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A B S T R A C T

Deterministic assessments of whether, when, and where environmental safety thresholds are exceeded by pol-
lutants are often unreliable due to uncertainty stemming from incomplete knowledge of the properties of en-
vironmental systems and limited sampling. We present a global sensitivity analysis to rank the contribution of
uncertain parameters to the probability, P, of a target quantity to exceed user-defined environmental safety
thresholds. To this end, we propose a new index (AMAP) which quantifies the impact of a parameter on P and
can be readily employed in probabilistic risk assessment. We apply AMAP, along with existing moment-based
sensitivity indices, to quantify the sensitivity of soil and aquifer contamination following herbicide glyphosate
(GLP) dispersal to soil hydraulic parameters. Target quantities are GLP and its toxic metabolite aminomethyl-
phosphonic acid (AMPA) concentrations in the top soil as well as their leaching below the root zone. The global
sensitivity analysis encompasses six scenarios of managed water amendments and rainfall events. The biode-
gradation of GLP and AMPA varies slightly across scenarios, while leaching below the root zone is greatly
affected by the assumed hydrologic boundary conditions. AMAP shows that, among the tested uncertain para-
meters, absolute permeability, air-entry suction, and porosity have the greatest impact on GLP and AMPA
probability to pollute the aquifer by exceeding the aqueous concentration thresholds. Our results show that
AMAP is effective to thoroughly explore time histories arising from model-based predictions of environmental
pollution hazards. The proposed methodology may support informed decision making in risk assessments and
help assessing ecological indicators through threshold-based analyses.

1. Introduction

Surface waters and aquifers are the recipients of contaminants re-
sulting from anthropogenic activities such as agriculture, industry and
waste treatment. According to the Lancet Commission on Pollution and
Health, more than 140,000 synthetic molecules have been developed
since 1950; of those, the 5,000 most produced molecules can be found
in the environment worldwide (Landrigan et al., 2018). These mole-
cules and their metabolites can be persistent in the environment and,
therefore, their detrimental effects can dramatically extend over space
and time, thus harming not only humans and other living organisms but
also their descendants (Kubsad et al., 2019). In order to minimize and
control harmful impacts, the use of these molecules has to be properly
planned, managed, and regulated, thus requiring a good understanding
of their dynamics in the environment.

Mathematical models are often used as decision support tools to
evaluate contaminant degradation and transport (e.g., EPA, 2008; Porta
et al., 2018; Manheim et al., 2019). Predictive models are also em-
ployed to carry out assessments on future scenarios such as climate
change, land-use change, and global environmental change (e.g.,
Hiscock et al., 2007; Armitage et al., 2011; Brack et al., 2015). Pro-
cesses and environmental factors controlling contaminant dynamics
(e.g., soil-water dynamics, contaminant sorption to soil minerals and
organic matter, biochemical degradation, microbial-nutrient interac-
tions, and soil-plant interactions) are described and coupled in models
through mathematical equations with parameters often sourced from
literature or estimated against laboratory or field experiments (Jackson
et al., 2000; Barrios et al., 2019). Since environmental systems are
complex and open to energy and mass flows, it is difficult to constrain
and model all controlling processes (Oreskes et al., 1994). Deterministic
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models neglect the inherent uncertainty associated with model struc-
ture and parameters (Uusitalo et al., 2015).

To overcome the shortcoming of deterministic models, uncertainty
quantification and sensitivity analysis methods are used within a sto-
chastic framework to provide decision makers with estimates of the
potential outcomes of tested scenarios (e.g., Bates et al., 2003; Walker
et al., 2003; Uusitalo et al., 2015). There exist many different ap-
proaches for sensitivity analysis (e.g., Razavi and Gupta, 2015; Pianosi
et al., 2016; Ceriotti et al., 2018). Among these, global sensitivity
analysis (GSA) is one of the most comprehensive approaches because it
allows (a) quantifying sensitivity across the entire parameter space and
(b) accounting for the joint effects resulting from the uncertainty in
diverse parameters even in nonlinear models. Output sensitivity to
model parameters is commonly quantified using variance-based tech-
niques such as the Sobol’s indices (Sobol’, 1993); more recently, the
AMA family of indices was introduced (Dell’Oca et al., 2017) to quan-
tify sensitivity in terms of any statistical moment of the probability
density function (pdf) of the model outputs. Available sensitivity in-
dices do not provide a straightforward assessment of how a parameter
influences the probability for a model output (e.g., the concentration of
a contaminant) to exceed a user-defined threshold value. In environ-
mental risk assessment and management, the policies and protection
strategies often rely on regulatory guidelines that specify a safety limit
for a certain contaminant. For example, the European Commission has
set two severe safety limits to protect water resources quality from
pesticide contamination: (a) the concentration of single pesticides and
their relevant metabolites must not exceed 0.1 µg l 1; and (b) the sum of
pesticides and their metabolites concentration must not exceed
0.5 µg l 1 (2006/118/EC).

In this study we introduce a new global sensitivity index (AMAP) to
rank parameters based on their impact on the probability to exceed a
defined safety limit for single contaminants and mixtures. AMAP
complements the available AMA moment-based indices by targeting
sensitivity with respect to the exceedance probability rather than the
statistical moments of the output pdf. We demonstrate the use of AMAP
to the case study of dispersal of the herbicide glyphosate (GLP)
throughout a soil profile in an irrigated winter wheat field, using the
results of la Cecilia et al. (2018) as a reference. The case study selection
is motivated by the observation that GLP is currently the most widely
used herbicide worldwide (Maggi et al., 2019). Modeling GLP biode-
gradation pathways requires a complex network of bioreactive pro-
cesses coupled to water flow and solute transport. Hence, quantitative
indicators that can identify relevant parameters and processes are im-
portant to reduce the uncertainty involved in risk assessment and help
constraining the whole decision-making process. Societal implications
of the uncertainties underlying environmental risk assessment of GLP
have been widely discussed in the recent literature (e.g., Van Straalen
and Legler, 2018). The relevance of hydraulic parameters on the fate of
GLP and AMPA in soil has been documented in field experiments (e.g.
Soracco et al., 2018; Lupi et al., 2019), as well as in numerical studies
(Heuvelink et al., 2010). In this work we analyze the impact of un-
certainty in soil hydraulic parameters on risk assessment of GLP and
AMPA accumulation and leaching. We apply a number of different
boundary conditions affecting transport and biodegradation processes
to gain a wider understanding of how (i) AMAP informs on the effects of
parameter uncertainty within pollution risk assessment and (ii) GLP and
AMPA biodegradation predicted by the model is affected by the as-
sumed boundary water fluxes. We designed such specific scenarios to
represent managed (irrigated) and unmanaged (not irrigated) cropping.
Analyses are also accompanied by specific robustness tests of the pro-
posed AMAP index to show limits and advantages of its generalized
application beyond the test case presented here. While we focus on soil
and water contamination risk assessment, we emphasize that the pro-
posed sensitivity index is readily applicable in other contexts, such as to
assess the response of ecological and environmental systems, and par-
ticularly within threshold-based analysis of ecological indicators

reported in recent literature (e.g., Libralato et al., 2019; Fu et al., 2019).

2. Materials and methods

We introduce here the definition of the sensitivity indices (or me-
trics) as well as the approach we employ for their application within
contamination risk assessments. In Section 2.1 we introduce the pro-
posed sensitivity metrics and provide an operational framework for
their application in a generic environmental problem. Next, we illus-
trate the application of our method to soil contamination as a result of
glyphosate (GLP) dispersal. We start by presenting an overview of the
kinetic model used to describe GLP contamination in a winter wheat
field (Section 2.2). Target outputs for risk analysis and their corre-
sponding safety thresholds are identified in Section 2.3. In Section 2.4,
six scenarios with different ecohydrological boundary conditions are
designed to be used in GSA. Finally, we select the uncertain parameters
and describe the sampling methodology in Section 2.5.

2.1. Sensitivity indices and application to environmental problems

The AMA sensitivity indices (Dell’Oca et al., 2017) quantify the
impact of each uncertain parameter on the statistical moments of the
pdf of the target model outputs. Let g p( ) be an output of interest, and

= … …p p pp ( , , , , )i N1 a vector gathering N uncertain parameters. The
AMAMi indices quantify the impact of variability in parameter pi on the
statistical moment Mi of g p( ) (e.g., AMAE for the expected value E and
AMAV for the variance V). AMAMi is defined as

=
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where p( )i is the pdf of pi defined in the parameter space . Along with
Eq. (1), and to cast our work within a risk assessment framework, we
introduce the new index AMAP, which allows quantifying the expected
variation of the probability of exceedance of a threshold value thr as

= >AMAP P P g p thr p dpp| [ ( ) ]| ( ) ,i thr i i ii (2)

where = >P P g thrp[ ( ) ]thr is the unconditional probability that the
quantity g p( ) exceeds the threshold thr and P g pp[ ( ) ]i indicates the
same probability conditional to parameter pi. Note that AMAP provides
the probability-weighted average distance between conditional and
unconditional exceedance probability within i and is limited between 0
and 1. The output g p( ) and its related threshold thr can be any quantity
of interest, including a contaminant concentration, and can be used in a
generalized way for the purpose of, but not limited to, risk analysis as
shown later in this work.

A flowchart is presented in Fig. 1 to illustrate the workflow for the
AMAP application within model-based environmental pollution as-
sessment. First, prior information needs to be collected to define (i) a
model structure and reference values of model parameters, and (ii)
target outputs of interest and the related safety thresholds, where the
latter can be user-defined or taken from guidelines. Additionally, var-
ious scenarios can be selected to explore the system response in diverse
conditions (e.g., diverse hydrologic or climatic regimes, socio-economic
and/or legislative constraints). As environmental models typically
embed a large number of parameters, a subset of these is selected to
conduct sensitivity analysis. The latter may be then used to (a) rank
parameter importance (b) design and prioritize experimental cam-
paigns aimed at constraining the uncertainty of the selected output. A
pdf p( )i must be defined for each uncertain input to compute AMAPi
through Eq. (2). This can be determined from available prior informa-
tion through empirically defined frequency distributions or according
to general pdf models (e.g., Gaussian or uniform distributions), thus
defining a probability space for the selected parameters set. Different
choices for the prior pdfs p( )i can be performed and the results of the
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analyses may depend on the chosen input distribution. Therefore, the
chosen p( )i should reflect available information as closely as possible.
Stochastic sampling of the parameters within this set is then performed
N times, rendering N values of the output g p( ). These latter are em-
ployed to evaluate the conditional and unconditional probability to
exceed a given threshold needed in (2) to compute AMAP. The work-
flow is replicated for each of the selected scenarios, thus providing a
scenario-dependent sensitivity ranking that can guide in implementing
strategies to reduce uncertainty.

2.2. Reference site and modeling description

We apply the framework introduced in Section 2.1 to the case of
GLP biodegradation developed in la Cecilia et al. (2018). The reference
winter wheat field is located in the Modena Municipality, Italy
(44°40′57″N; 10°57′48″E). The soil is a typical alluvial deposit of the Po
Valley region characterized by a silt loam and loam layers (SGSS.,
2016). Two regions of interest were identified along the soil profile: the
root zone (RZ) with thickness =h 1RZ m and the soil below RZ (BRZ)
with thickness =h 4BRZ m.

Rainfall data in the period 2006–2016 were collected (Arpae-Simc,
2016) and post-processed to compute the water infiltration after as-
suming a 20% rainfall interception by the crop. The actual crop eva-
potranspiration was calculated from data in Arpae-Simc (2016) with
the time-varying crop coefficient KC in Allen et al. (1998). Irrigation
was estimated to match groundwater table depth observations in Chiari
et al. (2016) as described in la Cecilia et al. (2018). The 11 year pre-
cipitation, actual evapotranspiration, and irrigation time series were
repeated periodically to build 50 years of daily boundary conditions.
GLP was applied annually at rate ×1.2 10 3 mol m−2 (i.e.,
2 kg ha−1 year−1) in a single application event. An interception frac-
tion of 0.2 and a drift fraction of 0.2 for post-emergence pesticide ap-
plication on winter wheat (Trevisan et al., 2009) were accounted for as
losses of the applied GLP rate, thus resulting in a net application rate

= ×A 7.2 10 4 mol m−2 (i.e., 1.2 kg ha−1 year−1).
The GLP reaction network includes GLP and AMPA biodegradation

and neglects chemical degradation because it has been shown to only
occur in soils rich in Mn oxides (e.g., birnessite mineral, la Cecilia and
Maggi, 2018). Inhibition of the reaction by heavy metals (e.g. Cu2+)
(Barrett and McBride, 2005; la Cecilia and Maggi, 2018; la Cecilia et al.,

2018; Li et al., 2015) is also not considered. GLP and AMPA degradation
is tightly coupled with the nitrogen (N) cycle and a pool of soil organic
matter, which releases ammonium ( +NH4 ), ortophosphate (PO4

3), and
monomeric organic carbon (represented by CH2O) for microbial me-
tabolic purposes (Maggi et al., 2008). Six microbial functional groups
describe the soil microbial ecology and include: GLP and AMPA hy-
drolizing and oxidizing bacteria (BHyO), and aerobic and anaerobic
bacteria (BAER and BANAER) that consume organic carbon (la Cecilia and
Maggi, 2018; la Cecilia et al., 2018), and +NH4 and NO2 oxidizing
bacteria (BAOB and BNOB) that mediate a two-steps nitrification, and
denitrifying bacteria (BDEN) that perform a three-step NO3 denitrifica-
tion reduction to N2 (Maggi et al., 2008). Dynamic stability of soil
microbial ecology resorts to group-specific biomass background re-
covery rates after Porta et al. (2018) showed that some functional
groups can be outcompeted for some parameter combinations. Inhibi-
tion on various reactions include O2 effects to anaerobic reactions and
pH below 6 and above 8 for microbial activity (Boon and Laudelout,
1962). Protection of aqueous species, including GLP and AMPA, to the
mineral phase is modeled as a linear equilibrium process. Biodegrada-
tion neglects the protected phase because it is assumed to not be ac-
cessible to exoenzymes as suggested in Riley et al. (2014). Bench-
marking of the reaction network has been performed in Maggi et al.
(2020) against field measurements of GLP and AMPA concentrations
reported in the literature. All the details of the biodegradation reaction
network used in this work are available in la Cecilia et al. (2018).

Deterministic simulations of GLP biodegradation were conducted
using the BRTSim-v3.1a general-purpose solver for reaction-advection-
diffusion processes in variably saturated soils (Maggi, 2019). BRTSim
numerically resolves the mass, momentum and energy conservation
laws, biochemical kinetics, and equilibrium reactions using hybrid ex-
plicit-implicit finite volumes solvers, which are described in detail in
the User Guide and Technical Manual (Maggi, 2018). Under the as-
sumption that the gas phase undergoes negligible pressure gradients,
advection was neglected here for gaseous species while diffusion of
gaseous species was explicitly included. A steady temperature profile
was assigned linearly changing from 20 °C at the top soil to 14 °C at 5 m
depth.

In the following we describe the key equations used to describe flow
and transport processes, i.e. where the investigated uncertain para-
meters are directly involved (see Section 2.5). We indicate variables

Fig. 1. Flowchart of the steps used in this study for the application of AMAP index.
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dimensions using the notation [M,L,T, ] for mass, length, time and
temperature, respectively. The mass and momentum conservation laws
for water in a one dimensional variably saturated soil with constant
porosity can be written as (Richards, 1931)

=

=

S
t

q
z

ET z t B z t q

gk
µ

k S S
z

, , , with

( ) ( ) 1 ,

l

l
r l

l

(3)

where t [T] is time, Sl [–] is water saturation, z [L] is the vertical co-
ordinate, k [L2] and kr are the absolute and relative permeabilities, g
[LT−2] is the gravitational acceleration, q [LT−1] is the Darcy’s velo-
city, [L] is the water potential, and l [ML

−3] and µ [ML−1T−1] are
the water density and viscosity, respectively. Terms ET z t( , ) and

B z t( , ) [T−1] describe contributions to the soil water saturation due to
actual evapotranspiration and immobilization in the microbial biomass,
respectively. Precipitations P t( ) and irrigation I t( ) [LT−1] per unit
planar surface are assigned at the soil surface. Eq. (3) was solved as-
suming the following empirical formulations for kr and proposed by
Brooks and Corey (1964)

= +k S ,r le
b2 3 (4a)

= S ,s le
b (4b)

where b [–] is the pore volume distribution index, s [L] is the air-entry
suction at water saturation, and Sle is the effective water saturation
defined as

=S S S
S S1

,le
l lr

lr gr (5)

Slr and Sgr indicate the water and gas residual saturations, respectively.
Mass balance of chemical species is expressed by

= + = +X
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where X i [ML−3] is aqueous concentration, Dm [L2T−1] is molecular
diffusion, JXi [ML−2T−1] is the advective diffusive solute flux, r i

[ML−3T−1] lumps the contribution from all chemical and biochemical
reactions.

Chemical and biochemical kinetic reactions are assumed to occur
only in the aqueous phase. The modelling approach employed to re-
present the feedbacks between water stress, temperature and bior-
eactive processes is detailed in Appendix A.

The microbial biomass was initialized with a simulation of
100 years to allow the water flow and microbial processes related to
GLP and the N cycle reaching a stationary state. The initialized system
was then used repeatedly for the purpose of GSA to simulate a period of

=T 50s years, setting GLP and AMPA initial concentrations to zero in
each realization. As a consequence, this initialization presumed the
ecological capability to degrade GLP, i.e., the microbial functional
groups have already adapted to degrade GLP when they receive the first
application. Recent experiments show that adaptation may imply a time
lag in the order of months before soil microorganisms can effectively
degrade GLP (Tang et al., 2019a), or in the order of hours due to cat-
abolite repression mechanisms triggered by substrate preference and
memory of previous growth conditions (la Cecilia et al., 2019). As these
observed adaptation times are significantly smaller than the considered
time window of 50 years we neglect these effects in our analysis. This
assumption may generally be reasonable because agricultural soils have
typically been exposed to a wide suite of xenobiotics before the appli-
cation of GLP.

2.3. Target quantities and thresholds for pollution assessment

The target quantities selected for risk analysis are (see also Fig. 2):

• the depth-averaged aqueous concentration of GLP and the mixture
MXT = GLP + AMPA in BRZ (1 to 5 m depth), labeled as C BRZGLP
and C BRZMXT . The threshold values used are 0.1 µg l 1 for GLP and
0.5 µg l 1 for MXT, as prescribed by the Directive /118/EC (2006)
for the tolerable contamination of groundwater.
• GLP and AMPA mass in the top 30 cm of soil. These variables are
indicated as M TOPGLP and M TOPAMPA . We used the ecotoxicological
concentration (i.e., LC50) of GLP and AMPA mass fractions to
earthworms as thresholds, which are set to

=M 5, 600thr,GLP mg kg-dry-soil 1 and =Mthr,AMPA
1, 000 mg kg-dry-soil 1 for GLP and AMPA, respectively (Lewis et al.,
2006).
• the yearly cumulative leaching rate of GLP and MXT between RZ
and BRZ soil, FGLP and FMXT, corresponding to advective-diffusive
fluxes between the two soil regions, defined positive for downward
fluxes (i.e., from RZ to BRZ). As threshold fluxes we set
0.02 mg m−2 y−1 and 0.1 mg m−2 y−1 for GLP and MXT, respec-
tively. These values correspond to the 0.01% and 0.05% of the gross
GLP application rate =A 2GLP kg ha−1 y−1, following the rationale
employed in /118/EC (2006). We explore here the impact of using a
threshold mass rate to reflect the risk of aquifer contamination and
pollution. This definition is motivated by the possibility of direct
comparison with application and biodegradation rates, and de-
tachment from water saturation-dependent assessment indicators.

In the following, we employ the term ’contamination’ for a non-negli-
gible concentration of a molecule in an environmental compartment
where it should not exist, and ’pollution’ when a given quantity exceeds
a prescribed safety threshold following Rodriguez Eugenio et al. (2018).
Therefore, contamination refers here to any positive level of con-
centration or flux detected below the root zone.

AMAPi indices were calculated considering all the selected outputs
within the simulation time window =T 50s y. Results obtained at year
15 are emphasized in the discussion because 15 y is the maximum
approval period for pesticides in the EU. Note that while concentrations
and top soil masses of contaminants are considered as continuous
functions of time, fluxes are annual averages used to detect persistent
contaminant leaching.

Finally, we calculated the annual biodegradation efficiency in RZ of
GLP

= +
=

E n
n A t

R z t R z t dzdt( ) 1 1 [ ( , ) ( , )]
j

n

h n t

n t
GLP

1
( 1) GLP

Oxi
GLP
Hyd

RZ (7)

as the ratio of biodegraded GLP through oxidation RGLP
Oxi and hydrolysis

RGLP
Hyd calculated as in Eq. A.1 relative to the GLP application rate A in

year n. Similarly, the biodegradation efficiency of AMPA is defined as

Fig. 2. Graphical representation of the outputs considered for pollution and
contamination risk analysis.
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where RAMPA is biodegraded AMPA. In both (7)-(8) we set =t 1 year.
Note that Eq. (8) measures the ratio between biodegraded and pro-
duced AMPA, where the latter is a metabolite of GLP biodegradation
through oxidation, see la Cecilia and Maggi (2018) for details. The
biodegradation efficiencies in Eqs. (7),(8) are not used for AMAM or
AMAP analyses because there is no legislation that recommends
threshold biodegradation efficiencies in field applications. However,
Eq. (7)–(8) were used to interpret how parameter uncertainty affected
GLP and AMPA biodegradation across different scenarios.

2.4. Selection of scenarios

We consider six hydrometeorological scenarios (Table 1). The first
scenario corresponds to the reference (REF) case study described in la
Cecilia et al. (2018), where the precipitation =P PREF and actual eva-
potranspiration =ET ETC,REF are used to estimate irrigation rates

=I IREF necessary to match locally-measured water table depths. This
case study is representative of managed agricultural crops. In the
second and third scenarios, P is decreased and increased by 20% of PREF
to simulate drier (DRY) and wetter (WET) conditions, respectively,
while irrigation is maintained as in the REF scenario. In the fourth
scenario, steady state (SS) boundary conditions are set equal to time-
averaged fluxes = = =P P ET ET I I, ,REF C,REF REF calculated over the
whole simulation time and applied as constant boundary flows. In this
case, the GLP application rate is also time-averaged and applied
throughout the simulated time period as =A AREF . DRY and SS un-
managed scenarios without irrigation are also considered.

The managed and unmanaged SS scenarios are tested to investigate
the extent to which accounting of time-resolved as compared to con-
stant hydrological fluxes can influence the prediction of GLP and AMPA
biodegradation.

2.5. Selection of uncertain parameters

To illustrate the use of the sensitivity metrics defined in Section 2.1,
we analyze here the impact of uncertainty related to soil hydraulic
properties on the target quantities defined in Section 2.3. We consider a
total of six uncertain parameters indicated in Eqs. (3)–(4), i.e.
k b S, , , ,s lr and Sgr . In principle, permeability k can be expressed as a
function of the other parameters by means of empirical or semi-em-
pirical correlations (e.g. Brutsaert, 2000). However, we have included k
within the set of uncertain parameters because of the reported non-
exact dependence between and k (e.g., Maggi and Porporato, 2007).
These parameters are assumed to be mutually independent and uni-
formly distributed within given ranges p( ). Our choice of using a
uniform pdf to characterize the uncertain model inputs rests on the idea
of assigning equal weight to each value of the distribution (i.e., an equal
prior probability). The range p( )i associated with k b, , s and
(Table 2) is retrieved from naturally occurring soils, i.e., from the hy-
drothermal properties database by Dai et al. (2013) and the SoilGrids

database in Hengl et al. (2017). Measured residual liquid saturation Slr
range from 0.046 to 0.31 (Ghanbarian-Alavijeh et al., 2010), while Sgr
observations vary between 0.092 and 0.22 (Smith and Browning, 1943;
Peck, 1969). Based on these observations, Slr and Sgr are here con-
sidered as uniformly distributed parameters with values comprised
between 0.05 and 0.2 (Table 2). Our analysis neglects vertical hetero-
geneity of soil properties. We solve one-dimensional flow and transport
along a vertical soil column. This choice is consistent with models used
for assessing pesticide leaching in regulatory frameworks (Jene, 1998;
Carsel et al., 1985; Van den Berg et al., 2012; Carsel et al., 1985; 2006/
118/EC,). The assumed uncertainty in the soil hydraulic parameters can
then be used to assess the impact of their spatial variability, such as
rendered by geo-referenced databases, as discussed in Heuvelink et al.
(2010).

Sampling of the parameters space was conducted using a quasi
Monte Carlo (QMC) technique (Sobol’, 1998). In total, 5,000 parameter
realizations were generated and applied to each scenario. Upon per-
forming a forward modeling run for each of the selected sampling
points, we obtain a QMC ensemble of our target outputs of interest that
is next used to conduct the sensitivity analysis. We verified the con-
vergence of the QMC samples in terms of the outputs sample pdfs, see
Appendix B. The CPU time for each QMC flow and transport simulation
is 600 s (Intel Xeon Platinum 8160 @ 2.10 GHz).

3. Results and discussions

In the following we apply the global sensitivity indices AMAM and
AMAP introduced in Section 2 to the reference scenario and we then
analyze the impact of the considered hydrological and management
regime on the system response. Finally we consider the impact of the
selected scenarios on the biodegradation efficiency, to assess the re-
levance of the hydrologic boundary conditions on the GLP biode-
gradation reaction network.

3.1. Global sensitivity indices in the reference (REF) scenario

Fig. 3 reports AMAE AMAV,i i and AMAPi computed for all uncertain
parameters pi and for all target quantities evaluated at the time corre-
sponding to the maximum approval period for pesticides in the EU, i.e.
at =t 15 y.

AMAEi (Fig. 3a-d) suggests that the soil permeability k has the
greatest influence on the sample average of all target quantities ana-
lyzed followed by (a) s and for the concentration targets and (b) by
the gas residual saturation Sgr and s for the flux targets. Other para-
meters display moderate to minor effects. Similar results have been
obtained for AMAVi for the two concentrations (Fig. 3e-f), while the
fluxes variances are also greatly influenced by the pore volume dis-
tribution index b (Fig. 3g-h).

AMAPi (Fig. 3i-l) shows that the probability of CGLP and (to a lesser
extent) FMXT to exceed their thresholds are impacted by the variability
of the uncertain parameters at =t 15 y. Otherwise, AMAPi obtained for
CMXT BRZ and FGLP are negligible. This result is explained observing that
the threshold MXT concentration/GLP flux is never or always exceeded
in the investigated sample regardless of the parameters’ values (see also
Sections 3.4 and 3.3). The investigated parameters have then a negli-
gible influence on the probability of exceeding the threshold, while they
still influence the outputs mean and variance as shown by the corre-
sponding AMAEi and AMAVi values.

Table 1
Boundary conditions applied in the tested scenarios. REF, DRY, WET and SS
indicate the reference scenario, dry and wet scenarios, and steady state sce-
narios, respectively.

Boundary
conditions

Managed Unmanaged

(REF) (DRY) (WET) (SS) (DRY) (SS)

P PREF ×P 0.8REF ×P 1.2REF PREF PREF PREF
ET ETC,REF ETC,REF ETC,REF ETC,REF ETC,REF ETC,REF
I IREF IREF IREF IREF 0 0
A AREF AREF AREF AREF AREF AREF

Table 2
Parameter value ranges.

k b s Slr Sgr

× 10 13 [m2] [–] [m] water [–] [–] [–]

(0.50, 10) (3, 7) (−0.6, −0.1) (0.4,0.5) (0.05, 0.2) (0.05, 0.2)
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Overall Fig. 3 suggests that an accurate characterization of k, ,s
should be prioritized to predict agrochemicals concentrations in the
aquifer. In addition, estimating agrochemicals fluxes from the root zone
to the aquifer would benefit from an accurate knowledge of Sgr and b.

3.2. Range impact analysis – RIA

In this section, we quantify the variability of AMAPi with respect to
the level of uncertainty assumed for each parameter pi upon con-
sidering GLP concentration =C t( 15 y)BRZGLP . We keep the average
value for each parameter probability distribution constant and we in-
crease/decrease the ranges of variability in p( )i by a prescribed factor
comprised between 0.7 and 1.1. This allows testing the robustness of
parameter ranking upon maintaining uniformly distributed parameters
and without violating physical constraints (i.e., positive permeability
and porosity comprised between zero and one).

Fig. 4 shows that the AMAPi indices smoothly vary. The ranking of
parameters importance is also consistent for all the investigated ranges
with k, s and chiefly influencing the system response, while the ef-
fect of b and Slr and Sgr appears negligible. Increasing values of AMAPi
are obtained for increasing parameters ranges, which reflects the in-
crease of assumed uncertainty in the parameter values.

3.3. Analysis of contamination and pollution

Fig. 5a-b displays the temporal evolution of the expected values (or
sample-averages) ME[ ]TOPGLP and ME[ ]TOPAMPA , respectively. Both
quantities are significantly smaller (by three orders of magnitude) than
their ecotoxicological threshold (i.e., LC50 for earthworms) and the
probability to exceed the thresholds is negligible across the whole
sample. Managed and unmanaged steady state scenarios result in the

largest ME[ ]TOPGLP and ME[ ]TOPAMPA values, which are likely caused by
reduced flushing as compared to scenarios where intense precipitations
caused fast GLP and AMPA transport to BRZ.

The sample-averaged aqueous concentrations CE[ ]BRZGLP and
CE[ ]BRZMXT (Fig. 5c and d) increase over time in the aquifer. Wet sce-

narios (REF and WET) lead to faster increase in CE[ ]BRZGLP and

Fig. 3. Global sensitivity indices (a)–(d) AMAEi; (e)–(h) AMAVi ; and (i)–(l) AMAPi evaluated for GLP and MXT aqueous concentrations and fluxes from RZ to BRZ.
Analyses are relative to REF scenario at time =t 15 years.

Fig. 4. AMAP – Range Impact Analysis for =C t( 15 y)BRZGLP .
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CE[ ]BRZMXT as compared to dry scenarios (DRY). Our results also sug-
gest that pollution may occur at substantially longer time scales in
steady state conditions, i.e., SS scenarios do not cause any significant
contamination within the investigated 50-year time period.

Fig. 5e and f show the relative frequency (or sample probability) of
the exceedance time t , i.e., the time at which C BRZGLP and C BRZMXT
exceed the corresponding threshold concentrations. All transient sce-
narios showed more than 95% probability for C BRZGLP and C BRZMXT to
exceed the threshold concentrations within a time frame of 50 years. On
the other hand, considering the EU maximum approval period for
pesticides of 15 years, the probability to exceed the threshold con-
centrations is smaller than 20% forC BRZGLP and negligible forC BRZMXT .
This result is consistent with Fig. 3j, showing negligible AMAPi values
(for all parameters) for C BRZMXT . We further note that the probability
distributions of t display heavier right tails for DRY than for WET
scenarios, i.e., GLP and MXT arrival times to BRZ are characterized by
larger uncertainty in DRY than in WET scenarios. This result quantifies
a delay in the occurrence of water pollution BRZ in DRY conditions.

The mean GLP and MXT leaching rates from RZ to BRZ (Fig. 6a-b)
vary significantly across all scenarios. As expected, WET scenarios lead
to higher leaching rates than DRY ones. Soil BRZ can undergo pollution
after 4 years since the first GLP application in both WET and DRY

scenarios. Fig. 6a and b also show that upward (negative) fluxes occur
from BRZ to RZ in dry scenarios. These instances are driven by parti-
cularly dry periods and elevated ETC, which result in high water suction
in TOP and RZ from BRZ. Upward fluxes are consistent with previous
observations of herbicide transport during capillary driven ground-
water rise (Arjoon et al., 1998). This result may raise awareness for
pollutants accumulation at soil depths that may be reached during
water table fluctuations, where there may be a lack of active biode-
graders. The recontamination does not occur in the SS scenarios be-
cause the saturation profile is constant in time. This result confirms our
interpretation that unsteady water inputs due to precipitations can
cause rapid contaminant flushes (i.e., positive fluxes) to BRZ as com-
pared to SS scenarios.

Fig. 6c and d show that the probability to exceed Fthr is very high
(P 1thr ) within 15 years for both GLP and MXT in all scenarios except
SS. Comparing Fig. 6c-d with Fig. 5e-f, one can conclude that the time
scale associated with pollution quantified by leaching rate (from RZ to
BRZ) is significantly smaller than the time scale linked to resident
agrochemical concentrations in BRZ. Therefore, measurements and
modeling predictions of leaching rates would provide a more con-
servative indicator than concentration data within a contaminant risk
assessment framework.

Fig. 5. Average GLP and AMPA mass in RZ (a–b) and aqueous concentrations in BRZ (c–d); (e)–(f) represent the corresponding probability distribution of exceedance
time t , i.e., the time at which contaminant concentrations and fluxes exceeded threshold values.
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3.4. AMAP and scenario analyses

AMAPi can be used as a time dependent sensitivity measure as il-
lustrated in Fig. 7. We observe that parameter ranking is consistent
across different outputs for the same scenario because the selected
outputs are inherently linked between each other. Significant differ-
ences in ranking are conversely observed across scenarios. For example,
parameter b has an important influence on the probability that both
C BRZGLP and C BRZMXT exceed the related thresholds in DRY scenarios
(Fig. 7b,f,d,h). On the other hand, the parameter s is predominant over
b in assessing C BRZGLP and C BRZMXT in wet scenarios (WET and REF).
This result is consistent with Eq. (4), showing that the impact of b de-
creases as the water saturation increases.

Fig. 8 displays AMAPi values evaluated for the transient scenarios
and considering C BRZGLP and FMXT after 15 years from the first GLP
application. Analogous results for CMXT and FGLP in the transient con-
ditions as well as for all target quantities in the SS scenarios are not
reported since negligible values of AMAPi have been obtained for all
parameters.

Parameters k and s are the most influential parameters on C BRZGLP
and FGLP. These results are consistent with Eq. (3); that is, (i) increasing
k promotes faster water flows, and thereby solute transport; (ii) de-
creasing s promotes higher water capillary rise from BRZ to RZ con-
trasting leaching. Figs. 7,8 allow identifying which parameters should
be further constrained, such as through measurement campaigns, to
reduce the uncertainty associated with probabilistic groundwater or

soil contamination risk assessment.

3.5. Biodegradation and flow regime

Mean biodegradation efficiencies EE[ ]GLP and EE[ ]AMPA indicate that
biodegradation starts as soon as GLP is applied and increases over time
(see Fig. 9). Sample-averaged GLP biodegradation efficiency does not
change significantly among all investigated scenarios, because EE[ ]GLP
varies only between 0.85 and 0.9. The variability slightly increases
when AMPA is considered, values of EE[ ]GLP ranging between 0.24 and
0.32. The sensitivity of microbial activity and biodegradation to soil
water availability is not particularly relevant in the selected scenarios
even though water availability is explicitly considered in the model via
Eq. (12).

This result suggests that simplified SS models as compared to time-
resolved hydrologic boundary conditions may be used to predict overall
contaminant mass budgets and is in line with previous numerical results
by Tang et al. (2019b). However, SS scenarios do not yield accurate
predictions of contaminants concentrations and leaching rates, which
are instead driven by hydrological fluctuations, as discussed in Section
3.3.

3.6. Final remarks

Our results demonstrate that probabilistic indicators allow identi-
fying the impact of soil hydraulic properties on pesticide contamination

Fig. 6. Sample-averaged GLP (FGLP) (a) and MXT (FMXT)(b) leaching rate from RZ to BRZ, respectively; (c) and (d) represent the relative frequency of the exceedance
time t , i.e., the first time at which FGLP and FAMPA exceeded the threshold values.
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Fig. 7. Time evolution of AMAP values: each row of plots is associated with a single output, columns distinguish the different scenarios.

Fig. 8. AMAP values of the uncertain soil hydraulic parameters relative to (a) GLP aqueous concentration BRZ and (b) MXT fluxes from RZ to BRZ. Analyses were
carried out at time t = 15 years and results are grouped and colored according to each one of the considered scenarios.
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and leaching. In particular, we show that leaching is highly variable
depending on soil properties, hydrological boundary conditions, and
land management practices. In previous studies, Stenemo and Jarvis
(2007) showed that the ranking of parameters may change according to
soil texture, while Jury and Gruber (1989) showed that the persistence
of pesticides with residence times longer than one year is more affected
by soil rather than climatic variability. A number of studies have in-
vestigated uncertainty quantification and sensitivity analysis of agro-
chemical biodegradation and leaching (Dubus et al., 2003; Stenemo and
Jarvis, 2007; Heuvelink et al., 2010). These modeling works assumed
first order decay of pesticides in soil in contrast with our approach that
uses Michaelis-Menten-Monod kinetics. Some of these studies suggest
that soil hydraulics has a smaller impact on pesticide fate as compared
to half life and sorption properties, yet our results demonstrate that soil
hydraulic properties have a relevant impact on threshold exceedance
probability. In particular, the AMAP time series demonstrate the impact
of soil hydraulic parameters appears to be more persistent in dry than
wet scenarios. We emphasize that the above mentioned studies typi-
cally rely on a single output statistics for parameter ranking in pesticide
leaching (Heuvelink et al., 2010) or quantify sensitivity by changing
parameters one at a time (Dubus et al., 2003). Conversely, our results
advocate for the use of a suite of global sensitivity indicators to thor-
oughly test the system response, and are in line with recent studies
(Borgonovo et al., 2017; Ceriotti et al., 2018). Hence AMAP can com-
plement moment-based sensitivity indicators that do not account for
safety threshold considered in risk assessment protocols. Likewise mo-
ment-based indicators, AMAP can be used with any input parameter
distribution, model formulation and dimensionality. The present work
considers only scenario and parametric uncertainty. Model structure
and dimensionality has been identified as another possible relevant
source of uncertainty. Different results may be obtained upon con-
sidering diverse flow and transport formulations as well as alternative
biogeochemical reaction networks. Future work is envisaged to provide
a formal derivation of model structure sensitivity indices within a
probabilistic risk assessment framework, as recently discussed in
Dell’Oca et al. (2020).

4. Conclusions

Our work leads to the following major conclusions:

• We test the use of a suite of sensitivity indicators for soil and
groundwater environmental risk assessment. To this end, we in-
troduce a new sensitivity index (AMAP) and we show its application
to contamination and pollution following glyphosate (GLP) herbi-
cide dispersion in an agricultural soil column. AMAP provides a time
dependent indication of the relevance of each parameter on the

probability for a given output to exceed a user defined threshold and
complements available moment-based sensitivity metrics. The index
developed here can be readily applied to rank uncertain parameters
with respect to any arbitrary threshold related to the quality of any
environmental sphere (e.g., water, air, soil, and their combinations)
and to inform appropriate management and restoration strategies.
• We quantify the impact of uncertainty in soil hydraulic parameters
on the time required for the concentration of GLP and its toxic
metabolite AMPA to exceed pollution thresholds in the top soil,
below the root zone and for the fluxes measured at 1 m depth. We
repeated these analyses in different scenarios of managed and un-
managed water budgets. When concentration thresholds are con-
sidered, dry scenarios result in larger uncertainty in terms of ex-
ceedance time as compared to wet ones. Measurements of
contaminant fluxes reduce such uncertainty.
• Parameter ranking varies with ecohydrological scenarios of pre-
cipitations and irrigation practice. Permeability (k) and air-entry
suction ( s) have the greatest effect on exceedance of water quality
safety limits in the reference scenario as well as in the wet scenario.
The influence of the pore volume distribution index b emerges in dry
conditions, probably due to its relation with the relative perme-
ability. Gas residual saturation may play an important role in con-
taminant transport in some scenarios, however it has shown a re-
latively minor role on pollution assessment. Porosity appears to
have a minor effect on pollution risk as compared to permeability,
except in the driest investigated conditions. These results suggest
that AMAP can be used to refine uncertainty quantification in ha-
zard assessment through measurements campaigns or to design risk
management strategies, which can be specialized to local ecohy-
drological boundary conditions.
• Steady state scenarios do not allow assessing contamination and
pollution and overpredict pollution time scales if compared with
time-resolved simulations. Remarkably the sample-averaged GLP
and AMPA biodegradation efficiencies show only minor differences
across the tested scenarios. This result shows that steady state si-
mulation may be able to match biodegradation efficiency yielded by
time-resolved boundary conditions, but are not effective in ren-
dering contamination hazards. Average flow conditions neglect the
impact of short range fluctuations that play a predominant role in
triggering contamination and pollution.
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Appendix A. Modelling of feedbacks between water saturation and biodegradation rates

The rate of change of an aqueous species for a given reaction in (6) is = =r X t x Rd /di i
i

i, where xi is the stoichiometric number for species i and Ri

[ML−3T−1] is the reaction velocity. For a generic reaction with nO n-order kinetic products, nMM Michaelis-Menten-Monod terms with concentration
X n,n COMMM competitive reactants (XnCOM), and nINB inhibition terms (XnINB), the reaction velocity R is written as
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where r [T−1] is the reaction rate constant, K K K, ,n n nMM INB COM are the Michaelis-Menten half saturation, competition and inhibition constants,
respectively, =f 1B if the reaction is chemical or if the reaction is biochemical.
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where f S( )B [–], f ( ) [–] and f S( )l [–] are the specific microbial response functions to space availability, temperature and water saturation,
respectively. These terms are evaluated as
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where fl [–] is the biomass water fraction, SB [–] is the biomass saturation, LB and UB [ ] and Sl LB, [–] and Sl UB, [–] are the lower and upper
temperature (in Kelvin) and liquid saturation response parameters. The three functions in (A.3) introduce a limitation to microbially driven reactions
as a function of environmental factors that may limit the bacterial growth and/or activity.

The function f S( )B implies that microbial functional groups can grow as long as there is enough free water to immobilize, or gas space available
for the cell solid fraction f(1 )l to occupy, or there is enough pore volume to host the total microbial biomass volume. Following the scheme in
Maggi and Porporato (2007), the function f S( )B also implies that the total water saturation includes the free (mobile) water saturation Sl and the
immobilized water saturation =S f SlB l B. As a consequence, the term B in Eq. (3) accounts for the rate of change in mobile water saturation Sl when
the total microbial biomass increases (i.e., >B 0 expresses water immobilization) or decreases (i.e., <B 0 expresses water remobilization). Hence,
Eq. (3) is subject to the constraint + + =S S S 1l g B . Function f T( ) limits R when temperature is below LB and above UB. Finally, function f S( )l

Fig. 10. Microbial response functions for (a) temperature stress f ( ), and (b) water stress f S( )l as a function of temperature and mobile water saturation, re-
spectively. Functions apply to all microbial functional groups accounted for in the GLP biogeochemical reaction network. The curve for mesophiles (left panel) is from
(Rittmann and McCarty, 2001); experiments in the right panel are from Wickland and Neff (2008).
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limits R when Sl is below Sl LB, or above Sl UB, .
The response function f ( ) appearing in (A.1)–(A.2) was calculated with = = =m n0.1, 0.5, 6LB °C and = 45UB °C to return the microbial

activity curve typical of mesophiles documented in (Rittmann and McCarty, 2001) (Fig. 10a), while f S( )l was implemented with = =S S 0.46l LB l UB, ,
to represent typical water stresses (e.g., Moyano et al., 2012; Yan et al., 2018) (Fig. 10b). The response function f S( )B was implemented with

=f 0.85l after Rockhold et al. (2005) and varies with SB and therefore with t and over z.

Appendix B. Stability of QMC sampling

Results in Fig. 11 shows that 5,000 stochastic realizations resulted in stable relative frequency in the target outputs. The results also allow
appreciating that different scenarios resulted in different frequencies.
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