
sensors

Review

Application of Deep Learning Models for Automated
Identification of Parkinson’s Disease: A Review (2011–2021)

Hui Wen Loh 1, Wanrong Hong 2, Chui Ping Ooi 1 , Subrata Chakraborty 3 , Prabal Datta Barua 2,3,4 ,
Ravinesh C. Deo 5 , Jeffrey Soar 4 , Elizabeth E. Palmer 6,7 and U. Rajendra Acharya 1,4,8,9,10,*

����������
�������

Citation: Loh, H.W.; Hong, W.; Ooi,

C.P.; Chakraborty, S.; Barua, P.D.; Deo,

R.C.; Soar, J.; Palmer, E.E.; Acharya,

U.R. Application of Deep Learning

Models for Automated Identification

of Parkinson’s Disease: A Review

(2011–2021). Sensors 2021, 21, 7034.

https://doi.org/10.3390/s21217034

Academic Editor: Sylvain Girard

Received: 20 September 2021

Accepted: 19 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
hwloh002@suss.edu.sg (H.W.L.); cpooi@suss.edu.sg (C.P.O.)

2 Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia; wanrong@cogninet.com.au (W.H.);
prabal.barua@usq.edu.au (P.D.B.)

3 Faculty of Engineering and Information Technology, University of Technology Sydney,
Sydney, NSW 2007, Australia; subrata.chakraborty@uts.edu.au

4 School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern
Queensland, Toowoomba, QLD 4350, Australia; jeffrey.soar@usq.edu.au

5 School of Sciences, University of Southern Queensland, Springfield, QLD 4300, Australia;
ravinesh.deo@usq.edu.au

6 Centre of Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW 2031, Australia;
elizabeth.palmer@unsw.edu.au

7 School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
8 School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
9 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
10 Research Organization for Advanced Science and Technology (IROAST), Kumamoto University,

Kumamoto 860-8555, Japan
* Correspondence: aru@np.edu.sg

Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting
over 6 million people globally. Although there are symptomatic treatments that can increase the
survivability of the disease, there are no curative treatments. The prevalence of PD and disability-
adjusted life years continue to increase steadily, leading to a growing burden on patients, their families,
society and the economy. Dopaminergic medications can significantly slow down the progression
of PD when applied during the early stages. However, these treatments often become less effective
with the disease progression. Early diagnosis of PD is crucial for immediate interventions so that the
patients can remain self-sufficient for the longest period of time possible. Unfortunately, diagnoses
are often late, due to factors such as a global shortage of neurologists skilled in early PD diagnosis.
Computer-aided diagnostic (CAD) tools, based on artificial intelligence methods, that can perform
automated diagnosis of PD, are gaining attention from healthcare services. In this review, we have
identified 63 studies published between January 2011 and July 2021, that proposed deep learning
models for an automated diagnosis of PD, using various types of modalities like brain analysis
(SPECT, PET, MRI and EEG), and motion symptoms (gait, handwriting, speech and EMG). From
these studies, we identify the best performing deep learning model reported for each modality and
highlight the current limitations that are hindering the adoption of such CAD tools in healthcare.
Finally, we propose new directions to further the studies on deep learning in the automated detection
of PD, in the hopes of improving the utility, applicability and impact of such tools to improve early
detection of PD globally.

Keywords: Parkinson’s disease (PD); deep learning; computer-aided diagnosis (CAD); SPECT; PET;
MRI; EEG; gait; handwriting; speech

1. Introduction

The purpose of this systematic review is to provide a comprehensive review of au-
tomated Parkinson’s disease (PD) detection using deep learning models, and to further
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promote deep learning models as a potential computer-aided diagnostic (CAD)-based
tool for clinical decision support systems. In Section 1, we introduced the background of
PD, the limitation of the current diagnostic method, and the CAD tool being a possible
solution to alleviate the burden of neurologists. Thereafter, we elaborated on the benefit
of deep learning models over machine learning models as a CAD tool and illustrated the
mechanics of the two most popular types of deep learning models: convolutional neural
network (CNN) and long short-term memory (LSTM). Section 2 describes the adoption of
the PRISMA model for the systematic review of automated PD detection studies using deep
learning models. To build the systematic review, a total of 63 studies were chosen after
a systematic removal of the irrelevant studies. In Section 3, these studies were then split
into two categories: brain analysis and motor symptoms. Subsequently, data analysis and
visualization were performed for each category. In Section 4, we also discussed the current
trend observed from the 63 research studies, the limitations of deep learning models for
CAD detection, and presented the proposed directions for future work which can increase
the adoption of deep learning models as a CAD tool. Finally, Section 5 concludes the review
by summarizing the key findings, limitations, and the potential of deep learning models as
a CAD tool to support clinical decisions.

1.1. Background

PD is an incurable neurological disease that results in progressive deterioration within
the central nervous system and debilitating neurological symptoms [1]. The underlying
cause of the neurodegeneration in PD is still partially understood, but key pathophysio-
logical features are the gradual loss of dopaminergic neurons in a part of the midbrain
known as substantia nigra pars compacta (SNpc), and the accumulation of misfolded
alpha-synuclein protein in ‘Lewy bodies’ within the cytoplasm of neuronal cells in several
different brain regions [2]. The dopaminergic pathway between the SNpc and the dorsal
striatum, also known as the nigrostriatal pathway, is critical for movement control. Hence,
disruption to the nigrostriatal pathway results in motor abnormalities in affected individu-
als with PD, including tremors, rigidity, and bradykinesia [3]. Affected individuals also
experience non-motor symptoms, including constipation, depression, sleeping disorders,
and reduction of smell [1,3].

Between 1990 and 2016, the number of people diagnosed with PD had doubled from
2.5 million to 6.1 million. This means the age-standardized prevalence rate increased by
21.7% [4]. Hence, PD is one of the most prevalent neurological disorders, with immense
societal impacts, yet no curative treatments [5]. The gold standard treatment for PD is the
dopamine precursor amino acid levodopa, which, in the initial stages of PD at least, can
alleviate many motor symptoms by substituting for striatal dopamine loss [6]. However,
its use can be complicated by the development of motor complications, including drug-
induced dyskinesias, and patients also have L-DOPA-resistant motor features including
treatment-resistant tremor, postural instability, swallowing and speech disorders [2]. A
range of modifications of dopaminergic treatments, as well as non-dopaminergic pharma-
cological therapies and non-pharmacological treatments such as deep brain stimulation,
may be required over time. Rehabilitation and psychosocial supports are also key to try and
maintain affected individuals’ quality of life, and thus early diagnosis to allow instigation
of expert multidisciplinary care is a key priority. Moreover, novel therapies that may
actually modify the underlying disease processes are the goal of a large body of global
research: it is likely that such advanced therapeutics, such as gene therapy, will need to
be instigated as soon as possible in order to have maximal effect, as has been found to be
the case for other degenerative conditions such as spinal muscular atrophy [7]. Therefore,
early diagnosis is especially crucial in the optimal current and future management of PD,
to ensure maximal functional outcomes for affected individuals.

At present, the diagnosis of PD is based on core clinical features, and the accuracy
of clinical diagnosis can be improved by following standard clinical criteria, such as
the UK Parkinson’s Disease Society Brain Bank (UKPDSBB) [8], such as the presence of



Sensors 2021, 21, 7034 3 of 25

bradykinesia and absence of certain exclusion criteria. This clinical criteria rely on the
expertise of a neurologist, but still are flawed: for example the diagnostic accuracy using
the UKPDSBB, even in specialist neurology centres, is only slightly above 80%, compared
to post-mortem pathological examination as gold standard [9]. Moreover, there is a global
shortage of neurologists, especially in countries experiencing aging populations where
there is a high frequency of neurological disorders [10]. This increases the waiting time for
affected individuals to get diagnosed with PD. As a consequence, 60% of the dopaminergic
neurons are typically lost by the time of diagnosis [2].

In efforts to meet the healthcare demands, there are interest in the possibility of using
CAD tools based on artificial intelligence methods, namely machine learning (which po-
tentially involves the more conventional pattern recognition approaches) or deep learning
(which may involve sophisticated multi-layered neuronal systems), to perform an auto-
mated diagnosis of PD [11–13]. These CAD tools can perform automated detection using
the biomarkers of PD, such as Electroencephalogram (EEG) signals, posture analysis in
the gait cycle, voice aberration, or brain imaging such as Magnetic Resonance Imaging
(MRI) and Positron Emission Tomography (PET) [14]. In a conventional machine learning
model, it is mandatory to extract the features from the biomarkers and then select the most
salient features in order to train the model [15–19]. This is a required step because machine
learning models by itself are not capable of learning the high dimensional data in their raw
forms, otherwise, the model is likely to overfit the dataset [20]. Also, the selection of the
most relevant features must be carried out by an experienced expert system that is knowl-
edgeable in terms of various feature selection tools [15,16]. This has led to the somewhat
poor adoption of machine learning models as the future CAD tools as feature extraction
and selection can be complicated procedures comprehensible by machine learning experts,
but not so by the end-user of the CAD tool [21,22]. Such end-users may involve healthcare
experts such as practicing clinicians, health researchers, or other domain applications.

Deep learning models, which are of increasing interest with big data and can resolve
some of the limitations of machine learning models by eliminating the need for feature se-
lection, feature extraction tools. Such models are capable of learning the high-dimensional
data, and they may function analogously to the neurons in the human brain [23]. The
conventional forms of machine learning models known as artificial neural networks (ANN)
consist of three main layers: the input, the hidden, and the output layer as shown in
Figure 1. All three layers within a neural network contain artificial neurons that are in-
terconnected, as denoted by the black lines. As the neural network learns via a learning
algorithm (e.g., backpropagation), the weights of the connection (black lines) between the
neurons update iteratively [23]. The neurons, which act as an individual classifier, deter-
mines the output signal after processing the weights from its previous connections [23].

Figure 1. Basic architecture of ANN and DNN models.

When an ANN model has been constructed into an architecture that has more than one
hidden layer, the system is then known as deep neural networks (DNN), and such systems
are then capable of learning the data with a higher degree of complexity [23] (Figure 1). In
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deep learning algorithms, there are often other classes of model, such as CNN, recurrent
neural network (RNN), and LSTM, that utilize DNN as their basic principal architecture.

1.2. Convolutional Neural Network (CNN)

In any CNN model, the input layer of a typical DNN model is replaced by a series of
convolutional and pooling layers, as also shown in Figure 2. If DNN is described as the
neurons in our brain, then the CNN may be considered as the human visual system [24].
The first convolutional layer contain numerous filters which extract features from the
input image to generate multiple feature maps. The subsequent pooling and convolutional
layers reduce the dimension of the feature maps and further enhance the features, thereby
reducing the complexity of the feature map and the likelihood of overfitting [25]. This
could be considered as analogous to the human visual system, where the visual cortex
attempts to break down images into simpler representations for the brain to perceive the
image with ease [24].

Figure 2. Basic architecture of the CNN model.

After the final pooling layer, the feature maps are converted into single-list vectors at
the flatten layer (Figure 2). The neurons in the neural networks, also known as the fully
connected layers, will then learn to recognize the features from the single-list vectors and
perform image classifications [25]. Hence, CNN models are known for their exemplary
image recognition ability, which many studies have successfully demonstrated the success
of CNN in medical imaging, including the recognition of breast tumors, and eye diseases
using mammogram and color fundus images, respectively [26]. Apart from medical
images, CNN has also demonstrated success in biometric face recognition systems for
human tracking purposes [27,28].

1.3. Long Short-Term Memory (LSTM)

The LSTM model is an improvement from its predecessor methods known as RNN [16].
Just like its name suggests, the LSTM model attempts to mimic how the brain stores memo-
ries and makes predictions based on immediate past events stored in the memories [24].
Both the RNN and the LSTM models are known for their ability to recognize patterns
in sequential data [16]. However, the vanishing gradient has often been a very common
problem in RNN models, where a large information gap exists between the new and old
data, causing erroneous signals to vanish during the model’s training phase. As a result,
the RNN model is not able to learn the data that has long-term dependencies. Hence, the
LSTM model has been developed to resolve the problems of vanishing gradient in RNN
models [29].

The neurons in a typical LSTM model adopt a unique gate structure [30] denoted as
the forget gate, input gate, and output gates (Figure 3). The input gate decides if the new
information (xt) should be stored in the cell, the output gate decides what information
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should output as the hidden state (ht), and the key to eliminating the vanishing gradient
problem lies in the forget gate [30,31]. The sigmoid (σ) function in the forget gate is
used to deduce if the information brought from the previous cell state (Ct−1) should
be kept or forgotten, thereby removing irrelevant data, and reset the information in the
cell appropriately [30,31]. This prevents large discrepancies between the old and new
information that will eventually lead to vanishing gradient problems. In addition, useful
information continuously gets backpropagated in the LSTM model, allowing it to memorize
patterns in long-term dependencies [30,31]. Hence, the strong pattern recognition ability
of LSTM models is widely implemented in applications such as speech and handwriting
recognition [32,33]. LSTM models are also suitable in forecasting stock prices in financial
markets which are dynamic and non-linear in nature [34,35].

Figure 3. Basic architecture of the LSTM model.

2. Materials and Methods

This systematic review applied the PRISMA model [36] to analyze the most relevant
studies on PD detection using deep learning models from the period January 2011 to
July 2021. All the resources were systematically searched through PubMed, Google Scholar,
IEEE, and Science Direct using the Boolean search strings, as shown in Table 1. A total
number of 794 studies that contained these Boolean search strings were identified, which
also included 178 studies from PubMed, 248 studies from Google Scholar, 135 studies from
IEEE, and 233 studies from Science Direct. From the 794 articles initially identified, a total
of 110 duplicate studies were removed. After this, a total of 612 articles (61 traditional
Machine Learning studies, one non-human study, 104 conference papers, 402 Non-CAD for
PD studies, 14 irrelevant studies, 14 non-English articles, and 16 books) were also excluded
according to their relevance with this review. Eight studies were further removed from the
list as they did not provide model-accuracy results. The final number of research studies
that qualified for inclusion in this review was set to 63. Figure 4 shows a detailed process
of the PRISMA method in the selection of the most relevant articles.

Table 1. Summary of the Boolean search string across the respective journal article databases.

Boolean Search String

Database [Title] AND [Title/Abstract] No. of Studies

PubMed

“parkinson” AND “disease”

“Neural network”
178“Deep learning”

Google Scholar “Prediction” OR “Diagnosis” OR “Detection” 248

IEEE
“Neural network”

135“Deep learning”

Science direct
“Neural network”

233“Deep learning”
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Figure 4. Flow diagram of the PRISMA model in the article selection process to build the
systematic review.

3. Results

There are two parts to this section. Section 3.1 Brain analysis covers 23 deep learning
studies performed on Single Photon Emission Computed Tomography (SPECT), PET,
MRI, ultrasound, and EEG. Section 3.2 Motor symptoms covers 40 deep learning studies
performed on gait, handwriting, speech, Electromyogram (EMG), and other movement-
related tests. The details of the deep learning studies under brain analysis and motor
symptoms categories are in Appendix A Tables A1 and A2, respectively.

3.1. Brain Analysis

MRI, PET, and SPECT are the common brain imaging modalities used to diagnose
PD. The public image dataset for these three imaging modalities can be downloaded from
Parkinson’s Progression Markers Initiative (PPMI) database (https://www.ppmi-info.org/,
accessed on 12 October 2021). Numerous studies in Appendix A Table A1 had attempted
to develop deep learning models to distinguish the brain of PD patients from healthy
controls. Among them, a majority of the studies had chosen SPECT images to train their
deep learning models; 8 studies used SPECT images, 5 studies used MRI images, and
3 studies used PET images (Figure 5). Studies that had used SPECT images for automated
PD detection also achieved a higher model performance, as compared to MRI and PET
images (Figure 6). This may be because DaTscan is used for SPECT imaging. DaTscan is the
name of the radioactive tracer, ioflupane (I123), that is specifically used to detect dopamine
transporters in the brain [37]. Hence, it can better represent the loss of dopaminergic
neurons in the PD brain [38]. On the other hand, the radioactive tracer used in PET for PD
diagnosis is known as 18F-FDG, which is primarily used to assess neuronal function via
regional cerebral glucose metabolism [39].

https://www.ppmi-info.org/
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Figure 5. Stacked bar plot of the number of deep learning models proposed for each modality of brain analysis.

Figure 6. Box and whiskers plot of the model accuracy of deep learning studies using various
modalities of brain analysis.

A majority of the studies that focused on image analysis proposed CNN models
for an automated detection of PD (Figure 5). For the case of SPECT imaging, the highest
performing CNN model was developed by the study of Choi et al. [37], which had evaluated
their proposed model (i.e., PD net) with two datasets: the PPMI dataset, which obtained an
accuracy of 96%, and a private dataset (SNUH cohort) with an accuracy of 98.8% (Figure 7,
Appendix A Table A1). Both results exceeded the performance of two human raters whose
accuracies were 90.7% and 84% each for the PPMI dataset. There was only one study by
Ozsahin et al. [40] that has proposed a back-propagation neural network (BPNN), which
achieved the highest model accuracy of 99.6% using the binarized image of SPECT images
(Figure 7, Appendix A Table A1). However, the applicability of the CNN model has been
advocated in a majority of studies in SPECT imaging (Figure 5). In any event, we aver
that for practical and ethical purposes, the suitability of the CNN or the BPNN model for
SPECT imaging should still be assessed via clinical trials. As for the PET and the MRI
study cases, we note that the highest performing CNN model was 93% [41] and 95.3% [42],
respectively (Figure 7, Appendix A Table A1).

To date, only the study of Shen et al. [43] had attempted to use ultrasound, namely
transcranial sonography (TCS) images for automated PD detection (Appendix A Table A1).
They proposed a deep learning model known as Multiple kernel mapping—broad learning
system (MEKM-BLS) that has a wider feature and enhancement node/neurons than a
typical DNN model. This method has the ability to map the features from the feature node
directly onto the enhancement node. However, their model only achieved an accuracy of
78.4%, lower than that of MRI, PET and SPECT. Nonetheless, ultrasonography has several
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advantages such as low cost, fast, and does not have radiation exposure [44]. Furthermore,
a study by Mehnert et al. [44] demonstrated that interpretation of TCS for PD diagnosis
can reach a sensitivity score of 95% by experienced sonographers. Hence, there is room
for improvement for ultrasonography in automated PD detection, and future work to
implement CNN models for the interpretation of TCS images should be considered.

Figure 7. Bar plot representation of the model accuracy by various investigators for different
modalities of brain analysis.

Apart from brain imaging issues, the physiological signals such as the EEG can also
reflect brain abnormalities that are unique to the prevalence of PD [45]. This aspect has been
reported, particularly that the EEG frequency of a PD patient is abnormally slow, compared
to that of a healthy individual [46]. In this review, we have found 6 studies that had pro-
posed deep learning models to recognize EEG characteristics for automated detection of PD.
Nearly half of these studies proposed the use of the CNN model [25,47,48], and the remain-
ing three studies had proposed the application of an RNN [49], DNN [50], and a hybrid
deep learning model that combines CNN and RNN algorithms [51] (Figure 5). The best-
performing model was developed by Khare et al. [47], who has also proposed a CNN model
with smoothed pseudo-Wigner Ville distribution (SPWVD) features from EEG signals as
an input, and further obtained an accuracy near 100% (Figure 7, Appendix A Table A1).
This shows that CNN models are likely to achieve a high classification accuracy for one-
dimensional data such as EEG signals. Like the data of ultrasound tests, the EEG data are
somewhat cheaper and offer a low-risk alternative to the MRI, PET, and SPECT datasets,
but unlike ultrasound, the overall accuracy of studies that implemented EEG signals (95.8%)
is on par with studies that have used SPECT images (94.1%) (Figure 6).
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3.2. Motor Symptoms

Since PD is characterized by involuntary motor control, an assessment of motor can be
utilized for the diagnosis of PD. Such assessments could include gait, handwriting, speech,
and other movement-related tests as illustrated in Figure 8.

Figure 8. Box and whiskers plot of the model accuracy of deep learning studies using various
modalities of motor symptoms.

In principle, Gait refers to the walking patterns of an individual. In the case of PD, the
body’s stiffness and postural instability may worsen as the disease progresses, leading to
gait disturbance [52]. In this respect, the gait features can be utilized to train deep learning
models in the detection of PD. The key features of gait include kinetic features such as
ground reaction force (GRF) and kinematics features such as stance and swing phase of
the foot [52]. There are currently 11 deep learning studies that have attempted to analyze
the gait for PD detection, and a wide variety of deep learning models have thus been
proposed (Figure 9, Appendix A Table A2). Among them, two studies while proposing
a set of hybrid models by combining the CNN and LSTM model have achieved a high
overall accuracy [53,54] (Figure 9). The best-performing hybrid CNN-LSTM model was
also proposed by Xia et al. [53], using vertical GRF at multiple points of time during the
gait cycle. The idea of implementing a hybrid CNN-LSTM model for gait analysis is to
have the CNN layer extract the salient gait features, and the LSTM layer to analyze the
temporal pattern of the gait features in a walking cycle. As a result, Xia et al. [53] achieved
the highest model accuracy of 99.1% (Figure 9, Appendix A Table A2), using a dataset that
came from three research groups: [55–57]. Similarly, two other studies that had proposed
DNN [58] and LSTM [59] model also achieved high-performance results that are on par
with the CNN-LSTM model (Figure 9, Appendix A Table A2). Hence, future deep learning
studies based on gait analysis could focus on the development and implementation of
these three models.

The deterioration of handwriting ability is another telltale symptom of PD, and this is
often seen in a majority of PD patients but is not included as a diagnostic criterion of PD [60].
A PD patient may exhibit abnormally small handwriting, termed micrographia, due to
rigidity and tremors in the writing arm [61]. Thirteen studies on deep learning algorithms
have attempted to diagnose PD using handwritten drawings with one of the three common
PD handwriting datasets: PaHaW dataset [62], HandPD [63], and NewHandPD [64]. All
three datasets involve a series of drawing and writing tests, and one of the common tests
that exist in all three datasets is the spiral drawing test. Similar to the brain imaging,
most studies had proposed using CNN models to differentiate handwritten drawings of
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PD patients from healthy controls (Figure 10). The best performance was achieved by
Kamran et al. [65] who has tested the six common transfer learning architecture of CNN,
namely AlexNet [66], GoogleNet [67], VGGNet-16/19 [68], and ResNet-50/101 [69]. These
transfer learning models have been previously trained using a well-known image dataset
known as ImageNet which consists of more than 1 million images. Kamran et al. [65]
then fine-tuned the transfer learning models to adapt to the handwritten drawings of PD
and healthy controls, and the highest model accuracy was achieved by AlexNet [66] with
99.22% (Figure 10, Appendix A Table A2).

Figure 9. (a) Pie chart representation of various deep learning models proposed for gait analysis and
(b) Bar chart representation of model accuracy for each deep learning study in gait analysis.

Figure 10. (a) Pie chart representation of various deep learning models proposed for handwrit-
ing analysis and, (b) Bar chart representation of model accuracy for each deep learning study in
handwriting analysis.

Only two studies have to far attempted to use a small-scale movement-related test
like swallowing [70] and finger tapping [71] (Appendix A Table A2). These two studies
had proposed different deep learning models each, and the best performance of 82.3% was
achieved by Jones et al. [70], using an ANN model with video-fluoroscopic and manometric
data collected from the boluses which were delivered to the subject’s oral cavity using a
syringe. Videofluoroscopic data includes information like laryngeal, hyoid, and epiglottic
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movement, while manometric data includes information such as rise time and rate of the
velopharynx and mesopharynx.

Besides the visible movement disorder, the muscle control of speech is also affected
in PD [72]. As a consequence, people with PD will experience voice abnormalities such
as lower voice volume and slurred speech [72]. There are currently twelve studies that
had attempted to use voice aberration to diagnose PD (Figure 11, Appendix A Table A2).
A wide variety of deep learning models were proposed with half of these studies being
on CNN models (Figure 11). Two of the CNN models were seen to achieve a high model
accuracy of 99.5% [73] and 99.4% [74] (Figure 11, Appendix A Table A2). However, the best
performing model was developed by Ali et al. [75] who proposed a genetically optimized
neural network (GONN) with a model accuracy of 100% (Figure 11, Appendix A Table A2).
At present, more studies had supported CNN model for speech analysis. Nonetheless, it
should be noted that clinical trials are required to further justify if GONN or CNN is a
better alternative for speech analysis.

Figure 11. (a) Pie chart representation of various deep learning models proposed for speech analysis
and, (b) bar chart representation of model accuracy for each deep learning study in speech analysis.

Like the analysis of the brain, motor symptoms of PD can also be assessed by physio-
logical signals, namely EMG. However, only one deep learning study has attempted to use
EMG for PD diagnosis with the ANN model [76], and the performance of their proposed
model was 71%, less than that of the studies that focused on gait, handwriting, and speech
(Appendix A Table A2). Hence, for EMG to be recognized as a potential biomarker for PD
diagnosis, more research in this area is required. Otherwise, datasets such as handwriting
and speech recordings, which have easier data collection procedures, are better alternatives
than EMG.

Lastly, two studies did not limit themselves to only one type of modality (Appendix A
Table A2). The study of Vasquez-Correa et al. [77] used three input signals—speech,
handwriting, and gait—for multimodel analysis of PD using the CNN model and achieved
97.6% accuracy. Oung et al. [78] used two input signals based on speech and motion
data derived from wearable sensors to propose an extreme learning machine (ELM) for
the detection of PD. Their ELM model architecture is similar to an ANN model whereby
there is only one hidden layer in its network but the training process of an ELM differs
from the ANN model. Basically, the ELM model only requires a single iteration for model
training through a random selection of the most optimal hidden neurons, which results
in a much faster training time and a lesser overfitting problem compared with the ANN
model [79]. The model accuracy of ELM obtained by the study of Oung et al. [78] was 95.9%,
and this figure is comparable to the accuracy of the CNN model proposed by Vasquez-
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Correa et al. [77] (Appendix A Table A2). Based on a synthesis of these information, we
conclude that deep learning models that are also capable of multimodel analysis of PD,
may be a useful practical tool for neurologists. In the future, as more clinical information
and particularly the detailed and correctly labelled electronic datasets are available, deep
learning models may further aid in the diagnosis of PD. Hence, future studies on deep
learning should perhaps consider using multiple types of input signals for PD detection,
instead of relying on just a single modality.

4. Discussion

There are five parts to this section. Section 4.1 provides the summary of results
gathered from the previous section. Section 4.2 discusses the challenges that are affecting
the adoption of CAD in healthcare. Section 4.3 provides solutions to tackle the challenges
highlighted in Sections 4.2 and 4.4 describes the future vision of the CAD tool in the
diagnosis of PD with Section 4.5 listing down the limitations of this review.

4.1. Result Summary

The application of deep learning models as a CAD tool for automated diagnosis of
PD have been gaining popularity over many years. From Figure 12, the number of deep
learning studies as of July 2021 has reached 12, which is more than half of the studies in
2020 (18 studies). Hence, it is very likely that the number of studies by the end of 2021
will exceed that of 2020. Every year, the number of deep learning studies bases on motor
symptoms exceed that of brain analysis (Figure 12). This might be due to the ease of data
acquisition for motor symptoms as the collection of data is less complicated than brain
analysis and most of the datasets are publicly available. The overall model performance
achieved by deep learning studies in each modality is favorable, especially for common
modalities like MRI, PET, SPECT, EEG, gait, handwriting, and speech, which overall model
accuracy had all exceeded 80% (Figure 13).

Figure 12. Bar chart representation of the number of deep learning studies published between
January 2020 and July 2021 for brain analysis and motor symptoms.
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Figure 13. Bar chart representation of the average model accuracy from various deep learning studies
obtained for each modality.

This review underscores the following key aspects of the current deep learning studies
for automated PD diagnosis:

• Deep learning models proposed by various studies have achieved a high predictive
accuracy for the diagnosis of PD (Figure 13).

• About 57% of the deep learning studies for automated PD detection had proposed
using the CNN model (Figure 14).

• CNN models have demonstrated to have high prediction accuracy for image classifi-
cation such as brain imaging (SPECT, PET, and MRI), and handwriting recognition.

• Our results have also shown that CNN has good performance in detecting abnormali-
ties from one-dimensional signals like EEG [47] and speech [73].

• Gait analysis, on the other hand, seems to perform better with either hybrid model
(CNN-LSTM), DNN, or LSTM model. However, more research is required to deter-
mine the best-performing model.

• Apart from CNN model, Ozsahin et al. [40] and Ali et al. [75] proposed BPNN and
GONN for SPECT and speech analysis respectively and obtained the highest predic-
tion accuracy.

• However clinical trials are required to prove the suitability of the proposed deep
learning model for each modality.

4.2. Challenges Faced by CAD Tools in Healthcare Adoption

Despite the high prediction accuracy obtained by many deep learning models pro-
posed in various automated PD detection studies, the adoption of the deep learning model
as a CAD tool in healthcare is currently not supported [21,22]. In their current form, neither
neurologists nor other healthcare workers are comfortable to rely on CAD tools to diagnose
the PD. This is due to several challenges as listed below:

• Lack of standards

The diagnosis of PD have been reliant on clinical features for several years, and
neurologist have been trained to recognize the sets of clinical features to determine a
diagnosis [8]. For instance, the diagnosis criteria provided by UKPDSBB (i.e., presence
of bradykinesia and absence of certain exclusion criteria), is not adopted by current deep
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learning, and even machine learning studies. Instead, a majority of the deep learning
studies in this review have focused on only one modality instead of adopting a multimodal
approach, which is not practical for clinical use. Deep learning models also do not recognize
the features of PD the same way as a human neurologist would do. For example, deep
learning models can detect PD from brain imaging by means of a vectorized image instead
of a clinical feature, which does not follow the existing diagnosis criteria [80]. Hence,
neurologists may be too hesitant to use the CAD tools which greatly deviates from their
comfort zone or does not provide a clinically trusted artificial intelligence framework that
is also explainable and interpretable for future clinical practice purposes.

Figure 14. Pie chart representation of various deep learning models proposed for automated PD
detection studies in this review.

• Poor interpretability

Deep learning models are also known as the ‘black box’ so it is almost impossible to
clearly understand the mechanisms behind a deep learning model when it makes a given
prediction [22,23]. Despite achieving high prediction accuracy, end-users of the CAD tools
(e.g., neurologists and healthcare workers) cannot make a diagnosis without sufficient
evidence, and this evidence is not currently provided by deep learning models [21,23].
Hence, neurologists are not able to trust the CAD tools as they cannot afford to make a
diagnosis without concrete evidence, explainability and interpretability of the somewhat
black box style method used to produce an outcome.

• Psychological barriers

In healthcare industry, human behavior must always be considered when designing
a CAD tool for a target consumer audience. The common psychological barriers that
are affecting the adoption of new technologies are the endowment effect and the status
quo bias. The endowment effect is where an individual values their possessions higher
than their original market value [81] whereas the status quo bias is the preference of an
individual to remain in their comfort zone and maintain their environment in the same
state [82]. Both of these emotional biases are likely to cause an individual, neurologist, for
example, to feel a significant sense of loss when they switch from manual diagnosis to
relying on CAD tool for diagnosis.

There are many other factors such as the difficulty of obtaining regulatory approval
and poor interoperability, which refers to the ability to communicate between two sys-
tems [22]. For example, if two hospitals used different electronic health systems, the data
from these two hospitals may not be coherent and might not communicate with each other.
These two concerns, however, should come after a prototype for the CAD tool has been de-
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veloped. For instance, a developer must first develop a working prototype before applying
for the necessary International Organization for Standardization certifications. At present,
research on using the deep learning model as a CAD tool has yet to attract end-users, and to
further convince them to support the implementation of CAD tools in healthcare systems.
As such, researchers must tackle the three main challenges listed above and improve the
versatility of existing deep learning models. Only when the end-users are satisfied with
the outcome (i.e., explainability) and the benefits (i.e., accuracy of feature extraction) of
the CAD tool, they may become more willing to support the adoption of the CAD tool in
healthcare. In the absence of this perceived requirement, research into a CAD-based tool
for automated detection of PD and even some of the other diseases may continue to result
in the ‘valley of death’, where applied research accumulates without being translated into
real clinical practice. This can leading to a widening of the gap between applied research
and translation of its benefits into clinical practice [83].

4.3. Solutions to Promote Adoption of CAD

Moving forward with an aim to translate the potential benefits of deep learning meth-
ods into future clinical practices, researchers and end-users need to better understand that
the CAD-based tool should not position itself to replace an end-user’s role in diagnosing
the disease. This is a common misunderstanding as deep learning and machine learning
studies often claim high success of their proposed models with the absence of end-user
involvement. Consequently, a false notion of CAD tool replacing the end-users is created.
Therefore, the CAD tool should aim to provide alternatives and better opinions in the
diagnosis of disease for the end-users to consider, thereby increasing the end-user’s con-
fidence and used for reducing errors simultaneously. The adoption of CAD tool, hence,
should improve the efficiency of clinical diagnosis and to further help predict the possible
disease and identify alternative treatment options for end-users like clinicians to consider
in their days to day work. However, it appears too often that both deep learning and
machine learning models do not provide additional information other than their predicted
results so this may not be helpful to the end-users as a futuristic prediction tool that is
not supported by visible clinical features, nor by detailed explanation of how it arrived
at the results. Hence, the authors of future deep learning studies used for automated PD
detection, and also for the other disease should include visual cues, such as segmentation
as an explanatory function in their deep learning architecture. An example of the workflow
process that we propose for a practical CAD tool is illustrated in Figure 15.

In Figure 15, we present two alternatives. The first alternative is to configure a
deep learning model that can perform the diagnosis (i.e., identification of the ailment)
and segmentation (i.e., explanation, or detailed information) simultaneously. The second
alternative is to perform diagnosis in the first stage, and in the second stage, segmentation is
performed only on the input image or signal that had been diagnosed as PD in the first stage.
In either case, it will be useful to provide additional information like the time frame for
abnormal physiological signals, striatal volume, and percentage of dopaminergic neurons
lost for image analysis. Also, deep learning models and even machine learning models are
comprised of complicated algorithms that neurologists may not necessarily understand.
Hence, visual cues could make up for the poor interpretability of deep learning models by
allowing neurologists to ‘see’ what has been identified as abnormalities by the model.

The provision of visual cues may greatly contribute to the acceptance of CAD tools in
healthcare. Looking at the behavioral trade-off matrix in Figure 16, innovation products are
known to fall in either one of the categories [84]. At present, neurologists rely on clinical
features and visual inspection to diagnose PD. However, the deep learning studies gathered
in this review developed models with high prediction accuracy, but not accompanied with
evidence-based diagnosis. Hence, this results in a large degree of behavioral and product
change, as neurologists will have to forgo evidence-based diagnosis if they switch from
visual inspection to rely on CAD tools for PD diagnosis. As a consequence, the current
deep learning models developed by various study in this review falls in the ‘Sure failures’
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category in Figure 16, discouraging its adoption into healthcare. The inclusion of visual
cues in the deep learning model, thus, decreases the degree of behavioral change to ‘low’
as the deep learning models had segmented the brain abnormalities for the neurologist to
inspect the brain images with greater ease. Also, this will greatly boost the neurologist’s
confidence in deep learning models, especially when their prediction coincides with the
CAD tool. Therefore, the inclusion of visual cues as a function may allow deep learning-
based CAD tools to switch from the ‘Sure failures’ category to ‘Smash hits’, which greatly
encourage the adoption of CAD tools and ensures the long-term and short-term success of
an innovative product [84].

Figure 15. (a) configure a deep learning model that can perform the diagnosis (i.e., identification of the
ailment) and seg-mentation (i.e., explanation, or detailed information) simultaneously; (b) perform
diagnosis in the first stage, and in the second stage, segmentation is performed only on the input
image or signal that had been diagnosed as PD in the first stage.

Figure 16. Behavioral tradeoff matrix.

4.4. Solutions to Promote Adoption of CAD

With the acceptance of the CAD-based tool, the authors hope to alleviate the manu-
alized work burden of neurologists and other healthcare workers. As such, individuals
affected by PD can also play a part by performing self-assessment with the aid of a CAD
tool. This could also encourage individuals to seek professional help when the CAD tool
predicted a positive on PD and urge that medical attention is required. Figure 17 is an
example of a cloud-based CAD tool in which data can be assessed by any electronic device



Sensors 2021, 21, 7034 17 of 25

with access to the internet like smartphones and computers. An individual who suspects
that they may have PD can either use their smartphone to conduct handwriting test, voice
recording to detect speech aberration, or take a video of their walking cycle to perform
gait analysis. These recorded pieces of evidence are useful information for the neurologist
to confirm a diagnosis, which helps to increase efficiency and reduce the waiting time for
diagnosis. In addition, handwriting, speech, and gait analysis are potential telemonitoring
alternatives. Brain imaging like SPECT, PET, and MRI is heavy machinery that is not
practical to be placed at home. Recording devices to monitor physiological signals like
EEG and EMG are not common possessions in today’s households either. Hence, it is
more practical to monitor PD progression thru a smartphone that has built-in handwriting,
speech, and video recording function.

Figure 17. Block diagram of a Cloud-based system for PD diagnosis using various types of inputs
from different modalities.

In this review, the authors have only demonstrated that deep learning models are
promising CAD tools for PD diagnosis. However, a practical CAD tool should ideally
be able to identify multiple diseases instead of PD alone. Hence, we hope deep learning
studies for other neurological diseases could also heed our advice and include visual cues
as a function in their system. As such, we can develop deep learning models into a clinically
trusted CAD tool for clinical decision support. Thereby taking deep learning models a
step further into adoption in healthcare and enter a new phase of application in the health
informatics industry.

4.5. Limitation of This Study

In spite of major contributions made through a detailed synthesis of the most relevant
information on deep learning methods for clinical diagnosis purposes, this review comes
with some limitations, as follows.

• Deep learning studies for each modality (MRI, EEG, speech, etc.,), may use different
datasets to train their model. For example, studies interested in MRI may use a private
dataset instead of the public dataset, PPMI. Hence, it could become rather difficult
to compare the performance of two deep learning models that do not train with the
same dataset.

• There is a potential lack of studies for ultrasound imaging, small movement-related
tests, and multi-model analysis which involves more than one modality. This makes it
difficult to determine the best-performing model for these three categories.

• The wide variety of deep learning models proposed for gait analysis also makes it
challenging to determine the best performing model, hence, it is difficult to decide
between the top three best performing models: CNN-LSTM, DNN, and LSTM.
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5. Conclusions

PD requires early diagnosis and intervention to minimize the impact of this degener-
ative condition and ensure that affected individuals can remain self-sufficient as long as
possible. However, the imprecise nature of clinical diagnoses, and a lack of neurologists
expert in PD diagnosis worldwide, often results in delayed diagnosis and suboptimal
management of PD. Moreover, the likely success of advanced therapeutics such as gene
therapy, currently under development, will be heavily influenced by early diagnosis. Thus,
a CAD tools based on deep learning models should be considered to alleviate the work
burden of neurologists if they can perform fast and accurate PD diagnoses. In this study,
we have reviewed 63 studies on deep learning for various modalities such as brain analysis
(SPECT, PET, MRI, and EEG) and motion symptoms (gait, handwriting, speech, EMG). We
show that deep learning models can achieve high prediction accuracy for PD, especially
the CNN model that is widely proposed by studies that had focused on image classification
for brain imaging and handwriting analysis. The CNN model also performed well in one-
dimensional signals like EEG and speech analysis. However, deep learning models have
yet to be supported by end-users such as neurologists and other clinicians due to a lack of
evidence regarding disease prediction. Hence, this review aims to propose new solutions
for future deep learning studies, and perhaps the inclusion of visual cues, such as the
segmentation of abnormal areas, as a function in the deep learning model architecture. We
also urge that researchers continue to build deep learning models with specific applications
to some of the other disease detection problems and include visual cues in their model. It
is hoped that researchers will be encouraged to adopt more explainable and interpretable
methods in deep learning-based CAD tools, which can then be taken up by the end-users,
and improve the health care outcomes for a growing number of individuals affected by
PD worldwide.
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Appendix A

Table A1. List of deep learning studies for various modalities in brain analysis.

Year Author Input Feature Approach Dataset Accuracy (%)

MRI

2019 Xiao et al. [85] Quantitative susceptibility mapping
(QSM) images CNN 87 PD; 53 HC

(private) 89.0

2021 Yasaka et al. [86] radial kurtosis (RK) Connectrome
matrix CNN 115 PD; 115 HC

(private) 81.0

2020 Chakraborty et al. [42] Normalized MRI images CNN 203 PD; 203 HC
(PPMI) 95.3

2020 Tremblay et al. [87] T2-weighted imaging CNN 15 PD; 15 HC
(private) 88.3

2019 Shinde et al. [88]

a boxed region around the
brain-stem on

the axial slices of the NMS-MRI as
input

CNN
(ResNet50)

45 PD; 35 HC
(private) 80.0
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Table A1. Cont.

Year Author Input Feature Approach Dataset Accuracy (%)

PET/CT

2021 Piccardo et al. [41] [18F]DOPA PET/CT images CNN (3D) 43 PD; 55 HC
(private) 93.0

2019 Shen et al. [89] laconic representation of PET
images

Group Lasso Sparse
Deep Belief Network

(GLS-DBN)

125 PD; 225 HC
(private) 90.0

2019 Dai et al. [90] Enhanced Pet images CNN
(U-net)

214 PD; 127 HC
(PPMI) 84.2

SPECT/DaTscan

2015 Hirschauer et al. [91] Inputs from all 8 diagnostic test in
database

Enhanced
probabilistic neural

network (EPNN)

189 PD; 415 HC
(PPMI) 98.6

2020 Ozsahin et al. [40] Binarized images
back propagation
neural network

(BPNN)

1.334 PD; 212 HC
(PPMI) 99.6

2017 Choi et al. [37] Normalized SPECT images CNN
431 PD; 193 HC
(combination of

2 database)
98.8

2020 Magesh et al. [92] Normalized SPECT images CNN (VGG16) 430 PD; 212 HC
(PPMI) 95.2

2020 Chien et al. [93] segmented striatal region images CNN 234 PD; 145 HC
(private) 86.0

2020 Hsu et al. [94] Grayscale + colour SPECT images CNN (VGG) 196 PD; 6 HC
(private) 85.0

2019 Ortiz et al. [95] Voxel feature extracted via
isosurfaces CNN (3D) 158 PD; 111 HC

(PPMI) 95.1

2018 Martinez-Murcia at al. [96] Normalized DaTSCAN images CNN
(ALEXNET)

448 PD; 194 HC
(PPMI) 94.1

Ultrasound

2018 Shen et al. [43]
73 features extracted from

Transcranial sonography (TCS)
image

MEKM-BLS 76 PD; 77HC
(private) 78.4

EEG

2020 Xu et al. [49] end-to-end EEG signals
pooling-based deep

recurrent neural
network (PDRNN)

10 PD; 10 HC
(private) 88.6

2021 Lee et al. [51] spatiotemporal features of EEG
signals CRNN - 99.2

2021 Loh et al. [25] Spectrograms images CNN 15 PD; 16 HC
(public) 99.5

2021 Khare et al. [47] smoothed pseudo-Wigner Ville
distribution CNN 15 PD; 16 HC

(public) 100

2018 Oh et al. [48] end-to-end EEG signals 13-layer 1D-CNN 20 PD; 20 HC
(private) 88.3

2020 Shah et al. [50] - DNN - 99.2

Table A2. List of deep learning studies for various modalities in motor symptoms.

Year Author Input Feature Approach Dataset Accuracy (%)

Gait

2019 Xia et al. [53] Multi-points Vertical Ground
Reaction Force (VGRF) time series CNN-LSTM 93 PD; 73 HC

(public) 99.1

2016 Nancy Jane et al. [97] Temporal sequence of walking
pattern Q-BTDNN 93 PD; 73 HC

(public)

93.1 [Ga]
91.7 [Si]
89.7 [Ju]

2020 Som et al. [98] Reduced feature via PCA Autoencoder 18 PD; 16 HC
(public) 73.8

2020 Zhang et al. [99] Normalization and Data
Augmentation CNN 656 PD; 2148 HC (public) 86.0

2020 Maachi et al. [58] 18 1D-signals DNN 93 PD; 73 HC
(public) 98.7

2021 Balaji et al. [59] the gait kinematic features LSTM - 98.6

2020 Yurdakul et al. [100] NR-LBP ANN 93 PD; 73 HC
(public) 98.3
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Table A2. Cont.

Year Author Input Feature Approach Dataset Accuracy (%)

2018 Zhao et al. [54] 19 features CNN-LSTM 93PD; 73 HC
(public) 98.0

2016 Zeng et al. [101] 19 features RBF-NN 93PD; 73 HC
(public) 96.4

2020 Alharthi et al. [102] ground reaction force CNN 93 PD; 73 HC
(public) 95.5

2020 Butt et al. [103] kinematic features LSTM 64 PD; 50 HC
(private) 82.4

Handwriting

2021 Folador et al. [104] histograms of oriented gradients
(HOG) CNN 20 PD; 20 HC 83.1

2019 Yang et al. [105] key parameters deviation (cm)
and accumulation angle (rad) GRNN 21 PD; 24 HC 98.9

2020 Canturk et al. [106] Fuzzy recurrence plot (FRP) CNN 25 PD; 15 HC 94.0
2019 Gil-Martín et al. [107] CNN based features CNN 62 PD; 15 HC 96.5
2019 Naseer et al. [108] CNN based features CNN 37 PD; 38 HC 98.3
2021 Gazda et al. [109] handwriting images CNN - 94.7

2020 Kamran et al. [65] CNN based features CNN

PaHaW dataset[38/37],
HandPD dataset[18/74],

NewHandPD
dataset[35/31]

Parkinsons Drawing

99.2

2018 Pereira et al. [110] CNN based features CNN 74 PC; 18 HC 95.0

2018 Afonso et al. [111] recurrence plots to map the
signals onto the image domain CNN 14 PD; 21 HC 87.0

2019 Ribeiro et al. [112] Bags of Sampling RNN 14 PD; 21 HC 97.0
2019 Diaz et al. [113] Generate enhanced images CNN 37 PD; 38 HC 86.67

2021 Diaz et al. [114] Kinematic and pressure features CNN-RNN
PaHaW dataset[38/37],

NewHandPD
dataset[35/31]

90.0

2020 Nomm et al. [115]
Image of a drawn spiral enhanced

by the velocity
and pressure parameters

CNN 17 PD; 17 HC 93

Movement

2018 Prince et al. [71] touch-screen and accelerometer
waveforms CNN 949 PD; 866 HC 62.1

2017 Jones et al. [70] Temporal Manometric and
videofluoroscopic data ANN 31 PD; 31 HC 82.3

Speech
2018 Putri et al. [76] Various voice measurements ANN 15 PD; 8 HC 94.4

2019 Ali et al. [75] dimensionality reduction of all 26
features by LDA GONN 20 PD; 20 HC

(Sakar, 2013) 100

2015 Peker et al. [116]

12 features selected by minimum
redundancy maximum relevance

(mRMR) attribute selection
algorithm

CVANN 23 PD; 8 HC
(Little, 2007) 98.1

2019 Wodzinski et al. [117] Spectrograms images CNN 50 PD; 50 HC
(PC-GITA) 91.7

2016 Avci et al. [118] 22 biomedical voice
measurements ELM 23 PD; 8 HC

(Little, 2007) 96.8

2017 Gómez-Vilda et al. [119] absolute kinematic velocity (AKV)
distribution RLSFN

53 PD; 26 HC
(Male)

38 PD; 25 HC
(Female)

99.4

2020 Nagasubramanian et al.
[73] All 26 features CNN 20 PD; 20 HC

(Sakar, 2013) 99.5

2020 Xu et al. [120] Spectrograms images CNN 20 PD; 20 HC
(Sakar, 2013) 91.2

2021 Karaman et al. [121] CNN based features CNN mPower Voice database 91.17

2011 Åström et al. [122] 10 vocal features DNN 23 PD; 8 HC
(Little, 2007) 91.2

2021 Narendra et al. [123] raw speech and voice source
waveforms CNN 50 PD; 50 HC

(PC-GITA) 68.6

2021 Goyal et al. [74]

A combination of Resonance
based Sparse Signal

Decomposition (RSSD) +
Time-Frequency (T-F) algorithm

CNN 16 PD; 21 HC
and 20 HC 99.4
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Table A2. Cont.

Year Author Input Feature Approach Dataset Accuracy (%)

EMG
2018 Putri et al. [76] 12 EMG features ANN 15 PD; 8 HC 71.0

Mixture of inputs
2018 Vasquez-Correa et al. [77] Spectrograms images CNN 44 PD; 40 HC 97.6

2017 Oung et al. [78] Empirical Wavelet Transform
Based Features ELM 50 PD; 15 HC 95.93
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