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A B S T R A C T   

Using hydrogen as an energy carrier requires new technological solutions for its onboard storage. The exploration 
of two-dimensional (2D) materials for hydrogen storage technologies has been motivated by their open struc-
tures, which facilitates fast hydrogen kinetics. Herein, the hydrogen storage properties of lightweight metal 
functionalized r57 haeckelite sheets are studied using density functional theory (DFT) calculations. H2 molecules 
are adsorbed on pristine r57 via physisorption. The hydrogen storage capacity of r57 is improved by decorating it 
with alkali and alkaline-earth metals. In addition, the in-plane substitution of r57 carbons with boron atoms 
(B@r57) both prevents the clustering of metals on the surface of 2D material and increases the hydrogen storage 
capacity by improving the adsorption thermodynamics of hydrogen molecules. Among the studied compounds, 
B@r57-Li4, with its 10.0 wt% H2 content and 0.16 eV/H2 hydrogen binding energy, is a promising candidate for 
hydrogen storage applications. A further investigation, as based on the calculated electron localization functions, 
atomic charges, and electronic density of states, confirm the electrostatic nature of interactions between the H2 
molecules and the protruding metal atoms on 2D haeckelite sheets. All in all, this work contributes to a better 
understanding of pure carbon and B-doped haeckelites for hydrogen storage.   

1. Introduction 

The mounting demands of energy due to increase in population and 
urbanization have put significant stress on conventional energy sources. 
Additionally, an increasing use of the fossil fuel-based energy sources 
has a devastating impact on the environment [1]. This situation calls for 
clean, renewable, and economically viable energy alternatives that 
would replace fossil fuels. Hydrogen stands out as a highly promising 
option due to its high energy density by mass, moreover its abundance, 
clean and renewable production [2,3]. However, the efficient storage of 
hydrogen molecules (H2) is a major bottleneck for the practical use of 
this, otherwise ideal energy carrier. Conventional H2 storage methods, 
such as the pressurized gas and liquefaction, are associated with safety 
concerns and large energy consumption, respectively [4,5]. Hydrogen 
can be stored in the lattice or at the surface of host storage materials 
[6–11]. However, it’s an ongoing challenge to find good materials that 

are capable of storing practically meaningful volumetric and gravimetric 
amounts of hydrogens and releasing them on demand. 

Among the various available options, carbonous materials possess a 
great potential for H2 storage applications due to their salient features 
like stability, cost-effectiveness, and porosity. H2 storage capacities of 
the host carbonous materials are further enhanced by increasing their 
surface areas such as via nanostructuring [12]. However, a downside of 
carbonous nanostructures is their weak, van der Waals type interactions 
with the incident H2 molecules, which allows for molecule storage only 
at very low temperatures [13–15]. For ambient condition storage ap-
plications, the binding energies of H2 to the host material should be close 
to 0.16 eV/H2 [16,17]. To enhance the interactions between H2 and the 
host carbonous nanostructures, among the different strategies, the 
introduction of dopant atoms has been applied with promise [18–22]. 

In literature, several studies have been devoted to the study of H2 
storage properties of the metalized carbonous nanostructures, 
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particularly the 2D monolayers [23–26]. A recent study explored the 
potential of metal-doped nitrogenated holey graphene (C2N) as H2 
storage material [27]. The authors employed dispersion-corrected DFT 
simulations to study the adsorption of H2 molecules on C2N in its pristine 
and metal-decorated (e.g. Mg, Ca, Ti, V, Mn, Fe, Co, Ni, and Zn) forms. It 
was found that the pristine C2N’s weak hydrogen binding energy (0.10 
eV/H2) is enhanced significantly after its decoration with metals. In 
another study, Chen et al. employed first-principles DFT calculations for 
the study of lithium functionalized graphitic carbon nitride (g-CN) 
monolayers for H2 storage [16]. They found that the Li atoms are 
strongly bonded to g-CN sheets without being clustered, therefore 
facilitating a rather uniform distribution of metal cations over the host 
material. Each Li+ cation interacted with multiple H2 molecules and that 
resulted in a H2 storage capacity of 10.8 wt% Hydrogen, which is larger 
than is possible for many other 2D systems, such as phosphorene and 
MoS2. Similarly, Faye et al. has recently reported the H2 storage prop-
erties of 2D carbon nitride, C3N, sheets through spin-polarized DFT 
simulations [28]. The structural and H2 adsorption properties of Si- and 
Ti-doped C3N nanosheets were studied in the context of ambient con-
dition H2 storage. They found that the metal-doped C3N nanosheets 
were able to reach a high H2 storage capacity of 9.0 wt% Hydrogen. In 
addition to the above-mentioned theoretical reports, several experi-
mental groups studied the potential of use different nanomaterials for H2 
storage applications. In this regard, porous carbon-based structures 
[29,30], multilayered graphene [31] and Ti2CTx [32] have recently been 
explored. 

Motivated by the promise of peculiar carbonous nanostructures as 
discussed in the above studies, we employed DFT calculations to study 
the structural features and H2 storage properties of lightweight metal 
functionalized haeckelites (r57). We found that, the graphene-like open 
structure, but with 5- and 7-membered rings of carbon atoms, of the 
haeckelites enable strong interactions with metal adatoms, and they 
consequently attain good H2 storage properties. 

2. Computational methods 

All DFT calculations were carried out using the generalized gradient 
approximation (GGA) exchange-correlation functional of Perdew-Burke- 
Ernzerhof (PBE) [33] and the projector augmented wave (PAW) [34,35] 
method, as implemented in the Vienna ab initio simulation package 
(VASP) [36–38]. A plane wave basis with a kinetic energy cutoff of 600 
eV was used. The H 1 s, B 2s2p, C 2s2p, Li 1s2s, Na 3s2p, K 3s3p4s, Ca 
3s3p4s, Sc 3p4s3d and Ti 3p4s3d electrons were considered as valence. 
Spin-polarized calculations were performed within the framework of 
DFT and no charge or dipole correction procedures were applied [39]. 
The DFT-D3 scheme [40,41] was used to account for the dispersion in-
teractions, which provides accurate results for molecule storage systems 
[42–45]. 

The original structural parameters of r57 were obtained from litera-
ture [46] and the structure was further optimized with the above set-
tings and a vacuum spacing of 20 Å to avoid interactions between 
periodic images. Using the Г-centred Monkhorst–Pack scheme [47] with 
a 7 × 9 × 1 k-mesh for the unit cell, the geometries were fully optimized 
until the total forces acting on each atom were smaller than 0.01 eV/Å. 
The isolated H2 molecule was calculated by using a 20 Å edge cubic box 
with periodicity. 

We calculated the binding energy of metal atoms to the host sheet, as 
follows 

EM
b = (nEM + EHost − EHost− Mn )

/
n (1)  

where EM is the total energy of one metal atom in its respective metal 
crystal, EHost and EHost− Mn are the total energies of the host simulation 
cells prior and posterior to metal decoration, respectively. 

The average adsorption energy (Eavg) and the consecutive adsorption 
energy (Econ) of H2 molecules to the host materials were defined as 

EH2 − avg
b = (nEH2 +EHost − EHost− H2n )/n (2)  

EH2 − con
b = EH2 +EHost− H2(n− 1) − EHost− H2n (3)  

where EH2 is the total energy of a H2 molecule in gas phase, EHost− H2(n− 1)

and EHost− H2n are the total energies of the host sheets with (n− 1) and n H2 
molecules, respectively. 

3. Results and discussions 

The optimized structure of the r57 monolayer is shown in Fig. 1(a). 
The optimized lattice constants of the unit cell are a = 7.47 and b = 5.86 
Å, with the C–C bond lengths altering between 1.39 and 1.49 Å. These 
parameters agree well with the literature [46]. 

To investigate the interaction of H2 with the r57 sheet, four different 
kinds of adsorption sites were considered: top of C atoms (CT), top of C–C 
bonds (CB), top of 5-atom ring centres (FT), and top of 7-atom ring 
centres (ST). The lowest energy configuration is found to be when the H2 

molecules are positioned at ST sites, with EH2
b = 0.07 eV, which indicates 

a weak interaction between the 2D material and H2 molecules. For 
efficient hydrogen storage, the binding interactions of hydrogen mole-
cules on pure r57 sheets would have to be improved, such as through the 
incorporation of lightweight metal atoms to the host material. 

Similar to the procedure for hydrogen molecules interacting with the 
2D material, for the metal atoms, we also considered different adsorp-
tion sites on the r57 sheet. For all metals, the lowest energy adsorption 
site is predicted to be the ST site and the calculated binding energies of 
the metal atoms on r57 are shown in Table 1. The EM

b for Li, Na, and K is 
positive, meaning that these alkali metals adsorb stably on the r57 sheet, 
whereas Ca decoration is prone to metal clustering as evident from the 
negative EM

b . Next, we focus on the most promising alkali metal loadings 
of r57-Li1, r57-Na1, and r57-K1 as host materials for H2 molecules. The 
optimized structures prior and posterior to full hydrogen loading are 
shown in Fig. 2. We found that each Li, Na, and K on r57 interact with 
three H2 molecules with EH2 − avg

b of 0.18, 0.19, and 0.18 eV/H2, respec-
tively. On r57-Li1, a fourth H2 molecule is accommodated with a mod-
erate Econ of 0.13 eV/H2. However, as shown in Fig. 2(a), it is positioned 
relatively further away from the Li atom. Similarly, the fourth H2 
molecule binds with Econ of 0.16 and 0.12 eV/H2 on r57-Na1 and r57-K1, 
respectively. The fifth H2 molecule adsorbs onto the metal atoms of r57- 
Na1 (Fig. 2(b)) and r57-K1 (Fig. 2(c)), but only via weak interactions of 
0.08 eV/H2 and 0.06 eV/H2, respectively. For all these considered cases 
of alkali metal modified matrix, the maximum effective hydrogen stor-
age capacity is 3.6 wt% H2 (for r57-Na1H8), which is lower than the 5.5 
wt% storage target as set by the U. S. Department of Energy (DOE) [48]. 

To enhance the hydrogen storage capacity of r57 sheets, an increased 
amount of dispersed metal ions is required on their surface. Earlier 
theoretical studies show that incorporating B atoms into graphene pro-
vides a way for immobilizing metal atoms on its surface [49]. Addi-
tionally, taking into account that B-doped graphene monolayers are 
experimentally realized [50], we also study here the B doping of r57. All 
the three unique C atoms of r57 unit cell, as illustrated in Fig. 1(a), were 
considered in turn for the atomic substitutions with B. The most stable 

Fig. 1. The top and side views of DFT optimized (a) r57 and (b) B@r57 unit cells. 
Brown and green spheres represent C and B atoms, respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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configuration, B@r57, is reached when a B atom substitutes C1 atom, as 
shown in Fig. 1(b). Next, we studied the adsorption of a H2 molecule on 
B@r57, and found that the molecule tends to reside at ST site with a 
binding energy of 0.07 eV/H2, which is both positionally and energeti-
cally very similar to the hydrogen molecule on the pure r57 sheet. 

The calculated adsorption energies of different metal atoms on 
B@r57 are shown in Table 1. According to these results, when compared 
with r57, the B@r57 has stronger interactions with the metal atoms. 
Interestingly, all metal atoms at any of the considered loading ratios in 
the current study, have positive binding energies on B@r57. Further-
more, according to Bader charge analysis results of the B@r57-Mn com-
pounds (M = Li, Na, K, and Ca; n = 1, 4, and 8), shown in Table 2, all 
metal atoms on B@r57 monolayers were depleted. However, with an 
increase in the number of adsorbed metal atoms in the simulation cell, 
the average electrical charge of metal atoms decreased. Among the 
metals studied here, the change of charge depletion was lowest for Li, 
meaning that, Li atoms were electrically the least affected by an increase 
in metal population on B@r57 monolayers. 

Next, we discuss the hydrogen storage performances of the M- 
decorated B@r57 sheets. 

Table 1 
The calculated binding energies (EM

b ) of metal atoms on host materials, r57 and 
B@r57, under different metal loading conditions. All units are given in eV/M.  

Host ELi
b  ENa

b  EK
b  ECa

b  

r57-M1 0.31 0.08 0.65 − 0.06 
r57-M4 − 0.16 − 0.14 0.41 − 0.08 
r57-M8 − 0.28 − 0.05 − 0.19 − 0.30 
B@r57-M1 0.86 0.57 1.06 0.50 
B@r57-M4 0.20 0.09 0.61 0.20 
B@r57-M8 0.02 0.08 0.06 0.23  

Fig. 2. The most stable structures of r57-M1 and r57-M1H2n, where M is (a) Li, (b) Na and (c) K. Brown, blue, golden, purple and white spheres represent C, Li, Na, K, 
and H atoms, respectively. For clarity, on each compound, the relatively weakly binding H2 molecules, which have the lowest Econ and are furthest away from the 
metal atoms, have been encircled. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Bader charge (Q) analysis for the constituting atoms of B@r57-Mn compounds, with an increasing number (n) of adsorbed metal atoms. For C and M (=Li, Na, K, Ca) 
atoms, Qave, Qmax and Qmin show respectively the average, maximum and minimum charge variations in absolute values, when compared to the charge neutral states of 
atoms. Positive and negative values indicate depletion and accumulation of electrical charge on atoms, respectively. All charges are given in units of |e|.  

Compound QB  QC
ave  QC

max  QC
min  QM

ave  QM
max  QM

min  

B@r57 +1.90 − 0.13 − 0.70 − 0.01    
B@r57-Li1 +1.81 − 0.18 − 0.83 +0.01 +0.89 +0.89 +0.89 
B@r57-Li4 +1.67 − 0.34 − 0.91 − 0.12 +0.85 +0.85 +0.84 
B@r57-Li8 +1.38 − 0.47 − 1.31 − 0.24 +0.71 +0.75 +0.64 
B@r57-Na1 +1.81 − 0.18 − 0.81 +0.00 +0.87 +0.87 +0.87 
B@r57-Na4 +1.73 − 0.28 − 0.87 − 0.05 +0.60 +0.60 +0.59 
B@r57-Na8 +1.66 − 0.30 − 0.90 − 0.10 +0.36 +0.47 +0.21 
B@r57-K1 +1.83 − 0.18 − 0.79 +0.00 +0.85 +0.85 +0.85 
B@r57-K4 +1.77 − 0.25 − 0.84 − 0.06 +0.50 +0.50 +0.49 
B@r57-K8 +1.67 − 0.30 − 0.84 − 0.12 +0.35 +0.40 +0.28 
B@r57-Ca1 +1.78 − 0.20 − 0.84 − 0.01 +1.18 +1.18 +1.18 
B@r57-Ca4 +1.64 − 0.35 − 0.96 − 0.12 +0.89 +0.91 +0.88 
B@r57-Ca8 +1.46 − 0.40 − 0.98 − 0.21 +0.57 +0.77 +0.33  
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(1) Li decoration: For one-, four-, and eight-Li atom decorations, the 
most stable geometries of the compounds are shown in Fig. 3(a)- 
(c), with the corresponding ELi

b = 0.86, 0.20, and 0.02 eV/Li, 
respectively. Considering both ELi

b and sterical suitability for 
molecular hydrogen interactions, the four-Li atom decorated 
B@r57 compound, B@r57-Li4, provides a good balance of metal 
loading for hydrogen storage purposes. To further illustrate the 
stability of B@r57-Li4, we carried out ab initio molecular dynamics 
(AIMD) calculations [51] on the corresponding 2 × 2 × 1 
supercell. Fig. 4 shows the structures at the end of 10 ps AIMD 
calculations that were performed at four different temperatures 
of 200, 300, 400, and 500 K. Although the Li atoms became more 
mobile with an increase in temperature, they still were attached 
to the 2D material even at elevated temperatures. Moreover, we 
studied the cases when each Li attracts one, two, and three H2 
molecules, and found that B@r57-Li4 efficiently adsorbed a total 
of 12 H2 molecules with EH2 − avg

b = 0.16 eV/H2. Accordingly, the 
hydrogen storage capacity of B@r57-Li4 reached to 10.0 wt% H2.  

(2) Na/K decoration: Either of the single Na and K atom decorated 
B@r57 compounds adsorbed four H2 molecules to the most, with 
EH2 − avg

b = 0.17 eV/H2 and 0.14 eV/H2, respectively. For four-Na 
or four-K decorated B@r57, the interactions between H2 mole-
cules and Na/K surface atoms were weak (e.g.EH2 − avg

b = 0.08 eV/ 
H2 for B@r57-Na4H8). These results were in relation to the rela-
tively inefficient discharge of these atoms (QNa

ave = +0.60 |e|, 
QK

ave= +0.50 |e|) after their deposition onto the B@r57 
monolayers. 

(3) Ca decoration: The Ca atom of the B@r57-Ca1 compound effec-
tively adsorbed up to five H2 molecules with EH2 − avg

b = 0.21 eV/ 
H2. However, when the number of Ca atoms increased to four to 
form the B@r57-Ca4 compound, then each Ca interacted with a 
maximum of four H2 molecules and with EH2 − avg

b = 0.12 eV/H2. 
Nevertheless, this compound still reached to a hydrogen storage 
capacity of 8.4 wt% H2. 

The metal ions of the B@r57-M1 compounds interact with only three 
to five H2 molecules, whereas for the B@r57-M8 compounds, the dis-
tances between neighbouring metal atoms are comparable to the 
respective M-M distances found in their bulk metal crystal structures. 
Additionally, for the latter compounds, the calculated absolute Bader 
charge values of metal ions were small. Thus, due to steric and electronic 
effects, these compounds are not the most interesting compositions for 
hydrogen storage. Based on these findings, the B@r57-Li4 compound is 
the most promising candidate for molecular hydrogen storage. There-
fore, to provide a versatile insight into the nature of interactions be-
tween H2 molecules and B@r57-Li4, we further studied their electronic 
properties. 

Fig. 5 shows the optimized geometry of the fully hydrogen loaded 
B@r57-Li4H24 compound and its corresponding electron localization 
function (ELF), both as calculated using DFT. Clearly, all Li atoms were 
exposed on the B@r57 monolayer and they were electrically depleted. 

Moreover, Li atoms had no apparent orbital interactions with either of 
the B@r57 monolayer or the H2 molecules that were positioned around 
them. The localized electron clouds surrounding the H2 molecules 
showed no evidence of orbital interactions with the atoms of the host 
material. The electronic density of states (DOS) calculations were also 
used to investigate the B@r57-Li4 compounds. As shown in Fig. 6(a) DOS 
plot of the pure B@r57 monolayer, the bonding contributions were 
mainly from the p orbitals of C and B atoms. When Li dopants were 
added onto the monolayer, their valance s electrons were transferred to 
the host material and no strong orbital interactions were evident be-
tween Li and monolayer C or B atoms (Fig. 6(b)). Instead, the charge 
transfer from Li atoms to the 2D material results in an increased density 
for the occupied states of C and B atoms, which indicates ionic bonding 
between the metal and nonmetal atoms of B@r57-Li4. Fig. 6(c) shows the 
DOS for the fully hydrogenated B@r57-Li4 compound. The adsorbed H2 
molecules on the monolayer populate around − 9 eV, and they showed 
no real influence on the valance states of C, B, and Li atoms. The 
calculated DOS data is consistent with the above discussed ELF and 
atomic charge analysis results. 

4. Conclusions 

In summary, the adsorption of H2 molecules on lightweight metal 
atom decorated haeckelites was studied by first-principles DFT calcu-
lations. We found that H2 molecules interact weakly with pristine r57 
and B-doped B@r57 haeckelites. With the introduction of alkali and 
alkaline earth metals, the binding energies of hydrogen molecules were 
improved. When compared with pure r57, the B@r57 haeckelites were 
more useful in immobilizing the metal atoms, and hence more successful 
in reaching to high hydrogen storage capacities. Of the metal decorated 
B@r57 systems investigated here, the B@r57-Li4 compound is the most 
promising candidate for practical usage, as it yielded the highest 
hydrogen storage capacity of 10.0 wt% H2 at a hydrogen binding energy 
of 0.16 eV/H2. A further analysis of the electronic structures revealed 
that the interactions between the protruding Li atoms of the B@r57-Li4 
compound and the H2 molecules were mainly electrostatic by nature. 
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