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Abstract
Proximal and remote sensors have proved their effectiveness for the estimation of several 
biophysical and biochemical variables, including yield, in many different crops. Evalua-
tion of their accuracy in vegetable crops is limited. This study explored the accuracy of 
proximal hyperspectral and satellite multispectral sensors (Sentinel-2 and WorldView-3) 
for the prediction of carrot root yield across three growing regions featuring different crop-
ping configurations, seasons and soil conditions. Above ground biomass (AGB), canopy 
reflectance measurements and corresponding yield measures were collected from 414 sam-
ple sites in 24 fields in Western Australia (WA), Queensland (Qld) and Tasmania (Tas), 
Australia. The optimal sensor (hyperspectral or multispectral) was identified by the highest 
overall coefficient of determination between yield and different vegetation indices (VIs) 
whilst linear and non-linear models were tested to determine the best VIs and the impact 
of the spatial resolution. The optimal regression fit per region was used to extrapolate the 
point source measurements to all pixels in each sampled crop to produce a forecasted yield 
map and estimate average carrot root yield (t/ha) at the crop level. The latter were compared 
to commercial carrot root yield (t/ha) obtained from the growers to determine the accuracy 
of prediction. The measured yield varied from 17 to 113 t/ha across all crops, with fore-
casts of average yield achieving overall accuracies (% error) of 9.2% in WA, 10.2% in Qld 
and 12.7% in Tas. VIs derived from hyperspectral sensors produced poorer yield correla-
tion coefficients  (R2 < 0.1) than similar measures from the multispectral sensors  (R2 < 0.57, 
p < 0.05). Increasing the spatial resolution from 10 to 1.2 m improved the regression per-
formance by 69%. It is impossible to non-destructively estimate the pre-harvest spatial 
yield variability of root vegetables such as carrots. Hence, this method of yield forecasting 
offers great benefit for managing harvest logistics and forward selling decisions.
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Introduction

Carrot (Daucus carota L.), grown in more than 25 countries, is one of the most economi-
cally important vegetables in the world because of its significance to food security and 
dietary benefits to humans. In Australia, carrots are the third largest (by volume/tonnage) 
vegetable crop produced (around 318 000 t) and the fifth most valuable vegetable grown 
(about $231 million, 2017 value) (Horticulture Innovation Australia Limited 2018). There 
are five major carrot production areas in Australia: Western Australia (Gingin and Pres-
ton), Victoria (East Gippsland), South Australia (Riverland) and Tasmania (Forth). The 
production area increased by 15% from 2015 to 2016. About two-thirds of consumption is 
domestic with more than 89% of Australian households regularly purchasing fresh carrots. 
Only 10 t were imported, while nearly 103 000 t were exported, in 2016/2017 (Horticulture 
Innovation Australia Limited 2018).

Accurate yield estimations are important for all cropping industries to support improved 
decision making for crop management, labour requirements, storage, transport and market-
ing (Ye et al. 2007). Remote sensing (RS) is one of the most important technologies avail-
able to precision agriculture (PA) (Yang et al. 2004; Lee et al. 2010) and has been demon-
strated to accurately explain spatial and temporal variability of many important agronomic 
parameters including abiotic and biotic constraints and yield (Magney et al. 2017). Several 
studies have assessed RS technologies for PA purposes in different broadacre crops (Zarco-
Tejada et al. 2005) and many tree crops (Rahman et al. 2018; Robson et al. 2017b). Yang 
and Everitt (2002) compared grain sorghum yield estimations from remote sensing data 
obtained during the growing season to yield data measured from yield monitors during 
harvest. Yield maps derived from reflectance-based imagery, captured around peak vegeta-
tive development, were highly comparable to the yield records obtained from yield moni-
tors, explaining up to 85% of yield variability and indicating the potential of remote sens-
ing as a surrogate for yield monitors. Additionally, continual site-specific crop condition 
information (e.g. leaf area index—LAI, biomass, yield, severity of pest and disease infesta-
tions, levels of nitrogen deficiency) is essential for precision crop management during the 
growing period and between seasons (Thenkabail 2003) but traditional methods for collect-
ing this data are costly and time consuming. RS technologies, although requiring calibra-
tion (i.e. field data measurements), can accurately measure spatial and temporal variability 
that can be used for crop management and incorporated in crop models (Thenkabail 2003). 
Ye et al. (2007) showed that the ability to predict annual variability in yield several months 
prior to harvest offers significant benefit to growers, processors and marketers. The authors 
tested different remote sensing sensors (i.e. hyperspectral and multispectral) to predict fruit 
yield (cv. Satsuma mandarin) several months before harvesting. Results proved the capa-
bilities of these sensors to estimate yield one season ahead under the natural alternate yield 
bearing process of fruit trees.

Meaningful information regarding crop health also can be gained by transforming 
reflectance data into vegetation indices (VIs). VIs are mathematical expressions, usually 
composed of two or three spectral bands computed as subtractions, ratios or linear combi-
nations of light reflectance in the visible (VIS), near-infrared (NIR) and shortwave infrared 
(SWIR) spectral regions (Table). VIs are developed to identify a particular plant condi-
tion. Pigment-related, structural-related and water-related indices generally include the VIS 
spectrum (blue, green, red), NIR bands and SWIR bands, respectively. Evidence shows 
that the absorption dynamics in the visible part of the spectra, are predominately driven by 
leaf pigments and their interactions (Peñuelas et  al. 1995). The NIR reflectance changes 
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are mainly influenced by leaf structures in the mesophyll cell wall (Pinter et al. 2003) and 
whilst the SWIR range is highly influenced by specific constituents such as lipids, oils, 
water, cellulose and lignin (Rapaport et al. 2015; Daughtry 2000). As a result, VIs have 
been used as strong indicators of plant health (Henry et al. 2004; Apan et al. 2004), water 
availability (Detar et al. 2006; Rapaport et al. 2015), nitrogen (Ryu et al. 2011) and other 
nutrient deficiencies (Schlemmer et al. 2013) in different crops such as cotton (Ortiz et al. 
2011), soybean (Huang et  al. 2015), rice (Gnyp et  al. 2014), tomatoes, potatoes, onions 
(Marino and Alvino 2015; Trout et  al. 2008), avocados and macadamia (Robson et  al. 
2017b). However, the literature is limited for root crops such as carrots. Al-Gaadi et  al. 
(2016) demonstrated that satellite multispectral sensors (i.e. Landsat-8 (OLI) and Senti-
nel-2) were successful in providing accurate estimations of yield variability and total yield 
of potatoes but the accuracies varied according to the spatial resolution. Bala and Islam 
(2009) tested normalised difference vegetation index (NDVI), the fraction of photosyn-
thetically active radiation (fPAR) and LAI products derived from MODIS TERRA images 
(500 m, 1 km and 1 km spatial resolution, respectively) to estimate potato yield prior to 
harvesting with overall accuracies of about 75%. The authors found that the peak of max-
imum correlation between NDVI and potato yield coincided with the peak of the fPAR 
and concluded that higher spatial resolution could increase the accuracies in future studies 
due to the high discrepancies between the size of the fields and the spatial resolution of 
these products (i.e. NDVI, LAI and fPAR). Most recently, Gomez et al. (2019) developed a 
potato-yield prediction model using Sentinel-2 data and machine learning algorithms. The 
results showed an improved accuracy to those studies reported previously. However, the 
model evidenced greater uncertainty due to the poor capacity of the model to account for 
extreme events or abnormal crop conditions and the lack of calibration data from different 
regions.

Before the era of high temporal and spatial resolution satellite sensors, the low temporal 
and/or spatial resolution of some satellites (e.g. Landsat, MODIS) limited their usability in 
medium to small broadacre or tree crops for PA purposes. The launch of satellite platforms 
such as IKONOS, Quickbird, GeoEYE and, more recently, Sentinel-2 and Worldview-3 
and 4 (WV-3/ WV-4) have greatly increased the development and potential adoption of RS 
applications for PA (Battude et al. 2016; Yang et al. 2009). Furthermore, the commercial 
cost of these imagery sources has reduced, making these technologies economically attrac-
tive. WV-3, launched on 14 August 2014, has been successfully used to characterise tree 
health, yield and fruit quality in orchards (Rahman et  al. 2018; Robson et  al. 2017a, b). 
Sentinel-2, launched on 23 June 2015, has mostly been used for land cover and crop and 
tree species classifications (Immitzer et al. 2016; Qiu et al. 2017). However, the accuracy 
of these sensors, including hyperspectral sensors, has not been assessed for yield forecast-
ing in vegetable crops.

Statistical models calibrated for yield estimation that have a VI as the predictor vari-
able can produce highly accurate results (Bolton and Friedl 2013; Al-Gaadi et al. 2016). 
However, yield is a complex variable dependent on many different factors that could limit 
the use of VIs as yield predictors. In such cases, more robust statistical methods, such as 
multivariate regression, are needed (Suarez et al. 2016). Despite the extensive use of VIs in 
agriculture, there is limited implementation of VIs derived from RS for yield prediction in 
many horticultural crops, and particularly carrots.

Due to the importance of this vegetable crop, the main objective of this study was to test 
proximal (hyperspectral) and remote (multispectral satellite) sensors for the prediction of 
carrot root yield. More specifically the work aimed to: (1) explore the relationship between 
carrot yield and VIs derived from different platforms; (2) assess the prediction accuracy of 
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VIs derived from hyperspectral and multispectral sensors; and (3) determine the influence 
of spatial resolution on model performance.

Materials and methods

Study area and cropping systems

This study included three intensive vegetable production regions in Australia: Western 
Australia (WA), Queensland (Qld) and Tasmania (Tas) (Fig. 1). The WA site is an over-
head irrigation system (centre pivot and fixed sprinkler systems) with dune-swale terrain 
characterised by leached sands as the predominant soil type. Due to the arenosol soils 
and low water holding capacity, crops are generally irrigated daily unless rainfall exceeds 
evaporation. In this region, the crops grow in a subtropical climatic region and the pre-
plant fertiliser program includes superphosphate plus manganese and boron. Phosphorus 
rate is guided by soil tests. Multiple top dressings are applied in crop at 10–14 day inter-
vals comprising urea, potassium-sulphate (400  kg/ha) and magnesium-sulphate (100  kg/
ha). Urea is applied depending on crop appearance and vigour. Within Qld, carrot produc-
tion is predominantly limited to fertile alluvial vertisols (cracking clay soils) in subtropical 
regions. A blend of nitrogen, phosphorus, potassium and sulphur is applied pre-planting 

Fig. 1  Study area: location of the three growing regions and the distribution of the sampled fields
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with top dressing of calcium and potassium nitrate. Boron is also applied in crop. Irriga-
tion scheduling is based on applying 25 mm per week. In Tas, carrot cropping is mostly 
summer-autumn based, and occurs in cool temperate climatic regions with red nitosol soils 
in an undulating landscape. Standard management includes a small amount of N applied 
at planting with a top dressing of calcium nitrate applied during the growing season if 
required. Crops are irrigated at a rate of 25 ml every 7 days.

Each region and the respective growing periods included in the study were exposed to 
different seasonal weather conditions according to the monthly climate statistics. These 
statistics were calculated from weather stations located in Gingin (WA) (31.46° S; 15.86° 
E), Amberly (Qld) (27.63° S; 152.71° E) and Devonport (Tas) (41.17° S; 146.43° E) about 
29 km, 35.7 km and 15.5 km from the field sites, respectively. The WA and Tas weather 
data covers the years 1996–2018, and 1941–2018 for Qld (Bureau of Meteorology 2017). 
During the study period, the rainfall in WA was the highest of the three sites (62 mm), fol-
lowed by Qld (59 mm) and Tas (50 mm).

Five to twelve commercial carrot crops were sampled per region in their respective 
growing seasons. Carrots grown in WA have an expected crop duration of 130–165 days, in 
Qld, 115–150 days and in Tas about 125 days. WA is a single crop system whilst in Tas and 
Qld, the crops are rotated with a preferred minimum return period of four and three years, 
respectively. Rotation crops include onions, green beans, sweet corn and some pumpkins 
in Qld; and onions, potatoes, broccoli, poppies, peas, beans or grains in Tas. Table 1 sum-
marises the planting schedules of the study sites in each region. From each of the sampled 
locations (more than 400 across all regions), yield and above ground biomass (AGB) were 
collected, as well as hyperspectral and multispectral canopy measures.

Sampling method

The stratified random sampling method was based on the methodology reported by Rob-
son et al. (2017a) but adjusted to suit the planting configuration of carrots. This protocol 
ensured that a large extent of the spatial variability of crop vigor was included. For this, 
a vigour map per crop was generated from the WV-3 capture by classifying the NDVI or 
SR indices (Table  2) into 8 vigour classes. Iso Cluster unsupervised classification (Ball 
and Hall 1965) was used to assign each pixel value into the classes (from very low to very 
high). Sample points were randomly distributed across the crop (18 in total) to characterise 
the three major vigour classes: low, medium and high. Each major class was represented by 
six sample points. The location of the points was done using ArcGIS 10.4 (Environmental 
Systems Research Institute. Redlands, CA, USA). A Trimble DGPS (Trimble, Sunnyvale, 
CA, USA), with accuracies ranging from 0.05 to 0.8  m, was used to locate the sample 
points in the field. Once the points were located in the field, the sampling area (i.e. sample 
plot) was established based on the sowing arrangement per region described below.

Yield and above ground biomass data collection

Measured yield (i.e. calibration data) and above ground biomass (AGB) data were col-
lected at each sample plot as close as possible to commercial harvest to ensure minimal 
maturity and quality change between sampling and harvest. Each sample plot was 1 m 
long, with a plot width of 1.525  m for two rows of twin row planting (Qld) and 2  m 
and 1.125 m for four twin rows per bed in WA and Tas, respectively. From these sam-
pled plots, carrot root yield was calculated in t/ha for all regions. Following sampling, 
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a standard procedure was used for quality grading which comprised of counting and 
classifying individual roots based on length, width, shape, incidence of cavity spot, etc. 
Four classes were used for quality grading: Premium carrot or class 1 (C1), class 2 (C2), 
oversize and waste. Only straight carrots between 120 and 200 mm length and between 
25 to 43 mm diameter at the shoulder without any incidence of disease or cavities were 
classified as C1. C2 had the same length and diameter of C1 but slight bend in the car-
rots. Carrots longer than 200 mm and/or greater than 43 mm diameter, irrespective of 
the shape were classified as oversize. Waste class included carrots shorter than 100 mm, 
misshapen, and/or with or without spot cavities and disease. The total number of carrots 
per sampled plot was used to estimate plant density (plant/ha).

A one-way ANOVA analysis was undertaken to investigate the differences between 
regions in terms of AGB and average yield (t/ha). This method avoids the propagation 
of the Type I error (5%) carried out in ANOVA when comparing more than two cat-
egories (Aerd statistics 2019). Furthermore, Games Howell post-hoc test (Games and 
Howell 1976) was used to determine which growing regions produced significantly dif-
ferent yields and AGB and the respective magnitude of such differences. The one-way 
ANOVA and the post-hoc tests were performed using the userfirendlyscience R-package 
(Peters 2018).

Table 1  Planting and harvesting schedule of the fields per growing region

Harvest date is the time of commercial harvest as reported by the grower

Region Growing period Block/pivot Sowing date Harvest date

WA WA1 A Block 17-Jan-17 16-May-17
E Pivot P1 23-Jan-17 9-Jun-17
C Block 14-Feb-17 20-Jun-17

WA2 H Pivot P4 20-Mar-18 4-Sep-18
D Pivot P1 22-Mar-18 19-Sep-18
C Pivot P1 27-Mar-18 13-Sep-18
E Pivot P1 10-Apr-18 4-Oct-2018

Qld Qld1 W Block 2 28-Mar-17 16-Aug-17
N Block 5 11-Apr-17 17-Aug-17
Valley- 11-Apr-17 22-Aug-17
EW Pivot 1 East- 12-Apr-17 25-Aug-17

Qld2 EW Pivot 5 South- 18-Jul-17 30-Nov-17
EW Pivot 5 North- 18-Jul-17 3-Dec-17
MR House 5&6- 25-Jul-17 13-Dec-17
GN Block 3 28-Jun-17 Not harvested

Qld3 JA Block 1 13-Mar-18 15-Jul-18
R Block 9 23-Mar-18 17-Jul-18
MZ Block 1 27-Mar-18 10-Aug-18
KW Block 2 5-Apr-18 29-Aug-18

Tas Tas1 F710 2-Oct-17 4-Feb-18
F713 16-Oct-17 18-Feb-18
F714 21-Oct-17 23-Feb-18
F715 24-Oct-17 26-Feb-18
F716 27-Oct-17 28-Feb-18
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Reflectance‑based data acquisition

Satellite multispectral imagery

WV-3 provides high spectral resolution with 8 multispectral bands in the visible (VIS) and 
near-infrared (NIR), 8 SWIR bands and 12 bands to map clouds, aerosol, water vapor, ice 
and snow (CAVIS at 30 m spatial resolution) (DigitalGlobe 2018). This sensor also pro-
vides very high spatial resolution: 0.31  m in the panchromatic, 1.24  m in the VIS–NIR 
bands and 3.7 m in the shortwave infrared (SWIR) bands (DigitalGlobe 2018). Sentinel-2 
offers a lower spatial resolution: ranging between 10 and 60 m depending on the respective 
13 multispectral band width: 4 in the VIS, 5 in the NIR (including 4 bands in the red edge 
region—VNIR) and 4 in the SWIR region. This sensor provides worldwide coverage every 
5–10 days with image data being freely available (European Space Agency 2019). Because 
the various spatial resolutions of Sentinel-2 may limit its use in small area carrot crops, this 
study only incorporated the spectral bands of 10 m spatial resolution. Figure 2 shows the 
spectral configuration of the multispectral sensors used in this study and their respective 
overlap, whilst Table 3 shows the VIs generated from each sensor.

Based on the planting schedule, the acquisition of high-resolution satellite imagery 
(WV-3) was targeted to coincide with mature crops for each of the three regions (i.e. about 

Fig. 2  Spectral configuration of the WV-3 (black bars) and Sentinel-2 (green bars) bands covered in this 
study. For WV-3, only the multispectral bands with spatial resolution of 1.24 m were included. For Senti-
nel-2, only the spectral bands of 10 m spatial resolution were included (green boxes) (Color figure online)

Table 3  Data collection dates 
per sensor, growing period and 
region

a ± 2 days, captured in-field with a hand held spectrometer

Growing period Capture date

WV-3 Sentinel-2 Hyperspectrala

WA1 30 Apr 2017 27 Apr 2017 16 May 2017
WA2 31 Jul 2018 31 Jul 2018 29 Aug 2018
Qld1 11 Jul 2017 14 Jul 2017 11 Jul 2017
Qld2 25 Oct 2017 22 Oct 2017 25 Nov 2017
Qld3 3 Jul 2018 9 Jul 2018 17 Jul 2018
Tas1 8 Jan 2018 14 Dec 2017 Not available
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4  weeks before commercial harvest). Once a successful WV-3 capture was available, a 
coarser resolution Sentinel-2 level 1C image was also acquired for a similar date. The level 
1C images are ortho-rectified products (geometrically corrected at sub-pixel level) provid-
ing ‘Top-of-atmosphere’ (TOA) reflectance (radiometrically-corrected) (Sentinel-2 PDGS 
Project Team 2011). However, due to differences in rectification accuracies (3 m and 10 m 
for WV-3 and Sentinel-2, respectively), Sentinel-2 images were “registered” on to coinci-
dent points from the WV-3 captures (co-registration). This geo-referencing procedure was 
performed using ArcGIS v10.4 (Environmental Systems Research Institute. Redlands, CA, 
USA). The digital numbers of the WV-3 imagery were transformed to TOA reflectance fol-
lowing the equation presented in Kuester (2016).

Proximal hyperspectral data collection and analysis

A hand-held spectroradiometer FieldSpec Handheld4 (Analytical Spectral Devices Inc., 
Colorado, USA) was used to collect five reflectance readings randomly selected per sample 
plot. The ASD spectrometer acquires continuous spectra from 350 to 2500 nm with wave-
length accuracy of ± 1 nm and spectral resolution of 3 nm at 700 nm and 8 nm at 1400 nm 
and 2100 nm. Spectral data were collected with a bare fiber optic of 25° field of view at 
0.3 m above the canopy in order to get a sample size of 0.13 m diameter. The equipment 
was calibrated with a Spectralon® white panel at each sampling location. Each reflectance 
was an average of 10 repeated scans taken under cloudless conditions between 8:00 h and 
16:00 h. Hyperspectral data were collected prior to manual harvesting sampling.

Raw spectral data (from 350 to 2500  nm) were exported into ASCII format using 
ViewSpec Pro which is integrated with RS3 Spectral Acquisition Software (Analytical 
Spectral Devices Inc., Colorado, USA). The ASCII data format was imported into R soft-
ware (R Core Team 2014) and converted into hyperspectral object (R class) with the hyper-
Spect R-package to facilitate hyperspectral data manipulation and analysis (Beleites 2014). 
Pre-processing of spectral data included exploratory and cleaning processes to identify and 
remove outlier reflectance data as they tend to increase the error in statistical models (Wold 
et al. 2001; Zainol Abdullah et al. 2014). Other pre-processing techniques such as smooth-
ing or normalization of reflectance data were omitted as these techniques can change 
the spectral characteristics of the data leading to inaccurate results (Suarez et  al. 2017; 
Vaiphasa 2006). Furthermore, this study did not use the entire spectrum, but rather selected 
only those spectral regions that corresponded with those used as inputs to calculate the 
VIs (see Table  2). However, the strong water absorption wavelengths (1356–1480  nm; 
1791–2021 nm and 2396–2500 nm) were removed (Apan et al. 2006). From the five ran-
domly selected reflectance readings collected at each sampling location, the mean spectra 
value was calculated. VIs were then calculated following the equations in Table 3. Due to 
weather conditions, hyperspectral data could not be collected in Tas. Table 3 shows the 
information pertaining to the sensors with their respective capture date per region and 
growing period.

Vegetation indices and analysis

For the extraction of multispectral satellite data, the location of each sample point was used 
as a centroid that was then buffered to create a 2 m (for WV-3) and 10 m (Sentinel-2) area 
of interest (AOI). The mean reflectance value of all pixels within the AOI (pixel inclu-
sion higher than 50%) was calculated for each multispectral band allowing for number of 
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vegetation indices to be calculated (Table 2). In cases where the equation did not specify 
a particular wavelength (broadband VIs), blue (B), green (G), red (R) and near-infrared 
(NIR) were replaced by the reflectance values recorded at the 445 nm, 550 nm, 675 nm and 
800 nm wavelength, respectively. This was only required in the cases of hyperspectral data 
and broadband VIs.

Several linear models were generated following the equation:

where y corresponds to yield (t/ha), and x the VI (per sensor, per region). The optimal 
sensor was identified as the one with the overall highest coefficient of determination  (R2). 
Although VIs performance can change according to the sensor (Al-Gaadi et al. 2016), the 
overall  R2 was used as indicator of the stability of the sensor to explain yield variability. 
The optimal VI for yield estimation was defined by the highest coefficient of determination 
 (R2) and the lowest residual standard error (σ). Scatter plots were used to identify indices 
with saturated values (low index variability) which were removed from the analysis. Opti-
mised regression fits were tested by fitting non-linear models for each region. The result-
ing new models were validated using the Global Validation of Linear Model Assumptions 
(gvlma) package in R (Peña and Slate 2006). Only those models that passed the gvlma 
test and reduced the root mean squared error (RMSE) were chosen over the linear models 
for yield forecasting. Linear mixed models were tested with location as a random effect; 
however, results did not receive a higher accuracy than the empirical regression models per 
region.

A yield map (t/ha) for each sampled crop was generated using the optimal VI and the 
best regression fit per region. The average forecasted yield per crop (FY) was calculated by 
averaging the pixel values in t/ha of the resulting yield map. Commercial harvest (CH) (t/
ha) reported by the grower was used as validation data. CH follows the form:

where CHT is the total commercially harvested yield (t) per crop and A is the area (ha) of 
the crop. FY (t/ha) was validated against CH at the crop level and the accuracies (indicated 
by the percent error, % error) were calculated following the equation:

The CH information was available for WA1 and WA2, Tas1 and Qld1 crops and therefore, 
only 16 out of the 24 fields were validated. Figure 3 shows the main activities performed in 
this study.

Results and discussion

Yield and grading quality variability across growing regions

WA recorded the highest yield followed by Tas and Qld (72 t/ha, 68 t/ha and 64 t/ha, 
respectively) (Fig. 4). The only statistically significant difference in yields was between 
WA and Qld across all sample sites. Qld had the lowest yield variability followed by 
Tas and WA. One-way ANOVA was used to further explore the relationships between 
the vigour classes and total carrot yield (t/ha) (Fig. 4). On average for all regions, yield 

(1)y = a + bx

(2)CH = CHT∕A

(3)% error =
(

FY − CH

CH

)

∗ 100
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Fig. 3  Flowchart for yield forecasting using different sensors. AGB: Above ground biomass

Fig. 4  Measured total carrot root yield (t/ha) per region and per vigour class derived from WV-3. The dot-
ted lines delimit the minimum and maximum values, the boxes delimit the 25th and the 75th percentile 
while the hollow points represent outliers and the filled points represent the median. Means sharing the 
same letter are not statistically significantly different (p > 0.05)
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increased by 16 t/ha between the low and high vigour classes, 10 t/ha between low 
and medium and 6 t/ha between medium and high. There were significant differences 
between total yield (t/ha) for each vigour class (p < 0.001) in Tas, whilst for WA, vig-
our class differences were not statistically significant different (p > 0.05). In Qld, yield 
was significantly different between low and medium and low and high vigour classes 
(p < 0.05) but not between medium and high vigour class.

It was not possible to clearly establish a relationship between plant density (plants/
ha) and total yield (t/ha). WA had the lowest plant population per ha (~ 644,000 plants/
ha) but the highest average total yield of all regions. In comparison to WA, Tas and Qld 
reported, on average, nearly 40% and 25% more plants/ha but 6% and 11% lower yields, 
respectively. Carrot quality grading was significantly (p < 0.05) related to plant density. 
Percentage of C1 decreased as the plant density increased while the percentage of C2 
increased in line with plant density. As such, the results indicate that optimal plant den-
sity is important to produce a larger proportion of premium carrots (as defined by the 
market requirements of a particular size (class)) (Lana 2012). Significant relationships 
between percentage of oversize and waste carrots to plant density could not be estab-
lished in this study.

Above ground biomass (AGB) variability

AGB was recorded at each of the 414 sampling locations. The variability per region was 
statistically significant (p < 0.05) with the Qld region producing the most variability and 
the highest AGB (average = 19 t/ha) followed by Tas (average = 16 t/ha) and WA (aver-
age = 11 t/ha). To validate the relationship between AGB and the vigour classes gener-
ated from the satellite imagery, one-way ANOVA and Games Howell post-hoc test were 
used. Samples from all regions displayed an AGB increase in line with the vigour class, 
with the low, medium and high vigour class producing 12 t/ha, 16 t/ha and 18 t/ha, 
respectively. Whilst the differences between the three vigour classes were significant for 
Tas and WA (p < 0.05), only the low and high vigour classes were significantly different 
(p < 0.05) for Qld (Fig. 5).

Fig. 5  Above ground biomass (t/ha) distribution per vigour classes generated from WV-3 imagery. The dot-
ted lines delimit the minimum and maximum values, the boxes delimit the 25th and the 75th percentile 
while the hollow points represent outliers and the filled points represent the median. Means sharing the 
same letter are not statistically significantly different (p > 0.05)
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Total yield and AGB relations across regions

For all regions, the relationship between the measured AGB (t/ha) and total carrot yield 
(t/ha) was significant but weak (r = 0.24, p < 0.001). However, stronger relationships were 
achieved at the regional level (Fig. 6). Moderate (r = 0.58) and strong (r = 0.88) relation-
ships were identified for Qld and Tas, respectively. This result is consistent with prior 
studies of other crops where total biomass was found to be directly related to marketable 
cucumber weight  (R2 = 0.66) and wheat grain yield  (R2 = 0.8) (Agegnehu et al. 2014; Nair 
and Ngouajio 2010). A significant relationship could not be established for WA. Measured 
AGB was 12.5 t/ha for WA1 and decreased to 9.4 t/ha in WA2 while the average total 
carrot root yield (t/ha) was not significantly different (p > 0.05). Issues related to mono-
culture cropping during WA2, are believed to be the main reason. The sampled fields had 
high infestations of wild carrots (Daucus carota L.), a weed that produces a large amount 
of green vegetation, potentially limiting the canopy development of the commercial car-
rots. As the roots of the wild carrot plants do not grow to any significant size, they do not 
compete against the root development of the commercial plants. The differential impact of 
canopy and root development between weed and commercial carrots affected the ratio of 
AGB and root yield of the commercial crop.

Spectral response of carrots

To compare the influence of growing location on spectral response, the mean spectral pro-
files per region were plotted (Fig. 7). Spectral characteristics varied across each location 
and could be explained by differences in canopy architecture, potentially different pig-
ment concentration, sowing configuration and soil types as reported by Broge and Leblanc 
(2001), Daughtry et al. (2000) and Qi et al. (1994). Other studies have identified different 
growing stages (Suarez et al. 2017) and varieties (Rama Rao 2008) as factors influencing 
the reflectance curves but, for this study, this influence is considered to be minimal as both 
growth stages at the time of data collection and variety were consistent.

Reflectance changes were also observed per sensor and particularly between WV-3 and 
Sentinel-2. Qld produced the most consistent and the highest canopy reflectance values in 
the NIR region (for both hyperspectral and multispectral sensors) when compared to the 
other sites. For WA and Tas, the mean reflectance measured by WV-3 and Sentinel-2 was 
inconsistent: the reflectance profile was higher for Tas and lower for WA in WV-3 but this 

Fig. 6  Relationship between above ground biomass (t/ha) and total carrot root yield (t/ha) in WA, Qld and 
Tas
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trend reversed for Sentinel-2. The trend changes could be explained by the coarser spatial 
resolution of the Sentinel-2 as the pixel values within the buffer area could include non-
crop areas influencing the reflectance values.

Relationship between vegetation indices and carrot root yield

The relationship between total carrot root yield (t/ha) and vegetation indices varied 
between sensors and regions (Table 4). Overall, the multispectral sensors (i.e. Sentinel-2 
and WV-3) better explained yield variability than the hyperspectral sensor at the field level. 
This can be explained due to the ground-based hyperspectral measurements being collected 
from a point source location and therefore being less capable of measuring the dynamics of 
major changes while also being highly sensitive to the presence of other vegetation, such as 
weeds, or soil exposure at the canopy level. The differences between the canopy structure-
related (for example RDVI, NDVI, EVI2 or GEMI) and the pigment-related indices (such 
as SIPI or GNDVI) could not be clearly identified in WA. In Qld (where the relationship 
between AGB and yield was moderate), the differences were more evident with the struc-
ture-related indices better explaining yield variability. Hyperspectral data in the form of 
VIs did not provide significant correlations (p > 0.05) with yield and therefore, results are 
not presented in Table 4.

Fig. 7  Mean reflectance response per region and sensor. a WV-3, b Sentinel-2 and c hyperspectral. SD 
standard deviation
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Irrespective of the VI or the region, the derived-VIs from WV-3 produced stronger rela-
tionships with yield than Sentinel-2 (Table 4). The  R2 increased from 0.13 to 0.21, from 
0.15 to 0.35 and from 0.50 to 0.70 for WA, Qld and Tas, respectively whilst the residual 
standard error (sigma, σ), decreased as the spatial resolution increased (Table 4). This is 
considered primarily to be the result of the higher spatial resolution of the WV-3 satellite 
sensor. This result aligns with Lima et al. (2019); Forkuor et al. (2018) and Wang et al. 
(2018) where Sentinel-2 (10 m spatial resolution) yielded higher classification accuracies 
over the Landsat 8-OLI sensor (30 m spatial resolution). Although Forkuor et al. (2018) 
indicated that the narrow bands of the Sentinel-2 could also have a positive influence on 
their results, the WV-3 (with slightly wider bandwidths than Sentinel-2) produced better 
results in this current study. Similar results were found by Yang et al. (2006). In their study, 
airborne imagery and QuickBird imagery were resampled at 2.8 m and 8.4 m. Regardless 
of the spectral configuration (i.e. airborne sensor had broader spectral bands than Quick-
Bird sensor), higher spatial resolution gave better results for mapping sorghum yield and 
yield patterns.

The optimal VI for each region was defined by the highest  R2 and the lowest σ obtained 
from the linear models. Tas produced the highest  R2 when RDVI, SAVI and OSAVI were 
the predictor variables  (R2 = 0.77), with the lowest σ (10.75 t/ha) achieved with RDVI. 
EVI2 performed better in Qld  (R2 = 0.55), whilst for the WA region, GNDVI was optimal 
 (R2 = 0.29). These results indicate that VIs were more susceptible to regional changes than 
the pure reflectance per band as their prediction performance varied across regions while 
the reflectance curves remained similar (Fig. 7).

The spectral reflectance and absorption properties of plants can be influenced by 
canopy structure, health and the presence, absence or concentration of specific plant 
constituents (Huete et al. 1994; Rondeaux et al. 1996). Therefore without undertaking 
destructive sampling and subsequent chemical analysis, the exact drivers of spectral 

Table 4  Linear model parameters of satellite-derived vegetation indices as predictors of total carrot yield in 
WA, Qld and Tas

Hyperspectral results are not presented as the  R2 were not significant (p > 0.05)
σ = residual standard error (t/ha)
Parameters were statisitically significant (p < 0.05) unless otherwise specified ((–) not significant, p > 0.05)

Region WA Qld Tas

Sensor/VI Sentinel-2 WV-3 Sentinel-2 WV-3 Sentinel-2 WV-3

R2 σ R2 σ R2 σ R2 σ R2 σ R2 σ

SIPI (–) 18.13 (–) 18.19 (–) 11.75 0.21 11.57 (–) 20.97 0.05 21.76
GNDVI 0.15 16.77 0.29 15.37 0.17 11.88 0.43 9.78 0.54 15.25 0.77 10.82
MSR 0.14 16.88 0.26 15.70 0.14 12.12 0.41 10.03 0.54 15.17 0.77 10.81
SR 0.15 16.80 0.24 15.85 0.14 12.09 0.41 10.01 0.53 15.27 0.74 11.37
NDVI 0.12 17.11 0.28 15.42 0.11 12.27 0.38 10.26 0.50 15.78 0.76 10.98
RDVI 0.14 16.86 0.26 15.70 0.16 11.93 0.54 8.80 0.55 14.95 0.77 10.75
TDVI 0.12 17.04 0.28 15.40 0.11 12.32 0.37 10.28 0.49 15.97 0.75 11.18
EVI2 0.15 16.82 0.25 15.78 0.17 11.88 0.55 8.74 0.57 14.68 0.77 10.80
SAVI 0.15 16.81 0.12 17.09 0.17 11.90 (–) 12.95 0.57 14.73 0.77 10.76
OSAVI 0.14 16.90 0.14 16.83 0.14 12.07 0.06 12.64 0.55 15.05 0.77 10.76
GEMI 0.14 16.90 0.18 16.53 0.18 11.78 0.46 9.60 0.58 14.51 0.76 11.02
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variation can only be assumed based on what parameters have been measured in the 
field and prior literature. For Tas, yield had a stronger correlation to NIR bands (r > 0.8, 
p < 0.05) than the VIS bands (particularly the green region, r < 0.1), therefore it can 
be suggested that the structural parameters of the plant were the main driver. This is 
supported by the higher correlation coefficient (r) achieved between AGB and yield 
(r = 0.88) and the structural-related optimal index for this region (RDVI). Similarly for 
Qld, higher correlations between the NIR spectral range and yield were also dominant 
over the VIS region. The poor relationship with the red band (r < − 0.2) suggests that 
concentrations of photosynthetic pigments, or potentially plant nutrition, was not a 
major driver of yield variability (Pinter et al. 2003) (this was supported by leaf tissue 
testing at the sample sites, where no statistical variation in plant foliar nutrition and 
yield were identified, data not shown). The moderate relationship between AGB and 
yield (r = 0.58) and the higher correlations achieved with EVI2, support the hypothesis 
that the structural characteristics of the canopy, such as LAI, are the main indicators of 
yield variability for this region.

In WA, significant and moderate negative correlation coefficients were found between 
yield and the VIS bands (r < − 0.4, p < 0.05). GNDVI, the best performing index in this 
region, was initially derived to maximise the sensitivity to chlorophyll (chl-a) concentra-
tion, for the measurement of photosynthesis rate and to monitor plant stress. This index 
includes the green band as it has been found to be sensitive to pigment concentration by 
increasing reflectance in response to a decreasing chl-a concentration. The red spectrum 
has a similar behaviour but only in leaves with low chlorophyll concentrations (Gitelson 
et al. 1996). As such, pigment concentration is suggested as an important factor in yield 
variability. In WA, the low correlation between AGB and yield (r = 0.16) indicates that the 
structural properties of the plant were not strongly related to yield performance. The high 
weed population (wild carrot) evident in WA2 likely altered the canopy architecture due 
to high canopy densities and competition for light and nutrient availability, however this 
did not impact the total root yield (t/ha). This is also supported by differences between 
WA1 and WA2 (results not shown) where the reflectance in the green and red bands was 
higher in WA2 than WA1, indicating a lower pigment concentration due to a possible nutri-
ent competition in AGB-reduced WA2 (Suarez et al. 2017; Blackburn 2007; Gitelson et al. 
2003). Increased reflectance in the NIR bands in WA2 is likely the result of changes in 
canopy structure caused by the weed population (Schlemmer et al. 2013).

In an attempt to improve the accuracy from the linear models, several non-linear models 
were tested. The resulting new models were validated using gvlma test (Peña and Slate 
2006) and only the models that passed the test and reduced the RMSE were considered as 
an optimised regression model. In WA and Tas, the parameters of the non-linear models 
remained mostly the same or increased the RMSE (particularly for Tas) compared to the 
linear fits, while failing the gvlma test. In Qld, the exponential fit improved the prediction 
performance of the EVI2 by producing a higher  R2 and lower RMSE. This non-linear fit 
passed the gvlma test. The best regression fits per region and their respective parameters 
are shown in Fig. 8 whilst examples of yield maps derived from the regression fits and the 
location of sample points with the respective measured yield values (t/ha) are presented in 
Fig. 9.

The forecasted yield (FY) (t/ha) from imagery at the crop level was compared against 
the commercially harvested yield (CH) for WA1, WA2, Qld1 and Tas1 (Table 5). The % 
error ranged from 3.3% to 15.8% in WA, from 2 to 12% in Qld and from 1.1% to 24% in 



1320 Precision Agriculture (2020) 21:1304–1326

1 3

Tas. Although WA produced the lowest  R2 and the highest σ, the overall % error of the val-
idation for this region (10.2% equivalent to 7.16 t/ha) was well below the error of the cali-
bration model (15.24 t/ha). In Tas, only one season of data was available and this may have 
contributed to the overall highest % error (12.7%). However, this percentage (equivalent to 
10.16 t/ha) was still below the error of the calibration model (10.60 t/ha). The regression fit 
in Qld included three seasons which may explain why it achieved the lowest overall % error 
(9.2% equivalent to 5 t/ha) when compared to the CH measured from Qld1 crops. This 
result highlighted the importance of including as many seasons as possible to develop the 
calibration models as it better encompasses seasonal variation.

It is worth noting that although the best efforts were made to obtain an exact measure 
of actual CH for each of the sampled crops, it is likely that harvest losses associated with 
carrots left in the ground or on top of the ground may have occurred. It is also possible that 
carrots harvested from a block other than the one sampled were added to the final CH. This 

Fig. 8  Optimal regression fits of VIs derived from WV-3 for total carrot root yield (t/ha) for WA (left), Qld 
(middle) and Tas (right). The linear fit and the power or exponential curves are represented by the solid and 
dotted lines, respectively. All the models are significant with p < 0.001

Fig. 9  Yield map examples derived from WV-3 for WA (a) and Tas (b) regions. Points and labels indicate 
the location and the range of manually harvested yield from samples taken
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sometimes occurs when growers need to fill trucks to send to the processors. An example 
of this is Block CE and Pivot E P1 where the CH (74 t/ha and 73 t/ha, respectively) were 
well above the maximum yield measured by the point source samples (65 t/ha and 57 t/ha, 
respectively).

Unfortunately, commercial yield monitors are not commonly used in Australian carrot 
production so obtaining actual accuracies at the individual point level could not be deter-
mined. From this study, the accuracies achieved in forecasting carrot yield from satellite 
imagery demonstrated the potential of this technology to be used as a surrogate of yield 
monitoring (in the absence of commercial harvester-based systems), and as an accurate 
pre-harvest predictor of total crop yield (Pinter et al. 2003). Better predicting pre-harvest 
yield offers significant benefit to growers by supporting harvesting, transport, factory logis-
tics and marketing related activities. For precision farming, the provision of RS imagery 
identifying crop variability within the growing season supports the improved detection of 
biotic and abiotic stresses and the subsequent application of remedial actions (Moran et al. 
1997).

Conclusion

This study evaluated the potential of remote sensing for predicting carrot yield and for 
the derivation of pre-harvest yield maps. The performance of vegetation indices (VIs) 
derived from both a handheld hyperspectral sensor and multispectral satellite sensors were 

Table 5  Accuracies (% error) of forecasted yield (FY). Please refer to Eqs. (2) and (3) for the calculations 
of commercial harvest (CH) and % error

MY refers to the average yield calculated from the 18 sampled points per crop

Region Growing period Block/pivot CH MY FY % error

WA WA1 A Block 80.2 79.8 69.0 14.0
E Pivot P1 61.8 69.1 71.5 15.8
C Block 73.4 54.7 68.2 7.0

WA2 C Pivot P1 72.1 94.7 76.1 5.5
D Pivot P1 72.2 79.3 74.6 3.3
E Pivot P1 73.1 52.9 65.4 10.5
H Pivot P4 64.2 78.2 74.3 15.7
Overall % error 10.2

Qld Qld1 W Block 2 55.7 51.0 62.5 12.2
N Block 5 71.1 79.2 78.1 9.8
Valley 69.8 68.1 70.6 1.1
EW Pivot 1 East 61.2 68.5 69.6 13.7
Overall % error 9.2

Tas Tas1 F710 67.6 72.1 83.9 24.0
F713 92.4 68.5 75.4 18.4
F714 88.1 82.5 74.2 15.8
F715 72.2 58.4 69.3 4.1
F716 68.4 62.0 67.6 1.1
Overall % error 12.7
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evaluated. Comparison of the regression parameters for each sensor indicated that the spa-
tial resolution was more important than the spectral configuration of the sensors or the 
inclusion of specific wavelengths in VIs.

High overall accuracy was attained with regional algorithms. Yield regression coeffi-
cients ranging from 0.29 to 0.77 gave up to 1% error when validated with commercially 
harvested yield. These results highlight the potential of this technology in precision agri-
culture practices. It was shown that AGB may not directly relate to yield potential, par-
ticularly when the crop is influenced by high weed populations or had a medium-to-high 
AGB. As a result, NDVI or SR, two of the most widely used VIs in the remote sensing and 
agronomic communities, were not within the top performing VIs. As such, these indices or 
their derived maps need to be used judiciously when employed as indicators of yield vari-
ability for commercial carrot production.

In this study, the data collected in the field (i.e. site-specific information) proved to be 
essential for the proper calibration of reflectance-based sensors as predictors of yield and 
indicators of yield variability. In the absence of harvester-based carrot yield monitors, sat-
ellite multispectral sensors proved to be a highly applicable alternative to monitor yield 
performance and yield potential at the crop level. Further research is required to deter-
mine what minimum growth stage RS imagery can be acquired to accurately predict yield 
variability. The earlier the information is provided to growers the more opportunity they 
have to undertake remedial action on low performing regions and to achieve optimum yield 
potential. The limited seasonal or geographical impacts on yield forecast performance indi-
cate that a generic algorithm may be possible, thereby avoiding the need for calibration 
data once sufficient and representative information at the field level has been incorporated 
in the prediction models. Therefore, further research is needed to evaluate the accuracy of a 
generic algorithm across regions.
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