drainage canals was calculated 

using the Euclidean distance algorithm. 

 

Figure 6.2 Selected driving forces of agricultural growth in the Al Hassa Oasis 
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  Statistical Analysis 

6.4.1 Agriculture and Non-Agriculture Data Sampling 

In this study, the derived layers for the dependent and independent variables were very large 

(1352 ×1819) with a 30-m resolution. In the later investigative statistical analysis, dealing with 

such a large data set is computationally difficult, tedious and extremely time consuming (Dong 

et al., 2015; Alqurashi et al., 2016). Besides, both dependent and independent variables may 

have spatial autocorrelation, and this has several implications that may yield biased results in 

the later logistical regression analysis. To avoid these previously mentioned issues, attention 

was paid to selecting an appropriate data sampling method. Thus, systematic random sampling 

was applied for both agricultural and non-agricultural features to extract cell values of 

dependent and independent variables on which the logistic regression model was fitted. The 

sample points were selected with a relatively large distance of greater than 300-m between each 

point in order to minimize spatial autocorrelation. The points that were agricultural were coded 

as 1 (presence) while non-agricultural points were coded as 0 (absence). Consequently, the 

numbers of sample points used in the later logistical regression with an equal quantity of points 

coded as 0 and 1 were 412 and 442 for 1985 and 2015, respectively. 

6.4.2 Logistic Regression 

Logistic regression is a non-linear statistical model that is used to model and discover the 

empirical relationships between a dependent variable (Y) and several independent categorical 

and continuous variables (Xs) (Kleinbaum and Klein, 2010). In logistic regression, the 

dependent variable is usually dichotomous, which means that the value of 1 is assigned when 

the areas are likely being converted to, for example, agriculture, or 0 when there is no transition. 

This type of variable is called a binary variable. 
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Compared with other regression models, the logistic regression model has the ability to 

estimate the agriculture probability of the occurrence of a discrete response factor (Rienow and 

Goetzke, 2015). Also, it can empirically identify the influence of independent variables on the 

dependent variable, and thus can provide a degree of confidence regarding their contribution 

(Hu and Lo, 2007). In this study, the binary logistic regression model in agricultural growth 

was calculated using the following equation: 

 
     = + + +

0 1 1
log ( ) - log( ) .......

1-

y
it y

y
          (6.1) 

where 𝑦 is the probability of conversion identifying agriculture land as 1, 𝜒𝜂 is an independent 

variable or driving force, 𝛽0 is the intercept, 𝛽𝜂 is the estimated coefficients of variable 𝜒𝜂, 𝜀 

is a randomly distributed residual error.  

Binary logistic regression was used to investigate the driver factors that are associated with 

agricultural growth, and to develop an agricultural growth probability map. For this purpose, 

binary logistic regression was used first in 1985 to quantify and compare the agricultural 

growth probability with the agricultural map of 2015 that was generated from satellite data, 

then it was applied to the agricultural growth in 2015 using equation (6.1).  

6.4.3 Prediction of Spatial Patterns of Agricultural Distribution 

After generating the probability maps using equation (6.1), the coefficient values of the selected 

driving factors and the intercept values were calculated in ArcGIS 10.2. The odds ratio of value 

1 was used individually for each map of 1985 and 2015. The calculation was first applied to 

the 1985 data in order to validate the probability maps of 2015. A visual comparison was 

performed by overlaying the probability map of 1985 and the agricultural area map of 2015 
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that was produced from the image classification of the 2015 image. The logistic regression 

model was then applied to the 2015 map.  

6.4.4 Model Validation  

To evaluate the performance of the binary logistic regression model, robust statistical methods 

are needed. Relative operating characteristics (ROC) is the most widely used method for 

predicting accuracy when evaluating and comparing models (Martínez et al., 2011). Besides, 

ROC has been previously used in LULC change modelling to measure the relationship between 

simulated change and real/observed change (Newman et al., 2014; Alqurashi et al., 2016). 

Basically, ROC is used to evaluate the validity of a model that predicts the occurrence of an 

event and assesses how well the pair of maps agrees in terms of the location of cells being 

changed into agriculture, by comparing a probability image depicting the probability of that 

event occurring, and a binary image showing where that class actually exists when the 

simulated and observed maps are compared. The ROC analysis is based on a rate curve of true 

positive rates versus false positive rates over all possible cut-off points. Generally, the higher 

the true positive rates relative to the false positive rates, the greater is the area under the ROC 

curve (AUC). Simply, the ROC statistic is the area under the curve (AUC) that connects the 

plotted points. The value of AUC ranges from 0.5 for a model that assigns at random the 

probability of a particular land cover change to 1 for a model that perfectly assigns this 

probability, and the larger the AUC, the more accurate the model (Pontius and Parmentier, 

2014). In addition, assessing the goodness-of-fit of binary logistic regression based on the 

Percent Correct Predictions (PCP) is common in this type of modelling (Li et al., 2013). 

Moreover, it has been reported that the combination of both approaches, ROC and PCP, for 

logistic regression evaluation, can be more efficient providing more objective details on the 

models’ performance (Dubovyk et al., 2011). Therefore, the AUC of ROC and PCP through 
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cross-tabulate prediction, along with observation, were calculated in this study. All analyses 

were undertaken in R version 3.3.2 and IDRISI TerrSet 18.31 software. 

 Results 

The statistical analysis results of eight independent variables used in the logistic regression 

model are summarized in Table 6.1. Both the variables of physical and proximity factors 

significantly affected the agricultural growth in the Al Hassa Oasis; however, their effects 

varied with period (Table 6.1). Distance to built-up areas, distance to water bodies and soil 

salinity were decisive determinants on agricultural expansion for both 1985 and 2015. 

Elevation and slope negatively affected agricultural expansion in 1985 but showed less 

influence in 2015. The distance to irrigation, distance to drainage and distance to roads had no 

effect for the selected time period. Overall, the effect of distance to built-up areas, distance to 

water and soil salinity in the agricultural distribution in this Oasis were less important in the 

past whilst in recent years these factors have had greater impact. This indicates that the 

possibility of agricultural expansion will be smaller in the future. 

The good fit of the logistic regression model, indicated by the PCP values with the cut-off point 

of 0.5 were 85.68 and 76.92% respectively for 1985 and 2015, along with the driving variables, 

could effectively interpret the process of agricultural growth. The ROC curve presented in 

figure 6.3 illustrates how well the logistic regression model, together with the driving factors, 

predicted agricultural growth. Since the ROC curves rise quickly, the fitted models have a high 

predictive accuracy indicating a high degree of spatial consistency between the model 

predictions and actual agricultural growth. This accuracy is confirmed by the large area under 

the ROC curve. The AUC values were 0.95, and 0.90 AUC for the respective study periods. 

From this result, we can say that the respective prediction accuracy is 95 and 90% for 1985 and 

2015 respectively.   
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Table 6.1 Summary results of the logistic regression model 

Variable 
 1985   2015  

β S.E p (>|z|) β S.E p (>|z|) 

Intercept 8.5420 2.2850 0.000185 *** 5.5250 1.3910 7.10e-05 *** 

Elevation -0.0192 0.0108 0.0744 -0.0208 0.0088 0.018450 * 

Slope -0.0320 0.1155 0.7815 -0.2346 0.0975 0.016169 * 

Distance to irrigation -0.0003 0.0002 0.0766 -0.0001 0.0002 0.3950 

Distance to drainage 0.0001 0.0003 0.8273 0.0002 0.0002 0.3357 

Distance to roads 0.0001 0.0002 0.5432 0.0001 0.0002 0.5227 

Distance to built-up areas -0.0008 0.0003 0.004937 ** -0.0025 0.0007 0.000108 *** 

Distance to water bodies -0.0003 0.0001 0.020331 * -0.0005 0.0001 1.73e-06 *** 

Soil Salinity -0.9875 0.3896 0.011249 * -0.0314 0.0140 0.024927 * 

PCP (%) 85.68   76.92   

 

6.5.1 Agricultural Expansion Probability 

In order to test the effectiveness of the logistic regression model for predicting agricultural 

expansion probability in 2015, the model was run using 1985 data and compared with the result 

produced from the satellite image for the agricultural land of 2015. Figure 6.4 shows a visual 

comparison of the result of agricultural expansion probability in 1985 and agricultural cover in 

2015. The brighter pixels represent higher probabilities of agricultural growth, while darker 

pixels indicate lower probabilities of agricultural growth.  

  

Figure 6.3 ROC curve for the selected period 
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The relatively flat, low elevation structure and gentle surface slope gradients of the Al Hassa 

Oasis located in the central, northern, eastern, north-eastern and southern portions of the Oasis, 

showed the most noticeable probable areas of agricultural growth due to the effect of physical 

factors. While the probability areas tend to be located in the above locations, the growth of 

agriculture is likely controlled by non-saline soil. The probabilities of agricultural growth in 

these parts of the study area are also reflected in the strong influence that the proximity factors, 

particularly distance to built-up areas and distance to water bodies, have on the location of 

agriculture areas, i.e., a location adjacent to water resources will be more attractive to farmers 

to establish or expand their farming area. Likewise, the distance to built-up areas seems to 

determine significantly the agricultural growth toward the southern and south-eastern parts; 

meaning that regions far from built-up areas have a higher likelihood of being faced with 

agricultural expansion.  

Figure 6.4 Probability maps of agricultural expansion: a) a comparison of agricultural expansion probability in 1985 and agricultural 
lands in 2015; b) predict agricultural expansion after 2015 
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 Discussion 

In this study, logistic regression models based on a set of physical and proximity variables were 

used to quantify the spatio-temporal patterns and underlying drivers of agricultural expansion 

in the Al Hassa Oasis in 1985 and 2015. The results from both 1985 and 2015 showed that 

among proximity variables, distance to water bodies has the strongest effect on agricultural 

expansion, followed by distance to built-up areas. Water resources are inextricably linked to 

climate, so in arid climatic regions such as the Al Hassa Oasis the high temperatures, high 

evaporation rate and low rainfall rates limit conventional water resources. This region is 

dependent mainly on groundwater as the main water source for agricultural irrigation. This is 

not enough to satisfy water demands, and due to improper planning and excessive pumping, 

the groundwater is very much reduced (Alsharhan et al., 2001; Mohamed, 2006). The scarcity 

of water resources in this region has significantly impacted on agricultural growth (Al-Jabr, 

1984) and will likely have serious implications for agricultural growth in the future if no 

remedial action is taken, as water scarcity is considered one of the limiting constraints for crop 

production (Kang et al., 2009). That is to say, the significant effects of distance to water bodies 

indicates that the probability of agricultural growth is tied to being close to water resources. 

Thus, locations close to water bodies are likely to be developed more than locations that are far 

from the available water sources, because proximity to water bodies is vital to the establishment 

of agricultural activities. Moreover, farmland quality near water bodies is usually high because 

of excellent irrigation conditions, and farmers prefer to expand or establish new plantations 

along water bodies. This result is in agreement with the results presented by Maeda, et al. 

(2010) and Serneels and Lambin (2001), who reported the relationship between the distance to 

water bodies and the probability of agricultural expansion. 

It is widely recognized that rapid urbanization, resulting from urban population growth and 

internal and external migration, is accelerating the loss of agricultural land. The rate at which 
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agricultural land in areas adjacent to built-up areas is lost is expected to continue to increase as 

a function of urban expansion (d’Amour et al., 2016). In this sense, significant negative 

relationships between the probability of agricultural expansion and the distance to built-up 

areas were found in this study, suggesting that the closer the area is to built-up areas, the lower 

the likelihood of agricultural development. In line with this finding, Krannich (2006) reported 

that America's most productive agricultural land, which was situated in close proximity to large 

urban centers, was replaced with urban expansion. More recently, in China, Song, et al. (2015) 

found that agricultural lands close to urban areas have been encroached upon by urban 

expansion. This finding may be attributed to the fact that agricultural land close to urban areas 

is particularly attractive for urban development because it is flat, well-drained and usually has 

a long farming history with a better soil profile. Therefore, agricultural land can be easily 

converted for commercial, industrial, or residential purposes. Thus, to avoid the anticipation of 

future conversion to urban use, either because of land speculation or spillover effects generated 

by urbanization, agriculture should expand preferentially in areas far from built-up areas.  

It is firmly believed that irrigation and drainage are key components for agriculture and water 

management, and these have been identified as gateways to increased agricultural growth, 

especially for irrigated agricultural areas with growing water scarcity. Although agriculture is 

a significant user of water sources, in the Al Hassa Oasis distance to irrigation and drainage 

canals do not seem to have a significant impact as they showed the least effects on agricultural 

growth. This result may have been found because of the fact that only 32% of the Al Hassa 

irrigation and drainage network is served by HIDA, while the majority of agricultural lands are 

irrigated with water from individual private wells (Bastiaanssen et al., 2011). Also, this result 

may have been found as irrigation canals were built a long time ago and the soils around these 

canals have become very saline. Areas around these irrigation networks showed less 
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agricultural growth. Thus, the new plantations have been established away from these canals 

in order to avoid the soil salinity problem. 

In addition, our results showed that the effects of the two physical factors (i.e., slope and 

elevation) on agricultural growth, varied over time. Elevation and slope showed low negative 

effects on agricultural expansion in the past forty-five years, indicating that these factors 

limited the distribution of agricultural expansion. However, the effects of these variables 

became greater in 2015. This change in the magnitude of the effects of these physical factors 

on agricultural expansion reflects the fact that agricultural lands in areas with rugged terrain 

are often abandoned since they experience higher cultivation costs. However, the influence of 

elevation and slope may decrease in the future due to the advancement of technology which 

with low relative cost can simplify construction on locations with high elevations and steep 

slopes, and therefore increase the probability of agricultural expansion in such areas, as well as 

reducing the availability of low-slope land.  

Undoubtedly, in agricultural markets, distance to roads is an important factor because it relates 

to the mobility cost of agricultural input and output markets. However, from an environmental 

perspective, while some research found nearest road distance has an effect on agriculture (e.g., 

loss of agricultural land to human settlements) (De Espindola et al., 2012), our result 

contradicted this. This result may be because most of the growth in the past has been in areas 

around road access points as those areas were virgin land. Therefore, the soil nutrients were 

still good and soil was not saline. This can be an attractive draw card for the land to be 

reclaimed close to roads. Also, this finding may be due to the land tenure security or 

conservation easements placed on these agricultural lands. These contributions restrict and 

prevent the converting of agricultural land adjacent to roads to other uses (e.g., 

residential uses). However, the probability of agricultural growth is unlikely to happen close to 

roads in future because most of those areas closer to roads have been used in the past, and the 
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soil quality near roads has changed significantly over time as soil organic matter, the contents 

of clay particle, and other nutrient contents declined. Therefore, areas close to roads will not 

be attractive for agricultural reclamation in the future. Thus, in the study area, the future 

direction of agricultural lands is likely to be away from roads.  

The analysis also indicates that soil salinity had a significant negative effect on agricultural 

growth. This is logical because a high level of salts in the soil decreases plant growth due to 

the water-deficit effect, specific-ion toxicities and nutritional imbalances or a combination of 

these factors. Although there is a great variation in salt tolerance of plants and crops, most 

normal crops and plants cannot tolerate high levels of salinity and will eventually die under 

saline conditions. Thus, the probability for agricultural growth to occur in such conditions is 

much lower. In order to ensure long term agricultural growth and stability, farmers prefer to 

crop on non-saline soils, as good soil is considered the first essential step to growing healthy 

plants. 

In this study the logistic regression model had the ability to predict agricultural growth. 

However, it has been reported that the ideal way to test the reliability of the prediction model 

is to develop a model based on the change over a one-time period and to apply the model to 

predict the probabilities of the change after the second time period. Then the model is tested 

by comparing the predicted change with the observed change at the second time (Aspinall, 

2004). In this study applying the model to predict agricultural growth in 1985 offered the 

researchers an opportunity to test the ability of the model to predict agricultural probabilities 

based on 2015 agricultural growth. The results of agriculture probability maps based on 1985 

agricultural change and the selected driving forces showed higher predictors compared with 

the actual agricultural growth in 2015. This result means that the model that was applied to 

predict the probable areas of agriculture after 2015 provides consistent and accurate 



 

133 

probabilities of agricultural growth. Consequently, multi-temporal datasets offer a technique 

to compare actual and simulated agricultural growth. 

Overall, logistic regression showed that distance to water, distance to built-up areas and soil 

salinity are the main factors controlling agricultural growth. These factors will probably 

continue to have significant implications on agricultural growth in the future if no action is 

taken to overcome these problems. Consequently, the loss of agricultural land due to residential 

use or the abandoning of agricultural land, both due to water security or soil salinity, will 

enhance evaporation and promote more salinity. These mutually inclusive effects, along with 

the lack of awareness and education about the loss of agricultural land, will result in the 

reduction of suitable land for future agricultural growth and will have economic and social 

impacts as this Oasis is an important source of income for the government as well as local 

farmers. Thus, the finding reported in this study provides a useful starting point to 

understanding the past and present spatial dimensions of agricultural areas, the driving forces 

behind agricultural growth and the likely future occurrences of farming, so that the government 

and agricultural organizations can formulate sustainable future planning strategies and policies, 

which in turn can effectively lead to the conservation and development of the agricultural 

sector. 

 Conclusions 

It is increasingly important to have a spatially explicit understanding of the agricultural growth 

process, along with knowledge of its underlying drivers in order to achieve long-term 

sustainable agriculture. Agricultural organizations and environmental managers need a 

definitive answer to the question as to what factors have an impact on the expansion of 

agricultural growth. Misunderstanding the spatial distribution of agricultural land and its 

underlying driving factors in the past and the present will result in unpredictable expansion and 
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economic growth in the future. This study tried to address this question by examining the effect 

of the physical and proximity factors on agricultural expansion in the Al Hassa Oasis in 1985 

and 2015 using satellite data and a logistic regression model. 

This study highlighted that integration of satellite images and regression statistical analysis 

(e.g., logistic regression) is an efficient and effective tool in enhancing our understanding of 

the trend and distribution of future agricultural expansion. It also provides vital information on 

the variables that most affected agricultural expansion in the past and will most affect it in the 

future. The results revealed that among the investigated factors, distance to water, distance to 

built-up areas and soil salinity were the major factors that had effects on agricultural growth. 

The current results suggest that agriculture in the Al Hassa Oasis is likely to develop on non-

saline soil near to water resources but far from built-up areas. 

Although the logistic regression model in this study showed promising results for modelling 

agricultural area, it does not have the ability to indicate when agricultural expansion will occur. 

In addition, the potential productivity of agricultural land is usually indicated by natural 

conditions and climatic variables such as temperature. However, climatic variables were not 

included in this study due to limitations in the availability of these data. Thus, further research 

is needed to develop a potential distribution model for agricultural expansion in the future 

based on the incorporation of climatic and non-climatic variables. 
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 Summary 

Date palm (Phoenix dactylifera L.) is an important cash crop in many countries, including 

Saudi Arabia. Understanding the likely potential distribution of this crop under current and 

future climate scenarios will enable environmental managers to prepare appropriate strategies 

to manage the changes. In the current study, the simulation model CLIMEX was used to 

develop a niche model to estimate the impacts of climate change on the current and future 

potential distribution of date palm. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and 

MIROC-H under the A2 emission scenario for 2050 and 2100, were used to assess the impacts 

of climate change. A sensitivity analysis was conducted to identify which model parameters 

had the most effect on date palm distribution. Further refinements of the potential distributions 

were performed through the integration of six non-climatic parameters in a Geographic 

Information System (GIS). Areas containing suitable soil taxonomy, soil texture, soil salinity, 

land use, landform and slopes of less than 7° for date palm were selected as suitable refining 

variables in order to achieve more realistic models. The results from both GCMs exhibited a 

significant reduction in climatic suitability for date palm cultivation in Saudi Arabia by 2100. 

Climate sensitivity analysis indicates that the Lower optimal soil moisture (SM1), Cold Stress 

Temperature Threshold (TTCS) and Wet stress threshold (SMWS) parameters had the most 

effect on sensitivity, while other parameters were moderately sensitive or insensitive to change. 

The study also demonstrated that the inclusion of non-climatic parameters with CLIMEX 

outputs increased the explanatory power of the models. Such models can provide early warning 

scenarios for how environmental managers should respond to changes in the distribution of the 

date palm in Saudi Arabia. 
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 Introduction  

Date palm (Phoenix dactylifera L.) is an important fruit crop in the palm family (Arecaceae) 

grown in the arid and semi-arid regions of the world, including Saudi Arabia. Date palm is one 

of the most important cash crops that contributes significantly to agroecosystems in Saudi 

Arabia and plays a major role in the national economy and agricultural sector through its 

contribution to economic growth, and meeting local market needs. There are more than 400 

date palm cultivars in Saudi Arabia and each region is characterized by certain cultivars, but 

only approximately 50–60 cultivars are used commercially (Mikki, 1998). Saudi Arabia is 

considered one of the top three date producing countries in the world. In 2013, date production 

in Saudi Arabia reached 1 065 032 tonnes, from 3.7 million trees (FAOSTAT, 2013). However, 

despite great government support and attention to date palm cultivation in Saudi Arabia, the 

level of date productivity remains low compared to other date-producing countries, and exports 

of dates have not reached the expected level (Aleid et al., 2015). A number of factors could be 

behind this reduction, such as plant diseases, insect pests as well as environmental stress factors 

including salinity, drought and temperature extremes as a result of climate change. 

Changes in climate have serious implications in the agricultural sector due to direct exposure 

to and dependence on weather conditions, both of agriculture and other natural resources (Yu 

et al., 2010a). A substantial number of studies have been conducted on the impacts of climate 

change on agricultural productivity. As an example, it has been reported that climate change 

could lower agricultural productivity in four agricultural sectors (paddy rice, wheat, other 

grains and other crops) in Southeast Asia, specifically by 15–26% in Thailand, 2–15% in 

Vietnam, 12–23% in the Philippines and 6–18% in Indonesia (Zhai and Zhuang, 2012). In some 

countries, it has been projected that reductions in yields from rain-fed agriculture could reach 

as high as 50% by 2020 (Field et al., 2012b). In addition, a 40% decline in agricultural 
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productivity by the 2080 is expected in India as a result of climate change has been documented 

by IPCC (2007).  

Saudi Arabia is one of those countries that are highly vulnerable to the adverse effects of 

climate change, due to its arid climate. It has been predicted that the average temperatures in 

Saudi Arabia would increase by as much as 6.0°C by 2100 as a consequence of climate change, 

and the crop irrigation water demands would rise by about 602 and 3122 million cubic meter 

(MCM) at 1ºC and 5ºC increases, respectively, and the expected yield of different types of field 

fruit trees and crops will experience losses that range from 5% to > 25% (Zatari, 2011). This 

means that climate change is expected to impact heavily on agriculture and food production in 

Saudi Arabia, especially through reducing water availability and direct effects on crop yields. 

For example, during the 2010 season many farmers noticed unusual early blooming of date 

palm as a direct consequence of climate change (Assiri and Darfaoui, 2009). To deal with such 

change, optimizing the cropping pattern in Saudi Arabia according to the regional competitive 

advantage was considered as one of the actions to adapt to the adverse effects of climate 

change. Alabdulkader et al. (2016) applied a mathematical sector model to optimize the date 

palm cropping pattern using limited water resources and cultivated lands. The results showed 

great potential for Saudi Arabia to adapt to the adverse effects of climate change by optimizing 

date palm cropping in accordance with its scarce water resources and limited cultivated lands. 

Climate change may also impact an economy directly by affecting its agricultural outputs. For 

instance, it has been reported that maize production in Africa and South America could decline 

by 10% by 2055, causing a loss of $2 billion per year due to climate change (Jones and 

Thornton, 2003). Moreover, the total annual income from date palms in Middle Eastern 

countries has declined from 1990 to 2000 due to plant diseases and water shortages resulting 

from climate change (Zaid and Arias Jiménez, 1999). Currently, at a global scale, 0.20–0.25 of 

harvested crops are lost due to harvest disease and these losses are expected to rise with climate 
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change (Dixon, 2012). Consequently, food security will be affected and the global and regional 

agricultural productivity will be negatively impacted. Added to this, climate change is very 

likely to have significant impacts on the distribution, quantity and quality of global agricultural 

production (Thung and Rao, 1999; Wheeler and Von Braun, 2013). 

Decision makers should prepare management strategies that address climate change impacts 

on agriculture to achieve long-term sustainable production of cash crops such as date palm. 

Thus, information on the potential distribution of the species and the relative abundance under 

projected future climate scenarios is essential. A variety of distribution models have been used 

to study the effect of climate change on species distribution, including bioclimate envelope 

models (e.g. Spatial Evaluator of Climate Impacts on the Envelope of Species (SPECIES))  

(Hampe, 2004), global climate models (GCMs) (e.g. UKMO-HadCM3, GFDL-CM2.0 and 

MIROC3.2) (Porfirio et al., 2014), ecological niche models (ENMs) (e.g. Generalized Linear 

Model (GLM)) (Silva et al., 2014), MaxEnt (Nazeri et al., 2012), Random Forest (RF) 

(Vincenzi et al., 2011), Boosted Regression Tree (BRT) (Radinger et al., 2015) and CLIMEX 

(Aljaryian et al., 2016; Shabani et al., 2016). CLIMEX, a mechanistic model, is a well-known 

climate modelling software for predicting species’ responses to climate change due to its 

extensive phonological observations and geographic range (Sutherst et al., 2007). With 

CLIMEX, users can detect areas where selected species can be established and maintained or 

developed based on predicted climate changes. CLIMEX has been extensively used in multiple 

applications; some examples include projecting crop diseases such as Fusarium oxysporum f. 

spp. (Shabani et al., 2014a), determining the impact of climate change on invasive weeds such 

as Lantana camara L. (Taylor et al., 2012b) and illustrating the potential distribution of the 

common bean (Ramirez-Cabral et al., 2016), among other applications. 

Most studies examining climate change effects on species using CLIMAX often use climate 

variables alone and exclude non-climatic parameters such as soil type, land use and topography. 
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Hence, it is possible that some projected suitable regions for specifically studied species may 

be inaccurate, and may be unsuitable with regard to non-climatic parameters. Therefore, to 

overcome this limitation, incorporation of climatic and non-climatic parameters has been 

suggested to achieve greater accuracy and more robust results, since the results must satisfy 

more extensive requirements (Sutherst et al., 2007; Beaumont et al., 2008). As an example, 

Cheng et al. (2006) found that the combination of biotic and non-biotic factors led to a 

significant improvement in the prediction of potential distribution of F. occidentalis in China 

compared to prediction by climate variables alone. Additionally, Shabani et al. (2014b) 

projected date palm distribution at the national level for Iran by including non-climatic 

parameters such as land use, topography and soil taxonomy, only 220 000 km2 would be 

suitable for date palm cultivation, compared to 610 000 km2 based on climatic suitability. In 

other words, the incorporation of climatic and non-climatic factors is the key, and provides 

better results than models based purely on climatic factors when assessing the impact of climate 

change on predicting the future distribution and fate of economically important crops, such as 

date palm.  

The above-mentioned studies provide evidence that climate change represents a massive threat 

to plant and crop distribution. It is highly likely that the productivity potential of some regions 

will increase while others will decrease as a result of climate change and unsuitability due to 

abiotic factors (e.g. slope, soil texture, soil taxonomy, soil salinity and land use). Therefore, it 

is vital to consider the impact of both climatic and non-climatic parameters when predicting 

the potential future distribution of the species. The main objectives of the current study were 

to (i) develop climatic models of date palm in Saudi Arabia for the current time, 2050 and 

2100; (ii) find the main climatic stresses that may drastically affect date palm in Saudi Arabia 

by 2050 and 2100; (iii) refine the projection based on suitability of soil taxonomy, soil texture, 

soil salinity, slope and land use to find areas that are practical, accurate and possible to cultivate 
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date palm; and (iv) identify the most sensitive climatic parameters through a sensitivity 

analysis. The models will be used to investigate how these changes will impact the potential 

future distribution of date palm in Saudi Arabia. It is assumed that climate change will alter the 

agricultural areas that currently produce date palm. Model results from the current study will 

benefit governments and decision makers by preparing for the circumstances ahead, and along 

this line increase economic advantages that can help enhance local economies. Even more 

importantly, those managing areas that could become unfavourable can be made aware of the 

circumstances and the likely change to their economies, providing a chance to plan for other 

sources of income. 

 Materials and Methods 

7.3.1 Current Distribution of Date Palm (Phoenix dactylifera L.) 

Information on the current geographical distribution and locations of P. dactylifera are essential 

for modelling the future distribution of this crop. Based on P. dactylifera literature in the CAB 

Abstracts databases (e.g., Al Hammadi, 2006; Bokhary, 2010; Al-Senaidy and Ismael, 2011; 

Shabani et al., 2012; Shabani and Kumar, 2013; Shabani et al., 2014b, 2014c) and the Global 

Biodiversity Information Facility (GBIF), date palm can be found worldwide in large parts of 

northern and central Algeria; south-eastern Spain; Sudan; Australia; south-western USA; 

Greece; north-western Libya; north-eastern Egypt; south-western, southern and south-eastern 

Iran; Yemen; India; Oman; and in central, northern, eastern, southern, western and south-

western Saudi Arabia.  

In the present study, an attempt has been made to maximize the number of occurrences in Saudi 

Arabia to improve the accuracy of model predictions. Model predictions were based on satellite 

images available from the United States Geological Survey (USGS) database and GBIF along 

with data acquired from the Center of Palms and Dates Research, the National Center for Palms 



 

144 

and Dates (NCPD) and the Ministry of Agriculture in Saudi Arabia. A total of 930 records were 

collected, only 460 of which were used after excluding duplicate points and records with no 

geographic coordinates. This step is an important part of data quality control, as only verified 

location points with geographic coordinates can be used in the parameter fitting procedure. 

Thus, 460 records were used in parameter fitting (Figure 7.1).  

 

Figure 7.1 Current and modelled potential distribution of P. dactylifera in Saudi Arabia. EI, eco-climatic index; P. dactylifera, 
Phoenix dactylifera 

7.3.2 CLIMEX Software 

CLIMEX is an eco-climatic modelling package used to describe the relationship between the 

current and projected niche of any species (Wharton and Kriticos, 2004; Kriticos et al., 2005). 

Basically, it predicts the potential distribution and relative abundance of a species in a new 

region using climatic information, biological data and the known geographic distribution of 

that species. Climate predictions can be made at regional and world scales (Sutherst et al., 

2007). This method assumes that species populations increase during suitable climate seasons 
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and decrease during unsuitable seasons. CLIMEX uses different indices that are grouped into 

growth-related and stress-related indices to predict the potential growth and survival of a 

species at a given location. The potential population growth during favourable seasons is 

described by an annual growth index (GIA), while four stress indices (SI) (Cold, Hot, Wet and 

Dry Stresses) describe the population survival possibility during unfavourable seasons 

(Sutherst et al., 2007). The GIA is determined from different growth indices, including the 

temperature index (TI) and the moisture index (MI) that describe the species’ temperature and 

soil moisture requirements for population growth. The four climatic parameters used to 

describe the suitable temperature for population growth are DV0 and DV3 (limiting low and 

high temperatures, respectively) and DV1 and DV2 (lower and upper optimal temperatures, 

respectively). Similarly, the MI comprises four climatic parameters, which are SM0 and SM3 

(limiting low and high soil moisture, respectively), and SM1 and SM2 (lower and upper 

optimal soil moisture, respectively). These indices, TI and MI, are multiplied to provide a 

weekly growth index and the yearly average of this gives the GIA. The stress indices, Cold, 

Hot, Wet and Dry Stresses, are combinations of the two parameters, the threshold value, and 

the stress accumulation rate. Stress accumulation during the year is exponential and once this 

value equals 1, the species will be unable to survive in that geographic region (Sutherst et al., 

2007).  

The model combines these growth and stress indices into an overall eco-climatic index (EI) 

that represents the suitability of the location for the species under various climate change 

scenarios as a number between 0 and 100. If the EI value is close to 0, it indicates that a site is 

unsuitable for the species, values from 0 to 10 indicate marginal habitats, values from 10 to 20 

indicate a suitable climate area, and EI values > 20 indicate optimal conditions for the species 

(Sutherst and Maywald, 2005). The outcome models provided by CLIMEX will predict almost 
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all climatically suitable areas for date palm and provide early risk assessments to decision 

makers about the potential effects of climate change on this essential crop.  

7.3.3 Climate Data, Global Climate Models and Climate Change 

Scenarios  

CLIMEX for Windows, version 5 was used to develop potential distribution models for date 

palm under two future climate scenarios, 2050 and 2100, chosen to provide snapshots of 

climate change projections for the near and further future, respectively. The CliMond 10’ 

gridded climate data (http://www.hearne.com.au/Software/CLIMEX/Editio 

ns#version_CLIMEX 3.0.2) were used to model the potential distribution of date palm. To 

project potential future climate in 2050 and 2100, overall minimum and maximum monthly 

temperatures (Tmin and Tmax, respectively), overall monthly precipitation (Ptotal) and the relative 

humidity at 09:00 h (RH9:00) and 15:00 h (RH15:00) were used. The potential distribution of date 

palms under future climate was based on two different Global Climate Models (GCMs), 

namely, CSIRO-Mk3.0 (CS) and MIROC-H (MR) (Center for Climate Research, Japan), 

available as part of the CliMond datasets.  

These two models were selected from 23 GCMs because of the availability of temperature, 

precipitation, mean sea level (MSL) pressure and specific humidity, which are required for 

CLIMEX (Nakicenovic et al., 2000). Moreover, the models contain relatively small horizontal 

grid spacing and performed well compared to other GCMs in representing the core aspects of 

the observed climate at a regional scale, according to Taylor et al. (2012b) and Kriticos et al. 

(2012). The A2 emission scenario was selected in the current study because it includes different 

variables such as financial, demography and technological forces driving greenhouse gas 

(GHG) emissions. The A2 emission scenario considers a world with higher population growth 

but slower economic growth and technological changes, and assumes moderate global GHG 

http://www.hearne.com.au/Software/CLIMEX/Editio
http://www.hearne.com.au/Software/CLIMEX/Editio
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emissions compared to the other emissions scenarios such as A1F1, A1B, B2, A1T and B1 by 

2100 (Suppiah et al., 2007; Kriticos et al., 2012; Taylor et al., 2012b).  

7.3.4 Fitting CLIMEX Parameters 

The basic CLIMEX parameter values for date palm modelling were taken from Shabani et al. 

(2012). For a detailed description of these CLIMEX parameters and the procedure by which 

they were selected, refer to Shabani et al. (2012). In the current study, to ensure all date palm 

occurrences were within the suitable groups of climate in Saudi Arabia, 6 out of 14 parameters 

were slightly modified based on current date palm occurrence, including SM0, SM1, SM2, the 

cold stress temperature threshold (TTCS), the cold stress temperature rate (THCS) and the wet 

stress rate (HWS). Temperature and moisture response parameter values were then transformed 

into CLIMEX compatible Temperature and Moisture Index parameters and Cold, Heat, Dry 

and Wet stress threshold values.  

The CLIMEX parameter values that were used for P. dactylifera were set as follows: DV0 at 

14°C, DV1 at 20°C, DV2 at 39°C, DV3 at 46°C, SM0 at 0.007, SM1 at 0.014 , SM2 at 0.82, 

SM3 at 0.9, the cold stress temperature threshold (TTCS) at 4°C, the cold stress temperature 

rate (THCS) at –0.011/week, the heat stress parameter threshold (TTHS) at 46°C, the heat stress 

accumulation rate (THHS) at 0.9/week, the wet stress threshold (SMWS) at 0.9, and the wet 

stress rate at 0.024/week. The fitted parameters were then used to project the date palm’s 

potential distribution in Saudi Arabia under two future climate scenarios in 2050 and 2100. 

The data sets were output from CLIMEX and imported into GIS software (ArcGIS Software 

Version 10.2) for further processing and mapping. All locations were classified into two classes 

of suitability for date palm using EI values. Locations with EI = 0 were classified as unsuitable 

while EI > 0 were classified as suitable.  
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7.3.5 Non-Climatic Parameters  

7.3.5.1 Soil Taxonomy 

To define the current extent of date palm cultivation in Saudi Arabia, Landsat satellite images 

with 30 m spatial resolution were used. The general soil map of Saudi Arabia (1:4 000 000) 

obtained from the Ministry of Agriculture, which represents soil taxonomy, was used to extract 

all soil types that are suitable for date palm cultivation by overlaying the date palm observation 

layer onto the soil map. The results identified 9 out of 12 suitable soil types, namely: 

Calciorthids, Camborthids, Gypsiorthids-Calciorthids, Haplaquepts-Eutrochrepts, 

Torriorthents, Salorthids, Torrifluvents-Torripsamments-Calciorthids, Torriorthents-

Calciorthids, and Torripsamments-Torriorthents. The details of all the soil types can be found 

in Soil Survey Staff (2010).  

7.3.5.2 Soil Texture 

The soil texture map of Saudi Arabia (1:4,000,000) was obtained from the Ministry of 

Agriculture. To determine which soil textures are suitable for date palm growth and cultivation, 

the locations of date palm observations were considered, and the date palm occurrences were 

overlaid onto the soil texture map. The results revealed that the soil textures suitable for date 

palm cultivation in Saudi Arabia are sand; sandy loam comprising 60% sand, 10% clay and 

30% silt; loam soil comprising 40% sand, 40% silt, and 20% clay; and clay loam comprising 

40% sand, 30% silt and 30% clay. This is supported by the fact that date palm is not sensitive 

to soil types and can grow in a range of diverse types of soil from sand, sandy loam, and clays 

to heavy alluvial soils (Morton and Dowling, 1987; Lim, 2012). 

7.3.5.3 Soil Salinity 

Date palm is considered to have the highest salt tolerance of all fruit crops: some date palm 

varieties can adapt to levels of soil salinity up to 12.8 dS/m (Ramoliya and Pandey, 2003) while 
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others can tolerate much higher levels, up to 34 dS/m (Abbas et al., 2015). Nevertheless, 

excessive salt can cause significant reductions in the growth, yield and fruit quality of date 

palm (Erskine et al., 2004). Ayers and Westcot (1985) reported that the minimum electrical 

conductivity (EC) to have maximum yield for date palm is 4.0 dS/m, while the plant produced 

no yield at the EC of 32 dS/m. Additionally, a study conducted by Alrasbi et al. (2010) indicated 

that decreases of 53, 48, 39 and 46% occurred in date palm trunk height, number of fronds, leaf 

length and trunk girth, respectively, at an EC of 18 dS/m. Thus, it is clear that date palm plants 

will be affected negatively when soil salinity extends beyond its tolerance potential. In the 

current study, a soil salinity map of Saudi Arabia obtained from the Harmonized World Soil 

Database (HWSD) was used to extract all soil salinity levels suitable for date palm. Thus, areas 

with soil salinity of 4–16 dS/m were considered as suitable while areas with soil salinity > 16 

dS/m were considered unsuitable. 

7.3.5.4 Land Use  

The most suitable land uses were targeted based on the current land use map of the country, 

obtained from the Food and Agriculture Organization (FAO) geo-network, and the current 

distribution of date palm. Agricultural land including cropland, sparsely vegetated areas, 

irrigated lands and managed bare area were considered suitable for date palm cultivation. The 

remaining land use types, such as urban areas, mountains, wetland, road and commercial sites 

were considered unsuitable land use types. 

7.3.5.5 Landform 

Date palm is characterized by a deep root system that reaches horizontally up to 25 m away 

from the trunk, and vertically more than 6 m deep, which helps to hold down the soil and take 

up water and nutrients stored deep underground (Zaid and Arias Jiménez, 1999). In the current 

study, based on the current landform map of the country, obtained from the Ministry of 
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Agriculture, and the current distribution of date palm, attempts were made to find possible land 

forms that enable date palm to establish its deep network of roots. Thus, pediplain, gypseous 

pediplain, degraded pediplain, sand sheet, sand dunes, alluvial fans, alluvial plain and wadi 

were identified as potentially suitable for date palm growth and its root establishment and 

distribution. 

7.3.5.6 Slope 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital 

elevation model (DEM) of Saudi Arabia at 30 m spatial resolution, obtained from the King 

Abdul-Aziz City of Science and Technology in Saudi Arabia, was used to generate a slope 

surface map. By considering the location of each date palm farm, 0.90 of the locations were 

found on slopes < 7°. These areas were considered as suitable for date palm growth while areas 

with slopes > 7° were considered unsuitable. This is supported by the fact that steeply sloped 

areas will affect date palm growth by affecting run-off, insolation, temperature, moisture and 

depth of the soil. The steeper the slope, the greater the run-off and soil erosion. Further, the 

intensity of insolation, temperature, moisture of the soil surface, and depth of soil varies with 

increasing slope (Dash, 2001). Additionally, various studies report that lands with slopes > 10° 

are unsuitable for a date palm plantation (Salah et al., 2001; Chao and Krueger, 2007; Jain, 

2011). Subsequently, the classified slope data in raster format were converted to polygon shape 

files and queries were designed using attributes and date palm locations to extract those areas 

demonstrating suitable slope.  

7.3.6 Refining the CLIMEX Outputs 

CLIMEX outputs from both the CS and MR GCMs for 2050 and 2100 were overlaid on the 

location of areas comprising suitable soil taxonomy, soil texture, soil salinity, land use, 

landform and slope for the whole country. Locations that satisfied the condition of EI > 0 and 
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all the above environmental conditions were selected and extracted, using ArcGIS software, as 

areas suitable for date palm cultivation, while areas with EI = 0 were classified as unsuitable. 

7.3.7 Climate Sensitivity Analysis 

Sensitivity analysis is an effective tool to identify the input parameters that are most influential 

to model predictions. The latest version of CLIMEX software (Version 5) has a newly 

developed climate sensitivity analysis function. This function adjusts the fitted parameter 

values upward and then downward by a certain amount, then the impact on the species range 

and a set of selected state variables is determined. Most of the variables (e.g. TI Change, CS 

Change and HS Change) describe the mean sum square change of the index value (e.g. EI) at 

all given locations and are included in the sensitivity analysis. CLIMEX presents the results of 

the sensitivity analysis to users in a table that shows all the parameters, the amount by which 

they have been adjusted on both sides, and the effect of this adjustment on those particular 

variables. Parameters found to have significant influence on model results when they are 

adjusted are those that are considered sensitive.  

In the current study, by using the newly developed function, a sensitivity analysis was 

performed to quantify the response of date palm to the 14 parameters used in the model. From 

the baseline model, different incremental models were developed to reflect the possible range 

of these variables that might occur in Saudi Arabia. During this procedure, only one parameter 

was adjusted at a time, while all other parameters were held constant as in the baseline model.  

 Results 

7.4.1 Current Climate 

The current and potential distribution of P. dactylifera in Saudi Arabia is shown in Figure 7.1. 

The map illustrates that current distribution is consistent with the EI values of the CLIMEX 
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model. The modelled result indicated that the majority (0.95) of the P. dactylifera records fall 

within the highly suitable category, which confirms that the selected values for the different 

parameters in CLIMEX were optimum. Further, the CLIMEX projection shows only 1.95 

million ha in the northern and north-western parts of the country as having marginal climatic 

conditions with EI values between 1 and 10. 

7.4.2 Non-Climate Parameters 

Table 7.1 shows the suitable and unsuitable areas for date palm cultivation in Saudi Arabia 

based on non-climatic parameters. Considering the suitability of soil taxonomy in Saudi 

Arabia, results showed that approximately 0.75 of the area is suitable for date palm cultivation. 

Only portions of the western part of the country are unsuitable in terms of soil taxonomy. 

Additionally, a large area of approximately 167.40 million ha is suitable for date palm 

cultivation in terms of soil texture and spans the country, and only approximately 0.22 of the 

area was defined as unsuitable. Furthermore, the current results highlight that portions of 

eastern, western and northern Saudi Arabia have soils with salinities > 16 dS/m, which 

indicates that the soil in these parts is unsuitable for date palm growth. The area of suitable 

land use indicates that the majority of the northern, eastern and southern sectors of Saudi Arabia 

have suitable land use classes that are conducive to date palm growth. Only some areas in the 

western part of the country are not suitable. The results identified approximately 125.59 million 

ha in Saudi Arabia with suitable landforms that are conducive for date palm growth. Suitable 

landform areas were mainly located in the southern to the north-eastern part, while those areas 

in the western region do not meet the landform date palm cultivation requirements. Moreover, 

almost the whole country has a suitable slope, which is < 7°, excluding only the mountainous 

regions.  
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Table 7.1 Suitable and unsuitable area for P. dactylifera cultivation in Saudi Arabia based on non-climatic parameters 

Non-climatic parameters 
Suitable area Unsuitable area 

Location 
(million ha) (%) (million ha) (%) 

Soil Taxonomy 162.27 0.75 52.73 0.25  

Soil Texture 167.40 0.78 47.60 0.22  

Soil Salinity 153.57 0.71 61.43 0.29  

Land Use 172.82 0.80 42.18 0.20  

Landform 125.59 0.58 89.41 0.42  

Slope 170.93 0.80 44.07 0.21  

                                                                                                                                                              P. dactylifera, Phoenix dactylifera.    

7.4.3 Future Climate Projections Based on Climate  

The modelling results of the CS and MR GCMs under the A2 emission scenario forecasting 

the optimal distribution of P. dactylifera for 2050 and 2100 are illustrated in Figure 7.2. A 

quick comparison of the modelled maps for 2050 and the current time shows that there are no 

significant differences between the currently suitable areas for date palm cultivation and the 

result of CS and MR GCMs for 2050 based on climate alone. Both models agree that almost 

0.95 of Saudi Arabia will remain climatically suitable for date palm cultivation by 2050. 

 Suitable  Unsuitable 
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However, both CS and MR GCMs project that large parts (0.70–0.75) of Saudi Arabia will 

become climatically unsuitable for date palm cultivation by 2100. The results of the CS GCM 

indicates that the total area conducive for date palm cultivation will decline to approximately 

62.05 million ha by 2100 (Table 7.2). The same trend is also observed using MR GCM, which 

estimates a reduction of suitable areas to 79.16 million ha by 2100 (Table 7.2).  

7.4.4 Refined Result 

The potential distribution of date palm generated using both climate and non-climatic data with 

CS and MR GCMs demonstrates a general reduction of suitable area (Figure 7.2). Based on 

climate alone, the output of the CS and MR GCMs predicts that almost 0.95 of Saudi Arabia is 

projected to remain suitable for date palm growth by 2050. However, only 0.75 of this area is 

suitable for growth of date palm after considering non-climatic parameters. The refined CS and 

MR results show that approximately 80.17 and 80.46 million ha, respectively, will be highly 

conducive for this species to grow by 2050 (Table 7.2). By 2100, the situation is markedly less 

favourable when refining the CS and MR GCMs using the six non-climatic parameters. The 

refined results indicate that only approximately 0.15 of Saudi Arabia will be highly suitable for 

date palm cultivation by 2100. Changes in heat stress from current time to 2100 is shown in 

Figure 7.3. Figure 7.4 indicates the extent of agreement in the CLIMEX projection of suitable 

areas for P. dactylifera under CS and MR GCMs running the with A2 emission scenario for 

2050 and 2100.  
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Figure 7.2 The EI for P. dactylifera for 2050 and 2100 under CS and MR GCMs running with the A2 emission scenario 
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Table 7.2 Results of CS and MR GCMs and the refined outputs using all suitable non-climate parameters for P. dactylifera 
cultivation for 2050 and 2100 

Years 
CS 

(million ha) 
MR 

(million ha) 
CS + Suitable non-climate 

parameters (million ha) 
MR + Suitable non-climate 

Parameters (million ha) 

2050 177.04 178.19 80.17 80.46 

2100 62.05 79.16 17.95 22.77 
CS, CSIRO-Mk3.0; MR, MIROC-H; P. dactylifera, Phoenix dactylifera 

 

 

 
 

Figure 7.3 Changes in heat stress from current time to 2100 
 

 

 
Figure 7.4 Agreement in the CLIMEX projection of suitable areas for P. dactylifera under CS and MR GCMs running with the A2 
emission scenario for 2050 and 2100. CS, CSIRO-Mk3·0; EI, eco-climatic index; GCM, global climate model; MR, MIROC-H; P. 

dactylifera, Phoenix dactylifera  
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7.4.5 Sensitivity to Model Parameters 

Table 7.3 shows that SM1, TTCS and SMWS are the most sensitive parameters influencing the 

modelled distributions of date palm in Saudi Arabia. Increasing the SM1, TTCS and SMWS to 

0.0014%, 5°C and 1, respectively, led to the most profound effects on EI values. The EI change 

values were maximized by changing SM1, TTCS and SMWS parameters, to 13.97, 11.13 and 

8% respectively. However, changes in SM0, DV1 and HWS resulted in lower changes in EI. 

An adjustment in these parameters had only moderate effects on the EI value changes. With 

changes to SM0, DV1 and HWS, EI values changed by 5.06, 4.02 and 3.64%, respectively. In 

other words, suitable areas for date palm cultivation changed less rapidly with SM0, DV1 and 

HWS adjustments from the baseline model. Additionally, alterations to the other parameters 

SM2, SM3, DV0, DV2, DV3, THCS and TTHS had little effect on the EI value, whereas 

changes in THHS had no effect on the EI value (Table 7.3). 

Table 7.3 Sensitivity analysis of CLIMEX parameters of P. dactylifera model as change of eco-climatic index (EI) 

Parameter Code Low Default High Run 
EI 

change 

Limiting low moisture SM0 0 0.007 0.013 1 5.06 

Lower optimal moisture SM1 0.007 0.014 0.113 2 13.97 

Upper optimal moisture SM2 0.71 0.82 0.9 3 1.28 

Limiting high moisture SM3 0.81 0.9 1 4 1.17 

Limiting low temperature DV0 13 14 15 5 1.12 

Lower optimal temperature DV1 19 20 21 6 4.02 

Upper optimal temperature DV2 38 39 40 7 0.7 

Limiting high temperature DV3 45 46 47 8 0.23 

Cold Stress Temperature Threshold TTCS 3 4 5 9 11.13 

Cold Stress Temperature Rate THCS -0.012 -0.011 -0.008 10 1.97 

Heat Stress Temperature Threshold TTHS 45 46 47 11 1.01 

Heat Stress Temperature Rate THHS 0.72 0.9 1 12 0 

Wet Stress Threshold SMWS 0.81 0.9 1 13 7.94 

Wet Stress Rate HWS 0.0176 0.024 0.0264 14 3.64 
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 Discussion 

A niche model was developed using CLIMEX species distribution modelling to estimate date 

palm potential distribution under current and future climate scenarios. The results showed that 

under the current climate, large parts of Saudi Arabia are highly conducive to date palm growth 

and cultivation, and this agrees well with the observed distribution. The major reason for this 

highly suitable climate is because there are no heat, wet, cold or dry stressors in this region 

under the current climate. In addition, sensitivity analysis results revealed that P. dactylifera 

distribution is highly sensitive to changes in SM1, TTCS and SMWS parameters, and 

moderately sensitive to changes in SM0, DV1 and HWS parameters. These results contrasted 

with those of Shabani and Kumar (2014), who conducted a sensitivity analysis of CLIMEX 

parameters based on the Taguchi method of modelling the potential distribution of date palm 

in Iran and found that the distribution of date palm was highly sensitive to changes in DV3, 

DV3, SM2 and SM3, and slightly sensitive to changes in SM1, SM0, and SMWS parameters. 

These considerable differences between the current results and those of Shabani and Kumar 

(2014) are probably attributed to the different sensitivity analysis methods used. 

Generally, climate change negatively affects plant growth and development via an increase of 

abiotic stresses (i.e., heat, cold, drought and wet). It has been reported that when global average 

temperature increases by > 3.5°C, a significant extinction of plant species is expected due to 

lethal heat stress (IPCC, 2007) Extensive agricultural production losses have been attributed to 

disturbances in growth due to climate change-associated heat stress (Kotak et al., 2007). For 

example, it has been shown that exposure of C. arabica to changes in heat stress affects its 

growth and yield and raises the stachyose and raffinose levels during abiotic stress events 

(Drinnan and Menzel, 1995). Similarly, Shabani et al. (2014c) found that there will be a 

substantial reduction in suitable areas for date palm cultivation in central Iran as a consequence 

of increased heat stress by 2100. In the current study, when climate alone is considered, the 
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projection showed that 0.70 of the current date palm cultivation area is located in the central 

and southwestern parts of Saudi Arabia. These areas will remain climatically suitable for date 

palm cultivation since both GCMs indicate that date palms will not suffer from any dry, wet or 

cold stress by 2050. However, both MR and CS GCMs projected that the majority of the central 

regions will become unsuitable by 2100 as a result of a significant increase in heat stress. These 

changes will impose serious restrictions on date palm growth and development and eventually 

have a negative impact on society. Heat stress, similar to other abiotic stress, imposes adverse 

effects on different physiological processes of date palm such as germination, growth, 

development, reproduction and yield. At high temperatures, date palm seeds will still germinate 

but at a lower rate. However, when seedlings develop and are exposed to excessive heat, they 

may experience heat shock (Hadrami et al., 2011). Additionally, excessive heat over an 

extended period and during stages of fruit development can influence the quality of date palm 

(Jarvis et al., 2016). In areas where date palm thrives, high temperatures are responsible for an 

increase in soil evaporation and transpiration of the plant, which consequently induces low 

plant-water potentials and high transpiration rates (Hadrami et al., 2011). Heat stress can also 

cause injuries to the cell wall that can lead to a collapse of cellular organization (Schlesinger, 

1990). These injuries eventually result in starvation, production of toxic compounds, reduction 

in ion flux, an increase of reactive oxygen species (ROS) and inhibition of plant growth (Wahid 

et al., 2007). 

Climate has long been considered the main determinant of species distribution (Woodward, 

1987). Nevertheless, different factors unrelated to climate (e.g. topography, land uses, soil 

types) often play a vital role in determining the patterns of species distribution. For example, 

species might be missing from sites within their climatic boundaries due to inappropriate 

resources under suitable climatic conditions (Araújo and Pearson, 2005). Therefore, pure 

climate models are likely to provide incomplete predictions when species move from 



 

160 

equilibrium with climate owing to a suite of non-climatic factors (Luoto et al., 2006). 

Modelling performance might be considerably improved by combining abiotic factors in the 

models, as this allows for the identification of regions with suitable climate but unsuitable local 

environmental conditions to achieve more realistic estimates of distribution changes (Alahuhta 

et al., 2011; Shabani et al., 2014b). In respect of slope, for date palm, irrigation should be 

applied in a controlled manner in order to provide an optimum situation for crop transpiration 

and for this, flat land or areas with slopes < 7° would be appropriate for date palm cultivation 

(Kassem, 2007). Furthermore, it has been documented that slope greatly impacts plant root 

systems (Caviezel et al., 2014) at the expense of depth (Khuder et al., 2006). For young date 

plantlets, root depth can vary from 25 to 50 cm and the radius from 10 to 30 cm, depending on 

the size of the plant, and this means that irrigation water must be applied within these 

boundaries to enable the plant roots to reach it (Manickavasagan et al., 2012). However, it is 

important to apply water in such a way that it does not reach the deeper soil levels in order to 

ensure proper root development of date palms (Zaid and Arias Jiménez, 1999). Thus, 

considering the effects of non-climatic parameters in potential date palm distribution, taking 

into account slopes where tree roots have a greater positive impact on slope stability should not 

be neglected, as the slope influences spatial root distribution and areas suitable for date palm 

establishment (Vergani et al., 2014; Rogers and Benfey, 2015). In line with such expectations, 

the CLIMEX results were refined in the current study using six non-climatic parameters 

including soil salinity, soil taxonomy, soil texture, land use, landform and slope. The suitable 

areas where date palm could be established by 2050 were constrained by non-climatic factors, 

as the realized distribution of date palm is substantially smaller than the climate envelope 

projected by both MR and CS GCMs for 2050. For example, both models show that 177.04 

and 178.18 million hectares may become conducive by 2050 considering climatic factors alone, 

while 97 million hectares of these projections are not actually valid due to the unsuitability of 
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soil salinity, soil taxonomy, soil texture, land use, landform or slope variables. Further, both 

models indicate only 0.35 of areas located from 25° to 35° N and 35° to 45° E are going to be 

suitable for date palm cultivation by 2100 based on both climate change and suitability of the 

six non-climatic factors. Similarly, for the same year, both models showed that the south-

western region, which is projected to be suitable based only on climate, it is not a practical 

place for date palm cultivation because of the unsuitability of soil salinity, soil taxonomy, soil 

texture, land use, landform and slope.  

Areas projected to be climatically suitable for date palm cultivation by the pure climate models 

of both MR and CS GCMs for 2100 were much higher than those projected based non-climatic 

parameters. It was not surprising that models showed differences between pure climate and 

non-climatic variables. Including non-climatic variables improved model accuracy compared 

to the pure climate models. These findings are supported by others who found that the inclusion 

of non-climatic variables increases the prediction accuracy of bioclimatic models (e.g., 

Sormunen et al., 2011; Hyvönen et al., 2012; Taylor et al., 2012a; Shabani et al., 2014b). 

Accordingly, based on the current and previous studies, it is clear that climate is not the sole 

determinant of establishment (Sutherst and Maywald, 1985) and other factors can play a major 

role in determining species distribution and dynamics of distribution changes.  

Both models are relatively consistent in the projections of suitable areas for date palm 

cultivation and showed a similar trend. However, variations between the results of the CS and 

MR GCMs can be observed in Figure 7.2 and Table 7.1. For example, areas projected to be 

climatically suitable for date palm cultivation by MR were somewhat larger compared to the 

CS GCM. These difference in projected areas conducive to date palm are due to differences 

between the two models in their temperature and rainfall predictions. The CS model predicts 

an increase in temperature of 2.11°C, while the MR model assumes that temperature will rise 

by approximately 4.31°C by 2100 (Kriticos et al., 2012). These two models also differed in 
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rainfall pattern predictions: the CS model predicts a 14% reduction in future mean annual 

rainfall, while the MR model predicts only a 1% drop (Kriticos et al., 2012). To decrease the 

uncertainty of projections and satisfy the non-climatic parameters, once the two modelled 

outputs were refined using non-climatic parameters, intersection techniques were utilized to 

extract areas in common between both GCM projections. The modelling output led to better 

agreement between CS and MR GCMs in projections of suitable areas for date palm. Both MR 

and CS GCMs project that 80.17 million ha of Saudi Arabia will be climatically suitable for 

date palm cultivation by 2050. Additionally, analysis from both GCMs showed that only 17.86 

million ha of the study area would be suitable for date palm cultivation by 2100. This result 

confirms that the inclusion of non-climatic variables increases the prediction accuracy of 

bioclimatic models.  

Overall, there will be less area conducive for date palm cultivation in Saudi Arabia by 2100 as 

a result of heat stress. The country will be unable to cultivate this cash crop at the same level 

in the future as it has previously, which will lead to significant economic decline. For example, 

it was reported that the quantity of date palm exports from Saudi Arabia was 77.8 thousand 

tons (valued at US$86.3 million) in 2011 (FAOSTAT, 2013). Hence, if date production falls 

by a large percentage in the future, then Saudi Arabia may become a net importer rather than a 

net exporter. Thus, the findings reported in the current study can be considered a useful starting 

point to provide some advanced warning of this situation so that the government and 

agricultural organizations can prepare management strategies for this situation, and even more 

importantly become aware of any potential adverse effects on the agricultural sector.  

It should be noted that although the current study showed that large areas of Saudi Arabia are 

climatically suitable for date palm cultivation, and date palm is able to survive under arid 

climate, it does require sufficient water of acceptable quality to reach its potential yield. 

Besides, date palm production is labour intensive and requires workers with sufficient 
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experience; therefore, operating costs are relatively high. This means that the lack of water 

resources in Saudi Arabia as a result of climate change coupled with the shortage of skilled 

labourers are the most significant cost and obstacle to expanding date palm cultivation in the 

future. Furthermore, limitation of arable lands is another key factor in the expansion of date 

plantation in Saudi Arabia, which will limit future date palm distribution. In addition, the 

regional comparative advantage between crops is another factor to consider (Alabdulkader et 

al., 2012). Therefore, the results of the present study could be an initial step and an economical 

integrated assessment should be undertaken to prioritize which areas will cost less. In other 

words, an economic feasibility must be estimated based on the assumption that the decision to 

plant date palms by landholders is motivated by a desire to maximize their return to land.  

 Conclusions 

This research developed potential distribution models for current and future date palm 

cultivation in Saudi Arabia. The results from both GCMs showed a significant reduction in 

climatic suitability for date palm cultivation in Saudi Arabia. The MIROC-H projected a larger 

area as unsuitable for date palm cultivation in 2100 compared to CSIRO-Mk3.0. The inclusion 

of six non-climatic parameters, soil taxonomy, soil texture, soil salinity, landform, land use and 

slope resulted in more realistic estimates of the distribution models. The sensitivity analysis 

indicated that SM1, TTCS and SMWS parameters were the most sensitive parameters among 

the other investigated parameters in terms of suitable area for date palm cultivation in this 

region. The current results suggest that the CLIMEX model can provide a useful first-filter 

estimate for the identification of potential distributional changes of date palm at regional scales. 

Such modelling is useful for planning long-term strategies and reducing economic effects in 

areas that might be adversely impacted and for preparing to take advantage of new 

opportunities in areas that might be positively impacted. This type of long-term planning is 
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mainly applicable to date palm production, as this species needs a prolonged period to establish 

and become productive. 
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 Summary of Main Findings 

As soil and agriculture are one of the fundamental components for supporting life on the planet, 

the protection and the sustainable management of soil in any region such as Al Hassa Oasis is 

of paramount importance, particularly in the context of the sustainability of agriculture. 

Various reports have indicated that soil salinity is the major problem facing the development 

of irrigated agriculture that is dominated by date palm (Phoenix dactylifera L.), in this Oasis, 

which is largely due to the high concentration of soluble salts in the irrigation water, over 

irrigation, poor drainage facilities, low rainfall and high evaporation rates. From the perspective 

of a policy-maker interested in topics such as soil salinity and irrigated agriculture in Al Hassa 

Oasis, this situation requires up-to-date and relevant soil salinity and agricultural information. 

The accurate observation of soil salinity and agricultural conditions can result in potentially 

great environmental, economic and social benefits. Many remote sensing and modelling 

techniques can be investigated for assessing and monitoring the changes and providing the 

essential information for soil salinity and its effects of growth conditions on plant. The utility 

of quantitative methods, in particular, indices and statistical models with broadband satellite 

imagers to assess, map and model soil salinity has not been previously investigated in the date 

palm dominated Al Hassa Oasis. The effects of different physical and proximity factors on the 

agricultural expansion for two time periods, detecting the long-term temporal change in 

vegetation cover and soil salinity and investigating whether the salinity change causing the 

change in vegetation cover in the Al Hassa Oasis are other areas that require exploration, as 

well as potential date palm distribution under current and future climate conditions. This study 

has attempted to bridge these research gaps. This concluding chapter summarizes the main 

findings of the research and proposes recommendations and future research needs. 

An assessment of soil salinity level was carried out in three sites across the Al Hassa Oasis by 

utilizing vegetation and salinity indices obtained from IKONOS images combined with 
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laboratory analysis to measure EC of soil samples. The analysis of the soil samples showed 

that strongly saline soils with an EC >16 dS/m generally dominated the three selected Oasis 

sites. These soils mainly occurred in non-vegetated areas or abandoned stretches of land that 

were locally referred to as sabkhas which are crusted with salt and some salt tolerant plants 

scattered around, as well as vegetated areas but with a lower salinity level compared to the non-

vegetated areas. Among all the spectral indices used the SAVI, NDSI and SI-T indices were 

the most useful predictors of soil salinity in the investigated areas. However, their performance 

varied within the three sites.  

Utilizing NDSI and SI-T in the assessment of soil salinity will be the preferred means in the 

case of bare soils or soils with low scattered vegetation cover, providing better results. The 

good performance of the NDSI and SI-T indices are likely attributed to the superiority of the 

red and NIR bands that were used to retrieve the soil salinity patterns and features, such as the 

surface crust, as these bands have been found to be relevant for the identification of soil 

minerals that are formed during salt stress and in crusts. While vegetation index SAVI yielded 

promising results in areas of densely vegetated soils, on bare soils or soils with low scattered 

vegetation cover, the identification of salt based on SAVI did not work. This result likely 

occurred due to the lower sensitivity of the SAVI index to external factors, such as soil 

background, and the dense uniform vegetation cover that occurred at those sites. Thus, care 

should be taken when applying such indices at other sites, because their performance varies 

with different environmental conditions, soil, vegetation cover and density.  

Investigating the efficiency of vegetation and salinity indices to assess soil salinity provided 

scope to model and map the spatial variation of the soil salinity in the Al Hassa Oasis. This 

was done by developing combined spectral-based statistical regression models using IKONOS 

images. Correlations between reflectance indices, IKONOS original bands and EC measured 

in the laboratory, showed that salinity index (SI) and red band offer the best correlation. The 
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combination of these remotely sensed variables (SI and red band) into one model was able to 

explain 65% of the spatial variation in the soil salinity of the study area with relatively low 

standard errors for its variables. The great capacity of this combined model is attributed to the 

spatial resolution of the images, enhanced images and the red band efficacy in highlighting 

information from soil salinity. Soil salinity maps generated using the selected model revealed 

patches with strongly saline soil along the three sites were most pronounced in non-vegetated 

wet and dry areas which are probably due to the rising water table close to the ground level 

bringing salt accumulation to the surface combined with a high evaporation rate. Salinity in the 

vegetated areas was relatively low compared to non-vegetated areas which may be accounted 

for by a leaching process, although still in the >16 dS/m class. Nevertheless, there were 

pronounced variances of this class between the three sites over the vegetated areas which is 

likely attributed to a variety of aspects, including soil factors and management related factors, 

as these parameters are known to affect soil salinity distribution across the landscape. 

Spectral reflectance of saline soils can be a result of the salt itself, or indirectly, from other 

factors such as soil moisture, colour and surface roughness. The analysis results of the soil 

samples indicated that the curves of the soil spectral reflectance in the visible and NIR regions 

increased with increasing quantity of salts at the terrain surface and vice versa. The increase of 

soil moisture on the other hand reduces salt in dilution, so the presence of soil moisture tends 

to darken the soil, which reduced the overall surface reflectance. Besides, the results showed 

saline soils with a smooth and light salty crust surface had high spectral reflectance in the red 

band, in contrast saline soils characterized by coarse dark puffy surface crust exhibited a 

decrease in spectral reflectance. 

Since soil salinity is a dynamic process in time and space and negatively impacts agriculture, 

the information on overall change/no-change in these land covers can aid management in 

preventing further salinization in order to maintain sustainable agriculture. Landsat time series 
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data years 1985, 2000 and 2013 were used to detect the temporal change of soil salinity and 

vegetation cover in the study region. Also, investigation was carried out to determine whether 

the change in vegetation cover is a case of soil salinity change. Due to the simplistic nature and 

relative ease in identifying both negative and positive changes from difference images 

technique, the SI (based on SWIR bands) and NDVI differencing images were used for salinity 

and vegetation cover change identification in the study region. Threshold determination for 

highlighting areas where features brightness values increased or decreased, or remained 

unchanged were identified.   

A highly significant (p < 0.0001) inverse relationship was found between the NDVI and SI 

values, indicating that there is a potential linkage between the vegetation cover change and soil 

salinity change over the study area. These results suggest that the noticeable change of 

vegetation cover could be likely due to soil salinity change, which has harmfully impacted the 

vegetation cover.  In some parts of the study area, there was a decrease in soil salinity over the 

change period which had perhaps led to an increase in the vegetation cover. There might be 

different factors that have contributed to this change, such as leaching application to the soil 

surface, use of modern irrigation systems and management practices. In terms of salinity, the 

soil salinity level has experienced remarkable changes in Al Hassa Oasis in the past 28 years, 

which is probably due to improper land use, poor management practices (e.g. poor irrigation 

system, fertilizer application) combined with the climate factors. Overall, there was more 

increase in soil salinity level and decline in vegetation cover, particularly during the 2000–

2013 period, than decrease in soil salinity level. Thus, the observed changes in this area will 

have significant implications on agricultural output in the future if these two mutually inclusive 

processes continue as increase in soil salinity level was found to be one of the reasons 

contributing to the decline in vegetation cover change. 
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Landsat data were effectively used to identify the change of soil salinity and vegetation cover 

in the study region, and soil salinity was found to be one of the reasons contributing to the 

change in vegetation cover. However, meaningful information on the effect of the different 

factors on the distribution of agricultural expansion across space and time cannot be provided 

when using such data. Thus, further analysis on the cause underlying the changes in the spatial 

distribution of agriculture in this area is needed as it is considered one of the main agricultural 

regions in Saudi Arabia, providing a significant source of income for farmers and the 

government. Such analysis is important as it enables an understanding of the effect of the 

different factors that have controlled the agricultural expansion in the past and that might 

dominate the future agriculture distribution.  

To attain this, a logistic regression model was used to investigate the effect of eight driving 

factors including elevation, slope, soil salinity, distance to water, distance to built-up areas, 

distance to road, distance to drainage and distance to irrigation in the Al Hassa Oasis. Two sets 

of Landsat images from 1985 and 2015 were used for this purpose. SVM approach was used 

to classify built-up areas and bare soil for 1985 and 2015, and spectral indices including NDVI 

and NDWI were used to extract the agricultural lands and waterbodies. The three classes of 

water, built-up and bare soil were reclassified as non-agriculture areas. The final results, which 

presented two categories, including agriculture and non-agriculture areas, were used as input 

along with the driving factors for the prediction model. The logistic regression model was able 

to provide an easily discernible prediction of agricultural expansion based on the applied 

factors. The model validation using the ROC revealed a stable level in 1985 and 2015. 

Nevertheless, the spatial prediction of agricultural expansion performance could not be tested 

using ROC as it was used to quantitatively validate the model. Hence, an additional analysis 

was conducted for this propose by overlaying the probability map of 1985 and the actual 

agricultural growth of 2015. This analysis offered an opportunity to test the ability of the model 
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to predict the probabilities of agricultural expansion after 2015 based on the 1985 agricultural 

expansion prediction. The results showed that the prediction model of 2015 provides a 

consistent and reliable prediction based on the performance of 1985. 

The analysis of the deriving factors showed variable effects over time in the study region. 

Among the investigated factors, distance to water, distance to built-up areas and soil salinity 

were the major factors having effect on agricultural expansion. This indicated that agriculture 

in Al Hassa Oasis is likely to develop on good quality soils near to water resources but far from 

built-up areas. Distance to irrigation and drainage canals showed the least effects on 

agricultural expansion. This result may have been found because the majority of farmers prefer 

to irrigate their agricultural lands from their individual private wells. Elevation and slope 

exhibited low negative effects on agricultural expansion in the past forty-five years, indicating 

that these factors limited the distribution of agriculture. However, the effect of these variables 

became greater in 2015. This change in the magnitude of the effects of these factors on 

agricultural expansion reflect the fact that agricultural lands in areas with rugged terrain are 

often abandoned since they experience higher cultivation costs. However, technological 

advances that enable building on sloping lands combined with the limited area of flat land are 

likely to reduce the effects of these factors in the future. Such an analysis allowed a better 

understanding of the process of agricultural expansion and provides a scientific basis for future 

forecasting and decision-making processes which can effectively lead to the conservation of 

the agricultural sector. 

The potential productivity of species is usually indicated by natural and climatic conditions. 

Thus, to help decision makers and local authorities preparing management strategies to achieve 

long-term sustainable production of cash crops, such as date palm, information on the potential 

distribution of date palm and the relative abundance in the future, based on climate and non-

climate parameters, is essential. This study employed CLIMEX to model the distribution of 
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date palm in Saudi Arabia under current and future climate scenarios. Two global climate 

models (GCMs), CSIRO-MK3.0 (CS) and MIROC-H (MR), were used to assess the impact of 

climate change on the potential distribution of date palm at two arbitrarily chosen future time 

points, i.e. 2050 and 2100. Furthermore, the inclusion of physical factors, specifically soil 

taxonomy, soil texture, soil salinity, land use, landform and slope, was used to refine potential 

distributions. Under current climate, a large part of Saudi Arabia was projected to have suitable 

climatic conditions for date palm growth and cultivation. Under future climate scenarios, both 

GCMs indicated that date palms will not suffer from any dry, wet or cold stress by 2050, hence 

the central and southwestern parts of Saudi Arabia will remain climatically suitable for date 

palm. However, by 2100 the majority of the country will become unsuitable for date palm 

cultivation due to increment of heat stress in the region; as a result Saudi Arabia will be unable 

to cultivate this cash crop at the same level in the future as it has previously, which will lead to 

significant economic decline. 

The inclusion of the non-climatic parameters led to a substantial reduction in suitable areas for 

date palm cultivation by both MR and CS GCMs for 2050 and 2100. Further, the result 

indicated that the soil factors and landform have a greater effect than land use and slope, in 

terms of the suitability of locations for the cultivation of date palm. The sensitivity analysis 

that was performed to identify the parameters of greatest functional importance, in order to 

enhance the understanding of the climatic factors that most affect date palm projection 

scenarios in CLIMEX, demonstrated that date palm distribution is highly sensitive to changes 

in SM1, TTCS and SMWS parameters, and moderately sensitive to changes in SM0, DV1 and 

HWS parameters. 
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 Contribution to Science and Knowledge  

This study has demonstrated the potential of remote sensing and modelling techniques for 

assessing, mapping, change identification and modelling soil salinity and its impacts on 

agricultural production. The capability to remotely assess and map soil salinity using 

broadband indices extracted from high spatial resolution satellite imagery can provide reliable, 

up-to-date information on its abundance. This is necessary for the evaluation of control 

strategies, prevention of spread to unaffected areas, and improved management. Moreover, 

identifying and mapping soil salinity more accurately can contribute significantly in the design 

and execution of cost-effective agricultural production methods of the future. A further aspect 

of the study is that the indices used for assessing soil salinity in this study are not restricted to 

assessing soil salinity in date palm region. Therefore, other regions can use these indices, but 

an obvious note of caution needs to be known before appropriate remote sensing-based indices 

are used for soil salinity mapping and assessing that no particular vegetation or soil salinity 

index could be used across all environmental conditions with satisfactory results, as these 

indices vary with different environmental conditions, soil types, and vegetation cover and 

density. 

The great potential of the enhanced images, derived from SI, and the IKONOS red band in 

highlighting information from soil salinity also provide the option for developing statistical 

regression models to predict and map spatial variation in soil salinity in a region dominated by 

date palms. This model offers a quick method which can contribute greatly to soil salinity 

prediction and mapping as it facilitates timely detection at lower costs than conventional 

approaches and allows decision makers to decide in early stages what crucial action should be 

taken to prevent soil salinity from becoming prevalent, protect the date palm outputs, sustaining 

agricultural lands and natural ecosystems. Therefore, this model can be used by the decision 
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makers in Al Hassa Oasis municipality and similar regions to support or implement effective 

soil reclamation programs that minimize or prevent increases in soil salinity in the future. 

Agricultural workers, scientists, policy makers and governments need reliable and up-to-date 

information about the temporal change in soil salinity, especially on long-term basis, and 

determining its impacts on vegetation cover to formulate effective strategies to manage this 

issue. This study provides the essential knowledge to support the decision-making processes 

of soil salinity management planning to sustain date palm production in Al Hassa Oasis. The 

successful application of mid-resolution Landsat data using image differencing technique for 

soil salinity and vegetation change detection helps to understand the past changes and to 

quantify the overall rate of change. Furthermore, it gives confidence in the use of such images 

and methods in regions that are dominated by date palm and where high spatial resolution 

imagery is not available or cannot be afforded. With this finding, government agencies such as 

the Ministry of Environment, non-government organizations and educational and research 

institutes will have motivation to develop a proper and continuous monitoring system in a 

simple, time saving, efficient and cost-effective way to overcome the impact of soil salinity on 

date palm production to ensure that long-term sustainable production of date palm in this region 

can be achieved. Further, this finding will not only help in opening the avenue of such 

applicability for other regions having similar issues, but also emphasize the importance of 

remote sensing in agro-environmental applications. 

The investigation of agricultural expansion and responsible physical and proximity forces for 

this expansion through a logistic regression model provides some scientific understanding of 

the trend and distribution of the past and future agricultural expansion in the Al Hassa Oasis. 

The outcome of this study helps to understand the dynamics of the agricultural land in this 

region and the forces that are responsible for the expansion. National authorities and 

organizations can consider the outcome of this research to design management strategies to 
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ensure sustainability of the agricultural production, particularly date palm production, in this 

Oasis and also provides inputs for further work for researchers within this field.  

Another contribution of this research is through how CLIMEX software could be used to 

provide information on the potential distribution of date palm for the whole Saudi Arabia under 

current and future climate scenarios. Furthermore, it demonstrates that the inclusion of factors 

other than climate, such as soil salinity and land use, can significantly refine the potential 

spatial distribution of date palm. The outcome models provided by CLIMEX provide some 

advanced warning of the situation, and the distribution maps could be used by the governments 

and agricultural organizations as an initial guide to prepare management strategies for the 

circumstances ahead in order to overcome the impact of climate change and the other non-

climatic parameters on this important economic crop, and even more importantly become 

aware of any potential adverse effects on the agricultural sector. 

 Recommendations and Direction of Future Research 

 Ongoing monitoring of soil salinity at Al Hassa Oasis is recommended to provide long-term 

data on soil salinity variability. This will also ensure that the initial objectives of the 

rehabilitation and management of saline soils to improve agricultural productivity in this region 

are being met into the future. Further, frequent monitoring of groundwater level dynamics and 

quality in Al Hassa Oasis is required to get a complete and temporal overview of the 

fluctuations of the groundwater and to confirm the role of irrigation in the development of the 

soil salinity problem and thereby provide a policy background to water and soil management 

for sustainable agriculture.  

The IKONOS high spatial resolution image that was used in this study is hindered by the 

absence of a thermal band, which has been found to be a useful tool in soil salinity studies. 

There is a scope to determine whether the development of a salinity index and empirical model 
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which includes a thermal band would increase the accuracy of soil salinity identification in a 

date palm dominated area.  

Though it was possible to investigate vegetation and soil salinity changes using multispectral 

Landsat data in this study, airborne and spaceborne hyperspectral imagery may provide better 

results for this purpose as hyperspectral sensors provide a large number of spectral bands that 

allow identifying surface features, while airborne hyperspectral sensors provide high spatial 

resolution imagery that contributes to improved identification of the object in more detail than 

those visible in the space-borne multispectral images. To the best of our knowledge, no 

research has been undertaken on the use of hyperspectral imagery for soil salinity detection in 

a date palm dominated region, probably due to its unaffordable high operational cost. In line 

with this, it is highly recommended to investigate whether using hyperspectral imagery would 

bring appreciably improved results over multispectral sensors in the detection of soil salinity 

in communities vegetated mainly with date palms. 

In terms of change modelling, integrating the logistic regression model with other models, such 

as geographically weighted regression (GWR, is a further aspect of future study; as such 

incorporation could be useful to determine the heterogeneity in the estimated correlation 

between independent and dependent variables. In addition, this study has utilized one 

modelling software program, namely CLIMEX, to determine potential future distribution of 

date palm. It would be worthwhile to conduct a comparative study with other species 

distribution modelling software. Generally, species distribution modelling methods use gridded 

climate datasets of moderate spatial resolution. The impact of varying the spatial resolution of 

climatic datasets on the potential distribution of date palm is another subject that requires 

further investigation.  
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