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Objectives. Lipoprotein(a) [Lp(a)] is mainly similar in composition to LDL, but differs in
having apolipoprotein (apo) (a) covalently linked to apoB-100. Our purpose was to examine
the individual metabolism of apo(a) and apoB-100 within plasma Lp(a).

Materials and Methods. The kinetics ofapo(a) andapoB-100 inplasmaLp(a)wereassessed in four
menwith dyslipidemia [Lp(a) concentration: 8.9–124.7 nmol/L]. All subjects received a primed constant
infusion of [5,5,5-2H3] L-leucinewhile in the constantly fed state. Lp(a) was immunoprecipitated directly
from whole plasma; apo(a) and apoB-100 were separated by gel electrophoresis; and isotopic
enrichment was determined by gas chromatography/mass spectrometry.

Results. Multicompartmental modeling analysis indicated that the median fractional catabolic
rates of apo(a) and apoB-100 within Lp(a) were significantly different at 0.104 and 0.263 pools/day,
respectively (P = 0.04). The median Lp(a) apo(a) production rate at 0.248 nmol/kg · day−1 was
significantly lower than that of Lp(a) apoB-100 at 0.514 nmol/kg · day−1 (P = 0.03).

Conclusion. Our data indicate that apo(a) has a plasma residence time (11 days) that is
more than twice as long as that of apoB-100 (4 days) within Lp(a), supporting the concept
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that apo(a) and apoB-100 within plasma Lp(a) are not catabolized from the bloodstream as a
unit in humans in the fed state.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Lipoprotein(a) [Lp(a)]was first described by Käre Berg in 1963 [1].
It is a lipoprotein similar in lipid content and composition to
LDL but different in having apolipoprotein (apo) (a) covalently
linked to apoB-100 by a disulfide bond [2–4]. Apo(a), a heavily
glycosylated protein, shares homology with several regions of
plasminogen [5]. It is highly polymorphic in size due to different
numbers of the kringle IV type 2 (KIV2) domain, ranging from a
minimum of 3 to more than 40 [6,7].

Elevated plasma concentrations of Lp(a) are associated
with increased coronary heart disease (CHD) risk [8–10]. Lp(a)
is considered to have a pro-atherogenic effect since the
particle preferentially accepts oxidized phospholipids from
LDL, leading to lipid deposition in the arterial intima [11] and,
thereby, promoting multiple oxidative and inflammatory
actions [12]. It is also thought to have a prothrombotic effect
due to the similarity that apo(a) has with the fibrinolytic
proenzyme plasminogen [13,14]. As a result, elevated Lp(a)
concentrations may lead to excess clot formation, which is
often the terminal event resulting in coronary artery occlu-
sion. Plasma concentrations of Lp(a) are heritable, vary greatly
among ethnic populations, and, in large part, are determined
by variations at the apo(a) gene locus, including the number
of KIV2 repeats and specific single nucleotide polymorphisms
[15–18].

Lp(a) metabolism is still not fully defined [19]. Initial
metabolic studies utilizing radioiodinated Lp(a) showed an
inverse association between plasma Lp(a) concentrations and
apo(a) isoform size, due mainly to differences in production
rates [20]. Apo(a) is synthesized primarily by the liver. Linkage
of this glycoprotein with apoB-100-containing lipoproteins to
form Lp(a) is thought to occur extracellularly, perhaps in the
space of Disse or on the surface of hepatocytes [21], although
the concept is debated [22]. Less is known about the sites and
mechanisms responsible for the clearance of Lp(a) from
plasma. There is evidence that the kidney plays a significant
role as Lp(a) plasma concentrations are elevated and the
apo(a) catabolic rate is significantly lower in patients with
impaired renal function [23]. Direct evidence for renal uptake of
Lp(a) in humans is lacking, and recent cell and animal studies
point to the liver as the primary site of catabolism,withmultiple
receptors potentially involved in the process [24,25].

While themajority of Lp(a) particles resemble LDL in density
and composition, apo(a) immunoreactivity has been reported
across the entire density distribution of lipoproteins, with up to
2% of immunoreactive apo(a) being in the floatation density
(d) <1.006 g/mL fraction of fasting normolipidemic plasma [26–28].
In the fed state, as well as in hypertriglyceridemic individuals, the
amount of apo(a) associatedwith triglyceride-rich lipoproteins can
be increased markedly [28–31]. The origin of Lp(a) particles
associated with the d < 1.006 g/mL fraction is not clear. They
could be derived from the liver in response to a fatty meal and/or
produced by remodeling events in the circulation.
Historically the metabolism of apo(a) has been assessed in
Lp(a) isolated from plasma by ultracentrifugation at d 1.05–
1.15 g/mL (see Discussion). In this density range, apo(a) and
apoB-100 in Lp(a) have been found to have similar rates of
catabolism [23,32,33]. We found, however, that when Lp(a)
was isolated from non-fasting, whole plasma using lectin-
mediated affinity chromatography and no ultracentrifuga-
tion, apo(a) in Lp(a) was cleared from plasma at half the rate
of apoB-100 in Lp(a) [34], a finding which contradicts the
concept of Lp(a) being cleared from circulation as an integral
particle. In the present study, we have used a more specific
isolation procedure, namely, immunoprecipitation with a
monoclonal antibody against human apo(a), to assess the
individual metabolism of the apo(a) and apoB-100 moieties
within plasma Lp(a). Kinetic parameters were determined in
subjects with dyslipidemia while in the constantly fed state.
2. Methods

2.1. Study Design and Subjects

This study aimed to compare the kinetic parameters of apo(a)
and apoB-100 in plasma Lp(a) in untreated healthy volun-
teers. The study constituted part of a larger randomized,
double-blind, placebo-controlled, crossover study examining
the effects of extended-release niacin 2 g/day (Niaspan,
Abbott Laboratories, Abbott Park, IL) and extended-release
niacin 2 g/day in combination with lovastatin 40 mg/day
(Advicor, Abbott Laboratories, Abbott Park, IL), relative to
placebo, on the metabolism of apoB-100, apoB-48, and apoA-I
[35]. Each phase lasted 12 weeks and was separated by a 4-
week washout phase. While the present study was not
designed to examine the effects of niacin on Lp(a) metabolism,
the availability of plasma samples from the niacin phase did
allowus to assess the kinetics of Lp(a) apo(a) and Lp(a) apoB-100
separately in ametabolic condition known to lower Lp(a) levels
[36]. These data are included as Supplementary Material.

Five men (age: 52.8 ± 4.9 y; BMI: 30.1 ± 1.7 kg/m2) with
dyslipidemia were enrolled in the study [35]. They were
eligible to participate based on the following plasma lipid
criteria: triglyceride (TG) concentration ≥150 mg/dL, LDL
cholesterol concentration ≥130 mg/dL, and HDL cholesterol
concentration <40 mg/dL. Exclusion criteria included age
<40 years, myocardial infarction in the past 6 months,
smoking, thyroid dysfunction, liver or kidney disease, liver
cancer, diabetes mellitus, stroke, and current use of medica-
tions known to affect lipid metabolism. The study protocol
was approved by the Institutional Review Board of Tufts
Medical Center andTufts University Health Sciences; andwritten
informed consent was obtained from each study subject.

At the end of each phase, the subjects underwent a 15 h
primed-constant infusion of deuterated leucine ([5,5,5-2H3]-L-
leucine, C/D/N Isotopes, Pointe-Claire, Quebec), 10 μmol/kg
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body weight per hour, under constantly fed conditions, as
previously described [35,37]. Briefly, the subjects were fed
hourly for 20 h with small identical meals, the composition of
which complied with the Therapeutic Lifestyle Changes diet
(<30% of calories as total fat, <7% saturated fat, <200 mg/day
cholesterol) [38]; the meals started 5 h before and continued
throughout the infusion. Blood samples were collected into
tubes containing EDTA (0.15%) just before the infusion (0 h)
and at 30, 35, 45 min and 1, 1.5, 2, 3, 4, 6, 9, 12, 14, and 15 h
during the infusion. Plasma was separated by centrifugation
at 2500 rpm at 4 ° C for 30 min, divided into aliquots for Lp(a)
measurement or isolation, and stored at −80 °C until analysis.
Freshly separated plasma from each infusion time point was
also subjected to sequential density ultracentrifugation to
isolate very low-density lipoproteins (VLDL, d < 1.006 g/mL),
intermediate density lipoproteins (IDL, d 1.006–1.019 g/mL),
and LDL (d 1.019–1.063 g/mL).

2.2. Quantitation of Plasma Lp(a), Lipids, and Apolipoproteins

Determination of Lp(a) protein concentrations and apo(a)
isoform size was performed at the Northwest Lipid Metabolism
and Diabetes Research Laboratories, University of Washington,
Seattle, WA. Lp(a) concentrations, expressed in nmol/L, were
measured by an ELISA [39] in three plasma samples collected
during the continuous feeding period. The assay utilizes for
detection a monoclonal antibody that specifically recognizes an
epitope present in the apo(a) kringle IV type 9 domain and is,
therefore, independent of apo(a) isoform size [40]. Apo(a)
isoforms were assayed with methodology previously described
[40], in which the isoform size visualized on agarose gel
electrophoresis is directly proportional to the number of KIV2

repeats. In some subjects, only one apo(a) isoform is expressed;
inmost individuals, however, apo(a) is expressed by both alleles,
with one isoformmoreprevalent than the other. In this study, as
described in Results below, the more prevalent apo(a) isoform
was used for mass spectrometric and kinetic analysis for
reasons of instrument sensitivity. The concentration of apo(a),
expressed asmg/L, was calculated from themolecularmass and
percent intensity of each isoform gel band as follows:

apo að Þ concentration mg=Lð Þ ¼ ½Lp að Þ concentration nmol=Lð Þ
� apo að Þ isoformmolecular mass mg=nmolð Þ
� isoform gel band intensity %ð Þ� � 10−2

TheconcentrationofapoB-100 inLp(a)wasdeterminedsimilarly,
using 512.9 × 10−6 mg/nmol as themolecularmass of apoB-100.

Lipids and apolipoprotein levels were measured in non-
fasting plasma samples drawn during the infusion (mean of 0,
3, and 6 h values). Plasma concentrations of total cholesterol
(TC) and TGwere determined by automated enzymatic assays.
Plasma LDL cholesterol and HDL cholesterol concentrations
were assayed directly with kits from Equal Diagnostics and
Roche Diagnostics, respectively. The concentration of apoB in
total plasma, VLDL, and IDL was measured with an ELISA [41];
and the concentration of LDL apoB was calculated by
subtracting apoB in VLDL and IDL from total plasma apoB. In
order to determine the concentration of VLDL apoB-100 and,
thereby, account for the presence of apoB-48 containing
particles in the VLDL density range, the concentration of
d < 1.006 g/mL apoB-48 was measured by a direct ELISA
(Shibayagi, Gunma, Japan) and then subtracted from the
concentration of total VLDL apoB. In this study apoB-48
represented 10–12% of the total VLDL apoB concentration
[35]. For kinetic analysis (see below), apolipoprotein plasma
concentrations were converted to pool size (PS) using the
following formula:

PS mgð Þ ¼ apolipoprotein concentration mg=Lð Þ � plasma volume Lð Þ½ �;

where plasma volume is estimated as 4.5% of body weight.

2.3. Isolation of Lp(a) and Separation of Apo(a) and
ApoB-100 within Lp(a)

Lp(a) was purified directly from whole plasma by immuno-
precipitation with antibody-bound magnetic beads (proce-
dure developed by L. Berglund, University of California, Davis,
Sacramento, CA). Briefly, a mouse anti-human apo(a) mono-
clonal antibody (1 mg/mL) that recognizes specific epitopes of
both kringle IV1 (KIV1) and KIV2 domains (MAb a-5; S. M.
Marcovina, University ofWashington, Seattle, WA) wasmixed
with goat anti-mouse IgG MagnaBind magnetic beads (Pierce
Thermo Scientific, Rockford, IL) at a volume ratio of 1:50 (v/v)
and incubated for 1 h at 4 °C on a rocking mixer. Plasma from
each infusion time point (0.2–0.5 mL, depending on Lp(a)
concentration) was incubated with the antibody-bound beads
for 18 h at 4 °C on a rotating end-over-end mixer. Following
incubation, the supernatant was removed after applying an
external magnetic field; and the beads/antibody/Lp(a) com-
plex was washed several times in Tris-buffered saline pH 7.6
containing 200 mmol/L L-proline, which is known to disso-
ciate Lp(a) from other apoB-containing particles [42]. To
separate the plasma-extracted Lp(a) from the bead complex,
sample buffer (Tris buffer pH 6.8 containing 4% glycerol [v/
v], 1% SDS [v/v], and 1% β-mercaptoethanol [v/v]) was added to
the beads/antibody/Lp(a) complex; the solution was heated at
94 °C for 5 min; and the supernatant was recovered after
applying the external magnetic field.

Apo(a) and apoB-100 within Lp(a) were resolved by
preparative 3–10% gradient SDS-PAGE at 50 V and 25 °C for
18 h, under reduced conditions, and transferred at 100 V and
4 °C for 5 h to a Westran S polyvinylidene difluoride mem-
brane (GE Life Sciences, Piscataway, NJ) using a Tris-glycine-
methanol buffer. The membrane was stained with periodic
acid Schiff's base (PAS) to visualize apo(a) and then with
Coomassie Blue R-250 to identify apoB-100. The location of
the apoB-100 band was confirmed byWestern blotting using a
monoclonal anti-apoB antibody (Meridian Life Sciences, Saco,
ME) and 4-chloro-1-naphthol stain (Pierce Thermo Scientific,
Rockford, IL) (data not shown). VLDL and LDL isolated from
non-fasting plasma by sequential density ultracentrifugation
were used as reference standards.

One subject enrolled in the main metabolic study [35] had
a dominant apo(a) isoform of 16 KIV2 repeats (molecular
weight: 236.9 kDa). On the 3–10% gradient gel, the band
representing this isoform was not clearly resolved from the
band representing apoB-100. Since the primary purpose of the
study was to compare the metabolism of apo(a) and of apoB-
100, the data for this subject were excluded.
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2.4. Apolipoprotein Isotopic Enrichment and
Kinetic Analysis

Membranes stained only with Coomassie blue were used to
assess the isotopic enrichment of apo(a) and apoB-100 in Lp(a)
since PAS was found to interfere with the derivatization
procedure described below. A plasma control from each subject
was applied to the gel; and that section of the membrane was
stained with PAS, as well as with Coomassie blue, in order to
locate the position of apo(a) relative to apoB-100.

The bands containing apoB-100 and the predominant apo(a)
isoform visible on the stained membrane were excised from the
same membrane (see Results) and hydrolyzed with 12 N HCl at
110 °C for 24 h. By excising both the apo(a) and apoB-100 bands for a
given time point from the samemembrane, any extraneous isotopic
dilution due to 12C-leucine contamination from the membrane
should have affected the enrichment of each protein equally. As
describedpreviously [41], theaminoacidswereconverted ton-propyl
ester, heptafluorobutyramide derivatives and analyzed for isotopic
enrichment by negative chemical ionization gas chromatography/
mass spectrometry (GC/MS). Selected ionmonitoring atm/z 349 and
m/z 352wasused todetermine theareasunder the chromatographic
peaks for each ion. Percent deuterated leucine enrichment (D3-
leucine/[D3-leucine + leucine]) for each sample was calculated from
the areas under the curve and corrected for the isotopic enrichment
of the D3-leucine tracer [43]. The isotopic enrichment of the tracer
used in this studywas 100%, as analyzed by GC/MS.

Kineticparametersweredeterminedusingamulticompartmental
model (Supplementary Fig. 1) and the SAAM II program (The
Epsilon Group, Charlottesville, VA). The fractional catabolic rate
(FCR) of apo(a) and apoB-100 in Lp(a) were derived from themodel
parameters giving the best model fit to the enrichment data.
Production rate (PR) was computed using the 1following formula:

PR nmol=kg � day−1
� �

¼ ½FCR pools=dayð Þ
� apolipoprotein concentration nmol=Lð Þ
� plasma volume Lð Þ� = body weight kgð Þ

The kinetic parameters of apoB-100 in Lp(a) were compared
with the kinetic parameters of apoB-100 in VLDL (d < 1.006 g/mL)
and LDL (d 1.019–1.063 mg/mL) reported previously [35].

2.5. Statistical analysis

The SAS System for Windows statistical program (release 9.2,
SAS Institute) was used for statistical analysis. All data in the
Table 1 – Lp(a) plasma concentration and apo(a) isoform (n = 4)

Dominant isoform

Subject Lp(a), nmol/L Kringle IV2 number
of repeats b

Protein
weight

S1 87.3 18 (100%) 261.9
S2 12.8 23 (84%) 324.4
S3 124.7 18 (63%) 261.9
S4 8.9 19 (100%) 274.4

a Determination of apo(a) isoform molecular weight was performed at th
University of Washington, Seattle, WA.
b Percentage in parentheses denotes the intensity of the individual isofo
text, tables, and graphs are presented in the original scale of
measurement as specified. For normally distributed variables,
means ± SEM was calculated. Non-normally distributed var-
iables were log-transformed to achieve normality before
analysis, and median (minimum-maximum) was calculated.
Significant differences between the kinetic parameters of
apo(a) and apoB-100 within Lp(a) were assessed by paired t-
tests. P < 0.05 was considered statistically significant.
3. Results

3.1. Characteristics of Study Subjects

The four men included in the data analysis had non-fasting
plasma lipid and apolipoprotein concentrations during the
placebo phase that were consistent with dyslipidemia (TC:
214 ± 19; LDL cholesterol: 104 ± 13; HDL cholesterol: 29 ± 3; apoB:
94 ± 8; apoA-I: 101 ± 6 mg/dL [mean ± SEM]; TG: 448 [260–518]
mg/dL, median [minimum-maximum]). The plasma Lp(a) con-
centrations ranged from 8.9 to 124.7 nmol/L, for a median of
50.0 nmol/L (Table 1).

3.2. Apo(a) Isoform Size

As shown in Table 1, the dominant apo(a) isoform varied in
protein molecular weight from 261.9 to 324.4 kDa. In two of
the subjects, this was the only apo(a) isoform band expressed.
The other two subjects had a dominant apo(a) isoform that
represented 84% and 63%, respectively, of the amount of
apo(a) in plasma. When the protein constituents of Lp(a) were
separated by SDS-PAGE in our laboratory (Fig. 1), only the
dominant apo(a) isoform was detected distinctly. Its migra-
tion in the gel, relative to the migration of apoB-100,
corresponded to the expected molecular weight of the
glycosylated apo(a) isoform. The gel band representing the
predominant apo(a) isoform was clearly resolved from the
band representing apoB-100. The two isoforms of subject S3
were very similar in molecular weight (dominant: 261.9 kDa;
recessive: 249.4 kDa) and were analyzed as a unit. For all
subjects, the pattern of both the primary and the degradation
protein bands for apoB-100 in Lp(a) was similar to that of
apoB-100 in LDL and similar to that observed previously in our
metabolic studies (data not shown) and reported by other
laboratories [44].
. a

Recessive isoform

molecular
, kDa

Kringle IV2 number
of repeats b

Protein molecular
weight, kDa

– –
33 (16%) 449.3
17 (37%) 249.4
– –

e Northwest Lipid Metabolism and Diabetes Research Laboratories,

rm band relative to the intensity of the isoform bands combined.
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Fig. 1 – Separationof apo(a) and apoB-100 in Lp(a) bydenaturing
gradient gel electrophoresis. Lp(a)was isolated fromwholeplasma
by immunoprecipitationwith an anti-apo(a) monoclonal antibody
and dissociated by 3–10% SDS-PAGE, as described inMethods.
Apo(a) was visualized by periodic acid Schiff's stain; apoB-100, by
Coomassie blue R-250. The asterisk denotes the position of the
dominant apo(a) isoform in each lane; the position of apoB-100 is
indicated by the VLDL control sample. Themolecularmass of
apo(a) is larger than that of apoB-100 because of the carbohydrate
content of apo(a). The dominant apo(a) isoform is clearly separated
from apoB-100. Lanes 1 and 8 depict VLDL (d < 1.006 g/mL)
reduced and LDL (d 1.019–1.063 g/mL) non-reduced, respectively,
both isolatedbysequential densityultracentrifugation; lane2, Lp(a)
from control plasmawith Lp(a) concentration of 22 mg/dL; lanes
3–7, Lp(a) from the 4 study subjects. Abbreviations: cont, control
plasma; S1, S2, etc, subject 1, subject 2, etc.
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3.3. Kinetics of Apo(a) and ApoB-100 in Lp(a)

Fig. 2 illustrates themean (±SEM) deuterated leucine enrichment
of apo(a) and apoB-100 in Lp(a) (Fig. 2A) and of apoB-100 in Lp(a),
VLDL and LDL (Fig. 2B). The appearance rate of deuterated leucine
in Lp(a) apo(a) was slower than that in Lp(a) apoB-100, with the
mean isotopic enrichment of apo(a) being approximately 45% of
themean enrichment of apoB-100 in Lp(a) at 15 h. The appearance
of deuterated leucine in Lp(a) apoB-100 preceded its appearance in
LDL apoB-100 but not in VLDL apoB-100 (Fig. 2B). At 15 h, the
isotopic enrichment of apoB-100 in Lp(a) was found to be, on
average, 21 ± 2% of the enrichment of apoB-100 in VLDL andmore
than twice the enrichment of apoB-100 in LDL (3.0 ± 0.6).

The kinetic parameters of apo(a) and apoB-100 in Lp(a) are
presented in Table 2. The apo(a) PS and apoB-100 PS were
assumed to have a 1:1 molar ratio, as determined previously
[4]. The median apo(a) FCR (0.104 pools/day) was significantly
lower than the median apoB-100 FCR (0.263 pools/day; P =
0.04). Similarly, the median apo(a) PR (0.248 nmol/kg · day−1)
was significantly lower than the median apoB-100 PR
(0.514 nmol/kg · day−1; P = 0.03). Overall, apo(a) in Lp(a) had
a residence time in whole plasma that wasmore than twice as
long as the residence time of apoB-100 in Lp(a) (10.6 days vs.
4.0 days, respectively). Compared with the metabolism of
other apoB-containing particles, apoB-100 in Lp(a), on average,
was cleared from plasma at a rate similar to the FCR of LDL
apoB-100 (0.263 vs. 0.272 pools/day). There was, however,
marked individual variability with two of the subjects catabo-
lizing apoB-100 in Lp(a) faster than apoB-100 in LDL and the
other two subjects showing the converse.
B
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in
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Themedian Lp(a) level was 18% lower when the subjects were
treated with niacin (P = 0.06 vs. placebo). However, the
relationship between the metabolism of apo(a) in Lp(a) and
that of apoB-100 in Lp(a) was not altered (Supplementary
Table 1). The isotopic enrichment of apoB-100 in Lp(a) relative
to that of apoB-100 in VLDL and LDL also did not change
significantly (Supplementary Fig. 2).
4. Discussion

Lp(a) continues to present challenges to researchers striving
to understand the mechanisms of its metabolism. In the
present study the kinetics of the individual apolipoprotein
components of plasma Lp(a) were examined in subjects with
dyslipidemia in the constantly fed state. We found that when
the Lp(a) particle was isolated from whole, unfractionated
plasma by immunoaffinity precipitation, the plasma residence
time of apo(a) in Lp(a) was more than 2-fold greater than the
plasma residence time of apoB-100 in Lp(a).

Our observation provides evidence that apo(a) and apoB-100
within plasma Lp(a) are not catabolized from the bloodstream
as a unit in the non-fasting state. It is consistent with our prior
study in 23 normolipidemic postmenopausal women and age-



Table 2 – Pool size, fractional catabolic rate, production rate, and plasma residence time of apo(a) in Lp(a) and of apoB-100 in
Lp(a), VLDL, and LDL.

PS, mg (nmol) FCR, pools/day PR, nmol/kg · day−1 RT, days

Lp(a) apo(a)
Subject 1 88.0 (336.2) 0.136 0.534 7.4
Subject 2 24.1 (69.9) 0.162 0.093 6.2
Subject 3 146.5 (569.4) 0.072 0.404 13.9
Subject 4 8.1 (29.4) 0.071 0.028 14.1
Median (n = 4) 56.1 (203.0) 0.104 0.248 10.6

Lp(a) apoB-100
Subject 1 172.4 (336.2) 0.197 0.774 5.1
Subject 2 35.9 (69.9) 0.442 0.254 2.3
Subject 3 292.1 (569.4) 0.210 1.178 4.8
Subject 4 15.1 (29.4) 0.316 0.126 3.2
Median (n = 4) 104.1 (203.0) 0.263 0.514 4.0
P, apo(a) vs Lp(a) apoB-100 a 0.003 b 0.04 0.03 0.05

VLDL apoB-100
Subject 1 360 (702) 2.75 22.6 0.36
Subject 2 683 (1332) 1.99 21.8 0.50
Subject 3 896 (1747) 1.20 20.6 0.84
Subject 4 382 (745) 3.76 38.1 0.27
Median (n = 4) 532 (1038) 2.37 22.2 0.43

LDL apoB-100
Subject 1 2712 (5287) 0.275 17.0 3.6
Subject 2 3746 (7303) 0.270 16.2 3.7
Subject 3 2741 (5344) 0.391 20.6 2.6
Subject 4 3338 (6509) 0.245 21.7 4.1
Median (n = 4) 3040 (5927) 0.272 18.8 3.7

FCR, fractional catabolic rate; PR, production rate; PS, pool size; RT, residence time.
a Significance for comparison between apo(a) in Lp(a) and apoB-100 in Lp(a) was determined using a paired t-test, with PS and PR parameters
being log-transformed before statistical analysis.
b PS expressed as mg.
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matchedmenwith awide range of plasma Lp(a) concentrations
[34], but inconsistent with other human Lp(a) studies which
reported similar rates of catabolism for Lp(a) apo(a) and Lp(a)
apoB-100 [23,32,33,45]. The discrepancy may result from
notable differences in study design and methodology (see
Supplementary Table 2). Many of the studies primarily used
sequential density ultracentrifugation, combined in some
instances with an additional purification step, to isolate Lp(a)
particles generally in the density range 1.05–1.15 g/mL
[23,32,33,45]. In our earlier study, Lp(a) was isolated from
whole plasma using lectin-mediated affinity chromatography
without any ultracentrifugation [34]. There was concern that
this isolation procedure may have captured VLDL particles not
containing apo(a) as well as Lp(a) particles, despite the addition
of 200 mmol/L L-proline to the wash buffer, and, thereby, may
have contributed to the marked difference in Lp(a) apo(a)
and Lp(a) apoB-100 catabolic rates. Hence, in the present
study, Lp(a) was immunoprecipitated directly from plasma
using a monoclonal antibody specifically recognizing epitopes
of both KIV1 and KIV2, again without ultracentifugation and
with 200 mmol/L L-proline in the wash buffer.

It has been documented that the apo(a) found in the
d < 1.006 g/mL fraction occurs on slow preβ-migrating parti-
cles; and when apo(a) in this fraction was dissociated from
chylomicrons and VLDL particles with 100 mmol/L proline
and ultracentrifugation, the majority of the apo(a) was in the
form of Lp(a) particles [46,47]. In our own studies we have
observed that much of apo(a) in whole plasma, as determined
by gradient gel electrophoresis and specific immunoblotting,
is found in a wide range of lipoprotein particle size, with
virtually none in the lipoprotein free state [48].

Another important consideration is the feeding protocol.
In our metabolic studies the subjects consumed hourly meals
throughout the infusion in order to achieve and maintain a
steady-state condition in terms of lipoprotein formation and
secretion by the liver and catabolism. It has been shown that
the percentage of total plasma apo(a) found in the d < 1.006 g/mL
fraction increased significantly in response to an oral fat load
(from 2% in fasting plasma to 16% postprandially, on average),
with no change in plasma apo(a) concentrations [28]. The
magnitude of this increase was strongly correlated with the
increase in postprandial triglycerides (r = 0.75; P < 0.001) [28]. A
similar density redistribution of apo(a) immunoreactivity was
observed in hypertriglyceridemic subjects, in the fasting state
relative to normolipidemic subjects and in response to feeding
[28,31]. In this study we examined subjects with elevated
triglyceride concentrations, in the fed state, which may have a
bearing on our findings.

Early radioiodinated studies of human Lp(a) metabolism
reported that the rate of Lp(a) production is the major
determinant of Lp(a) levels in fasting plasma [20,49–51], with
the apo(a) PR being inversely related to the apo(a) isoform size
[20,51]. A similar association between plasma levels and
production rate was observed in the present study (r = 0.822;
P = 0.178), but it did not reach statistical significance due to
the small number of subjects.
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Recent in vitro and in vivo work has indicated that Lp(a) is
primarily catabolized by the liver through a process poten-
tially involving a number of receptors and mediated by apo(a)
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humans with LDL receptor deficiency, as well as the notable
ineffectiveness of statin therapy in Lp(a)-lowering, argue
against a major role for the LDL receptor [24,52]. Nonetheless,
a clear gene-dosage effect on Lp(a) levels has been observed in
homozygous familiar hypercholesterolemic subjects [53].
Monoclonal antibodies targeting proprotein convertase sub-
tilisin/kexin type 9 (PCSK9), an important regulator of LDL
receptor expression in the hepatocyte membrane, are reported
to decrease Lp(a) levels in hypercholesterolemic subjects
receiving statin therapy [54]; while in HepG2 cells Lp(a)
clearance was found to be modulated by PCSK9 via the LDL
receptor, through the apoB component of Lp(a) rather than
apo(a) [25].

In the context of our findings, these observations suggest
that the metabolism of Lp(a) can include the recycling of
apo(a) with apoB-100-containing particles during the plasma
residence of apo(a), as illustrated in Fig. 3. Since most of the
apoB secreted by hepatocytes is in VLDL particles, newly
synthesized apo(a) likely associates with this triglyceride-
enriched particle to form a Lp(a) having VLDL density. In
plasma the VLDL-like moiety is rapidly altered in size and
content through the action of lipases and transfer proteins. In
the fed state, a substantial portion of VLDL apoB-100 is not
converted to LDL apoB-100 but, rather, is removed from
circulation by the liver, especially in hypertriglyceridemic
subjects (Fig. 3A) [35,41]. We hypothesize, therefore, as shown
in Fig. 3B, that apo(a) within Lp(a) in the VLDL density region
is in part directly catabolized and in part converted into a
cholesterol-rich particle with a density similar to that of LDL
(d 1.05–1.15 g/mL). During catabolism, in our view, apo(a)
dissociates from apoB-100 and may associate with a newly-
formed VLDL apoB-100-containing particle, thereby, extending
theplasma residence of apo(a) relative to apoB-100within Lp(a).

Due to the small number of subjects and to subjectswith low
Lp(a) plasma concentrations, we were unable to examine the
kinetics of apo(a) and apoB-100within Lp(a) of d < 1.006 g/mL, a
limitation also encountered by other Lp(a) metabolic studies
[55]. Apo(a) and apoB-100 in the Lp(a) particles of d < 1.006 g/mL
may have metabolic fates that are different from the fates of
apo(a) and apoB-100 in Lp(a) of d 1.05–1.15 g/mL. Further studies
are needed to test our hypothesis and assess the effect of
fasting and feeding on the metabolism of apo(a) and apoB-100
within Lp(a) in different lipoprotein density fractions.

In conclusion, our findings support the concept that apo(a)
and apoB-100 within plasma Lp(a) are catabolized from the
bloodstream at markedly different rates. We think that the
methods used to isolate Lp(a) from plasma, as well as the
prandial state of the subjects, may affect the results obtained
from Lp(a) kinetic studies. It is possible that in subjects with
elevated triglyceride levels, the postprandial state not only
redistributes apo(a) to VLDL; it may also extend the plasma
residence of apo(a) relative to apoB-100 within Lp(a), thereby,
enhancing the atherogenic profile of Lp(a) particles, especially
in individuals with apo(a) isoforms of lowermolecular weight.
Future studies need to be done in hypertriglyceridemic
subjects while in the fed state, with therapeutic agents
known to affect the synthesis and catabolism of the individ-
ual apolipoprotein components of Lp(a).

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.metabol.2015.10.031.
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