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Abstract

Understanding broad trends in the distribution and composition of wetlands is

essential for making evidence-based management decisions. Determining

temporal change in the extent of inundation in wetlands using remote sensing

remains challenging and requires on-ground verification to determine accuracy

and precision. Therefore, optimization and validation of remote sensing

methods in threatened wetlands is a high priority for their conservation. Despite

their ecological importance in the landscape, we have little knowledge of the

variation in the spatial extent of inundation in upland lagoons, a threatened eco-

logical community in New South Wales, Australia. Our project developed locally

trained algorithms to predict the extent of water and emergent vegetation using

imagery from the Landsat-5, -7, and -8 satellites. The best model for upland

lagoons used shortwave infrared reflectance (performing better than normalized

difference spectral indices), with model accuracy against validation transects

greater than 95%. We applied the model to images from 1988 to 2020 across

58 lagoons to generate a dataset that demonstrates the variable water regime

and vegetation change in response to local rainfall over 32 years such as in the

lagoons. Our results reduce threats to a dynamic threatened ecological commu-

nity by filling an important knowledge gap and demonstrate a valuable method

to understand historical and current changes in the hydrology of dynamic wet-

land systems more broadly.
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INTRODUCTION

Anthropogenic influences have destroyed over 33% of the
world’s wetlands (Davidson, 2014; Hu et al., 2017) and
many remain threatened by changing land uses and

climate change (Erwin, 2009; Reis et al., 2017). A global
loss of wetlands has contributed to a large decline in
freshwater biota (Reid et al., 2019), which is often highly
endemic (Dudgeon et al., 2006). In addition, the ecologi-
cal services of wetlands including water storage, flood
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mitigation, and nutrient regeneration rely on well-
functioning aquatic ecosystems (Kingsford et al., 2016).
Therefore, to mitigate the further decline of wetlands and
the services they provide, identifying and understanding
broad trends in wetland distribution and composition is
essential. Useful survey methods must be able to quantify
the water regime (spatial and temporal change in water),
and vegetation cover of wetlands on a landscape scale.
This is particularly important within regions of the world
with low and unpredictable rainfall, such as Australia,
where wetting and drying cycles can be highly variable
and difficult to monitor (Hunter & Lechner, 2017;
Lechner et al., 2016). Wetlands in such locations may wet
seasonally, intermittently, or episodically as short flush
events or extend over days to years (Schael et al., 2015).

Remote sensing provides a useful tool to analyze tem-
poral change in the landscape because it can retrospec-
tively capture differences, making use of a rich historical
archive of satellite imagery. Remote sensing models to
quantify the extent of water in wetlands include a range of
methods (Chasmer et al., 2020). These include synthetic
aperture radar (SAR) data, which is insensitive to cloud
cover and sensitive to water (Montgomery et al., 2019), but
historical coverage is limited (Alonso et al., 2020). Moder-
ate Resolution Imaging Spectroradiometer data are avail-
able from 2000; however, the resolution of 250 m is too
coarse for small wetland monitoring (Mohammadi et al.,
2017). For applications that do not require an extensive
historical archive, Sentinel-2 multispectral data are useful,
with 10- to 20-m resolution (depending on band) and high-
frequency images every 5 days or better (Lefebvre et al.,
2019). However, for deeper historical analysis, Landsat data
are most suitable because it covers 1984 to the present
and has medium resolution (30 m for Landsat-5, -7, and
-8) (Kissel et al., 2020).

Spectral indices derived from Landsat data combine
reflectances from multiple image bands that enable the
detection of specific surface characteristics. Many studies
have mapped inundation extent by quantifying optimal
thresholds of spectral indices for local conditions
(Inman & Lyons, 2020; Thomas et al., 2015). The modified
normalized difference water index (MNDWI) often pro-
vides the best predictions of open water (Ji et al., 2009;
Xu, 2006). While MNDWI detects permanent water, Gao’s
NDWI (otherwise known as the land surface water index
[LSWI]) (Gao, 1996) is better at detecting seasonal water
but may be complicated by vegetation in the ecosystem
(Campos et al., 2012). Wetland characteristics including
water depth, turbidity, and vegetation structure affect mea-
sured spectral properties and different spectral algorithms
perform better at discriminating between water, nonwater,
and emergent vegetation under different conditions

(Campos et al., 2012; Lefebvre et al., 2019; Roshier &
Rumbachs, 2004). Therefore, to ensure sufficient classifica-
tion accuracy, spectral algorithms should be developed
and validated in local conditions.

General water classifiers can be useful at the landscape
scale, by utilizing large training datasets to fit multivariate
decision trees (Fisher et al., 2016; Mueller et al., 2016).
Decision trees have advantages over other machine learn-
ing methods such as random forest and support vector
regression, in that they are somewhat interpretable. How-
ever, they need careful validation to ensure they are not
overfit to the training data, which results in poor predic-
tion when generalizing to new data (Géron, 2017).

In contrast to these works focusing on spectral indices
and multivariate models, the reflectance of single bands,
notably shortwave infrared (SWIR), can provide a more
accurate discrimination between water and nonwater
pixels based on a simple decision boundary (Lefebvre
et al., 2019; Wolski et al., 2017). These reflectance models
are especially advantageous in the presence of emergent
vegetation, which often obscures detection of water
(DeVries et al., 2017; Mueller et al., 2016). Hyperspectral
measurements showed that SWIR reflectance accurately
detects inundation below vegetation although error rates
increase with increasing vegetation cover (Jones, 2015).
Spectral signatures of typical water, soil, and vegetation
have been successfully used to derive spectral index
thresholds for pixels with pure water and mixed classes
and to derive thresholds for several satellite sensors using
the sensor spectral response (Ji et al., 2009). For example,
for the Landsat Thematic Mapper sensors, when MNDWI
was greater than 0.123, this indicated pure water pixels,
and over �0.504 indicated pixels with 25% water and 75%
vegetation. Despite the ongoing advances in remote sens-
ing methods, predicted water extent in the presence
of emergent vegetation has not been validated using
nonimage-based validation methods for many wetlands.

Validating the most appropriate remote sensing tech-
niques is of high priority in aquatic-threatened ecological
communities (TECs) in Australia. One example of a TEC is
the Upland Wetlands of the New England Tableland (com-
monly called upland lagoons), which have small catchments
and are known to have seemingly unpredictable cycles of
inundation (Hunter & Hunter, 2021; Saunders et al., 2021).
The TEC is formally listed as Upland Wetlands of the Drain-
age Divide of the New England Tableland Bioregion under
New South Wales (NSW) state legislation (Biodiversity Con-
servation Act 2016), and as Upland Wetlands of the New
England Tablelands and the Monaro Plateau under the
Australian Commonwealth Environment Protection and
Biodiversity Conservation Act 1999. Here we focus on the
New England Tablelands, where the TEC is represented
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by 58 naturally occurring wetlands in the New England
region of NSW (Bell et al., 2008; Saunders et al., 2021).
The NSW Department of Planning, Industry and Environ-
ment lists “Lack of knowledge and value of the TEC and
the lack of understanding about the dynamics of the TEC”
as a threat (New South Wales Government, 2020), yet we
still do not have information on basic ecological function
such as the water regime in these ecosystems. In addition,
Little Llangothlin Lagoon in northern NSW is an example
of an upland lagoon that is also Ramsar listed, so it is of
international significance and Australia has committed to
the appropriate management of such sites. To increase our
capacity to monitor and understand upland lagoons, we
aimed to (1) develop a model based on Landsat imagery to
determine the distribution of water (including that covered
by emergent vegetation) in upland lagoons; (2) validate
our model using transect sampling methods, which were
spatially harmonized with the Landsat pixels; and (3) use
the validated model to generate a dataset of historical inun-
dation patterns more than 30 years.

METHODS

Sites

This study was conducted in the New England Tableland
bioregion of northern NSW, Australia. The bioregion has
mean annual temperatures from 9 to 17�C and rainfall
653–1765 mm (NSW National Parks and Wildlife Service,
2003). Our study system, the upland lagoons, are at eleva-
tions between 900 and 1300 m, are shallow (most are
<1.5 m deep), often have no inlet or outlet, and are filled by
rainfall on localized catchments and at times through addi-
tional inflow by groundwater. The wetlands vary in depth
and size, and the extent and duration of inundation are
highly dynamic. Some upland lagoons retain water for
extended periods up to decades; others may inundate only a
few times a century and last only weeks. These wetlands
are also known as deflation lakes based on their formation,
which occurred thousands of years ago under different cli-
matic conditions. Their formation is no longer occurring,
thus they are relictual within the landscape (Bell et al.,
2008). They are often characterized by a lunette on the
downwind side and occur largely on basaltic soils on the
NSW tablelands of the Great Dividing Range.

All 58 upland lagoons were included in our study, shown
in Figure 1. They are located within an area of 13,500 km2.
The boundaries of the lagoons were delineated by on-ground
observations via vegetation sampling over a 12-year period,
observations of the physiography of the landscape within
those visited lagoons, and interpretation of aerial imagery
taken with a Leica ADS40 sensor. The median lagoon area is

0.1 km2. There is a large range in area, with four larger than
0.9 km2 and three smaller than 0.02 km2.

Image collection pre-processing

All images were accessed and all image processing was
performed in Google Earth Engine (GEE), which co-
locates a vast data catalog with a comprehensive
library of geospatial analysis tools (Gorelick
et al., 2017). In GEE, we accessed analysis-ready
Landsat-5, -7, and -8 surface reflectance products,
which include cloud masking bands generated using
USGS CFMASK code. The lagoons were covered by five
tile locations, from Worldwide Reference System paths
89 and 90, and rows 80–82. All image tiles from 1988 to
2020 that intersected at least one of the lagoons was
analyzed, a process that is automated in GEE. In total,
2907 tiles were processed.

Each image tile was cloud masked using the included
CFMASK bands. For each lagoon, only images that were
totally unmasked over the lagoon were retained. In 2012,
13 of the 58 lagoons had no images due to only Landsat-7
data being available and due to masked pixels from the
scan line corrector issue of that sensor (Mueller
et al., 2016). In all other years, all lagoons had at least
three images, with an average of more than 21 images
per year per lagoon.

The image reflectance bands that were used were
green (G), red (R), near infrared (NIR), and shortwave
infrared 1 (SWIR1) and 2 (SWIR2). Important normalized
difference spectral indices (NDSIs) that were useful in
previous wetland studies (e.g., Mohammadi et al., 2017;
Xu, 2006) were calculated based on these bands. The
NDSIs were defined as follows:

ND b1,b2ð Þ¼ b1�b2
b1þb2

: ð1Þ

The NDSIs included the following:

1. Normalized Difference Vegetation Index, NDVI = ND
(NIR,R) (Rouse, 1974).

2. Land Surface Water Index, LSWI = ND(NIR,SWIR1)
(also known as NDWI; Gao, 1996).

3. Normalized Difference Water Index, NDWI = ND
(G,NIR) (McFeeters, 1996).

4. Modified Normalized Difference Water Index,
MNDWI = ND(G,SWIR1) (Xu, 2006).

The NDVI was used to describe vegetation cover, as it
is related to biophysical properties such as leaf area index
and biomass (Carlson & Ripley, 1997; Rouse, 1974). For
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each image over each lagoon, the mean NDVI was calcu-
lated for this purpose.

Training data

Two classes were defined, wet and dry. Wet included
areas with nonzero water depth, where the water may or
may not be covered by vegetation, and dry included areas
with zero water depth.

Training samples were generated to develop
wet/dry prediction models. These were generated by
specifying point locations and dates where we could be

highly confident that the points were either wet or dry,
using rules described in the following paragraphs. At
each of these points, we extracted the reflectance and
NDSI values, resulting in a table with 604 rows, for
303 dry and 301 wet points (Data S1). The table columns
included class (wet/dry), and the value of all the image
reflectances and NDSIs at each sample location-date.
The samples included points from 13 lagoons and
29 image dates from 2009 to 2020.

In order to assign the wet/dry points, we used sim-
ple rules based on interpretation of the imagery. In
addition to the RGB image, two auxiliary layers were
displayed:

F I GURE 1 Location of the 58 dynamic lagoons in the New England Tableland bioregion of New South Wales, Australia. The selected

lagoons described in detail in later sections are highlighted, including the Ramsar site
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1. Open water. This was defined as MNDWI >0.123,
which as shown by Ji et al. (2009) indicates high confi-
dence of pure water pixels, and was similarly used by
Jones (2015).

2. Vegetation. This was defined as NDVI >0.4, which
Ji et al. (2009) showed could characterize the presence
of at least some vegetation within a mixed pixel.

The wet and dry points were assigned to areas based
on the above layers and the following rules:

1. Dry: No vegetation and no open water.
2. Wet, either:

– Open water, or
– Vegetation surrounded by open water. This allows

the generation of samples where there must be
water under vegetation (an example is shown in
Figure 2) because the elevation in the area enclosed
by open water is lower, due to the lagoons being
saucer-shaped (Bell et al., 2008).

Example open water and vegetation layers, and train-
ing sample points, from the Little Llangothlin Lagoon for
two image dates are shown in Figure 2a,b. The 2011
image was after a period with substantial rainfall, and
there was a large amount of open water present in the
image, with some emergent vegetation covering the
water. We placed wet sample points as shown, which
included areas of open water, as well as areas where the
water was covered by vegetation (the presence of water is
assumed due to the vegetated area being surrounded by
open water as described previously). The 2019 image was

in the midst of a severe drought, and there was no open
water present and very little vegetation apart from trees
around the edge of the lagoon, so that dry sample points
could be placed with high confidence.

Inundation classification model training

We used the 604 training samples to optimize a number of
decision tree classification models to predict wet and dry
pixels. Though deep multivariate trees are possible
(Mueller et al., 2016), or indeed ensembles of trees such as
random forests (Jahncke et al., 2018), we found univariate
trees with a depth of 1 were sufficient. Resulting models
can be described simply by a single-decision boundary
such as wet if SWIR1 <0.106. This simplicity provides
models that are more likely to generalize to new areas and
image dates, less likely to overfit training data, and are eas-
ily interpretable (Géron, 2017).

A model was generated for each of the reflectance bands
and NDSIs using scikit-learn (Pedregosa et al., 2011). The
wet/dry decision boundaries were optimized using the gini
impurity criterion. Cross-validation was not necessary
because no hyperparameters needed tuning due to the
simplicity of the single-decision models. For each of the
models, the number of misclassified points was calculated.
This error rate gave an initial indication of the reflectance
bands and NDSIs that optimally separate wet and dry
pixels. Independent ground validation is described in the
following section. The optimal model could then be applied
to all image dates over all lagoons, giving pixel-wise predic-
tions of inundated pixels.

F I GURE 2 Little Llangothlin Lagoon, showing Landsat optical image in the background, and the open water and vegetation layers in

the foreground. (a) Image from 8 November 2011, with entered wet training points. (b) Image from 14 November 2019, with entered dry

training points
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Transect validation data and procedure

To validate the wet/dry prediction model, we made use
of a set of transect measurements that had been designed
to track vegetation and water in the lagoons (Hunter &
Hunter, 2021). In total, there were 158 transects (1580
plots) surveyed over 36 dates and 26 lagoons. Each tran-
sect was 50 m long, including 10 plots spaced by 5 m,
with a similar layout as suggested in Chasmer et al. (2020).

Each plot included 4–5 sub-plots, within which measure-
ments of water depth and vegetation height were taken
with a tape measure to the nearest centimeter in a
1 � 1-m frame. The end of each transect was geolocated
using a Garmin GPSMAP 66S (sub-10-m accuracy in
clear-sky conditions), and the direction of the transect
was recorded using a compass. Each plot was classed as
wet if the average water depth of the sub-plot measure-
ments was greater than zero and dry if the water depth of
all measurements was equal to zero.

For each transect measurement date and location, the
following Landsat image with no masked pixels in the lagoon
was selected. The maximum difference in date between
transect measurement and image was 20 days, and the mean
difference was 7.6 days. To ensure spatial and temporal
independence of the training and validation datasets, none of
the lagoon-date combinationswere used in both datasets.

One challenge was the different spatial resolutions of
the validation plots (5 m) and Landsat pixels (30 m,
with typical geolocation accuracy of better than 15 m;
Storey et al., 2014), making direct comparison between

F I GURE 3 Dry and wet training sample separability using

NDSIs (a, b) and the SWIR1 reflectance band (b). LSWI, land surface

water index; MNDWI, modified normalized difference water index;

NDVI, normalized difference vegetation index; SWIR1, shortwave

infrared 1

TABL E 1 Decision boundary and error count (out of the 604

training points) for all reflectance and normalized difference

spectral index (NDSI) variables

Category Variable Threshold Errors

Reflectance G 0.047 23

R 0.049 52

NIR 0.168 36

SWIR1 0.106 0

SWIR2 0.065 2

Normalized difference
spectral indices

LSWI 0.230 41

MNDWI �0.425 5

NDVI 0.166 236

NDWI �0.240 222

Abbreviations: G, green; LSWI, land surface water index; MNDWI, modified
normalized difference water index; NDVI, normalized difference vegetation
index; NDWI, normalized difference water index; NIR, near infrared; R, red;
SWIR1, SWIR2, shortwave infrared 1 and 2.

TABL E 2 Confusion matrix between measured transects

(bold) and predictions using the shortwave infrared 1 (SWIR1)

band of the Landsat images (italics)

Class Dry Mixed Wet Sum Precision (%)

Dry 104 0 0 104 100

Mixed 0 41 0 41 100

Wet 1 3 9 13 69

Sum 105 44 9 158

Recall (%) 99 93 100

Note: The matrix also shows the total points per class, and the precision and
recall.
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transects and image predictions difficult. To overcome
this, we created a validation dataset with one row per
transect, that is, 158 rows (Data S1). The plot data and
image pixel data were then aggregated for each transect.
This generated three classes for the ground truth mea-
surements and three classes for the image predictions.
These three classes were as follows:

1. Dry. The transect measurements were classed dry if
all plots were dry. The image predictions were classed
dry if all pixels intersecting the transect were dry.

2. Wet. The transect measurements were classed wet if
all plots were wet. The image predictions were classed
wet if all pixels intersecting the transect were wet.

3. Mixed. The transect measurements were classed
mixed if some plots were wet and some were dry. The
image predictions were classed mixed if some pixels
intersecting the transect were wet and some were dry.

The ground measurements could then be compared to
the image predictions along the 158 rows to estimate predic-
tion accuracy. We used confusion matrices and derived
accuracy metrics (Foody, 2002). Metrics computed were the
overall accuracy, kappa, precision, and recall.

Inundation and vegetation summary
statistics

To characterize the variability of inundation and vegeta-
tion across lagoons and time, we developed summary
datasets generated from the NDVI and inundation pre-
diction pixels, at various levels of spatial and temporal
aggregations:

1. Time series of vegetation and inundation percentage
for each lagoon (temporal frequency defined by image
dates). This was calculated using the spatial mean of
pixels over each image of each lagoon.

2. Annual time series for each lagoon, by finding the
yearly averages of (1).

3. Annual (min, 25th percentile, median, 75th percen-
tile, max) over all 58 lagoons, calculated from (2).

4. Similar statistics to (3) on a seasonal (instead of annual)
basis, with seasons defined as summer = December–
February, autumn = March–May, winter = June–
August, and spring = September–November.

Rainfall data from a weather station at Guyra were
also aggregated on an annual and seasonal basis. These

F I GURE 4 (a) Photo from a transect measurement campaign in March 2020. (b) Three validation transects (one dry and two mixed)

from 3 February 2018 and image from 5 February 2018, from the western side of the Little Llangothlin Lagoon
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data provide some explanation for the annual and sea-
sonal variability in lagoon inundation and vegetation.

RESULTS

Model selection

Due to the presence of both water and vegetation in many
pixels, the dry andwet training samples of most of the NDSIs
overlapped (Figure 3a). NDVI had a large range for the wet
class, of which more than half of the samples overlapped
with the dry class because of the presence of both open water
(lowNDVI) and vegetation emerging above thewater surface
(high NDVI). LSWI was sensitive to water and vegetation,
staying above 0 for all wet samples. But dry samples also
included values above 0 because of LSWI sensitivity to mois-
ture in noninundated vegetation. Of the NDSIs, MNDWI
most accurately discriminated between the wet/dry training

samples. There were five wet samples that overlapped with
the range in the dry class (below �0.425), which were in
areas with thick vegetation (Table 1, Figure 3b).

SWIR1 was the best water predictor with 0 errors on
the 604 training points and a threshold of 0.106
(Figure 3b), followed by SWIR2 with 2 errors and a thresh-
old of 0.065. These reflectance bands are better at separat-
ing the wet/dry samples than the best NDSI (MNDWI
with five errors) (Table 1).

Inundation prediction maps generated using these models,
time series charts, and images of all lagoons from 1988 to pre-
sent can be viewed in a GEE web app (https://jamesbrinkhoff.
users.earthengine.app/view/dynamiclagoons).

Model validation

When we compared the model predictions against the
transect samples measured in the field, the MNDWI

F I GURE 5 Historical water and vegetation dynamics of 3 of the 58 lagoons. Points show annual means, and lines show per-image

values. (a) Little Llangothlin Lagoon. (b) Dangars Lagoon. (c) Saumerez Ponds. NDVI, normalized difference vegetation index
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classifier had an overall accuracy of 96.8% and kappa of
0.935. The SWIR1 classifier was more useful, with an
overall accuracy of 97.5% and kappa of 0.948. All mixed
and dry transect predictions were correct with 100% pre-
cision (Table 2). However, there were one dry and three
mixed transects that were not predicted, with these four
transects being falsely predicted as wet, therefore wet pre-
cision was 69%. In three example transects, one dry and
two mixed transects were correctly identified (Figure 4b).

Inundation and vegetation trends

The case study of three selected lagoons (Appendix S1)
shows the highly dynamic nature of inundation
between years and among lagoons (Figure 5). The tem-
poral pattern of the percentage of water coverage

between 1988 and 2020 showed a dry period from 2002
to 2009, then a wet period in 2010–2011. More recently,
there were dry periods from 2018 to 2020, with a return
of more typical rainfall in late 2020.

Little Llangothlin (1.19 km2) tended to retain water
even in very dry years. Saumarez Ponds (0.25 km2) dried
out much more quickly after absence of rainfall. All three
lagoons dropped to close to 0% wet area in 2019.

The relationship between water extent and vegetation
varied across the lagoons. For example, in Little
Llangothlin, there was a constant patch of tall sedges
(Eleocharis sphacelata) visible in the southwest corner of
the imagery (Figure 2). The NDVI of the vegetation
dropped during winter, resulting in an oscillating pattern
in the time series (Figure 5). The vegetation tended to
obscure the detection of water in the patch during winter,
resulting in erroneously low water extent predictions. In

F I GURE 6 Annual and seasonal summaries of rainfall, lagoon inundation, and vegetation. The aggregations are performed per time

period (year or season) over the 58 lagoons. NDVI, normalized difference vegetation index
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Dangars Lagoon (Figure 5b), there was high inundation
and relatively less emergent vegetation. In 2019, vegeta-
tion in all lagoons declined severely with a quick recov-
ery after rainfall at the start of 2020.

Collectively, upland lagoons were highly variable in
their water regime (Appendix S2). Some lagoons
remained more than 50% inundated from 1988 to 2020,
while others were usually dry (Figure 6). The effect of
annual rainfall on lagoon characteristics is evident, with
consecutive dry years leading to lower median inundation
and vegetation. A seasonal pattern of vegetation is evident,
with lower median NDVI in winter.

DISCUSSION

We tested existing remote sensing methods using data
from the Landsat archive to determine the most useful
model to detect water in threatened upland lagoons of
the New England region in NSW, Australia. The SWIR1
model was validated using on-the-ground transects and
its predictions were accurate with and without the pres-
ence of emergent vegetation. Using the SWIR1 model, we
were able to assess the broad trends in long-term histori-
cal inundation patterns over 32 years for upland lagoons
and detect the lagoon responses to periods of high and
low rainfall. We suggest that remote sensing is applied to
address knowledge gaps for other priority wetlands and
that similar models will be useful for other temporary,
vegetated shallow systems.

The best model for upland lagoons used a single reflec-
tance band, SWIR1, which provided more accurate predic-
tions than spectral-index-based models, among which the
one using MNDWI was the best. The accuracy of simple
reflectance band models using SWIR bands has been like-
wise observed in other studies (Lefebvre et al., 2019;
Wolski et al., 2017). Those authors suggested the reason
for this is that indices such as MNDWI are designed to
detect open water, whereas the SWIR bands are better able
to detect water in the presence of emergent vegetation.
Given the high accuracies achieved with our single reflec-
tance, single-decision threshold model, more complex
multivariate models such as the deep decision tree adopted
by Mueller et al. (2016) were not necessary. The success of
our simple model may be partly due to the constrained
locality and characteristics of the upland lagoons. Simple
models provide the advantage of less risk of overfitting to
training data and are easily interpretable.

Prediction accuracy of our model was well validated
using field-sampled transects, which provided us with the
confidence to interpret our model outcomes. The overall
accuracy classifying the dry/mixed/wet classes was 97.5%.
This was sufficient to analyze broad trends in inundation

extent and emergent vegetation cover over time and has
created a useful source of data to monitor the broad bio-
physical features of the upland lagoons.

Remote sensing models are often validated using
independent and higher resolution imagery; however,
using field data for validation was more powerful and
allowed us to test the sensitivity and limitations of the
remotely sensed data (Alonso et al., 2020; Foody, 2002).
We made use of pre-existing field transect data instead of
using remote sensing data for validation, as is common
in other studies (Alonso et al., 2020; Thomas et al., 2011;
Tulbure & Broich, 2013). The challenge we faced with
making use of the field data to validate the remote
sensing model was the different spatial resolutions of
the validation plots (5 m) and Landsat pixels (30 m).
This is a common problem faced when using field
validation whether retrospective or not, because of
constraints on the scale at which field data can be col-
lected (Baccini et al., 2007). Sampling design has implica-
tions on accuracy estimation. Sampling is sometimes done
in a way that all validation points are contained within
a large area of the relevant ground cover away from
boundaries (Jahncke et al., 2018), which leads to a potential
bias towards a higher accuracy estimate (Foody, 2002). In
our study, transects were placed on or near the wet/dry
boundary where more classification errors were likely;
however, our overall accuracy and kappa statistic were
both high, and comparable to similar studies mapping
inundation of wetlands within Australia using Landsat
data suggesting that our method was sufficient for valida-
tion (Thomas et al., 2011; Tulbure & Broich, 2013).

The SWIR1 model was applied to all images from
1988 to 2020, and using a case study of three lagoons
(Little Llangothlin, Dangars Lagoon, and Saumerez
Ponds), we demonstrated the individual water regimes.
The lagoons demonstrated the response of the wetlands
to an extreme drought in 2019 when all lagoons dropped
to almost 0% wet area. At the peak of the drought in
2019, vegetation in all lagoons declined severely with a
quick recovery after rainfall at the start of 2020. The
annual oscillating pattern of NDVI may be explained by
above-ground biomass of emergent vegetation tending to
die during winter in cold regions (Asaeda et al., 2006). A
comprehensive assessment of specific lagoons also rev-
ealed that it remains challenging to detect water under
emergent vegetation in difficult situations (such as the
tall E. sphacelata), although the model was successful in
most cases. Shadows due to trees overhanging smaller
lagoons were misclassified as wet in some cases. Site-
specific variation will always influence model accuracy,
and understanding of how different environmental vari-
ables influence results in different sites is important.
Fusion of multispectral data with LiDAR and SAR data
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is a promising direction, if such data are available at suffi-
cient temporal and spatial resolution, and resources exist
to perform the relatively complex data processing and
analysis (Martinez & Letoan, 2007; Montgomery
et al., 2019).

The prediction dataset demonstrated the highly
dynamic nature of the New England upland lagoons over a
30-year period. The graphs demonstrated the drying effects
on lagoons from droughts during 2002–2009 and 2018–
2020 with intermittent wet periods such as the La Nina
weather system in 2010–2011. These data are now openly
accessible (https://jamesbrinkhoff.users.earthengine.app/
view/dynamiclagoons), and validating the accuracy of the
model now allows us to confidently monitor the water
regime of upland lagoons. Development and validation of
our model, in addition to the resource we have created to
monitor these lagoons, provides a useful tool to help
address one of the key threats to this TEC identified by the
NSW Department of Planning, Industry and Environment:
“Lack of knowledge and value of the TEC and the lack of
understanding about the dynamics of the Threatened Eco-
logical Community.”

Historical sensor data (such as from pressure trans-
ducers or water level sensors) are not available, and the
cost of implementing such systems in all 58 lagoons
would be prohibitive, and indeed not possible at many
sites due to them being on private land. Therefore, docu-
menting historical changes in water regime has not oth-
erwise been possible and our new detailed knowledge,
based on freely available remote sensing data, creates
the opportunity to assess the impact of changes in land
use and climate change, which will be critical to inform
future intervention and management. For example,
there is great potential to quantify wetland dynamics
using this method, and these data can then be used to
build greater understanding of how land use or manage-
ment factors affect wetland function. Since all lagoons
have received some form of hydrological alteration and
wetland function has likely been significantly altered in
most lagoons (Bell et al., 2008), associating past manage-
ment practices with changes over time will be a priority
in research.

The temporal resolution of Landsat imagery (16 days)
may be too coarse to assess extremely fine-scale watering
events (e.g., illegal water extraction or small amounts of
rainfall during dry periods), and the spatial resolution of
Landsat imagery (30 m) is coarse relative to some of the
smaller lagoons. However, our method provided the ideal
technique to capture broader patterns in slower processes
of wetland drying and wetting. The multidecade Landsat
archive provides the means to analyze long-term wetland
dynamics, and their relationship with climate variability
and management factors, such as agricultural land-use

change around the lagoons. This information would be
valuable for conservation monitoring, especially for the
single lagoon that is Ramsar listed. More recent analysis
could make use of improved temporal and spatial resolu-
tion data by transferring the model to higher-resolution
multispectral sensors such as Sentinel-2 (from 2015 with
20-m resolution for the crucial SWIR bands; Lefebvre
et al., 2019) or SAR sensors such as Sentinel-1 (from 2014
with 10-m resolution; LaRocque et al., 2020).

We suggest that similar validation of these models
should be applied to other poorly understood dynamic
TECs (Saunders et al., 2021). This will enable ongoing phys-
ical monitoring of the broad patterns of water regime, allow
an assessment of change over longer time frames, and
create the ancillary data required for ecologists to place
biodiversity research into an aquatic context.
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