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This is the second part of our study on the competition model

˛ut(x, t)−d1(x) Du(x, t)=la1(x) u−b(x) u2−c(x) uv,
vt(x, t)−d2(x) Dv(x, t)=ma2(x) v−e(x) v2−d(x) uv,

where the coefficient functions are strictly positive over the underlying spatial
region W except b(x), which vanishes in a nontrivial subdomain of W, and is posi-
tive in the rest of W. In part I, we mainly discussed the existence of two kinds of
steady-state solutions of this system, namely, the classical steady-states and the
generalized steady-states. Here we use these solutions to determine the dynamics of
the model. We do this with the help of the perturbed model where b(x) is replaced
by b(x)+e, which itself is a classical competition model. This approach also reveals
the interesting relationship between the steady-state solutions (both classical and
generalized) of the above system and that of the perturbed system. © 2002 Elsevier

Science (USA)
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1. INTRODUCTION

This is the second part of our study on the competition model

˛ut(x, t)−Du(x, t)=lu−b(x) u
2−cuv,

vt(x, t)−Dv(x, t)=mv−v2−duv,
(1.1)

where x ¥ W and t \ 0, W denotes a smooth bounded domain in RN

(N \ 2), D denotes the Laplacian operator on the space variable x, b(x) is a
nonnegative function over W, and l, m, c and d are positive constants.
Moreover, we suppose that u and v satisfy homogeneous Dirichlet bound-
ary conditions on “W. Our methods and results hold when (1.1) has a more
general form, and for Neumann and Robin boundary conditions as well, as
indicated at the beginning of Part I (see [Du]).
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We are interested in understanding the effects of the degeneracy of b(x)
on the model. As in Part I, by degeneracy, we mean that b(x) — 0 on some
proper subdomain W0 of W, and b(x) > 0 on W+=W0 W̄0. For technical
reasons, we assume further that W0 has C2 boundary “W0, is open and
connected, and W̄0 … W. Moreover b ¥ C(W̄). All our notations here will
follow that of Part I.
We have proved in Part I that if l < lW01 (0), then (1.1) behaves as if b(x)
is a positive constant, i.e., the degeneracy has little effects on the model.
However, if l > lW01 (0), then the steady-state solution set of (1.1) is changed
a great deal by this degeneracy. Moreover, in Part I, we also discussed the
generalized steady-state solutions (u, v) of (1.1), where u equals . on W̄0
and is finite and positive on W+, whereas v is identically zero on W0 and is
positive on W+. These generalized steady-states are governed by the
following boundary blow-up problem,

˛
−Du=lu−b(x) u2−cuv, x ¥ W+,

−Dv=mv−v2−duv, x ¥ W+,

u |“W=0, u|“W0=., v |“W+=0.

(1.2)

Here in Part II, based on results obtained in Part I, we will first show
that both the classical and generalized steady-states of (1.1) occur naturally
as the limits, when eQ 0, of the positive classical solutions of the perturbed
system

˛
−Du=lu−[b(x)+e] u2−cuv,

−Dv=mv−v2−duv,

u|“W=0, v|“W=0,

(1.3)

where e > 0 is a constant. This approach not only reveals the interesting
asymptotic behaviour of the positive solution branch Se={(m, u, v)} of
(1.3) as eQ 0, but also helps to better understand the generalized steady-
states of (1.1); for example, it enables us to show that, when l > lW01 (0), the
positive solution set {(m, u, v)} of (1.2) contains an unbounded continuum
in a suitable space. We will then discuss the dynamical behaviour of (1.1)
and show that the dynamics of the model is affected greatly by the degen-
eracy of b(x). It turns out that our perturbation approach is important for
discussing the dynamical behaviour of (1.1).
In order to understand the perturbed system (1.3), we study in Section 2
the perturbed logistic equation

−Du+fu=lu−[b(x)+e] u2, u |“W=0, (1.4)
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where f ¥ C(W̄). While it is easily seen that the unique positive solution ue
of (1.4) varies continuously with e ¥ [0,.) when l ¥ (lW1 (f), l

W0
1 (f)), it is

no longer the case once l \ lW01 (f). Indeed, we will show that in this case,
ue blows up as eQ 0 on W̄0 while remains bounded on W+. Moreover, on
W+, ue converges to the minimal positive solution Ua

of the boundary
blow-up problem

−Du+fu=lu−b(x) u2 in W+, u |“W=0, u|“W0=.. (1.5)

As a by-product, we show that U
a
varies continuously with l for l > lW01 (f).

In Section 3, we discuss how the positive solution set of (1.3) changes
with e. As is well known, (1.3) has no positive solution if l [ lW1 (0). There-
fore, we assume l > lW1 (0). By [DB], we know that there exist l

W
1 (0) <

mg(e) [ m
g(e) such that (1.3) has no positive solution if m ¨ [mg(e), m

g(e)],
and it has at least one positive solution if m ¥ (mg(e), m

g(e)). Moreover, the
positive solutions can be chosen from a continuum of positive solutions
Se={(m, u, v)}, which connects the two semitrivial solutions (m0, 0, hm0)
and (m e0, ue, 0), where hm denotes the unique positive solution to

−Dv=mv−v2, v |“W=0,

m0 is determined uniquely by

l=lW1 (chm0),

ue is the unique positive solution of (1.4) with f=0 and m
e
0=l

W
1 (due).

If l < lW01 (0), then our results in this section show that the solution
branch Se remains bounded, and as eQ 0, Se approaches S, the branch of
steady-state solutions of (1.1) given in Theorem 2.4 of Part I.
If l > lW01 (0), however, then for any fixed e > 0, Se is a bounded set, but
by Theorem 3.1 in Part I, the branch of steady-state solutions of (1.1), S, is
an unbounded set. Therefore, it is more interesting to see how Se and S are
related when eQ 0. It turns out that as eQ 0, both mg(e) and Se become
unbounded. Moreover, only part of Se approaches the unbounded set S,
while another part of Se converges to the generalized steady-states of (1.1).
Thus, both the classical and generalized steady-state solutions of (1.1) can
come from the same origin, namely, Se. Moreover, by using this approach,
we prove that the set of positive solutions of (1.2) contains, in a suitable
space, an unbounded branch Ŝ bifurcating from the semitrivial solution
branch {(m, U

a
, 0) : m ¥ R} at m=lW+1 (dUa

) and with the m-range of Ŝ
covering (lW+1 (dUa

),.).
Section 4 is devoted to the study of the dynamical behaviour of (1.1).
The importance of the generalized steady-state solutions of (1.1) is fully
revealed here. We show that if m is small so that (1.1) has no classical nor
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generalized positive steady-state solutions, then every positive solution of
(1.1) has its v component converging to 0 on W as tQ., while u blows up
on W0 as tQ.. If m > l

W+
1 (dŪ), where Ū denotes the maximal positive

solution of (1.2) with f=0, then persistence of v is guaranteed. Moreover,
in this case, for x ¥ W+,J tQ. v(x, t) \ v¯

(x),O tQ. u(x, t) [ u¯
(x), where

(u
¯
, v
¯
) denotes the minimal positive solution of (1.2).
Though Theorems 3.1 and 3.6 of Part I show that a stable coexistence
state of the two species is possible, results in the rest of Section 4 show that
one can always find bad initial conditions such that the positive solutions
of (1.1) with these bad initial conditions must have the u component
blowing up in W0 as tQ.. We also show that there are parameter ranges
such that the global attractor of (1.1) is solely determined by the general-
ized steady-state solutions. Moreover, if (1.1) has a unique generalized
steady-state solution in this case, then it attracts all the positive solutions.

2. PERTURBATION OF THE DEGENERATE
LOGISTIC EQUATION

In order to study how the positive solutions of the perturbed system (1.3)
approaches the steady-states of (1.1), we need to know how the positive
solutions of the perturbed logistic equation (1.4) approach the solutions of
the unperturbed equation, i.e., (1.4) with e=0. Recall that for any e > 0,
(1.4) has a unique positive solution when l > lW1 (f), and (1.4) with e=0
has no positive solution if l ¨ (lW1 (f), l

W0
1 (f)), and there is a unique posi-

tive solution if l ¥ (lW1 (f), l
W0
1 (f)). Moreover, for any real number l, the

boundary blow-up problem (1.5) has a minimal positive solution U
a
.

It can be easily seen that if l ¥ (lW1 (f), l
W0
1 (f)), then the unique positive

solution of (1.4) varies continuously with e for e \ 0. The following result
describes the situation for l \ lW01 (f).

Theorem 2.1. Suppose that l \ lW01 (f) and e > 0, and denote by ue the
unique positive solution of (1.4), by U

a
the minimal positive solution of (1.5).

Then

(i) ue Q. as eQ 0 uniformly on W̄0;
(ii) ue Q Ua

as eQ 0 uniformly on any compact subset of W̄0 W̄0.

Proof. A standard upper and lower solution argument together with
the uniqueness of ue shows that eQ ue(x) is decreasing. Thus, lim eQ 0 ue(x)
is either finite or infinity. By Lemma 2.1 in [DH], we also have ue [ Ua

on
W+. Thus there exists some function u0(x) on W+ such that

lim
eQ 0
ue(x)=u0(x) [ Ua

(x), for all x ¥ W+.
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By elliptic regularity, one easily sees that ue Q u0 uniformly on any compact
subset of W̄0 W̄0, and u0 satisfies the differential equation in (1.5) together
with the boundary condition on “W. We will see that u0=Ua

.
Let

me=min
x ¥ W̄0

ue(x)=ue(xe), xe ¥ W̄0.

We claim that me Q. as eQ 0. Clearly this implies (i). We prove this claim
by an indirect argument and divide the proof into several steps.

Step 1. If me [M for some constant M and all e > 0, then
d(xe, “W0)Q 0.
Since l \ lW01 (f), we must have ||ue ||L.(W) Q. as eQ 0, for otherwise ue
increases to a positive solution of (1.4) with e=0 as e decreases to 0, con-
tradicting Theorem 2.2 in Part I. Let us now pick up a sequence en Q 0, and
define ûn=un/||un ||., where un=uen . We easily see that

−Dûn+fûn=lûn−[b(x)+en] ||un ||. û
2
n, ûn |“W=0.

It follows that −Dûn [ (l+||f||.) ûn, which implies, by Lemma 2.10 in Part I,
that subject to a subsequence, ûn converges weakly in W1, 2 and strongly in
Lp ( for all p > 1) to some û ¥W1, 2

0 (W). Moreover, û – 0.
As un is bounded from above by Ua

on W+, we easily see that û — 0 on
W+. Thus, as “W0 is smooth, û ¥W

1, 2
0 (W0).

Let ||un ||.=u(xn), xn ¥ W0. Then −Dun(xn) \ 0 and hence, from the
equation for un, we obtain

f(xn) un(xn) [ lun(xn)−[b(xn)+en] un(xn)2.

It follows that en ||un ||. [ l+||f||.. Hence we may assume that en ||un ||. Q t
for some t \ 0.
Now we multiply the equation for ûn by an arbitrary k ¥ C

.

0 (W0) and
integrate over W0, and pass to the limit nQ., we obtain that

F
W0

[Nû ·Nk+fûk] dx=F
W0

(lû−tû2) k dx.

That is to say that û is a weak solution to

−Du+fu=lu−tu2, u |“W0=0.

By the weak Harnack inequality, we know û > 0 in W0.
From the equation for ûn, we see that −Dûn is uniformly bounded on W0.
By standard interior Lp theory for elliptic equations (see [CW,LU]), we
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find that ûn is bounded in W2, p(WŒ) for any p > 1 and any compact sub-
domain WŒ of W0. By the Sobolev imbedding theorem (see [GT]), we know
that subject to a subsequence, ûn Q û in C1(WŒ). As û > 0 on W0, and
||un ||. Q., we find that un(x)Q. uniformly on any compact subset of W0.
As eQ ue is monotone, ue Q. uniformly on any compact subset of W0 as
eQ 0. Thus we must have d(xe, “W0)Q 0 as eQ 0.

Step 2. If me <M for some M and all e > 0, then {“ue(xe)/“ne} is
bounded from above, where ne is a unit vector in RN to be specified later.
It suffices to show that for any sequence en Q 0, {“uen (xen )/“nen} has a
subsequence which is bounded from above. Let us denote

un=uen , xn=xen , and Wn={x ¥ W0 : d(x, “W0) \ d(xn, “W0)}.

Note that if xn ¥ “W0, then Wn=W0, and if Wn is different from W0, then for
large n, it is close to W0 by Step 1. Thus for any WŒ …… W0, WŒ …… Wn for all
large n. By a simple variant of Lemma 2.3 in [DH], we find that the
problem

−Du+fu=lu−[b(x)+en] u2 in W0 W̄n, u |“W=0, u|“Wn=un(xn) (2.1)

has a unique positive solution vn. Clearly un is an upper solution to this
problem. Thus by Lemma 2.1 in [DH], un \ vn in W0Wn. As un(xn)=
vn(xn), it follows that

“un(xn)/“nn [ “vn(xn)/“nn,

where nn is the unit normal vector of “Wn at xn pointing inward of Wn. Thus
it suffices to show that “vn(xn)/“nn is bounded.
Let us now choose an open subdomain WŒ …… W0 which is so close to W0
such that lW0 0WŒ1 (0) > l+||f||.. For example, we may choose WŒ={x ¥ W0 :
d(x, “W0) < d} with d > 0 sufficiently small. Then, l

W0 0WŒ
1 (f) > l and we can

find some lŒ such that max{l, lW0WŒ
1 (f)} < lŒ < lW0 0WŒ1 (f). By Theorem 2.2

in Part I, the problem

−Du+fu=lŒu−b(x) u2 in W0WŒ, u |“W 2 “WŒ=0

has a unique positive solution uŒ. We may assume that W̄n ‡ WŒ for all n.
Then we can find a large positive constant M1 such that M1uŒ \
M \ un(xn) on “Wn for all n. It is easily seen thatM1uŒ is an upper solution
to (2.1) for all n. Therefore, by Lemma 2.1 of [DH], un [M1uŒ. This
implies that −Dvn has an L. bound on W0Wn which is independent of n.
Since furthermore,

(a) vn |“Wn is a constant which has a bound independent of n, and
(b) for all large n, “Wn is as smooth as W0 with the smoothness not

depending on n,
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by the Lp theory of elliptic equations up to the boundary (see, e.g., [LU,
pp. 190–193]), we see that, for any p > 1, ||vn ||W2, p(W0Wn) has a bound inde-
pendent of n. By Sobolev imbeddings and the uniform smoothness of Wn,
this implies that ||vn ||C1(W̄0Wn) has a bound independent of n. In particular
|Nvn(xn)| is bounded, and thus “vn(xn)/“nn is bounded, as required.

Step 3. me Q. as eQ 0.
Otherwise we can find a sequence en Q 0 such that men is bounded. By
Step 2, {“un(xn)/“nn} is bounded from above, where nn is the unit normal
vector of “Wn at xn pointing inward of Wn. Here we follow the notations in
Step 2. We show that this is impossible, and hence proving the claim. For
all large n, “Wn is as smooth as “W0 and hence it satisfies a uniform interior
ball condition: There exists R > 0 such that for any large n and x ¥ “Wn,
one can find a closed ball Bx of radius R such that Bx ¥ Wn and
Bx 5 “Wn={x}. Let yn denote the center of Bxn and define

k(x)=e−s |x−yn|
2
−e−sR

2
,

where s is a positive number to be specified. We may assume that en < 1 for
all n. Then, for any constant c satisfying 1 < c < e−1/2n and x ¥ Bxn 0B

n,
where Bn={x: |x−yn | < R/2}, we have

D[un(xn)+ck]+(l−f)[un(xn)+ck]− en[un(xn)+ck]2

=c[4s2 |x−yn |2−2Ns+l−f−2enun(xn)

+2ence−sR
2
− ence−s |x−yn|

2
] e−s |x−yn|

2

+(l−f)[un(xn)−ce−sR
2
]− enun(xn)2+2cenun(xn) e−sR

2
− enc2e−2sR

2

\ c[s2R2−2Ns−2M−1] e−sR
2
−(|l|+||f||.) M−M2−1

> 0,

if s, c and n are large enough. We fix s at such a value.
Choose a compact set K …… W0 such that K ‡1.

n=1 B
n. By the proof of

Step 1, un Q. on K. Hence we can find a sequence cn Q. satisfying
cn [ e

−1/2
n and

un(x) \M+cnk|“Bn, for all x ¥ “Bn …K.

Thus, un is an upper solution to the problem

−Du+fu=lu− enu2 in Bxn 0B
n, u |“Bxn=un(xn), u |“B

n=un(xn)+cnk |“Bn.
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By our choice of s, for all large n, un(xn)+cnk is a lower solution to this
problem. By Lemma 2.1 in [DH], we find un \ un(xn)+cnk in Bxn 0B

n, and
it follows that

“un(xn)/“nn \ cn“k(xn)/“nn=cn2sRe−sR
2
Q..

This contradicts the conclusion in Step 2. Thus the claim and hence
conclusion (i) of the theorem is proved.
It remains to prove conclusion (ii). By (i), we see that un |“W0 Q. uni-
formly as nQ.. It follows from Lemma 2.1 in [DH] that wn [ un, where
wn is the unique positive solution of

−Dw+fw=lw−Bw2 in W+, w|“W=0, w|“W0=min
“W0

un,

where the constant B is chosen such that B \ ||b||.+en for all n. It is well-
known that wn increases to a solution w of the same problem but with
w|“W0=.. Recall that un Q u0 as nQ.. Hence u0 \ w and it follows that
u0 satisfies the boundary condition on “W0 of (1.5). Thus it is a positive
solution to (1.5). It follows that u0 \ Ua

as the latter is the minimal solution.
But we have also the reversed inequality at the beginning of the proof.
Thus we must have u0=Ua

. The proof is complete. L

As a simple application of Theorem 2.1, we show that the minimal
positive solution U

a
of (1.5) varies continuously with l for l > lW01 (f) in a

suitable sense.
We regard U

a
as a function in the space C(W+ 2 “W) equipped with the

metric defined by

d(u, v)=C
.

n=1

2−ndn(u, v)
1+dn(u, v)

,

with

dn(u, v)=||u−v||C(Wn), Wn={x ¥ W̄+ : d(x, “W0) \ d/n},

where d is a small positive constant such that W1 ]”. Clearly, un Q u in
this metric is equivalent to un Q u uniformly in any compact subset of
W̄0 W̄0. Moreover, C(W+ 2 “W) is a complete metric space under this
metric.
We will use the following topological result (see [W, item (9.12), p. 12]).

Lemma 2.2. Let An be a sequence of connected sets in a complete metric
space X such that
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(i) 1 An is precompact; and
(ii) lim inf(An) ]”.

Then lim sup(An) is nonempty and connected.

Here lim inf(An) denotes the set of all u ¥X such that any neigh-
bourhood of u intersects all but finitely many of An, and lim sup(An) con-
sists of all the point u ¥X such that any neighbourhood of u intersects
infinitely many An. It follows easily that lim inf(An) … lim sup(An), and
both sets are closed.
To emphasize the dependence on l, let us denote the unique positive
solution of (1.4) by ule and the minimal positive solution of (1.5) by Ua

l. Let
en > 0 be a sequence converging to zero. Now for any given l0 > l

W0
1 (f), we

fix some L > l0 and consider the sets

Cn={(l, u
l
en
|W+ 2 “W): l

W0
1 (f) [ l [ L}.

It is well known that ule depends continuously on l in the C(W̄) norm.
Hence Cn, for each n, is a continuous curve in R×C(W+ 2 “W); in particu-
lar, it is a connected set in this space. By Theorem 2.1 (and a simple variant
of its proof), we easily see that conditions (i) and (ii) of Lemma 2.2 are
satisfied, and

lim inf(Cn)=lim sup(Cn)={(l, Ua
l) : lW01 (f) [ l [ L} — C.

Thus, by Lemma 2.2, C is connected. Moreover, a simple argument
involving upper and lower solutions shows that lQ U

a
l(x) is increasing.

Hence U
a
l must vary continuously with l in C(W+ 2 “W) for l ¥

(lW01 (f), L), in particular, for l near l0. Thus, we have proved the following.

Proposition 2.3. U
a
l varies continuously in C(W+ 2 “W) with l for

l > lW01 (f) and is increasing with l.

Remark 2.4. (i) In fact, it can be proved that U
a
l varies continuously

in C(W+ 2 “W) with l for all l ¥ (−.,.). To prove this, one considers the
boundary blow-up problem (1.5) with b(x) replaced by b(x)+e for small
e > 0, which has a unique positive solution Ule (see Remark 2.9 in [DH]),
and it is easily seen that Ule Q Ua

l in C(W+ 2 “W) as eQ 0. By uniqueness,
for fixed e, Ule varies continuously with l. Now a simple application of
Lemma 2.2 as above shows that U

a
l varies continuously with l.

(ii) Following the approach in (i), we can also show that the maximal
positive solution Ūl varies continuously with l in the same sense. Indeed,
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let We={x ¥ W : d(x, W0) < e}. Then since b(x) > 0 on W̄0We, as was men-
tioned in Remark 2.9 of [DH], a simple variant of the techniques of [MV]
can be used to show that

−Du+fu=lu−b(x) u2 in W0 W̄e, u |“W=0, u|“We=.

has a unique positive solution Ule . It is easily seen that U
l
e Q Ū

l as eQ 0 in
C(W+ 2 “W) as eQ 0, and this limit is uniform in l for l in bounded sets.
Thus, one can use Lemma 2.2 as before to deduce that Ūl varies continu-
ously with l.

3. PERTURBATION AND THE STEADY-STATE SOLUTIONS

In this section, we first use the results of Section 3.1 of Part I on classical
steady-state solutions of (1.1) to obtain a better understanding of the posi-
tive solution branch Se of (1.3). Then this information on Se is used to
deduce better results on the generalized steady-state solutions of (1.1); in
particular, we show that the positive solution set {(m, u, v)} of (1.2) con-
tains an unbounded continuum bifurcating from (lW+1 (dUa

), U
a
, 0). This

complements the result in Section 3.2 of Part I. We will see how Se evolves
to give both classical and generalized steady-state solutions of (1.1) as
eQ 0.
Let us recall that Se is a continuum of positive solutions of (1.3) that
connects the two semitrivial solutions (m0, 0, hm0) and (m

e
0, ue, 0), where ue is

the unique positive solution of (1.4) with f=0 and m e0=l
W
1 (due). We will

need the following result.

Lemma 3.1. Suppose fn ¥ C(W̄) satisfies

(i) fn \ −M for some constant M, fn Q. uniformly on W̄0 as
nQ., and
(ii) fn Q f in Lp(WŒ), for all p > 1 and for all WŒ …… W+, where

f ¥ C(W+ 2 “W).
Then lW1 (fn)Q l

W+
1 (f). Therefore, by Theorem 2.1, when l > l

W0
1 (0), as

eQ 0,

m e0=l
W
1 (due)Q l

W+
1 (dUa

).

Proof. Let B be a small ball such that B̄ … W+. Then

lW1 (−M) [ l
W
1 (fn) [ l

B
1 (fn)Q l

B
1 (f) <..

Therefore, by taking a subsequence when needed, we may assume that
mn=l

W
1 (fn)Q m

g.
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Let kn be the corresponding eigenfunction of mn:

−Dkn+fnkn=mnkn, kn |“W=0, ||kn ||.=1, kn \ 0.

Then −Dkn [ (mn+M) kn [M1kn for some large positive constantM1. By
Lemma 2.10 in Part I, subject to a subsequence, kn converges weakly in
W1, 2
0 (W) and strongly in L

p(W) ( for all p > 1) to some kg ¥W1, 2
0 (W), and

kg – 0.
Let t be an arbitrary nonnegative function in C.0 (W). Multiplying the
equation for kn by t, then integrating over W, we obtain

F
W

(fn+M) knt dx=(mn+M) F
W

knt dx−F
W

Nkn ·Nt dx.

Hence,

0 [min
W̄0

(fn+M) F
W0

knt dx [ (mn+M) F
W

knt dx−F
W

Nkn ·Nt dx

Q (mg+M) F
W

kgt dx−F
W

Nkg ·Nt dx.

By assumption (i), minW̄0 (fn+M)Q.. Hence

F
W0

kgt dx= lim
nQ.

F
W0

knt dx=0.

This implies that kg — 0 on W0. It follows that kg ¥W1, 2
0 (W+).

Now we choose an arbitrary function g ¥ C.0 (W+), and multiply the
equation for kn by g, then integrate over W. We obtain

F
W+

Nkn ·Ng dx+F
W+

fnkng dx=mn F
W+

kng dx.

Using assumption (ii), and letting nQ., we deduce

F
W+

Nkg ·Ng dx+F
W+

fkgg dx=mg F
W+

kgg dx.

That is, kg is a weak solution to

−Dk+fk=mgk, k|“W+=0.

By Theorem 3.9 in Part I, this implies that mg=lW+1 (f). As m
g is uniquely

determined in this way, we find that the whole sequence mn converges to
lW+1 (f). This finishes the proof. L
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We are now ready to analyze the behaviour of mg(e) and m
g(e) as eQ 0,

where mg(e) and m
g(e) are as in Section 1, namely, (1.3) has no positive

solution when m ¨ [mg(e), m
g(e)], and there is at least one positive solution

if m ¥ (mg(e), m
g(e)).

Theorem 3.2. The functions eQ mg(e) and eQ mg(e) are both nonincreasing.
Moreover,

(i) if l > lW01 (0), then lim eQ 0 m
g(e)=. and lim eQ 0 mg(e)=m̂ [ mg,

where mg is defined in Theorem 3.1 of Part I;
(ii) if lW1 (0) < l < l

W0
1 (0), then lim eQ 0 m

g(e)=mg and lim eQ 0 mg(e)
=mg, where m

g and mg are defined in Theorem 2.4 of Part I.

Proof. We first show that eQ mg(e) is nonincreasing. If mg(e) —
max{m0, m e0}, then, since m

e
0=l

W
1 (due) is nonincreasing with e, there is

nothing to prove. If mg(e) >max{m0, m e0} for some e=e0 > 0, then by
Lemma 2.5 of [DB], (1.3) (with e=e0) has a positive solution (u0, v0) with
m=mg(e0). Let e1 ¥ (0, e0]. Then

−Du0 [ lu0−(b(x)+e1) u
2
0−cu0v0.

We will call (u, v) a lower solution to (1.3) if

˛
−Du \ lu−[b(x)+e] u2−cuv,

−Dv [ mv−v2−duv,

u|“W \ 0, v |“W [ 0,

and call (u, v) an upper solution to (1.3) if the inequalities above are
reversed. Clearly, (u0, v0) is an upper solution to (1.3) with e=e1. Since
m=mg(e0) > m

e0
0 , if we choose e1 close enough to e0, then m > m

e1
0 and hence

the problem

−Dv=mv−v2−due1v, v |“W=0

has a unique positive solution ve1 . It is easily checked that (ue1 , ve1 ) is a
lower solution to (1.3) with e=e1. Moreover, it is easily seen that
ue1 \ ue0 \ u0 and ve1 [ v0. Thus, by standard upper and lower solution
argument for competition models, (1.3) with e=e1 has a positive solution
(u, v) satisfying u0 [ u [ ue1 and ve1 [ v [ v0. By the definition of m

g(e), we
must have mg(e1) \ m=mg(e0). Thus eQ mg(e) is always nonincreasing.
The fact that eQ mg(e) is nonincreasing can be proved by a similar
argument.
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Next we prove that mg(e)Q. as eQ 0 provided that l > lW01 (0). We
view (1.3) as a perturbation of

˛
−Du=lu−b(x) u2−cuv,

−Dv=mv−v2−duv,

u|“W=0, v|“W=0,

(3.1)

and use a degree argument.
Given any m̂ >max{lW+1 (dUa

), mg}, where mg is as in Theorem 3.1 of
Part I. By Lemma 3.2 there, we can find a constant M> 0 such that any
positive solution (u, v) of (3.1) with m ¥ [0, m̂] satisfies ||u||. [M. Note also
that we always have v [ hm [ hm̂.
Let us choose large positive constantsM1 andM2 such that

f(u, v)=(l+M1) u−b(x) u2−cuv is increasing in u

and

gm(u, v)=(m+M2) v−v2−duv is increasing in v

for all 0 [ u [M+1, 0 [ v [ ||hm̂ ||.+1, and all m ¥ [0, m̂]. Then clearly

Am(u, v)=((−D+M1)−1f(u, v), (−D+M2)−1 gm(u, v))

maps the set

B={(u, v) ¥ C(W̄)×C(W̄) : 0 [ u [M+1, 0 [ v [ ||hm̂ ||.+1}

into the natural positive cone K in C(W̄)×C(W̄). Moreover, by our discus-
sion above, any positive solution of (3.1) belongs to the relative interior of
B with respect to K. Furthermore, it is easily seen that nonnegative
solutions of (3.1) are nonnegative fixed points of Am and Am is completely
continuous.
Let us now consider the fixed point index indexK(Am, B). When
lW1 (0) < m < mg, the only nonnegative solutions of (3.1) are (u, v)=(0, 0)
and (u, v)=(0, hm), both are linearly unstable solutions of (3.1). By
Dancer’s fixed point index formula [D2], for such m,

indexK(Am, (0, 0))=indexK(Am, (0, hm))=0.

Therefore,

indexK(Am, B)=indexK(Am, (0, 0))+indexK(Am, (0, hm))=0.

DEGENERACY IN THE COMPETITION MODEL, II 145



As Am has no fixed point on “KB, the relative boundary of B with respect to
K, for any m ¥ [0, m̂], by the continuity property of the fixed point index
(see [A]), indexK(Am, B) is independent of m ¥ [0, m̂] and is thus identically
zero.
Consider now m ¥ (m0, m̂], where m0 is as in Theorem 3.1 of Part I. For
such m, the trivial solution (0, 0) of (3.1) is linearly unstable and hence has
fixed point index 0, but the semitrivial solution (0, hm) is linearly stable,
and therefore it has fixed point index 1. It follows that we can find small
neighborhoods N0 of (0, 0) and N1 of (0, hm) such that

indexK(Am̂, B0(N0 2N1))

=indexK(Am̂, B)−indexK(Am̂, (0, 0))− indexK(Am̂, (0, hm̂))

=0−0−1=−1.

Let A em(u, v) denote the operator obtained by replacing b(x) by b(x)+e
in the definition of Am(u, v). For e > 0 small enough, one sees that A

e
m̂ maps

B into K (we may need to enlarge M1 a little to ensure this), is completely
continuous and varies continuously with e. It follows from the continuity
property of the fixed point index that, for all sufficiently small e > 0,
indexK(A

e
m̂, B0(N0 2N1)) is well defined and equals indexK(Am̂, B0(N0 2N1))

=−1. Thus A em̂ has a fixed point (u, v) in B0(N0 2N1)), i.e., (3.1) has a
positive solution with m=m̂ for all small e > 0. In particular, mg(e) \ m̂. As
m̂ is arbitrary, this implies mg(e)Q. as eQ 0.
Let us now prove that lim eQ 0 mg(e) [ mg. Since mg(e) is nonincreasing
with e and mg(e) [ m

0, lim eQ 0 mg(e)=m̂ exists. If m̂ > mg, then, since m̂ [ m
0,

we must have mg < m
0. By Theorem 3.1 in Part I, (3.1) with m=mg has a

positive solution (u0, v0). It is easily checked that (u0, v0) is a lower solution
to (1.3) with m=mg for any e > 0. Moreover, since mg < m

0, l=
lW1 (chm0) > l

W
1 (chmg ), and thus, the problem

−Du=lu−(b(x)+e) u2−chmgu, u|“W=0

has a unique positive solution ug. Clearly (ug, hmg ) is an upper solution of
(1.3) with m=mg, and v0 [ hmg , u0 \ u

g. Thus, (1.3) with m=mg has a posi-
tive solution, and hence mg(e) [ mg. But this implies m̂ [ mg, a contradic-
tion. Therefore, we must have m̂ [ mg, as required.
Finally we consider the case lW1 (0) < l < l

W0
1 (0). We first show that

lim eQ 0 mg(e)=mg. The argument in the last paragraph shows that
m̂=lim eQ 0 mg(e) [ mg. We show that m̂ \ mg. Otherwise, m̂ < mg. Thus, for
any e > 0 and a suitable fixed d > 0, (1.3) has a positive solution (ue, ve)
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with m=m̂+d < mg [ m
0. Choose a sequence en Q 0 and denote (un, vn)=

(uen , ven ). Since l < l
W0
1 (0), un has an L

. bound independent of n. It follows
that −Dun and −Dvn both have L. bounds independent of n. By the Lp

theory for elliptic equations, we find that {un} and {vn} are bounded in
W2, p(W) for any p > 1. Thus, subject to a subsequence, un Q u0 and vn Q v0
in the C1 norm and (u0, v0) is a nonnegative solution of (3.1) with
m=m̂+d < mg. By the definition of mg, (u0, v0) cannot be a positive solu-
tion of (3.1). If u0=0, then un Q 0 and from the equation for un we obtain

l=lW1 ((b+en) un+cvn)Q l
W
1 (cv0)

[ lW1 (chm̂+d) < l
W
1 (chm0),

which contradicts the definition of m0. If v0=0, then vn Q 0, and from the
equation for vn, we deduce

m̂+d=lW1 (vn+dun)Q l
W
1 (du0).

Hence m̂+d=lW1 (du0). But as u0 ] 0 and (u0, v0) solves (3.1), u0 must be
the unique positive solution of

−Du=lu−b(x) u2, u |“W=0.

It follows that lW1 (du0)=m0, where m0 is defined in Theorem 2.4 of Part I,
and mg [ m0. Thus m̂+d \ mg, a contradiction. This proves that m̂=mg.
The fact that lim eQ 0 mg(e)=mg is proved by an analogous argument
except that now it is not evident that mg(e) is bounded from above. If mg(e)
has no bound from above, then since it is nonincreasing with e, for any
sequence en Q 0, mg(en)Q.. Let (un, vn) be a positive solution of (1.3) with
e=en and m=mn=mg(en). Since un [ U, the unique positive solution of
(1.4) with f=e=0, we have ||un ||. [ ||U||.. From the equation for vn, we
obtain

−Dvn \ mnvn−v
2
n−d ||U||.vn,

and hence vn \ hmn −d ||U||. . Now we use the equation for un and deduce

l \ lW1 (cvn) \ l
W
1 (chmn −d ||U||. )Q.,

a contradiction. Thus mg(e) must be bounded from above, which implies
m̂=lim eQ 0 mg(e) exists. The proof for m̂=mg is analogous to that in the
last paragraph and is left to the reader. L

Remark 3.3. Using Theorem 3.2 above and Theorem 3.6 of Part I, we
can easily construct examples for the classical competition model (1.3) such
that

mg(e) <min{m
0, m e0} and m

g(e) >max{m0, m e0}.
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We suppose l > lW01 (0). If we choose c suitably, we can have m̄ < l
W+
1 (0)

< m0, where m̄ is as in Theorem 3.6 of Part I, namely, lW01 (chm̄)=l. By
Theorem 3.6 of Part I, for all small d, mg is close to m̄, and we can assume
that d is so small that lW+1 (dUa

) is close to lW+1 (0) and hence greater than
mg. Now for small e > 0, m

e
0=l

W
1 (due) is close to l

W+
1 (dUa

) by Lemma 3.1,
and mg(e) is close to some m̂ [ mg while m

g(e) is very large by Theorem 3.2;
therefore, for all small e > 0, we have

mg(e) < m
e
0 < m

0 < mg(e).

If we choose c such that m0 < lW+1 (0), then our above argument gives an
example where

mg(e) < m
0 < m e0 < m

g(e).

Moreover, a more careful (and tedious) analysis of the construction above
shows that we can choose parameters so that

mg(e) < m
e
0=m

0 < mg(e).

In this last case, when m=m0, the two semitrivial solutions (ue, 0) and
(0, hm) are both linearly neutral (i.e., the linearization has zero as the first
eigenvalue), yet (1.3) has a positive solution. This contrasts to the examples
of Dancer in [D1] where the two semitrivial solutions of the Lotka–
Volterra competition model are linearly neutral, but there is no positive
steady-state solution.

In the following, we are going to analyze how the solutions on Se
approach the steady-state solutions of (1.1) as eQ 0. To this end, we need
the following useful lemma.

Lemma 3.4. Suppose l > lW01 (0) and (un, vn) is a positive solution of (1.3)
with m=mn and e=en > 0. Moreover, assume that en decreases to 0 as
nQ., {mn} is bounded and ||un ||. Q.. Then, subject to a subsequence,
(mn, un, vn)Q (m̂, û, v̂), where (û, v̂)=(., 0) on W0, and on W+, (û, v̂) is a
positive solution of (1.2) with m=m̂ except when m̂=lW+1 (dUa

), in which case,
(û, v̂)=(U

a
, 0) is possible. Moreover, û [ U

a
. Here vn Q v̂ is in the norm of

Lp(W), for all p > 1, and un Q û is in the following sense: un Q. uniformly
on W̄0, and un Q û uniformly on any compact subset of W+ 2 “W.

Proof. We may assume that mn [ m̃ <.. Since

−Dvn=mnvn−v
2
n−dunvn [ m̃vn,
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and 0 [ vn [ hm̃, by Lemma 2.10 in Part I, subject to a subsequence, vn
converges weakly in W1, 2

0 (W) and strongly in L
p(W) (for all p > 1) to some

v̂ ¥W1, 2
0 (W). We may also assume that mn Q m̂.

Consider now ûn=un/||un ||.. It satisfies the equation

−Dûn=lûn−(b(x)+en) ||un ||. û
2
n−cvn ûn, ûn |“W=0. (3.2)

Hence −Dûn [ lûn. By Lemma 2.10 in Part I, it follows that, subject to a
subsequence, ûn converges weakly in W

1, 2
0 (W) and strongly in L

p(W) ( for
all p > 1) to some ug and ug – 0. Moreover, since un [ Ua

on W+, we must
have ug — 0 on W+. Thus ug ¥W

1, 2
0 (W0).

If un(xn)=||un ||., xn ¥ W, we have −Dun(xn) \ 0 and hence

lun(xn)−(b(xn)+en) un(xn)2−cun(xn) vn(xn) \ 0.

It follows that en ||un ||. [ l. Thus we may assume that en ||un ||. Q t \ 0 as
nQ.. We now multiply (3.2) by an arbitrary function k ¥ C.0 (W0), and
then integrate it over W0. We obtain

F
W0

Nûn ·Nk dx=F
W0

(lûn− en ||un ||. û
2
n−cvn ûn) k dx.

Letting nQ., we have

F
W0

Nug ·Nk dx=F
W0

(lug−t(ug)2−cv̂ug) k dx.

Hence, ug is a weak solution to

−Du=lu−tu2−cv̂u, u|“W0=0.

As l−tug−cv̂ ¥ L.(W0) and ug is nonnegative, by the weak Harnack
inequality, we must have ug > 0 in W0. Moreover, from the right-hand side
of (3.2), we find that −Dûn has an L.(W0) bound independent of n. Thus
by the interior Lp estimates, ||ûn ||W2, p(WŒ) has a bound independent of n for
any WŒ …… W0. It follows that, subject to a subsequence, ûn converges to ug

in the C1 norm on WŒ. Thus, un=||un ||. ûn Q. uniformly on any
WŒ …… W0.
Multiplying the equation for vn by any k ¥ C.(W) satisfying k > 0 in W
and k|“W=0, and integrating over W, we obtain

F
W

Nvn ·Nk dx=F
W

(mnvn−v
2
n) k dx−F

W

dunvnk dx.
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It follows that

F
W

dûnvnk dx=(||un ||.)−1 5−F
W

Nvn ·Nk dx+F
W

(mnvn−v
2
n) k dx6 .

Letting nQ., we deduce

F
W

dug v̂k dx=0.

As ug=0 on W+, it follows >W0 u
gv̂k dx=0. But both ug and k are positive

in W0, and v̂ is nonnegative. So we must have v̂=0 on W0.
Since vn Q v̂ in Lp(W) ( for all p > 1), and {vn} is L.(W) bounded, a
careful check of Steps 1–3 in the proof of Theorem 2.1 shows that if we
replace the function f there by vn, then we can still reach the same conclu-
sion. Thus, un Q. uniformly on W̄0. From here, it is easily checked that,
subject to a subsequence, un Q û uniformly on any compact subset of
W+ 2 “W, and (û, v̂) is a nonnegative solution of (1.2) with m=m̂. To see,
for example, û |“W0=., we can compare û with the minimal positive solu-
tion w of (1.5) with f=||hm̃ ||. and with b(x) replaced by some constant
B > ||b||.+en for all n. w can be obtained as the limit of the solutions wn of
(1.5) with the above modifications and with wn |“Wn=minW̄0 un. By Lemma
2.1 of [DH], we have un \ wn. Thus û \ w and hence û |“W0=..
If v̂=0, then û must be a positive solution of (1.5) and hence û \ U

a
. But

each un [ Ua
. Thus we must have û=U

a
. But by Lemma 3.1 and the

equation for vn, we have

mn=l
W
1 (vn+dun)Q l

W+
1 (dUa

).

Thus we must have m̂=lW+1 (dUa
). Hence (û, v̂) is a positive solution of (1.3)

with m=m̂, unless m̂=lW+1 (dUa
), in which case, it is possible that

(û, v̂)=(U
a
, 0). This finishes the proof. L

Theorem 3.5. Suppose l > lW01 (0). Then, the closure of the positive
solution set {(m, u, v)} of (1.2) in the space R×C(W+ 2 “W)×L2(W+)
contains an unbounded connected set Ŝ such that

(i) (lW+1 (dUa
), U
a
, 0) ¥ Ŝ;

(ii) Ŝ0{(lW+1 (dUa
), U
a
, 0)} consists of positive solutions of (1.2);

(iii) {m: (m, u, v) ¥ Ŝ} ‡ (lW+1 (dUa
),.).

Thus, we can say that (1.2) has an unbounded positive solution branch
bifurcating from the semitrivial solution branch {(m, U

a
, 0) : m ¥ R} at

m=lW+1 (dUa
).
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Proof. Since l > lW01 (0), by Lemma 3.1 and Theorem 3.2, for all small
e > 0, m e0 [ l

W+
1 (dUa

) < mg(e). From Lemma 2.6 in [DB], we easily see that
for each m ¥ (m e0, m

g(e)], (1.3) has a minimal positive solution (u em, v
e
m) in the

sense that any other positive solution (u, v) of (1.3) satisfies u [ u em, and
v \ v em. Let us introduce, in the space R×C

1(W̄)×C1(W̄), the set

D em=(−., m]×[u
e
m,.)×(−., v

e
m],

where

[u em,.)={u ¥ C
1(W̄) : u \ u em}, (−., v

e
m]={v ¥ C

1(W̄) : v [ v em}.

It follows from Lemma 3.2 of [DB] and the remark following it that

“D em 5 Se={(m, u em, v em)}.

If we use w to denote the interior of D em, then the above identity shows that
“w 5 Se consists of a single point. By Lemma 3.1 of [DB], this implies that
Se 5 w is a connected set. Let us use Sme to denote this set. Then

Sme … D
e
m=(−., m]×[u

e
m,.)×(−., v

e
m].

Let en be a decreasing sequence of positive numbers that converges to
zero. For each m̃ > lW+1 (dUa

), we can find n0 such that mg(en) > m̃ > m
en
0

holds for all n \ n0. Define, for n \ n0,

An=S
m̃
en
2 {(lW1 (duen ), uen , 0)},

and we understand that for (m, u, v) ¥ An, the functions u and v are
considered as their restrictions on W+.
Let (ugn , v

g
n ) be the minimal positive solution of (1.3) with e=en and

m=mg(en), and let (mn, un, vn) ¥ S
m̃
en
. Then vn [ v

g
n , and un \ u

g
n . We first

note that ||ugn ||. Q. as nQ.. Otherwise, we may assume d ||ugn ||. [M for
all n. Then,

−Dvgn=m
g(en) v

g
n −(v

g
n )
2−dugn v

g
n \ (m

g(en)−M) v
g
n −(v

g
n )
2.

It follows that vgn \ hmg(en)−M, and so, as m
g(en)Q. by Theorem 3.2,

lW1 (cv
g
n ) \ l

W
1 (chmg(en)−M)Q..

But from the equation for ugn , we deduce l
W
1 (cv

g
n ) < l. This contradiction

shows that ||ugn ||. Q. as nQ.. It follows that ||un ||. Q.. We now use
Lemma 3.4 and see that 1 An is precompact and lim sup(An) consists of
positive solutions of (1.2) satisfying u [ U

a
, together with (lW+1 (dUa

), U
a
, 0).

By Theorem 2.1 and Lemma 3.1, we have uen Q Ua
in C(W+ 2 “W) and

lW1 (duen )Q l
W+
1 (dUa

) as nQ.. Hence

(lW+1 (dUa
), U
a
, 0) ¥ lim inf(An).
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By Lemma 2.2, S m̃=lim sup(An) is a nonempty connected set consisting of
positive solutions of (1.2) satisfying u [ U

a
, together with (lW+1 (dUa

), U
a
, 0).

Moreover, it follows from Lemma 3.4 that {m: (m, u, v) ¥ Sm̃}‡ [lW+1 (dUa
), m̃].

Let Ŝ=1m̃ > lW+1 (dU
a
) S m̃. Then clearly Ŝ is connected, consists of positive

solutions of (1.2) with u [ U
a
and the point (lW+1 (dUa

), U
a
, 0), and

{m: (m, u, v) ¥ Ŝ} ‡ [lW+1 (dUa
),.). The proof is complete. L

Remark 3.6. The proof of Theorem 3.5 shows that when l > lW01 (0),
for any fixed m > lW+1 (dUa

) and all sufficiently small e > 0, thanks to
conclusion (i) of Theorem 3.2, (1.3) has a minimal positive solution (ue, ve)
and for any sequence en Q 0, (mn, un, vn)=(m, uen , ven ) has the property
described in Lemma 3.4. This shows that (un, vn) has pattern W0 for large n.
Note that these minimal solutions are asymptotically stable as steady-state
solutions of the corresponding parabolic problem.

Theorem 3.5 and its proof also shows that when l> lW01 (0), as eQ 0, part of
the positive solution branch Se of (1.3) evolves to an unbounded branch of
generalized steady-state solutions of (1.1). Let us now see how Se also produces
an unbounded branch of classical steady-state solutions of (1.1) when eQ 0.
Suppose l> lW01 (0). By Lemma 3.2 in Part I, we know that for any fixed
m̃> m0, every positive solution (m, u, v) of (3.1) with m ¥ [lW1 (0), m̃] satisfies

||u||. [M, ||v||. [ ||hm̃ ||..

Denote

Bm̃={(u, v) ¥ C(W̄)×C(W̄) : 0 [ u [M+1, 0 [ v [ ||hm̃ ||.+1}.

Then (3.1) with m ¥ [lW1 (0), m̃] has no nonnegative solution (u, v) lying on
“KBm̃, the relative boundary of Bm̃ with respect to the natural positive cone K in
C(W̄)×C(W̄). A simple compactness argument shows that there exists em̃ > 0
such that, when 0 < e[ em̃, (1.3) has no nonnegative solution (m, u, v) satisfying
m ¥ [lW1 (0), m̃] and (u, v) ¥ “KBm̃. Since clearly (m

0, 0, hm0) ¥ R×Bm̃, and
Se 5 ({lW1 (0)}×Bm̃])=”, we see that Se 5 ([lW1 (0), m̃]×Bm̃) contains a
component Ŝm̃e which joins (m

0, 0, hm0) and some point (m, u, v) ¥ Se with m=m̃.
Choose a decreasing sequence of numbers en ¥ (0, em̃) satisfying en Q 0,
and define An=Ŝ

m̃
en
for all large n such that m en0 < m̃ < m

g(en). It is easily
seen that 1 An is precompact, lim sup(An) consists of positive solutions of
(3.1) together with (m0, 0, hm0), and (m0, 0, hm0) ¥ lim inf(An). Hence by
Lemma 2.2, Ŝ m̃=lim sup(An) is a nonempty connected set consisting of
positive solutions of (3.1) together with (m0, 0, hm0). Define ŜŒ=1m̃ > m0 Ŝ m̃.
Then ŜŒ is a connected set consisting of positive solutions of (3.1) together
with (m0, 0, hm0) and {m: (m, u, v) ¥ ŜŒ} ‡ [m0,.). Since (m0, 0, hm0) is a
simple bifurcation point, the part of ŜŒ near (m0, 0, hm0) is a simple curve. It
follows that S0=ŜŒ0{(m0, 0, hm0)} is connected, consists of positive solu-
tions of (3.1), joins (m0, 0, hm0), and satisfies {m: (m, u, v) ¥ S0} ‡ (m0,.).
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Moreover, S0 … S, where S is the positive solution branch of (3.1) given in
Theorem 3.1 of Part I, since both connected sets coincide near (m0, 0, hm0).
Finally, let us look briefly at the case lW1 (0) < l < l

W0
1 (0). In this case, it

is easily proved that for any sequence en Q 0, 1 Sen is precompact and
lim inf(Sen ) contains both (m

0, 0, hm0) and (m0, U, 0), where we follow the
notations of Theorem 2.4 in Part I. Moreover, the connected set
lim sup(Sen ) consists of positive solutions of (3.1) together with the
two semitrivial solutions given above. As both semitrivial solutions are
simple bifurcation points, it follows that S0=lim sup(Sen )0{(m

0, 0, hm0),
(m0, U, 0)} is a connected set which consists of positive solutions of (3.1)
and joins the two semitrivial solutions. Moreover, S0 … S, where S is the
positive solution branch given in Theorem 2.4 of Part I.
Since in both Theorems 2.4 and 3.1 of Part I, not much is known about
the positive solution branch S apart from those part of it which are close to
the semitrivial solutions, our above arguments do not exclude the possi-
bility that S0 is a proper subset of S. On the other and, by Theorem 3.2,
{m: (m, u, v) ¥ S0} ‡ {m: (m, u, v) ¥ S}.
Finally in this section, let us look at a case where all the positive solu-
tions of (1.3) for a certain range of m converge, as eQ 0, to generalized
steady-state solutions of (1.1).

Theorem 3.7. Let (un, vn) be a positive solution of (1.3) with a fixed
m < m
¯
and e=en Q 0, where m

¯
is determined by l=lW01 (chm

¯

). Then subject to
a subsequence, (un, vn)Q (û, v̂), where (û, v̂)=(., 0) on W0, and on W+,
(û, v̂) is a positive solution of (1.2). Here vn Q v̂ is in the norm of Lp(W), for
all p > 1, and un Q û is in the following sense: un Q. uniformly on W̄0, and
un Q û uniformly on any compact subset of W+ 2 “W.

Proof. Since vn [ hm, we have un \ ûn where ûn denotes the unique
positive solution of

−Du=lu−(b(x)+en) u2−chmu, u|“W=0.

The existence of ûn follows from m < m
¯
which implies l > lW01 (chm)

> lW1 (chm). Also from l > l
W0
1 (chm), we deduce by Theorem 2.1 that ûn Q.

uniformly on W̄0. Therefore, ||un ||. Q. as nQ.. The conclusion of the
theorem now follows from Lemma 3.4. This completes the proof. L

Remark 3.8. A sufficient condition for the existence of (un, vn) as in
Theorem 3.7 is that lW+1 (dUa

) < m
¯
, which is satisfied, from the definition of

m
¯
, if c is sufficiently small. Indeed, by Theorem 3.1, mg(en) [ m

en
0=l

W
1 (duen )Q

lW+1 (dUa
) as nQ., and by Theorem 3.2, mg(en)Q. as nQ.. Thus for

any m satisfying lW+1 (dUa
) < m < m

¯
, for all large n, mg(en) < m < m

g(en), and
(1.3) has a positive solution (un, vn) with e=en.
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4. DYNAMICAL BEHAVIOUR

In this section, we discuss the dynamical behaviour of (1.1). As the case
l < lW01 (0) was considered in Part I already, we only discuss here the case

l > lW01 (0). (4.1)

We assume (4.1) throughout this section.

Theorem 4.1 (Extinction of u). Suppose that m <min{lW+1 (0), mg},
where mg is given in Theorem 3.1 of Part I. Then any positive solution (u, v)
of (1.1) satisfies ||v( · , t)||. Q 0 and minx ¥ W̄0 u(x, t)Q., as tQ..

Proof. We may assume that both u(x, 0)=u0(x) and v(x, 0)=v0(x) are
nonnegative and not identically zero. Let e > 0 and (Ue, Ve) be the unique
solution of the problem

˛
ut−Du=lu−(b(x)+e) u2−cuv, t > 0, x ¥ W,

vt−Dv=mv−v2−duv, t > 0, x ¥ W,

u(x, t)=v(x, t)=0, t > 0, x ¥ “W,

u(x, 0)=u0(x), v(x, 0)=v0(x), x ¥ W.

(4.2)

It follows from the order preserving property of this system that u \ Ue and
v [ Ve for all t > 0 and x ¥ W. (See, e.g., [HL, Ma, Sa, S].)
If we can prove that for some e > 0, m < mg(e) holds, then by the known
dynamical behaviour of (4.2) in this case (compare case (ii) in Theorem 2.6
of Part I), Ve(x, t)Q 0 uniformly in x as tQ.. As 0 [ v(x, t) [ Ve(x, t), it
follows that ||v( · , t)||. Q 0 as tQ.. By (4.1), we know that for some d > 0
small, l > lW01 (0)+d. Assume that c||v( · , t)||. [ d when t \ T > 0. Then
u(x, t) \ w(x, t) for t > T, where w is the unique solution of

wt−Dw=(l−d) w−b(x) w2, w|“W=0, w(x, T)=u(x, T).

By Theorem 2.3 of Part I, it follows from l−d > lW01 (0) that w(x, t)Q.
uniformly for x ¥ W̄0 as tQ.. Therefore, minx ¥ W̄0 u(x, t)Q. as tQ..
Thus it suffices to show that m < mg(e) for all small positive e. We argue
indirectly. Suppose that there is a sequence of positive numbers en such that
en Q 0 and mg(en) [ m. Choose mŒ satisfying m < mŒ <min{l

W+
1 (0), mg}. By

Theorem 3.2, we may assume that mg(en) > mŒ for all n. Thus, (1.3) has a
positive solution (un, vn) with e=en and m=mŒ. If {||un ||.} is bounded, then
a simple compactness argument shows that, subject to a subsequence,
(un, vn) converges in C1(W̄) to a nonnegative steady-state solution (ug, vg)
of (1.1) with m=mŒ. If (ug, vg) is a positive solution, then we must have
mŒ \ mg by the definition of mg. But this contradicts the choice of mŒ. Thus
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we necessarily have (ug, vg)=(0, hm) or (ug, vg)=(0, 0). If the first alter-
native occurs, then we must have mŒ=m0 \ mg, contradicting the choice of
mŒ. This implies that the second alternative must occur. But then
l=lW1 (bun+cvn)Q l

W
1 (0), contradicting (4.1). This shows that {||un ||.}

must be unbounded. We may assume that ||un ||. Q. as nQ.. Now we
can use Lemma 3.4 to conclude that, subject to a subsequence, vn Q v̂ in
Lp(W) ( for all p > 1) and un Q. uniformly on W̄0 and un Q Ug in C(WŒ)
for any compact subset WŒ of W+ 2 “W, and Ug is a positive solution of
(1.5) with f=v̂. By Lemma 3.1, we obtain

mŒ=lW1 (vn+dun)Q l
W+
1 (v̂+dU

g) > lW+1 (0),

again contradicting the choice of mŒ. This finishes the proof. L

Theorem 4.2 (Persistance of u). If m > lW+1 (dŪ), where Ū denotes the
maximal positive solution of (1.5) with f=0, then for any compact subset WŒ
of W+,

J
tQ.

min
x ¥ WŒ
v(x, t) > 0.

Proof. If we can find a subdomain Wœ of W+ such that WŒ ……

Wœ …… W+ and m > l
Wœ
1 (dŪ), then the classical logistic problem

−Dw=mw−w2−dŪw in Wœ, w|“Wœ=0

has a unique positive solution w and any positive solution w(x, t) of

wt−Dw=mw−w2−dŪw, w|“Wœ=0

satisfies w(x, t)Q w(x) uniformly on Wœ as tQ.. But we have v(x, t) \
w(x, t) for t > 0 and x ¥ Wœ by the maximum principle. Therefore,

J
tQ.

min
x ¥ WŒ
v(x, t) \ lim

tQ.
min
x ¥ WŒ
w(x, t)=min

x ¥ WŒ
w(x) > 0.

It remains to find such a subdomain Wœ. Define

Wn={x ¥ W+ : d(x, “W+) > d/n},

where d > 0 is chosen such that W1 ]”. Then clearly W1 … W2 … · · · …
Wn … · · · …… W+, and WŒ …… Wn for all large n.
Denote mn=l

Wn
1 (dŪ). Then mn is a decreasing sequence bounded from

below by lW+1 (dŪ). Therefore mn Q m̂ exists and m̂ \ l
W+
1 (dŪ). We show

that m̂=lW+1 (dŪ). This would complete the proof for we can then choose
Wœ=Wn for some large n.
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Let vn be the eigenfunction corresponding to mn as

−Dvn+dŪvn=mnvn in Wn, vn |“Wn=0, vn > 0 in Wn, ||vn ||L.(Wn)=1.

Define ṽn=vn on Wn, and ṽn=0 outside Wn. Then ṽn ¥W
1, 2
0 (W+) and

F
W+

|Nṽn |2 dx=F
Wn

|Nṽn |2 dx [ mn F
Wn

ṽ2n dx [ m1 |W+|.

It follows that, subject to a subsequence, ṽn converges weakly in W
1, 2
0 (W+)

and strongly in L2(W+) to some ṽ ¥W
1, 2
0 (W+). Since ||ṽn ||.=1, ṽn Q ṽ in

Lp(W+) for all p > 1.
Let un denote the unique solution to

−Dun=ṽn in W+, un |“W+=0,

and let wn be the unique solution to

−Dwn=vn in Wn, wn |“Wn=0.

Then it follows from the maximum principle that un \ wn in Wn. If ṽ — 0,
that is, ṽn Q 0 in Lp(W+) for any p > 1, then un Q 0 in C1(W+). It then
follows from 0 [ wn [ un in Wn that ||wn ||L.(Wn) Q 0 as nQ.. From
−Dvn [ m1vn=−D(m1wn) in Wn and (vn−m1wn) |“Wn=0, we deduce
0 [ vn [ m1wn in Wn, and hence, ||vn ||L.(Wn) Q 0 as nQ.. But this contra-
dicts the fact that ||vn ||L.(Wn)=1. Thus we have proved that ṽ – 0.
Let k be an arbitrary function in C.0 (W+). We multiply the
equation for vn by k, integrate over W+, and obtain, for all large n such
that Wn ‡ support(k),

F
W+

Nṽn ·Nk dx+F
W+

dŪṽnk dx=mn F
W+

ṽnk dx.

Letting nQ., we obtain

F
W+

Nṽ ·Nk dx+F
W+

dŪṽk dx=m̂ F
W+

ṽk dx.

That is to say that ṽ is a weak solution of

−Dv+dŪv=m̂v, v |“W+=0.

By Theorem 3.9 of Part I, we must have m̂=lW+1 (dŪ), as required. The
proof is complete. L

The conclusion of Theorem 4.2 can be sharpened considerably. Indeed,
we have the following better result.
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Theorem 4.3. Suppose m > lW+1 (dŪ) and let (u¯
, v
¯
) denote the minimal

positive solution of (1.2) guaranteed by Theorem 3.15 of Part I. Then for any
positive solution (u, v) of (1.1) and any compact subdomain WŒ of W+, we
have

J
tQ.

v(x, t) \ v
¯
(x), O

tQ.
u(x, t) [ u

¯
(x), uniformly in WŒ.

Proof. Let uk and vk, k=1, 2, ..., be defined as in the proof of Theorem
3.15 in Part I. The proof there shows that uk decreases to u¯

and vk increases
to v
¯
as kQ., uniformly on any compact subset of W+. Thus it suffices to

show that for all large k,

J
tQ.

v(x, t) \ vk(x), O
tQ.
u(x, t) [ uk(x), (4.3)

uniformly on any compact subset of W+.
Let Wn be defined as in the proof of Theorem 4.2. We know from there
m > lWn1 (dŪ) for all large n. Without loss of generality, we may assume that
this is true for every n \ 1. Denote by wn the unique positive solution of

−Dw=mw−w2−dŪw in Wn, w|“Wn=0.

Then wn increases with n by a simple variant of Lemma 2.1 in [DH]. We
may regard wn as extended to be zero outside Wn. Then from the equation
for wn and the fact that wn [ m, we easily deduce that wn converges weakly
in W1, 2

0 (W+) and strongly in L
p(W+) ( for all p > 1) to some wg ¥W1, 2

0 (W+)
which is a positive solution to

−Dw=mw−w2−dŪw in W+, w|“W+=0.

By Theorem 3.8 of Part I, wg must agree with v1 given in the proof of
Theorem 3.15 of Part I.
If we denote by wkn the unique positive solution of

−Dw=mw−w2−duk−1w in Wn, w|“Wn=0,

then a similar consideration shows that the extended wkn converges, as
nQ., weakly in W1, 2

0 (W+) and strongly in L
p(W+) ( for all p > 1) to vk.

Moreover, by the Lp interior estimate and the Sobolev imbedding theorem,
one easily sees that wn Q v1 and w

k
n Q vk are uniform on any compact

subset of W+.
We are now ready to show (4.3). We use an induction argument. From
the proof of Theorem 4.2 we see that, for all large n, J tQ.

v(x, t) \ wn(x) uniformly on any given compact subdomain of W+. Since
wn Q v1, we deduce

J
tQ.

v(x, t) \ v1(x) (4.4)
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uniformly on any compact subdomain of W+. It follows that, for any e > 0,
we can find T > 0 such that

v(x, t) \ v1(x)− e, for all t \ T, for all x ¥ We={x ¥ W+ : v1(x) > e}.

If we extend v1(x) to be zero outside W+, then, since v(x, t) \ 0 for all t > 0
and x ¥ W, we have

v(x, t) \ v1(x)− e, for all t \ T, for all x ¥ W.

Let z(x, t) be the unique solution of the problem

zt−Dz=lz−b(x) z2−c(v1− e) z, z |“W=0, z(x, T)=u(x, T). (4.5)

Then u(x, t) [ z(x, t) for all t \ T and x ¥ W.
By Theorem 2.3 of Part I, according as l+ce < lW01 (cv1) or l+ce \
lW01 (cv1), when tQ., z(x, t) converges uniformly on W̄ to the unique
steady-state ze of (4.5), or OtQ. z(x, t) [ Z̄e uniformly on any compact
subset of W+ 2 “W, where Z̄e denotes the maximal positive solution of

−Dz=lz−b(x) z2−c(v1− e) z in W+, z |“W=0, z|“W0=..

Since ze [ Z̄e when both exist, we see thatOtQ. z(x, t) [ Z̄e always holds.
It follows that OtQ. u(x, t) [ Z̄e. By Remark 2.4, we know that
Z̄e(x)Q u1(x) as eQ 0 uniformly on any compact subset of W+ 2 “W.
Hence,

O
tQ.
u(x, t) [ u1(x) (4.6)

uniformly on any compact subset of W+ 2 “W. Thus we have proved that
(4.3) holds for k=1.
Suppose that (4.3) holds for k=m \ 1. We want to show that it holds
for k=m+1. For e > 0 sufficiently small such that m−de > lW+1 (dŪ), by
(4.3) with k=m, we can find Tn > 0 such that u(x, t) [ um(x)+e for t \ Tn
and x ¥ Wn. For any n \ 1, let w(x, t) be the unique solution to

wt−Dw=mw−w2−d(um+e) w for t > Tn, x ¥ Wn,

w|“Wn=0, w(x, Tn)=v(x, Tn).

Then clearly v(x, t) \ w(x, t) for t \ Tn and x ¥ Wn. For all large n,
m−de > lWn1 (dŪ) > l

Wn
1 (dum), and hence, as tQ., w(x, t) converges

uniformly on Wn to the unique positive solution we of

−Dw=mw−w2−d(um+e) w, w|“Wn=0.
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HenceJ tQ. v(x, t) \ we(x) uniformly on Wn. But we(x)Q w
m+1
n as eQ 0,

uniformly on Wn. Hence J tQ. v(x, t) \ w
m+1
n (x) uniformly on Wn. As

wm+1n (x)Q vm+1(x) uniformly on any compact subset of W+ as nQ., we
deduce finally that

J
tQ.

v(x, t) \ vm+1(x)

uniformly on any compact subset of W+.
Now we can repeat the argument for the proof of the fact that (4.4)
implies (4.6) but with v1 replaced by vm+1, and deduce that

O
tQ.
u(x, t) [ um+1(x)

uniformly on any compact subset of W+. Hence (4.3) is true for k=m+1.
This finishes the induction argument and hence the proof of the
theorem. L
When m > lW+1 (dŪ), if we define U(x)=u¯

(x) for x ¥ W+, and U(x)=.
for x ¥ W̄0, and let V(x)=v¯

(x) for x ¥ W+, and V(x)=0 for x ¥ W̄0, where
(u
¯
, v
¯
) is the minimal positive solution of (1.2), then it follows from

Theorem 4.3 that the set of function pairs

A={(u, v): u|W+ , v |W+ ¥ C(W+ 2 “W), 0 [ u(x) [ U(x), V(x) [ v(x) [ hm}

is a global attractor for (1.1). The dynamical behaviour of (1.1) inside A is
rather complicated. For example, if m is also greater than m0, then A con-
tains at least one classical steady-state solution, one generalized steady-
state solution, and the stable semitrivial solution (0, hm).
From a biological point of view, it is important to know whether (1.1) can
have a stable classical steady-state solution for the case l> lW01 (0), where
without a competitor v, u always blows up in W̄0 as tQ.. This was answered
in Theorems 3.1 and 3.6 of Part I. More precisely, Theorem 3.1 there states
that when mg < m

0 and m ¥ [mg, m
0), then (1.1) has at least one asymptotically

stable steady-state, while Theorem 3.6 shows that mg < m
0 is guaranteed to

happen if d is sufficiently small. Thus a stable coexistence state of the two
species is possible if d is small compared with the other parameters. This is
reasonable since d measures the effects of the species u on v; so d small means
that the effects of u on v is small when compared with that of v on u,
measured by the constant c. Clearly, such a competitor v (with d small
compared to c) is a good choice in order to avoid over growth of u.
Though a stable coexistence state of the two species is possible, our
results below show that this depends very much on a suitable choice of the
initial conditions apart from a good choice of the competitor v. Indeed, we
will show that one can always find bad initial conditions such that the
positive solution (u, v) of (1.1) has its u component blowing up as tQ..
We divide our discussions into two cases:
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(a) m < lW+1 (dUa
) and (b) m \ lW+1 (dUa

)

Let us recall that we always assume (4.1) holds.
The following result covers case (a).

Theorem 4.4. Suppose m < lW+1 (dUa
). Then there exists (u0, v0) ¥ C(W̄)×

C(W̄) with u0 |“W=v0 |“W=0 and u0 > 0, v0 > 0 in W, such that if (u, v) is a
solution of (1.1) with u(x, 0) \ u0(x) and 0 [ v(x, 0) [ v0(x), then, as tQ.,
uQ. uniformly on W̄0, vQ 0 uniformly on W̄, and

J
tQ.

u(x, t) \ U
a
(x), O

tQ.
u(x, t) [ Ū(x),

uniformly on any compact subset of W+ 2 “W.

Proof. By Theorem 3.9 of Part I and Remark 2.4, we know that
lW+1 (dUa

l) depends continuously on l. Let us choose lŒ < l such that
m < lW+1 (dUa

lŒ) and lŒ > lW01 (0). Then we let we denote the unique positive
solution of the problem

−Dw=lŒw−(b(x)+e) w2, w|“W=0.

By Theorem 2.1, as eQ 0, we Q. uniformly on W̄0, and we Q Ua
lŒ uni-

formly on any compact subset of W+ 2 “W. By Lemma 3.1, this implies
lW1 (dwe)Q l

W+
1 (dUa

lŒ) > m. It follows that lW1 (dwe) > m for all small e > 0.
Let ke be determined by

−Dke+dweke=l
W
1 (dwe) ke, ke |“W=0, ke \ 0, ||ke ||.=1.

Define ve=eke and let ue be the unique positive solution to

−Du=lu−(b(x)+e) u2−cveu, u|“W=0.

Since ve [ e, when e [ (l−lŒ)/c, we have l−cve \ lŒ and hence ue \ we.
Moreover, since lW1 (dwe)Q l

W+
1 (dUa

lŒ) > m and ve Q 0 as eQ 0, we easily see
that, for all small e > 0,

lW1 (dwe) ve > mve−v
2
e .

It follows that

−Dve > mve−v
2
e −dweve \ mve−v

2
e −dueve.

Clearly

−Due [ lue−b(x) u
2
e −cueve.
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Hence, for all small e > 0, (ue, ve) is an upper steady-state solution of (1.1)
in the sense defined in the proof of Theorem 3.2. By the order preserving
property of (1.1), any positive solution (u, v) of (1.1) with u(x, 0)=ue(x),
v(x, 0)=ve(x) has the following property: u(x, t) is increasing in t and
v(x, t) is decreasing in t.
Let z(x, t) be the unique solution to

zt−Dz=lz−b(x) z2−cvez, z |“W=0, z(x, 0)=ue(x).

Since v(x, t) [ ve(x) for all t > 0, we deduce u(x, t) \ z(x, t) for all t > 0.
But when e > 0 is sufficiently small such that l−ce > lW01 (0) and therefore
l > lW01 (cve), it follows from Theorem 2.3 of Part I that, as tQ.,
z(x, t)Q. uniformly on W̄0. Since u(x, t) \ z(x, t), the same is true for
u(x, t). Comparing u with the unique solution of

wt−Dw=lw−b(x) w2, w|“W=0, w(x, 0)=ue(x),

and using Theorem 2.3 of Part I, we deduce that OtQ. u(x, t) [ Ūl(x)
uniformly on any compact subset of W+ 2 “W.
Since m < lW1 (dwe) [ l

W
1 (due), the unique solution w(x, t) of

wt−Dw=mw−w2−duew, w|“W=0, w(x, t)=ve(x),

satisfies limtQ. w(x, t)=0 uniformly on W̄. But it follows from u(x, t) \
ue(x) that v(x, t) [ w(x, t). Hence v(x, t)Q 0 uniformly on W̄ as tQ..
Now for any given d > 0 satisfying l−d > lW01 (0), we can find T > 0 such
that 0 [ v(x, t) [ d for all t \ T and all x ¥ W. Let Z(x, t) be the unique
solution to

Zt−DZ=lZ−b(x) Z2−dZ, Z|“W=0, Z(x, T)=v(x, T).

Then by Theorem 2.3 of Part I,JtQ. Z(x, t) \ Ua
l−d(x) uniformly on any

compact subset of W+ 2 “W. But clearly u(x, t) \ Z(x, t) for t \ T. Hence
JtQ. u(x, t) \ Ua

l−d(x) uniformly on any compact subset of W+ 2 “W.
As d > 0 can be arbitrarily small and by Remark 2.4, U

a
l−dQ U

a
l as dQ 0,

we obtain JtQ. u(x, t) \ Ua
l(x) uniformly on any compact subset of

W+ 2 “W.
It is now easily seen that we can choose (u0, v0)=(ue, ve) for some small
e > 0. The proof is complete. L

Remark 4.5. If (3.12) of Part I holds, then U
a
=Ū and Theorem 4.4

implies that (Ũ, 0) is locally stable when m < lW+1 (dUa
), where Ũ denotes U

aextended to W0 with value .. Moreover, Theorem 4.3 implies that (Ũ, 0) is
unstable if m > lW+1 (dUa

).
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Next we consider case (b), where m \ lW+1 (dUa
). Let ue be defined as in

Theorem 2.1. We know from Theorem 2.1 and Lemma 3.1 that lW1 (due)
converges to lW+1 (dUa

). Since ue decreases with e, we must have
lW1 (due) < l

W+
1 (dUa

) [ m. By Theorem 3.2, mg(e)Q. as eQ 0. Hence
m e0=l

W
1 (due) < m < m

g(e) for all small e > 0. As in the proof of Theorem
3.5, we know that in this case (1.3) has a minimal positive solution (u e, v e).
One easily shows that u e decreases and v e increases with e. Moreover, as in
the proof of Theorem 3.5, we must have ||u e||. Q. as eQ 0. Hence, by
Lemma 3.4, as eQ 0, (u e, v e)Q (û, v̂), where (û, v̂)=(., 0) on W0, and on
W+, (û, v̂) is a positive solution of (1.2) except when m=l

W+
1 (dUa

), in which
case, (û, v̂)=(U

a
, 0) is possible. Moreover, û [ U

a
. Here vn Q v̂ is in the

norm of Lp(W), for all p > 1, and un Q û is in the following sense: un Q.
uniformly on W̄0, and un Q û uniformly on any compact subset of W+ 2 “W.

Theorem 4.6. Suppose that m \ lW+1 (dUa
). Then for any small e > 0, the

set

Ae={(u, v) ¥ C(W̄)×C(W̄) : u e [ u <., 0 [ v [ v e}

is invariant for t > 0 under the flow generated by (1.1). Moreover, any solu-
tion (u, v) of (1.1) lying in Ae satisfiesJtQ. u(x, t)=. uniformly on W̄0.

Proof. Let (Ue, Ve) be the unique solution of (1.1) with initial condition
Ue(x, 0)=ue(x), Ve(x, 0)=ve(x). It is easily seen that (u e, v e) is an upper
steady-state solution of (1.1). Hence, by the order preserving property of
(1.1), Ue(x, t) is increasing in t and Ve(x, t) is decreasing in t. Thus (Ue, Ve)
stays in Ae for all t > 0. If (u, v) is an arbitrary solution of (1.1) with
u(x, 0) \ u e(x), 0 [ v(x, 0) [ v e(x), then u(x, t) \ Ue(x, t) and 0 [ v(x, t) [
Ve(x, t) for all t > 0. Therefore (u, v) remains in Ae. By our discussion
before this theorem, v eQ 0 in Lp(W0), for all p > 1. Hence l

W0
1 (cv

e)Q
lW01 (0). It follows that for all small e > 0, l > l

W0
1 (cv

e).
Let w(x, t) be the unique solution to

wt−Dw=lw−b(x) w2−cv ew, w|“W=0, w(x, 0)=ue(x).

Then, by Theorem 2.3 of Part I , we have w(x, t)Q. uniformly on W̄0 as
tQ.. If (u, v) is a solution of (1.1) in Ae, then u(x, t) \ w(x, t) and hence
u(x, t)Q. uniformly on W̄0 as tQ.. The proof is complete. L

Finally, let us look at a case that every positive solution (u, v) of (1.1)
must blow up in u as tQ., while v is persistent.

Theorem 4.7. Suppose lW+1 (dŪ) < m
¯
, where m

¯
is given by l=lW0(chm

¯

).
Let m ¥ (lW+1 (dŪ), m

¯
). Then any positive solution (u, v) of (1.1) satisfies
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lim
tQ.
u(x, t)=., lim

tQ.
v(x, t)=0, uniformly on W̄0, (4.7)

O
tQ.
u(x, t) [ u

¯
(x), J

tQ.
v(x, t) \ v

¯
(x), (4.8)

J
tQ.

u(x, t) \ ū(x), O
tQ.
v(x, t) [ v̄(x), (4.9)

uniformly on any compact subset of W+, where (u¯
, v
¯
) and (ū, v̄) are the

minimal and maximal positive solutions of (1.2), respectively.

Proof. We may assume that both u(x, 0)=u0(x) and v(x, 0)=v0(x) are
nonnegative and not identically zero. Let e > 0 and (Ue, Ve) be the unique
solution of (4.2). We may assume that e > 0 is small enough such that
m > lW1 (due)=m

e
0. Since we also have m < m

¯
< m0, by the known dynamical

behaviour of (4.2) (compare Theorem 2.7 of Part I),

J
tQ.

Ue(x, t) \ ūe(x), O
tQ.
Ve(x, t) [ v̄e(x)

uniformly on W̄, where (ūe, v̄e) denotes the maximal positive solution of
(1.3).
Since u(x, t) \ Ue(x, t) and v(x, t) [ Ve(x, t), (4.7) and (4.9) now follow
from Theorem 3.7 by letting eQ 0 in the above inequalities. Clearly (4.8)
follows from Theorem 4.3. The proof is complete. L

Remark 4.8. (i) A discussion on when the condition of Theorem 4.7 is
satisfied can be found in Remark 3.8.
(ii) When (1.2) has a unique positive solution, then (u

¯
, v
¯
)=(ū, v̄),

and Theorem 4.7 shows that the unique generalized steady-state solution of
(1.1) attracts all the positive solutions of (1.1).
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