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DNA sequencing is the process of determining the exact order of the nucleotide bases of an 
individual’s genome in order to catalogue sequence variation and understand its biological 
implications. Whole-genome sequencing techniques produce masses of data in the form of 
short sequences known as reads. Assembling these reads into a whole genome constitutes a 
major algorithmic challenge. Most assembly algorithms utilise de Bruijn graphs constructed 
from reads for this purpose. A critical step of these algorithms is to detect typical motif 
structures in the graph caused by sequencing errors and genome repeats, and filter them 
out; one such complex subgraph class is a so-called superbubble. In this paper, we propose 
an O(n + m)-time algorithm to detect all superbubbles in a directed acyclic graph with n
vertices and m (directed) edges, improving the best-known O(m logm)-time algorithm by 
Sung et al.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Since the publication of the first draft of the human genome [1,2], the field of genomics has changed dramatically. 
Recent developments in sequencing technologies (see [3], for example) have made it possible to sequence new genomes at 
a fraction of the time and cost required only a few years ago. With applications including sequencing the genome of a new 
species, an individual within a population, and RNA molecules from a particular sample, sequencing remains at the core of 
genomics.

Whole-genome sequencing creates masses of data, in the order of tens of gigabytes, in the form of short sequences 
(reads). Genome assembly involves piecing together these reads to form a set of contiguous sequences (contigs) represent-
ing the DNA sequence in the sample. Traditional assembly algorithms rely on the overlap-layout-consensus approach [4], 
representing each read as a vertex in an overlap graph and each detected overlap as a directed edge between the vertices 
corresponding to overlapping reads. These methods have proved their use through numerous de novo genome assemblies [5].

Subsequently, a fundamentally different approach based on de Bruijn graphs was proposed [6], where representation of 
data elements was organised around words of k nucleotides, or k-mers, instead of reads. Unlike in an overlap graph, in a 
de Bruijn graph [7], each k − 1 nucleotide long prefix and suffix of the k-mers is represented as a vertex and each k-mer 
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is represented as a directed edge between its prefix and suffix vertices. The marginal information contained by a k-mer is 
its last nucleotide. The sequence of those final nucleotides is called the sequence of the vertex. In a de Bruijn graph, the 
assembly problem is reduced to finding an Eulerian path, that is, a trail that visits each edge in the graph exactly once.

However, sequencing errors and genome repeats significantly complicate the de Bruijn graph by adding false vertices and 
edges to it. Efficient and robust filtering methods have been proposed to simplify the graph by filtering out motifs such as 
tips, bubbles, and cross links, which proved to be caused by sequencing errors [8]. In particular, a bubble consists of multiple 
directed unipaths (where a unipath is a path in which all internal vertices are of degree 2) from a vertex v to a vertex u
and is commonly caused by a small number of errors in the centre of reads. Although these types of motifs are simple and 
can easily be identified and filtered out, more complicated motifs prove to be more challenging.

Recently, a complex generalisation of a bubble, the so-called superbubble, was proposed as an important subgraph class 
for analysing assembly graphs [9]. A superbubble is defined as a minimal subgraph H in the de Bruijn graph with exactly 
one start vertex s and one end vertex t such that: (1) H is a directed, acyclic, single-source (s), single-sink (t) graph 
(2) there is no edge from a vertex not in H going to a vertex in H\{s} and (3) there is no edge from a vertex in H\{t}
going to a vertex not in H . It is clear that many superbubbles are formed as a result of sequencing errors, inexact repeats, 
diploid/polyploid genomes, or frequent mutations. Thus, efficient detection of superbubbles is essential for the application 
of genome assembly [9].

Onodera et al. gave an O(nm)-time algorithm to detect superbubbles, where n is the number of vertices and m is the 
number of edges in the graph [9]. Very recently, Sung et al. gave an improved O(m log m)-time algorithm to solve this 
problem [10]. The algorithm partitions the given graph into a set of subgraphs such that the set of superbubbles in all 
these subgraphs is the same as the set of superbubbles in the given graph. This set consists of subgraphs corresponding 
to each non-singleton strongly connected component and a subgraph corresponding to the set of all the vertices involved 
in singleton strongly connected components. Superbubbles are then detected in each subgraph; if it is cyclic, it is first 
converted into a directed acyclic subgraph by means of depth-first search and by duplicating some vertices.

Our contribution. Note that the cost of partitioning the graph and transforming it into the directed acyclic subgraphs is 
linear with respect to the size of the graph. However, computing the superbubbles in each directed acyclic subgraph requires 
O(m logm) time [10], which dominates the time bound of the algorithm. In this paper, we propose a new O(n + m)-time 
algorithm to compute all superbubbles in a directed acyclic graph.

This paper is organised as follows: In Section 2 we define superbubbles and introduce some of their properties, and in 
Section 3 we outline the O(n + m)-time algorithm for computing superbubbles in a directed acyclic graph. In Section 4
we explain a method to validate a candidate superbubble in constant time. The algorithm is analysed in Section 5, while 
Section 6 provides some final remarks and directions for future research.

2. Properties

The concept of superbubbles was introduced and formally defined in [9] as follows.

Definition 1. (See [9].) Let G = (V , E) be a directed graph. For any ordered pair of distinct vertices s and t , 〈s, t〉 is called a 
superbubble if it satisfies the following:

• reachability: t is reachable from s;
• matching: the set of vertices reachable from s without passing through t is equal to the set of vertices from which t is 

reachable without passing through s;
• acyclicity: the subgraph induced by U is acyclic, where U is the set of vertices satisfying the matching criterion;
• minimality: no vertex in U other than t forms a pair with s that satisfies the conditions above;

vertices s and t , and U\{s, t} used in the above definition are the superbubble’s entrance, exit and interior, respectively.

We note that a superbubble 〈s, t〉 in the above definition is equivalent to a single-source, single-sink, directed acyclic 
subgraph of G with source s and sink t , which does not have any cut vertices and preserves all in-degrees and out-degrees 
of vertices in U\{s, t}, as well as the out-degree of s and in-degree of t .

We next state a few important properties of superbubbles which enable the linear-time enumeration of superbubbles. 
Lemmas 1 and 2 were proved by Onodera et al. [9] and Sung et al. [10], respectively.

Lemma 1. (See [9].) Any vertex can be the entrance (respectively exit) of at most one superbubble.

Note that Lemma 1 does not exclude the possibility that a vertex is the entrance of a superbubble and the exit of another 
superbubble.

Lemma 2. (See [10].) Let G be a directed acyclic graph. We have the following two observations.
1) Suppose (p, c) is an edge in G, where p has one child and c has one parent, then 〈p, c〉 is a superbubble in G.
2) For any superbubble 〈s, t〉 in G, there must exist some parent p of t such that p has exactly one child t.
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Fig. 1. A graph G with set of vertices V = {v1, v2, · · · , v15}. Note that G has as a single source v1 and as a single sink v14.

Fig. 2. Vertices of Fig. 1 in topological order, where ordD[v1] = 1, ordD[v2] = 2, ordD[v3] = 3, ordD[v4] = 11, ordD[v5] = 6, ordD[v6] = 8, ordD[v7] = 10, 
ordD[v8] = 12, ordD[v9] = 7, ordD[v10] = 9, ordD[v11] = 4, ordD[v12] = 5, ordD[v13] = 13, ordD[v14] = 15 and ordD[v15] = 14.

In this paper we start by showing another important property of superbubbles that is closely-related to Lemma 2.

Lemma 3. For any superbubble 〈s, t〉 in a directed acyclic graph G, there must exist some child c of s such that c has exactly one 
parent s.

Proof. Assume that all the children of s have more than one parent. Then, there must be some cycle or some child c which 
has a parent that does not belong to the superbubble 〈s, t〉. This is a contradiction. �
3. Finding a superbubble in a directed acyclic graph

The main contribution of this paper is an algorithm SuperBubble that reports all superbubbles in a directed acyclic graph 
G = (V , E) with exactly one source (the vertex with in-degree 0) and exactly one sink (vertex with out-degree 0). If G has 
more than one source then a new source vertex r′ is added to V and an edge from r′ to each existing source is added to E . 
The same is done if G has more than one sink; in this case, a new sink vertex t′ is added to V and an edge from each 
existing sink to t′ is added to E . If such preprocessing is done, then among the superbubbles reported by the algorithm, 
only those which do not start at r′ and do not end at t′ represent the superbubbles in the original graph. For the sake 
of simplicity, for the rest of this paper and in all the propositions, lemmas and theorems that follow, we use G to denote 
a directed acyclic graph with exactly one source and exactly one sink, and we use n and m to denote the number of its 
vertices and edges respectively, that is, for G = (V , E) we have n = |V | and m = |E|.

A topological ordering ordD of G maps each vertex to an integer between 1 and n, such that ordD[x] < ordD[y] holds for 
all edges (x, y) ∈ E . There exists a classical linear-time algorithm for computing the topological ordering of a directed acyclic 
graph [11,12]. In its recursive form, the algorithm visits an unvisited vertex of the graph, finds its unvisited neighbour, say v , 
and performs another topological sort starting from v . The algorithm returns if the current vertex does not have unvisited 
neighbours. Algorithm TopologicalSort, given below, is a simplified version that takes as input a single-source, single-sink 
directed acyclic graph, and produces a topological ordering of vertices. For the graph G in Fig. 1, TopologicalSort produces 
an ordering given in Fig. 2.

TopologicalSort(G)

1 order ← n
2 for each vertex v ∈ V do
3 state[v] ← unvisited
4 RecursiveTopologicalSort(G, source)

RecursiveTopologicalSort(G, v)

1 state[v] ← visited
2 for each vertex w adjacent to v do
3 if state[w] = unvisited then
4 RecursiveTopologicalSort(G, w)

5 ordD[v] ← order
6 order ← order − 1

Proposition 1. For any topological ordering ordD of vertices in graph G, if vertex u is reachable from v, that is, if there is a path from 
v to u, then ordD[v] < ordD[u].
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v1 v2 v3 v11 v12 v5 v9 v6 v10 v7 v4 v8 v13 v15 v14

entrance s1 s2 s3 s4 s5 s6

exit t1 t2 t3 t4 t5 t6

Fig. 3. Candidates list for Fig. 1, candidates = {v1(entrance), v3(exit), v3(entrance), v11(entrance), v12(exit), v5(entrance), v10(exit), v7(exit), v8(exit),
v8(entrance), v13(entrance), v14(exit)}. Note that both v3 and v8 appear twice in the list.

Proof. If the path from v to u is of length 1, i.e., there is an edge (v, u), then by the definition of topological ordering we 
have ordD[v] < ordD[u]. Otherwise, we denote the path from v to u of length k, k > 1, as v, x1, . . . , xk−1, u. Then by the 
definition of topological ordering we have ordD[v] < ordD[x1] < · · · < ordD[u]. Transitively, we have ordD[v] < ordD[u]. �

Importantly, in this paper we do not consider all topological orderings of graph G but only those obtained by algorithm
TopologicalSort. Note that this algorithm finds a directed spanning tree T of G rooted at the source, which contains a path 
from the source to any vertex in G . The directed spanning tree T of G obtained by algorithm TopologicalSort is presented 
by bold edges in Fig. 2. It may be worth mentioning that a directed rooted tree is also known as arborescence.

We next present another important property of topological ordering obtained by algorithm TopologicalSort.

Proposition 2. Let ordD and T be a topological ordering and a directed rooted spanning tree of graph G obtained by algorithm
TopologicalSort. If there is a path in T from a vertex v to a vertex u, then, for each vertex w such that ordD[v] < ordD[w] < ordD[u], 
there is a path from v to w.

Proof. Recall that T contains a path from the root to each vertex of the tree; this is also true for each subtree of T . 
Furthermore, if there is a path from v to u in T , then u is contained in a subtree of T rooted at v , and each w such that 
ordD[v] < ordD[w] < ordD[u] is also contained in the subtree rooted at v (but not in the subtree rooted at u). Therefore, 
there is a path from v to w , for each w such that ordD[v] < ordD[w] < ordD[u]. �

We next show that in an ordering obtained by TopologicalSort, a vertex has the topological ordering between the 
orderings of the entrance and the exit of a superbubble if and only if it belongs to the superbubble.

Lemma 4. Let graph G contain a superbubble 〈s, t〉. Then a topological ordering obtained by TopologicalSort has the following 
properties.

1. For all x such that x ∈ U\{s, t}, ordD[s] < ordD[x] < ordD[t].
2. For all y such that y /∈ U , ordD[y] < ordD[s] or ordD[y] > ordD[t].

Proof. Recall that U is the set of vertices forming a superbubble (see Definition 1).

1. Since there is a path from the start s of the superbubble to all x ∈ U\{s}, by Proposition 1 we have ordD[s] < ordD[x]
for all x such that x ∈ U\{s}. Similarly, since there is a path from all x ∈ U\{t} to the end t of the superbubble, by 
Proposition 1 we have ordD[x] < ordD[t] for all x such that x ∈ U\{t}. Therefore, for all x such that x ∈ U\{s, t}, ordD[s] <
ordD[x] < ordD[t].

2. Suppose the opposite, that is, suppose that there exists some y /∈ U such that ordD[s] < ordD[y] < ordD[t]. Since the 
superbubble 〈s, t〉 is itself a single-source, single-sink subgraph of G , any directed spanning tree of G rooted at the 
source, will contain a path from s to t . Then by Proposition 2 there also exists a path from s to y in T and thus also 
in G . However, by the definition of the superbubble, the only vertices reachable from s without going through t are the 
internal vertices of the superbubble — a contradiction. Therefore, for all y such that y /∈ U , either ordD[y] < ordD[s] or 
ordD[y] > ordD[t]. �

Algorithm SuperBubble starts by topologically ordering the vertices of graph G and then checks each vertex in V , in 
topological order, to identify whether it is an exit or an entrance candidate (or both). According to Lemmas 2 and 3, a vertex 
v is an exit candidate if it has at least one parent with exactly one child (out-degree 1) and an entrance candidate if it has 
at least one child with exactly one parent (in-degree 1). There are at most 2n candidates, thus the cost of constructing a 
doubly-linked list of all the candidates is linear in n. The elements of the candidates list are ordered according to ordD, 
and each candidate is labelled as an exit or an entrance candidate. Note that if a vertex v is both an exit and an entrance 
candidate, then v appears twice in the candidates list, first as an exit and then as an entrance (Fig. 3).
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Algorithm SuperBubble processes the candidates list of graph G in decreasing topological order (backwards). Let 
v ′

1, v
′
2, . . . , v

′
� be the list of candidates. The algorithm performs the following:

• If v ′
j is an entrance candidate, then delete v ′

j ;

• If v ′
j is an exit candidate, then subroutine ReportSuperBubble is called to find and report the superbubble ending at 

v ′
j , that is, the superbubble 〈v ′

i, v
′
j〉, for some entrance candidate v ′

i . Subroutine ReportSuperBubble also recursively 
finds and reports all nested superbubbles between v ′

i and v ′
j .

For clarity of presentation, we next provide a list and a short description of subroutines and arrays used by algorithm
SuperBubble and subroutine ReportSuperBubble. Before that, it is worth mentioning that candidates is a doubly-linked 
list of entrance and exit candidates; specifically, an element of the list is a vertex along with a label specifying if it is an 
entrance or an exit candidate. For the sake of simplicity of the following routines, we use a vertex and its corresponding 
candidate (element in the candidates list) interchangeably. This does not add to the complexity of the algorithm as we 
can use an auxiliary array v , where v[i] stores a pointer to the corresponding element vi in candidates so as to provide a 
constant-time conversion from a vertex to the corresponding candidate.

1. Entrance(v) takes as input a vertex v and outputs TRUE if v is an entrance candidate, that is, if it satisfies Lemma 3, 
and FALSE otherwise.

2. Exit(v) takes as input a vertex v and outputs TRUE if v is an exit candidate, that is, if it satisfies Lemma 2, and FALSE
otherwise.

3. InsertEntrance(v) takes as input a vertex v , inserts it at the end of candidates and labels it as entrance.

4. InsertExit(v) takes as input a vertex v , inserts it at the end of candidates and labels it as exit.

5. Head(candidates) and Tail(candidates) return the first and the last element in candidates, respectively.

6. DeleteTail(candidates) deletes the last element in candidates.

7. Next(v) returns the candidate following v in candidates.

In addition to the above subroutines, the main algorithm also explicitly makes use of the following arrays.

1. The array ordD stores the topological order of the vertices.
2. The array previousEntrance stores the previous entrance candidate s for each vertex v . Formally, previousEntrance[v] = s

where s is an entrance candidate such that ordD[s] < ordD[v]; and there does not exist another entrance candidate s′
such that ordD[s] < ordD[s′] < ordD[v].

3. The array alternativeEntrance is used to reduce the number of entrance−exit pairs that need to be considered as possible 
superbubbles. Array alternativeEntrance is further detailed in Section 4.1.

Note that subroutine ReportSuperBubble is called for each exit candidate in decreasing order either by algorithm Su-

perBubble or through a recursive call to identify a nested superbubble. A call to subroutine ReportSuperBubble(start, exit) 
checks the possible entrance candidates between start and exit, starting with the nearest previous entrance candidate (to 
exit). This task is accomplished with the help of subroutine ValidateSuperBubble, explained in the following section, which 
checks whether a given candidate 〈s, t〉 is a superbubble or not; if it is not, the algorithm returns either a “−1” which means 
that no superbubble ends at t , or an alternative entrance candidate for a superbubble that could end at t . For the graph in 
Fig. 1, the algorithm detects and reports five superbubbles: 〈v8, v14〉, 〈v3, v8〉, 〈v5, v7〉, 〈v11, v12〉 and 〈v1, v3〉. Here, both 
〈v5, v7〉 and 〈v11, v12〉 are nested superbubbles.

SuperBubble(G)

1 TopologicalSort(G)

2 prevEnt ← NULL
3 for each vertex v in topological order do
4 alternativeEntrance[v] ← NULL
5 previousEntrance[v] ← prevEnt
6 if Exit(v) then
7 InsertExit(v)

8 if Entrance(v) then
9 InsertEntrance(v)

10 prevEnt ← v
11 while candidates is not empty do
12 if Entrance(Tail(candidates)) then
13 DeleteTail(candidates)
14 else ReportSuperBubble(Head(candidates),Tail(candidates))
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ReportSuperBubble(start, exit)
1 � Report the superbubble ending at exit (if any)
2 if (start = NULL) | (exit = NULL) | (ordD[start] ≥ ordD[exit]) then
3 DeleteTail(candidates)
4 return
5 s ← previousEntrance[exit]
6 while (ordD[s] ≥ ordD[start]) do
7 valid ←ValidateSuperBubble(s, exit)
8 if (valid = s) | (valid = alternativeEntrance[s]) | (valid = −1) then
9 break

10 alternativeEntrance[s] ← valid
11 s ← valid
12 DeleteTail(candidates)
13 if (valid = s) then
14 Report(〈s, exit〉)
15 while (Tail(candidates) is not s) do
16 if Exit(Tail(candidates)) then
17 � Check for nested superbubbles
18 ReportSuperBubble(Next(s),Tail(candidates))
19 else DeleteTail(candidates)
20 return

Remark 1. It is also possible to design the algorithm so as to move forward in topological order instead of backwards.

For graph G in Fig. 1, algorithm SuperBubble(G) makes exactly three calls to subroutine ReportSuperBubble:

1. ReportSuperBubble(v1, v14): First, it checks the exit candidate v14 against the nearest previous entrance candidate, 
i.e. vertex v13. Subroutine ValidateSuperBubble(v13, v14) returns v8 as an alternative entrance candidate. The new 
candidate is then checked and the superbubble 〈v8, v14〉 is reported.

2. ReportSuperBubble(v1, v8): First, it checks the exit candidate v8 against the nearest previous entrance candidate, 
i.e. vertex v5. Subroutine ValidateSuperBubble(v5, v8) returns v3 as an alternative entrance candidate. The new candi-
date is then checked and the superbubble 〈v3, v8〉 is reported. Additionally, two recursive calls are made:
(a) ReportSuperBubble(v11, v7): First, it validates 〈v5, v7〉 and reports it. Then, it makes a recursive call to subroutine 

ReportSuperBubble(v10, v10) which terminates without reporting any superbubble.
(b) ReportSuperBubble(v11, v12): validates 〈v11, v12〉 and reports it.

3. ReportSuperBubble(v1, v3): validates 〈v1, v3〉 and reports it.

4. Validating a superbubble

In this section, we describe subroutine ValidateSuperBubble. The ability to validate a candidate superbubble depends on 
the following result related to the Range Minimum Query problem.

The Range Minimum Query problem, RMQ for short, is to preprocess a given array A[1. .n] for subsequent queries of the 
form: “Given indices i, j, what is the minimum value of A[i. . j]?”. The problem has been studied intensively for decades 
and several 〈O (n), O (1)〉-RMQ data structures have been proposed, many of which depend on the equivalence between the 
Range Minimum Query and the Lowest Common Ancestor problems [13–15].

In order to check whether a superbubble candidate 〈s, t〉 is a superbubble or not, we propose to utilise the range min/max 
query problem as follows:

• For a given graph G = (V , E) and for each vertex v ∈ V with topological order ordD[v], calculate the topological order-
ings of the parent and the child of v that are topologically furthest from v .

OutParent[ordD[v]] = min({ordD[ui] | (ui, v) ∈ E}),
OutChild[ordD[v]] = max({ordD[ui] | (v, ui) ∈ E}).

• For an integer array A and indices i and j we define RangeMin(A, i, j) and RangeMax(A, i, j) to return the minimum 
and maximum value of A[i.. j], respectively.
Then for a given superbubble candidate 〈s, t〉, where s and t are an entrance and an exit candidate respectively (satis-
fying Lemmas 1 and 2), if 〈s, t〉 is a superbubble then the following two conditions are valid

RangeMin(OutParent,ordD[s] + 1,ordD[t]) = ordD[s],
RangeMax(OutChild,ordD[s],ordD[t] − 1) = ordD[t].
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v1 v2 v3 v11 v12 v5 v9 v6 v10 v7 v4 v8 v13 v15 v14

OutParent[ j] – 1 1 3 4 3 6 6 7 8 3 5 12 13 12
OutChild[ j] 3 3 11 5 12 8 9 10 10 12 12 15 15 15 –

Fig. 4. OutParent and OutChild arrays for the graph in Fig. 1.

For example, Fig. 4 represents both OutParent and OutChild arrays computed for graph G in Fig. 1. Furthermore, a candi-
date 〈v5, v8〉 is not a superbubble as RangeMin(OutParent, ordD[v5] + 1, ordD[v8]) = 3 
= 6 = ordD[v5].

It should be clear that after an O(n + m)-time preprocessing, validating a superbubble requires O(1) time which is the 
cost for range max/min query. Subroutine ValidateSuperBubble(startVertex, endVertex) is designed to return an appropriate 
entrance candidate for a superbubble ending at endVertex (if any), as follows.

ValidateSuperBubble(startVertex, endVertex)
1 start ← ordD[startVertex]
2 end ← ordD[endVertex]
3 outchild ←RangeMax(OutChild, start, end − 1)

4 outparent ←RangeMin(OutParent, start + 1, end)

5 if outchild 
= end then
6 return −1
7 if outparent = start then
8 return startVertex
9 elseif Entrance(Vertex(outparent)) then

10 return Vertex(outparent)
11 else return previousEntrance[Vertex(outparent)]

Note that subroutine ValidateSuperBubble utilises subroutine Entrance and the array previousEntrance defined in Sec-
tion 3, as well as subroutine Vertex that takes as input an integer i and outputs vertex v such that ordD[i] = v .

An important observation is that a subsequent call to subroutine ValidateSuperBubble, for a given entrance candidate, 
returns alternative entrance candidates in strictly non-decreasing topological order as proved by Lemma 5.

Lemma 5. Let t be the alternative entrance candidate returned by subroutine ValidateSuperBubble(s, e). Then for any exit 
candidate e′ such that ordD[s] < ordD[e′] < ordD[e], the order of the alternative entrance candidate t′ returned by subroutine 
ValidateSuperBubble(s, e′) will be greater than or equal to the order of t.

Proof. Recall that the alternative entrance t returned by the subroutine ValidateSuperBubble(s, e′) is either a vertex with 
topological order outparent, or the previousEntrance of this vertex.

Since outparent = RangeMin(OutParent, ordD[s] + 1, ordD[e]), outparent′ = RangeMin(OutParent, ordD[s] + 1, ordD[e′]) and 
ordD[s] < ordD[e′] < ordD[e], we have outparent ≤ outparent′ . Therefore, ordD(t) ≤ ordD(t′). �
4.1. Validation and alternativeEntrance

In case the validation of the candidate pair (t0, e) fails, subroutine ValidateSuperBubble(t0, e) returns either “−1” or an 
alternative candidate t1 which might be an entrance of a superbubble ending at e. This alternative candidate t1 is either a 
vertex u1, if u1 is an entrance candidate, or the previous entrance candidate of u1 such that

ordD[u1] = OutParent[ordD[v1]]
= RangeMin(OutParent,ordD[t0] + 1,ordD[e]),

where v1 is some vertex between t0 and e in the topological ordering.
Suppose t1 is also not a valid entrance of the superbubble ending at e. Then there must be a vertex v2, ordD[t1] <

ordD[v2] < ordD[t0], with some parent u2, such that ordD[u2] = OutParent[ordD[v2]]. Then the alternative entrance is some 
t2, which is either a vertex u2 or its previous entrance and thus ordD[t2] < ordD[t1]. A series of such failed validations 
produces a sequence t1, t2, . . . of failed alternative entrance candidates.

An important observation here is that any entrance ti , for i ≥ 1, from such a sequence is an invalid entrance not only for 
the superbubble ending at e but also for all those ending at any other exit vertex e′ such that ordD[ti−1] < ordD[e′] < ordD[e]
and ti = ValidateSuperBubble(ti−1, e′). This is the case because the vertex vi which causes the alternative entrance ti to 
fail is such that ordD[ti] < ordD[vi] < ordD[ti−1] for i ≥ 1. Therefore, vi does not depend on the exit e but rather on the 
previous failed candidate entrance.

This is where array alternativeEntrance plays an important role. Storing alternativeEntrance[ti−1] = ti for i ≥ 1 enables us 
to skip this sequence at a later stage if ti is returned by subroutine ValidateSuperBubble(ti−1, e′).
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5. Algorithm analysis

In this section, we analyse the correctness and the running time of the proposed algorithm SuperBubble. For simplicity, 
in the following lemma we will slightly abuse the terminology and refer to 〈s, t〉 as a superbubble if it satisfies the first three 
conditions given in Definition 1, and as minimal superbubble if it also satisfies the last condition in the same definition.

Lemma 6. For a given exit candidate e, let s be the entrance candidate such that superbubble 〈s, e〉 is reported by subroutine 
ValidateSuperBubble(s, e). Then 〈s, e〉 is a minimal superbubble.

Proof. By contradiction, let e′ be an exit candidate such that 〈s, e′〉 is also a superbubble and ordD[s] < ordD[e′] < ordD[e]. 
Then, either ordD[e] = ordD[e′] + 1 or there is at least one vertex v such that ordD[e′] < ordD[v] < ordD[e].

In the first case, ordD[e] = ordD[e′] + 1 implies that e is the only child of e′ and e′ is the only parent of e, which, by 
Lemma 2 makes 〈e′, e〉 a superbubble.

In the second case, where there is at least one vertex v such that ordD[e′] < ordD[v] < ordD[e], we also argue that 〈e′, e〉
must be a superbubble. Indeed, 〈e′, e〉 satisfies the following conditions:

1. Reachability: Since 〈s, e〉 is a superbubble, e is reachable from s; since 〈s, e′〉 is also assumed to be a superbubble, any 
path from s to e must go through e′ , therefore e is reachable from e′ .

2. Matching: The only vertices reachable from e′ without going through e are those whose topological order is between 
ordD(e′) and ordD(e). Indeed, since 〈s, e〉 and 〈s, e′〉 are superbubbles, all these vertices are reachable from s through e′ , 
and no vertices with topological order greater than ordD(e) are reachable from e′ without going through e. Similarly, 
there are no edges between vertices with topological order less than ordD(e′) and those with the topological order 
between ordD(e′) and ordD(e). Therefore, the only vertices from which e is reachable without going through e′ are 
those whose topological order is between ordD(e′) and ordD(e).

3. Acyclicity: Since 〈s, e〉 is a superbubble it is acyclic; since 〈e′, e〉 is a subgraph of 〈s, e〉, it is also acyclic.

In both cases, since for each exit candidate the entrance candidates are checked in reverse topological order, subroutine
ValidateSuperBubble would have been called on 〈e′, e〉 first, and would have reported 〈e′, e〉 instead of 〈s, e〉. Therefore, 
〈s, e〉 is a minimal superbubble. �
Lemma 7. For the given entrance and exit candidates s and e, respectively, subroutine ValidateSuperBubble reports 〈s, t〉 if and only 
if 〈s, t〉 is a superbubble.

Proof. We prove the lemma by showing that if 〈s, t〉 is a superbubble then subroutine ValidateSuperBubble reports it, and 
if ValidateSuperBubble reports 〈s, t〉 then 〈s, t〉 is a superbubble.

1. We start by showing that if 〈s, t〉 is a superbubble then subroutine ValidateSuperBubble reports it. Indeed, by Lemma 4, 
all the vertices with topological orderings between s and t belong to the superbubble 〈s, t〉. Therefore, the minimum 
OutParent is s and the maximum OutChild is t and thus subroutine ValidateSuperBubble reports 〈s, t〉.

2. We next show that if subroutine ValidateSuperBubble reports 〈s, t〉 then 〈s, t〉 is a superbubble. Let start and end be 
two integers, such that ordD[s] = start and ordD[t] = end. The graph G as defined, has a single source r and a single 
sink r′; this implies that any vertex v ∈ V is reachable from r and, at the same time, can reach r′ . This is also true for 
s, t and for any vertex v such that ordD[s] < ordD[v] < ordD[t].
First, we show that t is reachable from s. Recall that t is an exit candidate, so, it has a parent p with out-degree 1. 
Assume that t is not reachable from s, then there must be a path from r � t which does not involve s. This implies that 
either OutParent[end] < start, or there exists a vertex v such that start < ordD[v] < end, OutParent[v] < start and there 
exists a path r � v � t , which is a contradiction.
Similarly, we can show that every vertex v such that start < ordD[v] < end satisfies the matching criterion of the 
superbubble.
The acyclicity criterion is guaranteed by the acyclicity of G and the minimality is satisfied by the design of subrou-
tine ReportSuperBubble which assigns each exit of a superbubble to the nearest entrance, and by the correctness of 
Lemma 6. �

Lemma 8. For a given exit candidate e, let t be the alternative entrance candidate returned by subroutine ValidateSuperBubble(s, e). 
Then any entrance candidate between t and e cannot be a valid entrance for the superbubble ending at e.

Proof. By contradiction, assume that s′ is an entrance candidate between t and e such that 〈s′, e〉 is a superbubble. If s′
had been between s and e, it would have already been reported, as SuperBubble checks entrance candidates in reverse 
topological order starting from e. Therefore, s′ is between t and s, such that ordD[t] < ordD[s′] < ordD[s] < ordD[e]. Let 
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outparent = RangeMin(OutParent, ordD[s] + 1, ordD[e]). Then, vertex at outparent is between t and s′ , otherwise subroutine 
ValidateSuperBubble(s, e) would have returned s′ (instead of t). Therefore, ordD[t] ≤ outparent < ordD[s′].

Let outparent′ = RangeMin(OutParent, ordD[s′] + 1, ordD[e]). Then outparent′ ≤ outparent. This implies that outparent′ ≤
outparent < ordD[s′]. However, for 〈s′, e〉 to be a valid superbubble, outparent′ should have been equal to ordD[s′]. Hence, 
the assumption is wrong and thus, it is proved that there cannot be an entrance candidate, between t and e, which is a 
valid entrance for the superbubble ending at e. �
Lemma 9. For the given entrance and exit candidates s and e1 , respectively, let alternativeEntrance[s] be set to t1 which later gets reset 
to t2 such that t2 
= t1 , while considering s with another exit candidate e2. Then no entrance candidate between s and e2 can reset 
alternativeEntrance[s] to t1 again.

Proof. Let e3 be an exit candidate between s and e2 such that subroutine ValidateSuperBubble(s, e3) returns t3. Then 
by Lemma 5, ordD[t1] ≤ ordD[t2] ≤ ordD[t3]. Since t1 
= t2, we have ordD[t1] < ordD[t2] ≤ ordD[t3]. Therefore, t1 < t3 and 
alternativeEntrance[s] cannot be reset to the same value t1 again. �
Theorem 1. Algorithm SuperBubble reports all superbubbles, and only superbubbles, in graph G in decreasing topological order of 
their exit vertices in O(n + m) time.

Proof. Consider an execution of algorithm SuperBubble. Let superbubbles 〈s1, t1〉, · · · , 〈sk, tk〉 be the successive superbub-
bles reported just after the execution of Line 14 of subroutine ReportSuperBubble, where ordD(t1) > ordD(t2) > · · · >

ordD(tk).

1. First, we show that each 〈si, ti〉 reported by the algorithm in Line 14 is a superbubble. This is proved by the correctness 
of Lemma 7.

2. Second, no superbubble is missed out by the algorithm as proved by the following. Subroutine ReportSuperBubble is 
called for each exit candidate in decreasing order. The entrance candidate for the superbubble (if any) ending at exit
will only be between start and exit, where start is either the head of the candidates list (when subroutine ReportSuper-

Bubble is called from algorithm SuperBubble) or next candidate of the entrance of an outer superbubble (when called 
through a recursive call to identify a nested superbubble). A call to subroutine ReportSuperBubble(start, exit) checks 
the possible entrance candidates between start and exit, starting with the nearest previous entrance candidate (to exit). 
Subroutine ValidateSuperBubble either successfully validates an entrance candidate, or returns a “−1”, or returns an 
alternative entrance candidate. From Lemma 8, there cannot be any valid entrance between this alternative entrance 
and exit. If this alternative entrance starts a sequence of entrances already checked for some exit candidate previously 
(as depicted by alternativeEntrance), then all entrances of that sequence will be skipped, otherwise this alternative en-
trance will be tested. However, as mentioned in Section 4.1, none of the entrance candidates in the skipped sequence 
can be valid. Therefore, for each exit candidate, every potential entrance candidate is checked for validity, and those 
which are not considered are not valid.

3. Third, the running time of SuperBubble is O(n + m). Indeed, the running time of the TopologicalSort and computing 
the candidates list is O(n + m). Furthermore, all list operations cost constant time each, and sum up to a linear cost of 
O(n), as there are at most 2n candidates in the list. Finally, each call for subroutine ValidateSuperBubble costs O(1). 
The total number of times ValidateSuperBubble is called is O(n + m). This is because subroutine ValidateSuperBubble

is called once for each exit candidate in Line 7 of subroutine ReportSuperBubble, and the total number of such calls 
is bounded by O(n). Additionally, it is called every time a new alternativeEntrance sequence is generated by subroutine
ValidateSuperBubble. It follows from Lemma 9 that once an alternativeEntrance sequence is reset, it cannot be generated 
again by subsequent calls to subroutine ValidateSuperBubble. This resetting of alternativeEntrance for each entrance 
candidate (Line 10) thus enables avoiding repeated checks of the same sequences of entrance candidates. Resetting is 
done every time an edge is considered for the first time between a vertex (in between an entrance candidate startVertex
and an exit candidate endVertex) and its topologically furthest parent (whose order is less than that of startVertex). Thus, 
the total number of times alternativeEntrance will be reset (for all the entrance candidates) is bounded by O(m).
Therefore, the total running time for reporting all superbubbles in graph G is O(n + m). �

6. Final remarks

We presented an O(n + m)-time algorithm to compute all superbubbles in a directed acyclic graph, where n is the num-
ber of vertices and m is the number of edges, improving the best-known O(m log m)-time algorithm for this problem [10]. 
It is also interesting to note that in this type of graph, that is, constructed from sequences over a fixed-sized alphabet, the 
out-degree of each vertex is bounded by the size of the alphabet (four for DNA alphabet); therefore, the time complexity of 
the proposed algorithm is essentially linear in n.

Our immediate goal is to practically evaluate our algorithm and compare its implementation to an earlier result [9]. It 
would also be interesting to investigate other superbubble-like structures in assembly graphs, such as complex bulges [16].
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