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 9 

Pesticides are widely used to protect food production and meet global food demand but are also 10 

ubiquitous environmental pollutants, causing adverse effects on water quality, biodiversity, and 11 

human health. Here we use a global database of pesticide applications and a spatially-explicit 12 

environmental model to estimate the world geography of environmental pollution risk caused by 92 13 

active ingredients in 168 countries. We considered a region be at risk of pollution if pesticide 14 

residues in the environment exceeded the no-effect concentrations and be at high risk if exceeded by 15 

three orders of magnitude. We find that 64% of global agricultural land (~ 24.5 million km2) is at 16 

risk of pesticide pollution by more than one active ingredient, and 31% is at high risk. Among the 17 

high-risk areas, about 34% are in high biodiversity regions, 5% in water-scarce areas, and 19% in 18 

low- and lower-middle-income nations. We identify watersheds in South Africa, China, India, 19 

Australia, and Argentina as high concern regions because they have high pesticide pollution risk, 20 

bear high biodiversity, and suffer from water scarcity. Our study expands earlier pesticide risk 21 

assessments as it detailly accounts for multiple active ingredients and integrates risks in different 22 

environmental compartments at a global extent. 23 

 24 

Agrochemicals such as synthetic fertilizers and pesticides have together made a remarkable 25 

contribution to food security in the last 50 years1. Notwithstanding the increased food availability2, the 26 

unpreventable ubiquity of agrochemicals throughout the environment has resulted in pollution and has 27 

negatively impacted the ecosystem and human health3-5. However, in contrast to the global awareness of 28 

the environmental footprint related to fertilizers6,7, the global repercussions of pesticide dispersion in the 29 

environment remain largely unknown due to the lack of a comprehensive geographic quantification of 30 

active ingredient (AI) use and residues. Studies addressing pesticide threats mostly remain site-specific, 31 

and only a minority have targeted regional and global extents8-11 to assess the risks associated with a 32 

specific pesticide class (e.g., insecticides or organochlorine pesticides) or within a certain environmental 33 

compartment (e.g., surface water8,10 and atmosphere12,13). Given the expected population growth, the use of 34 

agricultural pesticides will likely continue to increase in the future5; yet, in the age of globalization, a 35 

global outlook of environmental pollution by pesticides and its relation to ecosystem vulnerability is still 36 

missing.  37 

To contribute to filling in this gap, we propose the global mapping of the environmental risks posed 38 

by the 92 most used AIs (comprising 59 herbicides, 21 insecticides, and 19 fungicides) at 5 arc-minutes 39 

resolution (about 10 km ×10 km at the equator), which we next juxtaposed to water-scarcity14, 40 

biodiversity15-18, and national income2. Our assessment targets the ecological risks in four environmental 41 

compartments, namely, soil, surface water, groundwater, and atmosphere, noting that we did not include 42 

pesticide impacts on human health and not all living organisms in an environmental compartment are 43 

considered. Based upon these analyses, we ultimately identified susceptible regions that may require 44 

tailored strategies for sustainable use of pesticides in agriculture.  45 

 46 

Pesticide risk in global agricultural land 47 

To quantify pesticide risk in each geographic grid cell, we calculated the non-cumulative Predicted 48 

Environmental Concentration (PEC) of each targeted AI in the four environmental compartments 49 



mentioned above using a spatially explicit model19 fed with geo-referenced environmental data sets and AI 50 

physicochemical properties as inputs (Methods, Supplementary Information Table S1 and Table S2). We 51 

sourced the geographic- and crop- specific AI application rates from our recently developed PEST-52 

CHEMGRIDSv120 global database gridded at 5 arc-minutes resolution (Methods). In each grid cell, the 53 

agricultural land consists of multiple crop types21 that receive applications of multiple AIs20. Hence, we 54 

adopted the hierarchical approach of the PURE decision-support system22, which sums the risk quotient of 55 

all AIs within an environmental compartment. The risk quotient was determined as the ratio between PEC 56 

and the Predicted No-Effect Concentration (PNEC) derived from each AI’s ecotoxicities (Methods, 57 

Supplementary Information Table S2). The “risk point” of each environmental compartment was then 58 

evaluated as the log-transformed sum of all risk quotients. Finally, the overall “risk score” in a grid cell 59 

(RS) was calculated as the maximum risk point across the four environmental compartments. Based on the 60 

species sensitivity distribution curve (Methods, Supplementary Information Fig. S1), we classified RS into 61 

negligible (RS ≤ 0), low (0 < RS ≤ 1), medium (1 < RS ≤ 3), and high (RS > 3) risk. This procedure allows 62 

us to draw a global picture of environmental susceptibility to pesticide pollution.  63 

Specifically, we find that 74.8% of the global agricultural land (approximately 28.8 million km2) is 64 

at some risk of pesticide pollution (i.e., RS > 0, Fig. 1); remarkably, 31.4% (approximately 12.1 million 65 

km2) falls within the high-risk class (i.e., RS > 3). Regional analysis shows that 61.7% (2.3 million km2) of 66 

the European agricultural land is at high risk of pesticide pollution. The three European countries with the 67 

largest land area of high risk are located in Eastern and Southern Europe, namely, Russia (0.91 million km2, 68 

Supplementary Information Table S4), Ukraine (0.35 million km2, Supplementary Information Table S4), 69 

and Spain (0.19 million km2, Supplementary Information Table S4), which are among the largest crop 70 

producers in Europe21. Among all regions, Asia has the largest land area at high risk (4.9 million km2), 71 

with 2.9 million km2 being in China and 0.35 million km2 in Kazakhstan (Supplementary Information 72 

Table S4). The agricultural land in Oceania shows the lowest pesticide pollution risk.  73 

Our pesticide risk score map in Fig. 1 complements and expands earlier assessments such as the 74 

insecticide runoff potential analysis in Ippolito et al. (2015)8, which identifies similar high-risk regions in 75 

Asia, America, and South Europe. However, the accounting of a wider range of pesticide AIs and 76 

environmental compartments in this work reveals additional geographic regions undergoing high pollution 77 

risk, for example, areas across Eastern Europe and parts of Africa where the earlier assessment reports 78 

medium to very low runoff potential8.         79 

Pollution by pesticide mixtures is an emerging global issue because mixtures can elicit synergistic 80 

toxicity in non-target organisms under both acute and chronic exposures23,24.  The risk map in Fig. 1 81 

considers their additive effects, but excludes synergistic effects; hence, to better illustrate the global extent 82 

of pollution by pesticide mixtures, we counted the AIs that pose risks to the environment in each grid cell. 83 

An AI is considered to pose a risk when its PEC in any environmental compartment exceeds PNEC. 84 

Globally, 63.7% of the agricultural land is at risk of pollution by more than one AI and 20.9% by more 85 

than 10 AIs (Fig. 2). We find that 93.7%, 73.4%, and 69.4% of the agricultural land in Europe, North 86 

America, and South America, respectively, are contaminated by more than one AI. China is at risk of 87 

pollution by the greatest number of AIs, with 8.4% of the agricultural land (0.34 million km2, 88 

Supplementary Information Table S5) being contaminated by more than 20 AIs.  89 

 90 

Pesticide risk in vulnerable regions 91 

Pesticides can be transported to surface waters and groundwater through runoffs and infiltration, 92 

causing pollution to water bodies, thus, reducing the usability of water resources. By mapping the pesticide 93 

risk and AI count over the water risk database in AQUEDUCT-v2.114, we find that, globally, 0.62 million 94 

km2 of agricultural land in regions suffering from highly variable and scarce water supply are facing high 95 

pollution risk by pesticide mixtures, among which 20.1% are located in low- and lower-middle-income 96 

countries (Extended Data Fig. 1a). Nation-wise, China has the most extensive land area subject to water 97 

scarcity and high pesticide pollution risk (0.27 million km2, i.e., about 3% of China’s total land surface, 98 



Extended Data Fig. 1a and Supplementary Information Fig. S2a), with surface water appearing to be the 99 

most susceptible environmental compartment (Extended Data Fig. 2). In contrast, groundwater is relatively 100 

protected from pesticide pollution (Extended Data Fig. 2) due to low aquifer net recharge. 101 

To assess if pesticide use constitutes a threat to biodiversity, we analysed the pesticide risk and AI 102 

count maps against geographically-gridded species richness for tetrapods, which include mammals16, 103 

birds15, amphibians17, and reptiles18. We find that 34.1% of the global high pesticide pollution risk areas 104 

(approximately 4.18 million km2) are located in regions bearing high biodiversity (i.e., ≥ 323 tetrapod 105 

species, the 75th percentile of global value), with 1.25 million km2 being in low- and lower-middle-income 106 

countries (Extended Data Fig. 1b). As the decline in amphibians has earlier been tightly linked to pesticide 107 

contamination25, we expanded our analysis to highlight the exposure of vulnerable amphibian species to 108 

pesticide pollution risk. We find that 0.37 million km2 of areas at risk of pesticide mixture pollution (i.e., 109 

RS > 0 and AI count > 1) intersect the habitat of at least one of either endangered or critically endangered 110 

amphibian species (Extended Data Fig. 1c), with major hotspots located in China, Australia, Guatemala, 111 

and Chile. Along with many studies underlining the toxicity of pesticides to wildlife26, the biodiversity loss 112 

earlier associated to the export of agricultural products that led to deforestation and habitat loss27 finds in 113 

our analysis an additional element of attention; that is, pesticide dispersion in intensive agriculture is an 114 

additional stressor that can exacerbate the loss of biodiversity. 115 

 116 

Regions of concern 117 

To represent our work in synthesis, we integrated the indicators for pesticide pollution risk, water 118 

scarcity, and biodiversity into a map that locates regions of concern where tailored strategies for 119 

sustainable use of pesticides may be needed (Fig. 3). In this map, concern level 1 identifies regions of high 120 

pollution risk, high water scarcity, and high biodiversity. We identify the top five watersheds perceiving a 121 

level 1 concern as Orange in South Africa, Huang He in China, Indus in India, Murray in Australia, and 122 

Parana in Argentina. Surprisingly, four out of the five countries with level 1 concern are within the high- 123 

and upper-middle-income economies. Although the level 1 concern regions cover less than 30,000 km2 of 124 

the land surface, we find 5.20 million km2 perceives a level 2 concern and spreads mainly across Asia and 125 

South America, with 1.72 million km2 located in low- and lower-middle-income countries.  126 

Results in our study report a widespread global pesticide pollution risk with vast risk areas located 127 

in vulnerable regions that bear high biodiversity and suffer from low availability of freshwater supply. Our 128 

results expand and complement earlier regional-scale studies that report the detection of pesticide residues 129 

in freshwater bodies in South Africa28 and the Yellow River (Huang He) in China29. Besides impacting 130 

ecosystem health, the leaching of pesticides to water bodies used as sources of drinking water can pose 131 

risks to human health. Our analysis supports the need for a more detailed global assessment of pesticide 132 

contamination levels in major rivers, estuaries, and lakes and to account for pollutant levels when assessing 133 

water scarcity and quality30.      134 

In a warmer climate with a growing population, the use of pesticides is foreseen to increase for 135 

combating the possible rise in pest invasions and for feeding the planet31; thus, the threats estimated in our 136 

study may escalate further. While protecting food production is essential for human development, reducing 137 

pesticide pollution is equivalently crucial to protect biodiversity that maintains soil health and functions 138 

contributing towards food security32. The increasing public awareness of the adverse impact of pesticides 139 

in recent years has pushed for the establishment of pesticide policies to reduce pesticide use. Within the 140 

context of policymaking, the spatial-explicit risk scores estimated in this study can provide an indicator to 141 

quantify pesticide risk in different agricultural settings (i.e., not merely the quantity of AIs used), which is 142 

currently missing in most of the pesticide policy frameworks33. The risk scores defined here align with the 143 

Pesticide Load indicators used in Denmark34, though we did not account for pesticide impacts on human 144 

health. As our estimates extend globally across 168 nations, the proposed risk scores, AI counts, and the 145 

assessment of regions of concern can be incorporated into the Environmental Performance Index 146 

framework, which provides global metrics to rank countries’ performance on sustainability issues35.  147 



Although this study has a sole focus on environmental health, the effect of pesticides on human 148 

health is also an important aspect that requires a comprehensive assessment. This assessment at a global 149 

scale is, however, highly intricate as it involves the quantification of human exposure to pesticides 150 

resulting from agricultural production and possible intake via diverse pathways including air, water, and 151 

food, where the latter intake pathway involves food distribution and international food trading. Hence, 152 

pesticide use can affect not only the health of local communities but also the consumers in other importing 153 

countries. We therefore urge to establish a global strategy to transition towards sustainable agriculture and 154 

sustainable living with low pesticide inputs and reduced food loss and food waste to achieve responsible 155 

production and consumption in an acceptable, profitable system.  156 

 157 
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Figure captions 272 

Fig. 1 Global map of pesticide risk scores (RS). RS ≤ 0 is classified as negligible risk, 0 < RS ≤ 1 as low 273 

risk, 1 < RS ≤ 3 as medium risk, and RS > 3 as high risk. The pie charts represent the fraction of 274 
agricultural land undergoing different risk scores in each region. Values in the brackets above the pie 275 
charts denote the total agricultural land in that region in million km2. The map has a spatial resolution of 5 276 

arc-minutes, which is approximately 10 km × 10 km at the equator.   277 
 278 

Fig. 2 Global map of the number of active ingredients (AI) posing risks to the environment. The pie 279 

charts represent the fraction of agricultural land contaminated by different number of AIs in each region. 280 
Values in the brackets above the pie charts denote the total agricultural land in that region in million km2. 281 
The map has a spatial resolution of 5 arc-minutes, which is approximately 10 km × 10 km at the equator.   282 
 283 

Fig. 3 Global map of the regions of concern defined against pesticide pollution risk, water scarcity, 284 

and biodiversity.  Regions of concern level 1 signify areas of high pesticide pollution risk, high water 285 
scarcity, and high biodiversity. They are indicated with red circles, followed by country, watershed name, 286 
and the impacted land area in km2. The map has a spatial resolution of 5 arc-minutes, which is 287 
approximately 10 km × 10 km at the equator.   288 
 289 

Extended Data Fig. 1 The top 30 countries susceptible to high pesticide pollution risk. a., The land 290 
area subject to low quantity and high variability of water supply and high risk of pollution by pesticide 291 

mixtures (i.e., RS > 3 and AI count > 1). b., The land area bearing high biodiversity and subject to high 292 

risk of pollution by pesticide mixtures (i.e., RS > 3 and AI count > 1). c., The land area inhabited by at 293 
least one endangered and critically endangered amphibian species and subject to pollution risk by pesticide 294 
mixtures (RS > 0 and AI count > 1). 295 
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Extended Data Fig. 2 The extent of pesticide pollution risk in groundwater, surface water, soil, and 296 

atmosphere expressed as percent agricultural land. For example, surface water within 74% of global 297 

agricultural land is at some risk of pesticide pollution. High water risk regions refer to places suffering 298 

from low quantity and high variability of water supply defined as in AQUEDUCT-v2.1 database.  299 

Data availability 300 

The georeferenced data that support the findings of this study are available in figshare with the identifier 301 

doi: 10.6084/m9.figshare.1030221860. Country-based data are distributed in tabulated format in the 302 

Supplementary Information file associated with this article.  303 

 304 

Code availability 305 

The code used to calculate pesticide risk scores is provided as a Matlab file available in figshare with the 306 

identifier doi: 10.6084/m9.figshare.1030221860. 307 
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 309 
 310 

Fig. 1 Global map of pesticide risk scores (RS). RS ≤ 0 is classified as negligible risk, 0 < RS ≤ 1 as 

low risk, 1 < RS ≤ 3 as medium risk, and RS > 3 as high risk. The pie charts represent the fraction of 

agricultural land undergoing different risk scores in each region. Values in the brackets above the pie 

charts denote the total agricultural land in that region in million km2. The map has a spatial resolution 

of 5 arc-minutes, which is approximately 10 km × 10 km at the equator.   
 



 311 

Fig. 2 Global map of the number of active ingredients (AI) posing risks to the environment. The 

pie charts represent the fraction of agricultural land contaminated by different number of AIs in each 

region. Values in the brackets above the pie charts denote the total agricultural land in that region in 

million km2. The map has a spatial resolution of 5 arc-minutes, which is approximately 10 km × 10 

km at the equator.   
 



 312 

Methods 313 

All modelling and analyses were conducted using Mathworks MatlabR2017a. 314 

 315 

Application rates of active ingredients. To determine pesticide pollution risks, we first predicted the 316 

pesticide concentrations in all environmental compartments, which implied knowledge of pesticide 317 

application rates. For this, we used our previous work (PEST-CHEMGRIDS20) to obtain the global 318 

georeferenced crop-specific active ingredients (AI) annual application rates in year 2015, which were 319 

estimated based on the data provided by the USGS Pesticide National Synthesis Project (USGS/ PNSP)36 320 

and constrained against the country-specific pesticide use data reported by FAOSTAT2. PEST-321 

CHEMGRIDS provides the high and low estimates of the top 20 AIs used on 175 crops, classified into six 322 

dominant crops (alfalfa, corn, cotton, rice, soybean, and wheat) and four aggregated crop classes 323 

(vegetables and fruit, orchards and grapes, pasture and hay, and other crops), totalling 95 different AIs that 324 

represent about 84% of the pesticide mass used in 2015. Crops were aggregated based on the classification 325 

in the USGS Pesticide National Synthesis Project (USGS/ PNSP)36 and were detailly described in Table 2 326 

in ref20. In this study, we excluded three AIs (Bacillus amyloliquefaciens, calcium polysulfide, and 327 

petroleum oil) from PEST-CHEMGRIDS due to insufficient input data relative to their physicochemical 328 

properties and ecotoxicities. Hence, in the assessment of pesticide pollution risks, we accounted for the 329 

applications of 92 AIs in total (listed in Supplementary Information Table S2) on 10 crop classes at median 330 

annual rates.  331 

 332 

Predicted environmental concentrations. Because the AI application history at a specific location was 333 

not known, we calculated the non-cumulative predicted environmental concentrations (PEC) of each AI in 334 

groundwater (GW), surface water (SW), soil (SL), and atmosphere (AT) using the spatially explicit 335 

approach of the EPRIP 2.1 (Environmental Potential Risk Indicator for Pesticide version 2.1)19 with the 336 

Fig. 3 Global map of the regions of concern defined against pesticide pollution risk, water 

scarcity, and biodiversity.  Regions of concern level 1 signify areas of high pesticide pollution risk, 

high water scarcity, and high biodiversity. They are indicated with red circles, followed by country, 

watershed name, and the impacted land area in km2. The map has a spatial resolution of 5 arc-minutes, 

which is approximately 10 km × 10 km at the equator.   
 



assumption that all AIs were applied once a year at the annual application rates of 2015 obtained from 337 

PEST-CHEMGRIDS. The estimated PECs refer to those observed following an application and are not 338 

cumulated over time.  339 

The non-cumulative PEC in groundwater (PEC𝑖,𝑗
GW) of active ingredient i on crop j was calculated as 340 

a function of application rate 𝑅𝑖.𝑗, soil properties (porosity, bulk density, field capacity, and organic carbon 341 

content), groundwater characteristics (water table depth, groundwater thickness, and net recharge rate), and 342 

AI physicochemical properties (degradation rate, volatility, and adsorption capacity). In surface water, 343 

PEC𝑖,𝑗
SW was calculated using the empirical approach in the SYNOPS37 and DRIPS38 models to account for 344 

𝑅𝑖.𝑗, topography (slope angle), rainfall depth, and the AI fraction available for transport via runoff 345 

determined by AI degradation rate and its adsorption to soil organic carbon. The PEC in soil, PEC𝑖,𝑗
SL,  at the 346 

top 2 cm depth was calculated as a function of 𝑅𝑖.𝑗 and soil bulk density, and it was used to determine the 347 

AI atmospheric concentration PEC𝑖,𝑗
AT. Using the approach in the VOLASOIL39 model, we calculated 348 

PEC𝑖,𝑗
AT as a function of PEC𝑖,𝑗

SL, soil properties (porosity, bulk density, field capacity, and organic carbon 349 

content), AI physicochemical properties (water solubility, volatility, and adsorption), and atmospheric 350 

temperature.  351 

 352 

Predicted no-effect concentrations. We defined the predicted no-effect concentrations (PNEC) of the 92 353 

selected AIs in each of the four environmental compartments using an assessment factor approach40 with 354 

acute toxicity data sourced from the Pesticide Properties DataBase (PPDB)41 (Supplementary Information 355 

Table S2). The PNECs in surface water and soil were determined using the LC50 of fishes and earthworms, 356 

respectively, with an assessment factor of 1,000, i.e.,  PNEC𝑖
SW = LC50𝑖

fishes/1,000 and PNEC𝑖
SL =357 

LC50𝑖
earthworms/1,000. For the atmosphere, we defined PNEC as the inhalation LC50 of rats with an 358 

assessment factor of 1,000.  Following the European Commission guidelines42, we defined the PNEC for 359 

groundwater as 0.1 µg/L for all AIs with no assessment factor applied. 360 

 361 

Pesticide pollution risks. For each environmental compartment k, we calculated the crop-specific risk 362 

quotient (RQ) of each AI as the ratio between PEC and PNEC (i.e., RQ𝑖,𝑗
𝑘 = PEC𝑖,𝑗

𝑘 /PNEC𝑖
𝑘). Because a 363 

specific AI can be used across multiple crop classes within a grid cell, we calculated the overall RQ of 364 

each AI by weight averaging the crop-specific RQs with the crop harvested areas A (i.e.,  RQ𝑖
𝑘 =365 

∑ (RQ𝑖,𝑗
𝑘 × 𝐴𝑗)/ ∑ 𝐴𝑗𝑗𝑗 ). By adopting the hierarchical approach of the PURE (Pesticide Use Risk 366 

Evaluation) decision-support system22, we determined the risk point (RP𝑘) in an environmental 367 

compartment k as the log-transformed sum of all RQs in that compartment (i.e., RP𝑘 = log ∑ RQ𝑖
𝑘

𝑖 ). 368 

The overall risk score (RS) in a grid cell was then calculated as the maximum of the RPs across the 369 

four environmental compartments (i.e., RS = max {RP𝑘}). We classified RS into four risk classes, i.e., 370 

negligible (RS ≤ 0), low (0 < RS ≤ 1), medium (1 < RS ≤ 3), and high (RS > 3) based on the average 371 

species sensitivity distribution curve for pesticides (Supplementary Information Fig. S1) determined using 372 

the parameters reported in ref43. Specifically, RS ≤ 0 corresponds to less than 5% probability for any of the 373 

species to experience an effect, while RS > 3 signifies that the probability for a random species to be 374 

affected by the pesticides is equal to 90%.  375 

 376 

Model input data. The model input variables were determined from spatially explicit global data sets 377 

(Supplementary Information Table S1). We sourced the soil bulk density, porosity, and organic carbon 378 

content from the SoilGrids44, which consists of globally-gridded soil profiles to 2 m depth. We estimated 379 

the soil water content at field capacity using the soil porosity, the globally-gridded soil field capacity 380 

obtained from the IGBP-DIS data set45, air-entry suction and pore-volume distribution index λ obtained 381 

from ref46, following the Brooks and Corey model47 (i.e., soil water content = [field capacity / air entry 382 

suction]-λ × porosity). The soil properties used in this work were the averages along the top 2 m soil depth. 383 



We acquired the equilibrium groundwater table depth from ref48 and we estimated the groundwater 384 

thickness by subtracting the groundwater table depth from the soil thickness (distance to bedrock), which 385 

was sourced from the Distributed Active Archive Centre for Biogeochemical Dynamics of the Oak Ridge 386 

National Laboratory (ORNL/DAAC)49. The net groundwater recharge was estimated as the balance 387 

between annual rainfall and evapotranspiration. We sourced globally-gridded daily rainfall data from the 388 

CPC Global Unified Precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 389 

USA50 and the monthly actual evapotranspiration from ref51, while the atmospheric temperature was 390 

sourced from the Global Historical Climatology Network - Daily (GHCN-Daily) data set52. We obtained 391 

the globally-gridded terrain slope maps from the Harmonized World Soil Database v1.253. 392 

The AI physicochemical and ecotoxicological properties were obtained from the PPDB41 database 393 

and other previous literature54-59 (see Supplementary Information Table S2 for details). 394 

 395 

Output maps and data analyses. We ultimately produced three output maps60 gridded at 5 arc-minutes 396 

resolution (approximately 10 km at the equator): the first is the RS map showing the exposure of 397 

agricultural land to pesticide pollution (Fig. 1); the second is the AI count map quantifying the number of 398 

AIs posing pollution risk to agricultural land and showing the exposure of the environment to pesticide 399 

mixtures (Fig. 2); and the third is the regions of concern map identifying locations susceptible to pesticide 400 

pollution upon meeting the selected criteria described below (Fig. 3). To produce these maps, we selected 401 

1,199,195 grid cells with agricultural land using the harvested area maps of the 10 crop classes distributed 402 

along with PEST-CHEMGRIDS20, which were originally produced by ref21 and ref61. Among the selected 403 

grid cells, 2,408 cells (≈0.2%) were neglected due to insufficient input data for computing the RS values 404 

and hence, we modelled in total 38.54 million km2 of agricultural land. For the AI count map, we 405 

considered an AI to pose a pollution risk if any of its RQ𝑖
𝑘 values were greater than 1, while the regions of 406 

concern were identified against water scarcity and biodiversity indicators. 407 

We used the physical quantity risk indicator reported in AQUEDUCT-v2.114 to locate areas 408 

suffering from high water risk. The physical quantity risks measure the risks related to the availability and 409 

variability of water supply; higher values indicate higher water risks. A grid cell is considered at high 410 

water risk when its physical quantity risk exceeded 4. To identify areas bearing high biodiversity, we used 411 

the geographically-gridded species richness maps for tetrapods, which include mammals16, birds15, 412 

reptiles18, and amphibians17. We considered a grid cell to have high biodiversity when the total number of 413 

species in that grid cell is greater than the 75th percentile of global values (i.e., 323 species). We classified 414 

countries into different income groups according to the definition in FAOSTAT2 (Supplementary 415 

Information Table S3). 416 

Finally, we integrated the pesticide pollution risk, water scarcity and biodiversity indicators to 417 

identify regions of concern. We assigned ‘no concern’ to all grid cells with RS ≤ 0 and ‘concern level (4 – 418 

N)’ to grid cells with RS > 0 and satisfied N criteria, which are (1) high pesticide pollution risk, i.e., RS > 419 

3; (2) high water risk, i.e., the  physical quantity risk > 4; and (3) high biodiversity, i.e., the total number of 420 

species > 75th percentile of global values.  421 

 422 

Uncertainty and data quality. We quantified the reliability of our estimates by performing a global 423 

sensitivity analysis for 11 selected input variables that include AI application rates, soil properties (bulk 424 

density, porosity, water content, and organic carbon content), groundwater characteristics (water table 425 

depth, groundwater thickness, and net recharge rate), slope angle, and hydroclimatic variables (rainfall and 426 

atmospheric temperature). We assumed all variables can span between ±50% of the reference values 427 

obtained from global data sets. For AI application rates, we tested ranges that span between +50% of the 428 

high estimates and -50% of the low estimates provided in PEST-CHEMGRIDS. We sampled randomly 429 

across the variables space using a uniform distribution and we conducted a total of 50,000 model 430 

realisations per grid cell (i.e., in total 5.98×1010 realisations).  431 



Within the tested variable space, we determined the certainty index (CI) 60 of a grid cell as the 432 

probability for that grid cell to fall into the risk class estimated in the RS map in Fig. 1. Hence, CI = 0 433 

indicates low certainty and CI = 1 indicates high certainty. We find that the estimated risks (Fig. 1) in 434 

approximately 22% of grid cells are highly certain (i.e., CI = 1, Supplementary Information Fig. S3a, with 435 

only less than 9% of grid cells having low certainty (i.e., CI < 0.6).   436 

For grid cells with CI < 1, we determined the variable that has the highest contribution to the 437 

uncertainty by using AMAE and AMAV indices62, which measure the relative contribution of variables to 438 

the mean and variance of the model output, respectively. Among all tested variables, AI application rates 439 

have the greatest control over uncertainties in more than 42% of grid cells (Supplementary Information Fig. 440 

S4). Hence, to compute the quality of our estimates (QI) 60, we combined CI with the data quality of PEST-441 

CHEMGRIDS (QIAPR), i.e., QI = (CI + QIAPR)/2. PEST-CHEMGRIDS provides AI- and crop- specific 442 

quality indices, and hence we compute the overall QIAPR as the average quality weighted by the application 443 

rates. In this work, our estimates have mid to high quality in 93% of grid cells (i.e., QI ≥ 0.6, 444 

Supplementary Information Fig. S3b. 445 

 446 

Assumptions and limitations. The pesticide pollution risk presented in this study may be overestimated 447 

because: (1) it assumes a single application at an annual rate, (2) it assumes all fields are adjacent to 448 

surface water bodies, (3) it assumes maximum exposure of non-target organisms in time and in space, and 449 

(4) it assumes no loss due to drift and interception by crops. In this study, pesticides were assumed to reach 450 

the soil as a result of direct deposition, rainfall washing of crop leaves, and crop debris fall regardless of 451 

the application methods. We presume that common practices such as spraying may lead to pesticide drift 452 

and potentially diluting its concentration and delaying the time pesticides eventually reach soil after 453 

spraying. We also identified limitations that can lead to underestimating the risks. First, our assessment did 454 

not consider legacy pollution from AIs that were banned prior to 2015. For example, atrazine was not 455 

included in the calculation of risk scores in the European Union countries that have banned its use before 456 

2015. However, many field studies have reported the high detection frequency of atrazine and its 457 

degradation products in European soils despite its ban about a decade ago63. Second, we did not account 458 

for the pollution risks of pesticide degradation products, which may still be toxic and be more persistent 459 

than the parent molecules64. Third, the calculated PECs were non-cumulative and not dynamic in time, i.e., 460 

we did not consider the effect of accumulation of pesticides and their degradation products over time, and 461 

thus may not fully capture the pervasiveness of certain AIs. Fourth, we did not account for the synergistic 462 

effects of pesticide mixtures65 as there is very limited data on the ecotoxicity of pesticide mixtures and 463 

only a small number of organisms have been tested for PNECs.  464 

 465 
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 546 

Extended Data Fig. 1 The top 30 countries susceptible to high pesticide pollution risk. a., The 

land area subject to low quantity and high variability of water supply and high risk of pollution by 

pesticide mixtures (i.e., RS > 3 and AI count > 1). b., The land area bearing high biodiversity and 

subject to high risk of pollution by pesticide mixtures (i.e., RS > 3 and AI count > 1). c., The land area 

inhabited by at least one endangered and critically endangered amphibian species and subject to 

pollution risk by pesticide mixtures (RS > 0 and AI count > 1). 
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Extended Data Fig. 2 The extent of pesticide pollution risk in groundwater, surface water, soil, 

and atmosphere expressed as percent agricultural land. For example, surface water within 74% of 

global agricultural land is at some risk of pesticide pollution. High water risk regions refer to places 

suffering from low quantity and high variability of water supply defined as in AQUEDUCT-v2.1 

database.  


