
UNIVERSITY OF NEW ENGLAND 

Investigating Structures of Knowing within Three 
Relational Constructs, Leading to Higher-Order 

bstract 

g answered without higher-order thinking. This perennial problem in 

ma m

derive 
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dis

Mathematical Thinking  
 Greg Scott 

 

 

A

This paper considers three constructs that address different, yet complementary perspectives on student 

mathematical performance. The three constructs are the relationship between procedural and conceptual 

forms of knowledge by Hiebert and Lefevre (1986), the psychology of mathematical abilities in schoolchildren 

as researched by Krutetskii (1976), and the developmental construct of the SOLO model as devised by Biggs 

and Collis (1982, 1991). It will be appreciated how these constructs derive three different viewpoints of 

‘structures of knowing’ in mathematics resulting in the possibility of transitional pathways to higher-order 

thinking.  

In simplest terms, higher-order thinking measures include all intellectual tasks that call for more 

than information retrieval.  

                                                                        (Baker 1990 p.7)  

 

Introduction 

The impetus for this research comes from disquiet amongst some educators of secondary mathematics that 

the subject is being reduced to information retrieval for exams.  

One of the problems with an outcome based curriculum is that underqualified teachers teach to 

outcomes and tests and the view of mathematics that is conveyed to students is fragmented. 

                                                                        (Thomas 2000 p.20) 

 

Fragmentation, or non-connectedness of conceptual thought, results from assessment tasks requiring a 

higher-order thinking response, bein

the atics education arises because the student has been taught to the test or has been taught how to 

a solution without understanding.  

engaged in the learning process avoiding mathematically demanding courses in favour of elementary ones 
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(Barrington 2006). A lack of understanding of mathematics appears to be a relevant factor in disengaging 

This in the 

conte n rely 

on pr ral to 

cope atory 

lower expectations within the learning environment.  Each cycle brings with it less 

variation in instruction. This process is portrayed in the following diagram in which the three components 

from higher-level mathematics (Forgasz 2005). 

 

phenomenon may be perceived as being self-generating and is possibly best understood with

xt of the following inward spiralling cycle: disengaged students are not learning concepts; they the

ocedures for their learning, directed at passing tests; teacher instruction becomes more procedu

with the student’s inability to grasp concepts; they become more disengaged with a compens

ing of standards and 

increase in quantity as instruction progresses (in a downward direction): 

 

 
Figure 1 

 
This cycle is alluded to by Kulm who maintained that pupils gain knowledge of ‘how to do numerical 

computation at the expense of learning how to think and solve problems’ (1990 p.71). In contrast, the 

advancement of technology highlights that ‘the ability to learn by thinking conceptually, critically, and 

creatively is a fundamental competency for the workplace’ (Johnson 1997 p.161).  

 between numerical computation and the requirements of critical thinking is being challenged 

within learning environments by the dynamics of technology exposing students to: 

mberg et al. (1990) suggests that the scenario described above by Kulm (1990), and 

 

The discrepancy

the kinds of positions they find themselves in the real world i.e. where the demands of tasks may 

be to some extent unpredictable, and the knowledge and skills needed are not necessarily set 

by some prior instruction on a topic, concept or process. 

                                                                    (McCormick 1997 p.141)  

 

Research by Ro

McCormick (1997) has a history, and any development of knowledge must take this into account. They 

maintain that the industrial age of the past century brought about sequential processes of reductionism, 

analysis, and mechanisation. This process insisted that understanding came from dismembering something 

to see how it worked. Information consequently took on the auspices of following predetermined rules to 
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achieve a consensus, resulting in a procedural approach to knowledge construction. Internal cognitive 

mechanisms were ignored in favour of external mechanisms of synthesis.   

 

Against such historical background, the object of learning in secondary mathematics was more the production 

of a solution than alternative pathways displaying higher-order thinking. Consequently the instigation of a rule 

 

.  

e construction can be found in a recent report into 

views of relatively unchallenging, procedurally oriented mathematics 

005; Givvin et al. 2005 p.116). The report 

ed this learning 

ding) is of great importance 

edge. Krutetskii (1976) makes distinction of a similar connection that exists 

between students’ skills and abilities. For him, this relationship is indicative of their capacity to generate new 

Abilities in Schoolchildren, he develops the connection further 

 

Proce body 

know

  

he Centre for Educational Research and Innovation (CERI) (2005) describes this type of assessment as 

achievement’ (p.21). The integration of formative assessment into teaching practices has become an 

important tool for the  are 

found colle

achievemen rmance; developing a tool for the comparison of both 

dependent teaching methodology to deliver answers, without proof of conceptual understanding, within a rigid

timeframe became an easy option for the instruction of disengaged students

 

Reflections of this rule-based approach to knowledg

mathematics teaching in the United States. It describes such teaching as  ‘a system of … teaching in eighth 

grade characterised by frequent re

during lessons that are unnecessarily fragmented’ (Hiebert et al. 2

also notes that ‘a growing set of data indicates that classroom practice currently is tailored to support 

tudents’ execution of low-level skills’ (Hiebert et al. 2005 p.128). Jonassen (2002) classifis

environment as being dominated by receiving knowledge rather than creating it. 

 

How students combine procedural (skills) and conceptual knowledge (understan

in the creation of new knowl

knowledge. In The Psychology of Mathematical 

by relating personal traits or abilities to achievement levels – capable, average, or incapable. In a similar vein 

the Structure of Observed Learning Outcome (SOLO) model, assesses student responses to reveal various 

achievement levels of forming mathematical relationships. Subsequently the model may provide a structure 

for viewing a student’s progress towards the creation of new knowledge. 

dural and conceptual knowledge, along with Krutetskii’s research, and the SOLO model, em

ledge development through relationship formation in the domain of formative assessment. 

T

‘frequent interactive assessments of student understanding and progress to identify learning needs and 

shape teaching’ (p.5) and promoting ‘the goals of lifelong learning, including raising levels of student 

 creation of new knowledge. Such practices are dependent on four elements that

ctively within the three aforementioned constructs: the creation of a benchmark for student 

t; establishing present level of student perfo
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performance levels; and developing intervention that bridges the gap effectively allowing teachers and 

ge 

f implementation of procedural and conceptual 

knowledge are discussed. 

Procedural knowledge

Johnson et  

execute actions, which

(Krutetskii 1

knowledge t

 

One traditional aspect of procedural knowledge is the notion of skill acquisition, also acknowledged by 

Krutetskii as being an important aspect of learning (1976). The idea began in the early 1920s through the 

r 

with less attention to non-connected skills. This debate reappeared in the 1970s with 

nson et al. 2001 p.346). These authors offer an interesting view of 

knowledge, claiming that it ‘is flexible and not tied to specific problem types and is therefore 

generalizable’ (2001 p346). Importantly Hiebert and Lefevre maintain that conceptual knowledge “cannot be 

students to construct learning (CERI 2005 p.45).  

 

This paper explores the meaning of procedural and conceptual knowledge, Krutetskii’s research on aligning 

mathematical abilities (also referred to as personal traits), with problem-solving and the use of the SOLO 

taxonomy as a diagnostic tool. In so doing it investigates three constructs of bridging the gap between actual 

and potential student performance.  Each forms a framework for conceptual understanding of structures of 

knowing in mathematics. This conceptual interpretation informs research into how students can progress in 

the development of higher-order thinking skills.   

 

Procedural and Conceptual Knowled

This section deals with the ideas of procedural knowledge (skills) and conceptual knowledge (understanding). 

The dynamics between procedural and conceptual knowledge are investigated in terms of which form of 

knowledge develops first culminating in an interesting proposition that each develops the other. Finally, 

implications for learning derived from the sequence o

 

 may be regarded ‘as the ability to execute action sequences to solve problems’ (Rittle-

 al. 2001 p.346). This is reflective of Krutetskii’s findings that students possess a unique ability to

 in some respects, may be regarded as distinct from their mathematical ability 

976). Hiebert and Lefevre also noted that sequentially performed procedures are a form of 

hat can be seen as separate from other knowledge classifications (1986 p.6). 

work of Thorndike (1922), but met opposition in the early 1930s when Brownell (1935), propositioned fo

greater understanding 

Gagné (1977) advocating skill learning in contrast to Bruner’s (1973) predominant drive for understanding. 

Today the connection between skill learning (the ability to execute procedures leading to a solution) and 

understanding is still being investigated (Rittle-Johnson et al. 2001, Hiebert et al. 2005). 

 

Such investigations encompass the idea of conceptual knowledge, which can be defined as ‘implicit or 

explicit understanding of the principles that govern a domain and of the interrelations between units of 

knowledge in a domain’ (Rittle-Joh

conceptual 
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an isolated piece of information; by definition it is a part of conceptual knowledge only if the holder recognises 

its relationship to other pieces of information” (1986, p3). 

  

First attempts at understanding the connection between procedural and conceptual knowledge were based 

round the debate concerning which develops first and therefore contributes to the development of the other. 

 

Some consider that conceptual knowledge, either innate or developed is used first to dictate necessary 

pro lman & Williams 1998; Halford 1993). Evidence of this 

phenomenon has been found by several researchers (Byrnes 1992; Cowan & Renton 1996; Dixon & Moore 

19 Others perceived that students learn a 

procedure and later, after much practice, recognise the concept (Fuson 1988; Karmiloff-Smith 1992; Siegler 

& Stern 199

19 ohnson et al. reconciled the two 

alt th forms of knowledge in which 

‘increases in on type … leads to gains in the other’ (2001 p.347). This iterative process allows one form of 

 

 or to present more problems that emphasise concepts’ (2005 p.128). They warn that the first 

e propagation of procedural knowledge through rote learning connects structures not ideas. 

he pockets together in a meaningful way.  

a

Many educational practices have been dependent on being able to address this dilemma (Hiebert & Lefevre 

1986).   

cedures in a specific domain (Geary 1994; Ge

96;  Hiebert & Wearne 1996; Siegler & Crowley 1998; Wynn 1992). 

8). Supporting research for this position is also extensive (Briars & Siegler 1984; Byrnes & Wasik 

91; Frye et al. 1989, Fuson 1988; Hiebert & Wearne 1996). Rittle-J

ernatives by propositioning a ‘bi-directional relationship’ between bo

knowledge to produce small gains in the other, which consequently demands additional gains in the former. 

Thus, according to these authors, new knowledge is being continually constructed through the interplay of 

both types of knowledge (Rittle-Johnson et al. 2001 p.347). Understanding how knowledge may be 

constructed is important in the process of discovering structure of knowing. 

 

This proposed bi-directional relationship is alluded to by the National Research Council (2001) that promotes 

the idea of procedures and concepts existing without one compromising the other – both are seen as 

essential in the learning process. However, the debate is far from over with several researchers asking if one 

is being given precedence over the other as a consequence of teacher emphasis (Hiebert et al. 2005). 

Despite recent findings, there is still an inability to reconcile the two forms of knowledge. Hiebert and Lefevre 

recognise that this is reflected in two approaches, ‘… either to present more problems that emphasise

procedures,

approach contains inherent dangers: 

1. Procedures are divorced from relationships except possibly in their execution.  Their capacity to 

create new knowledge is severely restricted because they are tied to context and structure devoid of 

understanding.  

2. Th

Consequently such knowledge may consist of pockets of information that can only lead to greater 

understanding provided the learner is able to connect t
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r – procedural approaches may not transfer to life beyond the 

mpletely unable to use this mathematics in 

The second approach addresses the concerns of Johnson (1997) that ‘the ability to learn by thinking 

(p.161) The danger however is that concepts cannot be fully developed if they lack 

supporting p

  

Whilst the  the 

precise natu

 

In summary, procedural and conceptual knowledge interact to produce new knowledge and play an important 

Boaler (1998) reports an additional dange

classroom: 

There is a growing concern among mathematics educators that many students are able to learn 

mathematics for 11 years or more but are then co

situations outside the classroom context. ... Research projects have shown that in real-world 

mathematical situations, adults and students do not use school-learned mathematical methods 

or procedures. (p.41) 

 

conceptually, critically, and creatively is a fundamental competency for the workplace’ and is an important 

part of daily living 

rocedural structures (Rittle-Johnson et al. 2001) . 

 importance of the connection between procedural and conceptual knowledge is recognised,

re of the relationship that creates new knowledge, is still problematic. 

role in life long learning. That is, procedural knowledge (skills, actions) may further the development of 

conceptual knowledge which in turn may require a more advanced procedural framework from which to 

develop. An understanding of the connections between both forms of knowledge allows teachers and 

students to implement strategies towards bridging the gap between what is achieved, and what can be 

achieved.  

 

Krutetskii 

Krutetskii (1976), in his book, The Psychology of Mathematical Abilities in Schoolchildren, argued that 

students possess a unique ability to execute actions that in some respects may be regarded as distinct from 

their mathematical ability. He noted that these actions might also be perceived as aiding the development of 

mathematical ability. This increased ability has the possibility of allowing further actions to take place that not 

only extend what is currently being achieved but also raise the potential for greater achievement.  

 

Over a twelve-year period, principally in the 1960s, he researched the gap between students who displayed a 

high level of thinking and students who had yet to reach this level.  This was accomplished through an 

investigation of gifted mathematicians and research literature resulting in a hypothesis about the structure 

and formation of mathematical abilities. He postulated that these abilities corresponded to certain stages of 
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problem solving which itself could be organised into a sequential framework consisting of information 

gathering, processing, retention, and spatial aspects of perception. The overall correlation between abilities 

and these stages of problem solving is set out below:  

Information gathering (selection of information for structuring a solution pathway) 

y for rapid and broad generalisation of mathematical objects, relations and operations 
y to curtail the process of mathematical reasoning and the system of corresponding operations; the 

ability
Flexib
Strivin
Ability s, switching from a direct to a 
revers asoning) 
 

learly, the successful completion of each stage of problem solving is now aligned with the acquisition of 

 

might function together.  (p.xv) 

ty of pupils with various abilities in mathematics.  

(p.98)   

The ability for formalised perception of mathematical material, for grasping the formal structure of a problem 
 
Information processing (mental activity performed on gathered information) 

The ability for logical thought in the sphere of quantitative and spatial relationships, number and letter 
symbols; the ability to think in mathematical symbols  
The abilit
The abilit

 to think in curtailed structures 
ility of mental processes in mathematical activity 
g for clarity, simplicity, economy, and rationality of solutions 
 for rapid and free reconstruction of the direction of a mental proces
e train of thought  (reversibility of the mental process in mathematical re

Retaining mathematical information (retention of completed solution processes) 

Mathematical memory (generalised memory for mathematical relationships, type characteristics, schemes of 
arguments and proofs, methods of problem solving, and principles of approach) 
 
Spatial aspects of perception 

Mathematical cast of mind            (pp.350-351) 
 
C

certain mathematical abilities or personal traits. Consequently he was able to confirm the association of 

varying degrees and interaction of specific abilities with levels of student responses to problem solving. 

Kilpatrick and Wirszup who translated Krutetskii’s (1976) work evidence this in their preface: 

Just as Piaget’s notions of intellectual growth have made mathematics educators aware of 

differences in children’s thinking at various ages, so Krutetskii’s notions on the structure of 

mathematical abilities could make them aware of different components of ability and how they

 

Krutetskii’s (1976) research led him to formulate a set of problems consisting of 79 tests divided into 26 

series. These exhibited the functionality of certain mathematical abilities as they pertained to problem solving:  

After a number of trials, a special system of experimental problems was designed, to expose 

characteristics of the mental activi

 
He appears to use three frames of reference to give structure to these mathematical abilities. 
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First, he perceived mathematical abilities as being creative within both the school, and post-school domains. 

Many educators of the time regarded student establishment of new knowledge as non-creative since it 

already existed. They believed that the only truly creative knowledge existed within the scientific domain of 

discovering the unknown. Krutetskii, however, maintained that school children were capable of being creative 

in their knowledge construction, as well as mastering the school mathematics course. For him a student could 

be creative if the knowledge he discovered was new to him. Thus, he stressed the importance of both 

learning and creativity. This concept finds similar expression in the New South Wales Mathematics Syllabus, 

hich portrays, education existing within the domains of ‘students learn about’ and ‘students learn to’ (NSW 

mbined with 

nowledge and habits to form a bi-directional relationship: 

 of mastering the appropriate 

knowledge, skills and habits. On the other hand, the acquisition of knowledge, skills, and habits 

ent of personal traits can lead to development of knowledge. 

matical abilities from the general abilities required for the 

 

w

Board of Studies, 2002). It also confirms a place, within Krutetskii’s research, of students structuring their own 

knowledge according to their abilities or personal traits.  

 

Secondly, he followed on from this initial idea, contrasting abilities with skills or habits. Skills were regarded 

as ‘the qualities or features of the activity of a person’ and abilities as the ‘qualities or traits of the person 

carrying out an activity’ (p71). Furthermore, it was recognised that abilities and skills co

k

 

On the one hand, when knowledge, skills, and habits are acquired, abilities are developed; their 

formation and development is impossible outside the process

depends, along with other conditions, on the pupil’s individual traits; abilities permit the 

appropriate knowledge, skills and habits to be mastered more easily and more thoroughly.  Just 

as it would be incorrect to sever them, so it would be wrong to identify them with each other. 

(p.70) 

 

Hence, the developm

 

Thirdly, Krutetskii (1976) separated mathe

completion of any task. For example, abilities such as a positive attitude, diligence, self-discipline, 

concentration, minimum knowledge etc., are perceived as relating to any general activity.  He regarded 

“mathematical ability proper” as being represented by “definite individual psychological characteristics in the 

sensory and mental spheres, answering the requirements of the given activity” (p.73). In this way clarification 

was given to what specific abilities related to the development of mathematical thought in a particular 

instance. 
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These three perspectives are central in Krutetskii’s focus on the processes within problem solving i.e. how 

uidelines for the understanding of ability within a 

athematical activity. These have important considerations for research and are outlined below: 

plex of abilities.  

 categories delineate differences between capable, average, 

in terms of the degree to which they possess characteristics 

sive information provided, concerns capable students. This process does 

ls. 

a more precise picture of 

bilities, the second category – information processing –  will be examined from three perspectives: 

e, and incapable students are described in the following analysis of 

student responses to Krutetskii’s (1976) research questions.  

students are able to use their abilities to establish a pathway to a solution. He was not concerned with the 

specific processes of problem solving, i.e. how problems dictate specific methodologies. Rather, he was more 

interested in the overall role of abilities in solving problems (Goldin 1977). 

 

To achieve this goal Krutetskii derived six critical g

m

      i.  Specific activities require specific abilities. 

     ii.  Abilities only develop in specific activities. 

    iii.  Abilities develop in optimal age periods. 

    iv.  An activity’s progress is dependent on a com

     v.  Different combinations of abilities determine high achievement. 

    vi.  Undeveloped abilities can be compensated for by other abilities.  

                                                                                              (pp.66-67)  

These guidelines are foundational in the construction of questions designed to illicit ability levels belonging to 

the first three categories of problem solving (information gathering, information processing, and retention of 

hods. Problems pertaining to thesesolution met

and incapable students and in so doing show an emergence of higher-order thinking skills.  

It is noteworthy that Krutetskii considered the fourth category – spatial aspects of perception – as being 

unhelpful to this differentiation of abilities. Subsequently there is little information about this category with 

respect to the three types of students mentioned above. A further important consideration in reviewing the 

results of his research is that the characteristics of the capable students are used as benchmarks for average 

le students. The later are perceived and incapab

of the former. Hence the most exten

allow however, the presence common traits to be investigated across various achievement leve

 

Consequently the first three categories of problem solving will now be examined to reveal a structure of 

knowing within capable, average, and incapable students. However, to give 

a

generalisation ability (ability to abstract a universal process); flexibility (the ability to switch readily from one 

method of operation, or train of thought, to another); and reversibility (reversing the mathematical reasoning 

process. 

Structures of knowing for capable, averag
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Characteristics of Capable Students 
Capable students gathered information quickly, grasped the structure of the problem immediately and are 

able to dismember it into connecting parts, often curtailing their reasoning process through understanding the 

role of each element within the structure: 

The able pupil perceives each … complex as a composite whole. First he perceives individual 

elements in this complex, each element as part of the whole, and second, he perceives these 

elements as interrelated and forming an integral structure, as well as the role of each element in 

its structure. (p.228)   

 

Capable students recognised what was relevant or superfluous by virtue of an understanding of the problem’s 

essential elements: 

Capable students perceive the mathematical material of a problem analytically (they isolate 

different elements in its structure, assess them differently, systematise them, determine their 

“hierarchy’) and synthetically (they combine them into complexes, they seek out mathematical 

relationships and functional dependencies. (p.227) 

 

perception, focusing on the structure of the problem 

ther than on its individual elements. It is not surprising then to find that very capable students actually had a 

rvening steps. In some instances he was able to 

stablish a connection to the final step immediately. The advantage for the capable student was that it took 

hey switched readily from one operation to another without being inhibited by previous 

lutions. This reflected their skill at generalisation and not being tied down by concrete elements within the 

solution or process. They appeared to be free of the confines of a preordained method of solution and 

possessed significant working memory in which to perform alternate operations. In so doing they seemed to 

Analysing the characteristics of generalisation reveals that they were not something capable students 

‘worked towards’ but ‘worked out of'. Hence, capable students were able to rapidly and broadly extend 

relationships without outside intervention and readily transfer information to new problem types. Their ability 

to do so appeared to come from their powers of initial 

ra

need to generalise. 

 

Further, capable students were characterised by the ability to immediately shorten the reasoning process and 

corresponding procedures. Recognising a set of sequenced connections that led to a solution, the capable 

student often made a connection by disregarding inte

e

less time to complete a normal lengthy and involved mathematical process. The student was able to shorten 

deductions although the links themselves were not removed and could be recalled upon request. 

 

Capable students also displayed flexibility of mental processes and were able to offer several pathways 

towards a solution – t

so
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achieve the balance between discovering a solution and detaching themselves from its framework in order to 

seek other frameworks. Such alternatives were often sought after for being more economical and efficient, 

i.e. they involved less complicated steps and provided the most direct pathway to the solution. 

 

These students were able to perform reversibility of mental operations freely. The resultant reverse bonds 

were established at the same time as direct bonds. An example of the relationship between the different 

types of connections appears in Krutetskii’s problem series: ‘A saw in a saw mill saws off a 1m piece of log 

very minute. How many minutes will it take to saw 16m of log? [direct bond]’, and ‘In 3 minutes a log is 

nt and 

oncrete data fairly quickly after establishing a solution. Often, they forgot the content of a problem, retaining 

sed process. Subsequently it could be concluded that perhaps capable students had a larger 

worki

 

In su verall 

struct ithin it 

and g traints of having to form connections between 

essential elements within the problem and were able to apply generalised principles to the task at hand. This 

e

sawed into half metre pieces, with each cutting taking one minute. Find the length of the log [reverse bond]’ 

(p.144): 

Moreover, in approximately half the cases it turned out that a reverse problem given [to capable 

students] right after the direct one was solved more rapidly, more easily, than a reverse problem 

given independently of the direct one, as an original problem. (p.288)   

 

 Finally, capable students possessed excellent memory retention. They tended to loose irreleva

c

the method of solution. For these students, recalling information about a problem was not a recollection of 

facts but a bringing to mind a possible pathway to a solution. Their minds were not cluttered with detail – only 

a generali

ng memory than other students. 

mmary, capable students were able to solve problems quickly because they perceived the o

ure of the problem immediately. Once a problem was solved they remembered the relationships w

uidelines for a solution. They were free of the cons

seems to have allowed them increased working memory with greater flexibility and reversibility of mental 

processes. Consequently capable students displayed a considerable degree of higher-order thinking. 

 

Characteristics of Average Students 
In contrast to capable students, average students’ information gathering was characterised by perceiving 

elements within a problem as disconnected. These students required additional exercises to establish the 

required connections. In addition, superfluous data was an obstacle to their reasoning since it was perceived 

as part of a possible solution pathway. 

 

Average students had to carry out several exercises in order to achieve an adequate level of generalisation. 

They exhibited difficulty in transferring information to other problems, possibly because the connections they 
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had formed were only made after great effort using a high degree of working memory. Their inability to initially 

curtail processes leading to a solution also gives credence to the argument that average students were 

operating with restricted working memories. Only after doing a problem completely several times could a 

shortcut be made. Such shortcuts then had the effect of increasing working memory thereby improving the 

hances of working through other problems.  Average students also became fixated on a past methodology, 

ss. Noteworthy was their preference to engage in reverse bonds in the absence of direct bonds. 

 would seem that their working memory was limited to processing only one bond at a time. 

member everything about the solution – the 

con

 

In sum  elements within a problem as being disconnected but were able to 

make connections after practice. They tended not to remember relationships but all facts, both necessary and 

unn

though rmation to 

new

extens

 

Ch
Informa

viewed cted. Subsequently, they were unable to 

org

Incapa , their initial approach to a problem was to 

focus on features that made it different from other problems, rather than to focus on any essential elements 

c

which impeded their thinking process in the development of a pathway to solution. Thus the flexibility of 

mental processes for the average student was restricted by previous solutions decreasing the possibility of 

engaging in unfamiliar problems. 

 

The concept of prior methodology inhibiting further development of thought seems to have been responsible 

for the average student’s lack of reversibility of mental processes. These students lacked confidence in 

establishing reverse bonds and required special exercises to create them. For average students direct bonds 

tended to inhibit the formation of reverse ones. They often had to undergo a time delay before undertaking a 

reverse proce

It

 

It should be noted that average students placed greater strain on their working memory by not being selective 

in choosing data assigned to memory retention. They tended to re

crete, abstract, essential, non-essential, and generalised solution. 

mary, average students perceived

ecessary. This process is reflected in their difficulty at generalisation, flexibility, and reversibility of 

t.  The retention of non-essential information also appears detrimental to the transfer of info

 problems. Generally average students displayed higher order thinking in some instances only after 

ive exercises. 

aracteristics of Incapable Students 
tion gathering by incapable students was characterised by fragmentation. Like average students, they 

 elements within the problem as isolated and disconne

anise the elements into a hierarchy reflecting a structure for solution even after several exercises. 

ble students perceived all elements as equal. Consequently

within its structure:    

As for the incapable pupils … connections and correlations between the elements of a problem, 

even with outside help, are established with great difficulty. (p.228) 
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Consequently incapable students were unable to offer any generalisation. They were unable to engage in 

flexibility of thought, often finding the prospect of several solutions too daunting, even when the second 

solution method was easier than the first. Indeed ‘for many of them [younger students] the idea that a 

problem might have several solutions (all correct) was unacceptable’ (p.338). In order to succeed at a second 

olution, they had to completely forget the first method. 

Incapable students did not display any reversibility of thought. They were unable to perceive connections 

eived as similar to ones that required direct bonds. Memory 

tention was poor with essential elements often forgotten before the end of the lesson. Even a mastered 

ct with their ability to 

evelop flexibility and reversibility of thought. Their inability to form connections between essential elements 

rutetskii categorised students who easily formed and remembered relationships as ‘capable'. The degree to 

ome (SOLO) Model 

s

 

between reverse and direct bonds, not even recognising one bond as the reverse of the other. For them 

problems requiring reverse bonds were perc

re

solution was easily forgotten without regular review. 

 

In summary, the inability of relatively incapable students, to establish connections between elements, to 

recognise redundant data, and to create a hierarchy of elements appears to intera

d

apparently denied them the opportunity of developing a reasoning process that would lead to generalisation. 

Consequently incapable students were unable to transfer knowledge onto other problems. They displayed no 

higher-order thinking. 

 

K

which other students were able to achieve this allowed them to be classified as ‘average’ or ‘incapable’ of 

relationship formation. Therefore a method of measuring the degree of student success in establishing 

mathematical relationships, in a particular instance, would complement his research. Such a measuring tool 

is provided by the SOLO model. 

 

Structure of the Observed Learning Outc

This section looks at the three main components of the SOLO model, namely, modes of construction, levels 

of understanding, and cycles of learning. These ideas are discussed in relation to Krutetskii’s research. The 

construction of current research questions is then developed from this synthesis. 

 

The SOLO model, created by Biggs and Collis (1982, 1991), is a developmental construct that evaluates 

student responses in terms of the degree to which they make connections between the elements of a 

problem. Hence the model may be regarded as one method of measuring the degree of student success in 

establishing mathematical relationships.  
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Biggs and Collis (1982, 1991) outline five hierarchical modes of knowledge construction: sensorimotor; ikonic; 

oncrete symbolic; formal; and post formal. Students develop certain abilities within each mode to aid in the 

ode students are 

devel dents 

engag iewed 

and c

 

Development through these modes is similar to Piaget’s (1954) stage development, except that Biggs and 

Collis (1982, 1991) regard learning as uni-modal or multi-modal. Students who utilise a combination of modes 

to help them develop their present mode or transit to a higher mode are said to be engaging in multi-modal 

learning. For example a student may use a diagram (utilising the ikonic mode) to help solve a problem 

requiring understandings from the symbolic mode. Those who construct knowledge within a single mode 

partake in uni-modal learning. 

    

However progression from one mode to the next and therefore the development of higher-order thinking is 

not assured. Biggs and Collis (1991) drew attention to at least five factors contributing towards progression to 

the next mode: physical maturity, achievement of the relational response in the lower mode, sufficient 

working memory, social support, and cognitive conflict.  

 

Contained within each mode are three basic hierarchical levels of understanding that signify student ability to 

make connections between elements within problems – unistructural, multistructural and relational. 

Unistructural responses are composed of one pertinent element of the mode; multistructural responses 

comprise several non-connected elements usually in order; relational responses contain several connected 

elements constituting a composite whole (Kulm, 1990). 

 

An important characteristic of these levels in terms of how students structure their own knowledge is that 

whilst unistructural and multistructural responses can be taught, the relational response can only be derived 

by the student. Instructional teaching of this later response would provide solution, but not progress the 

students to higher levels of thinking. The pupil would follow the procedure to the solution but remain at the 

multistructural level.  

   

c

creation of knowledge. In the sensorimotor mode, they develop and use motor skills to react to their 

surrounding environment. Within the ikonic mode, which is developed between the ages of one and a half to 

six years, students are internalising these motor skills to develop the imagery necessary for the development 

of intuitive knowledge. From six years to sixteen years, within the concrete symbolic m

oping language and number systems to display thoughts. The formal mode is a time when stu

e in abstract concepts resulting in the development of theoretical thought. Such theories are rev

hallenged with resultant structural changes within the post formal mode. 
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These three response levels constitute a learning cycle. Each mode may have one or more learning cycles 

rning cycles arranged into a hierarchy of knowledge construction. This constitutes a 

s certain similarities in their formation. This overlap contributes to 

problem solving, and 

. Krutetskii distinguished 

tside of other 

eneral influences. Importantly, the developmental construct of the SOLO model echoes Krutetskii’s 

 

 the pupils a ce of hidden mathematical 

 the essence of relations given 

?  (p.240)   

ble student unknowingly establishing a higher learning cycle, within 

 cycles of learning 

, the capable student may be said to exhibit the 

o 

with combinations of lea

unique structure of student knowledge displaying what he or she understands, and has yet to accomplish.  

 

The structures of knowledge outlined within the SOLO model and those contained within Krutetskii’s 

construct of mathematical abilities posses

the development of an interactive relationship between them. 

 

Biggs and Collis (1982, 1991) and Krutetskii (1976) employed the technique of observing a student outside 

the context of rigid testing. Biggs and Collis observed student responses in the light of 

Krutetskii observed student psychological traits also in the light of problem solving. Both, to a degree, 

perceived the pupil in isolation to overall factors affecting knowledge construction

mathematical ability from general ability while Biggs and Collis looked at student responses ou

g

construct which has been described as ‘developmental rather than experimental’ (Bright 1977 p.55) . 

 

In addition to these similarities there appears to be a connection between the SOLO model and student

abilities in mathematics as depicted by Krutetskii (1976). It is contained within his statement of very capable 

students: 

As a result there arises in  concept of the essen

relationships not given directly in the problem (but following from

in the problem), and on this basis the plan of future operation is worked out. In these cases the 

examinees would say: “I am not solving the problem yet; I want to get to know it better”; “Can I 

try to look into the problem before solving it

 

This passage is suggestive of the capa

the SOLO framework. He is obviously trying to utilise known relationships to create something new. The 

SOLO model postulates that learning cycles are connected in a particular way. Higher

contain elements or relationships from preceding cycles, which in Krutetskii’s (1976) terminology could be 

labelled as ‘hidden mathematical relationships'. In this case

personal trait of ‘grasping the formal structure of a problem’ associated with information processing (p.350). 

This student may also be regarded as displaying at the very least, a second cycle response within the SOLO 

model (since the student is looking to make use of a previous relationship. 

  

Krutetskii looked at student responses as indicating personal traits or abilities while the SOLO model 

assessed student responses as indicating the degree to which a problem is understood. When the tw
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constructs are compared it is apparent that Krutetskii’s ‘capable students’ are able to respond relationally to 

l pable students’ 

del. 

y Biggs and Collis (1982), could provide information that would develop or enhance the constructs of the 

 

n 

ay provide the ‘missing link’ of transitional pathways within 

ossibility of there being several contributory factors operating within a dynamic relationship. An attempt to 

nderstanding of 

either essential elements or procedural processes or a combination of both, as is the case with 

ve development of conceptual and procedural knowledge? 

thinking?  

bove questions constitute a hierarchy of developmental activities and 

 be assessed using the SOLO model?  

nts in their learning and 

ablishes a framework for assessing a student’s ability to construct 

o be 

problems. Those he describes as ‘average’ initial y give multistructural responses while ‘inca

mostly provide unistructural responses. Thus, with regard to student abilities, there is an apparent link 

etween Krutetskii’s research and the SOLO mob

 

The question then becomes, is it possible that Krutetskii’s research (1976) and the SOLO model, as devised 

b

other? Can a possible intervention be established to validate Krutetskii’s claims that in some cases average

students can progress to the point of displaying similar abilities as capable students? Does an emphasis o

procedural knowledge prevent incapable students from developing greater mathematical ability? Does it also 

prevent a student transitioning from giving multistructural responses to relational responses within the SOLO 

odel? Is it possible that the works of Krutetskii mm

the SOLO model?   Could the merging of the two constructs result in a better understanding of the structures 

of knowing? 

 

The pathway to higher-order thinking appears to be multifaceted as indicated above with the distinct 

p

elucidate these factors leads to the following research questions: 

1. Is attainment of a relational response, within the SOLO model, inhibited by a lack of u

Krutetskii’s ‘incapable students’? 

2. Is the possibility of forming relational responses enhanced by the automatic performance multi-

procedural steps or by an iterati

3. Can exposure to degrees of flexibility, reversibility, and generalisation as assessed by Krutetskii, bring 

about the cognitive conflict that Biggs and Collis mention as a factor in transition to higher-order 

4. Can the information from the a

interventions, producing a pathway towards higher-order thinking in mathematics? Can progress 

along this pathway

5. Is such a pathway to higher-order thinking likely to engage more stude

motivate to undertake higher-level mathematics courses?   

  

Summarising, the SOLO model est

mathematical relationships. It signifies prior development of learning in a particular domain (since the second 

cycle of learning is only achieved upon completion of the first cycle), and indicates what has yet t
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created. Krutetskii’s research establishes a framework for investigating which student abilities are necessary 

ppears the possibility of associating these abilities with various student response levels within the SOLO 

evelopment of specific abilities. 

esearch into 

he procedural and conceptual knowledge debate indicates how new knowledge can be created. Krutetskii’s 

research outlines what ability traits need to be developed for this to happen and the SOLO model provides an 

assessable pathway along which development takes place. The connections between all three constructs 

warrant further investigation to establish an overall pathway to higher-order thinking.   

 

Research to establish these connections utilises the constructs of some of the questions within Krutetskii’s 

problem series. These, in conjunction with an understanding of the relationship between procedural and 

conceptual knowledge, underpin intervention activities by the researcher designed to monitor and progress 

student thinking.  

 

Student responses to specified problems are analysed according to the SOLO model to present a coherent 

understanding of any gap between the expected level (as determined by the curriculum) and actual level of 

relationship formation. Established learning theories, such as ‘constructivism’ and ‘transfer learning’ will 

underscore intervention activities. This process will include interviewing techniques similar to Krutetskii’s and 

will determine the zones of proximal development (the extent of student advancement in problem solving 

after intervention) – a concept developed by Vygotsky (1986). 

 

The type and composition of intervention will be recorded, and subsequent student progress monitored to 

establish any improved zones of proximal development. Increases of each zone will indicate the ability to 

advance procedural and conceptual knowledge towards relationship formation through the development of 

various personal traits. Each pupil’s movement within the zone will be analysed using the SOLO model, 

indicating extent of progression towards higher-order thinking. The aim of the research is to determine and 

assess how dynamic structures of knowing implicit within the domains of various mathematical activities can 

be developed. A possible ramification of this research will be an insight into improving student motivation to 

undertake mathematics courses that require higher-order thinking. Student inability to develop their own 

for the formation of mathematical relationships within a particular type of problem. Consequently, there 

a

model This offers the distinct likelihood of achieving a higher-level response within the model, through the 

d

 

Conclusion 

Clearly there are significant links among procedural and conceptual knowledge, Krutetskii’s r

mathematical abilities, and the SOLO model. 

 

T
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thinking processes would be reason enough not to engage in a level of mathematics that demanded higher-

order thinking skills for success.  

 

This paper began with the concept of a particular cycle of learning that had the capacity to disengage 

tudents and teachers from developing higher-order thinking skills. Lack of students possessing these skills 

s for Australia as a whole. It sets in motion a much wider cyclical event that is best 

homas in Mathematical Sciences in Australia – Looking for a Future (2000): 

s

has dire repercussion

described by T

In the long term, solving the supply of mathematics teachers is intimately connected to the 

number of students studying advanced level mathematics in schools and strong mathematical 

sciences in the universities. However, both of these have shrunk – when they should have been 

expanding – so Australia now suffers a crisis throughout the mathematical sciences. (p.1) 
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