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ABSTRACT
Establishing dose–response relationships between training load and fatigue can help the planning of 
training. The aim was to establish the relative importance of external training load measurements to 
relate to the musculoskeletal response on a group and individual player level. Sixteen elite male rugby 
league players were monitored across three seasons. Two- to seven-day exponential weighted averages 
(EWMA) were calculated for total distance, and individualised speed thresholds (via 30–15 Intermittent 
Fitness Test) derived from global positioning systems. The sit and reach, dorsiflexion lunge, and adductor 
squeeze tests represented the musculoskeletal response. Partial least squares and repeated measures 
correlation analyses established the relative importance of training load measures and then investigated 
their relationship to the collective musculoskeletal response for individual players through the construc
tion of latent variables. On a group level, 2- and 3-day EWMA total distance had the highest relative 
importance to the collective musculoskeletal response (p < 0.0001). However, the magnitude of relation
ships on a group (r value = 0.20) and individual (r value = 0.06) level were trivial to small. The lack of 
variability in the musculoskeletal response over time suggest practitioners adopting such measures to 
understand acute musculoskeletal fatigue responses should do so with caution.
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Introduction

In professional rugby league, the structure of competition and 
concurrent training programmes mean players complete 
a variety of different activities (e.g. accelerating, high-speed run
ning, collisions, strength and power programming) – termed the 
external training load (Impellizzeri et al., 2005). Across a period of 
training, coaches manipulate the frequency, intensity and dura
tion of the external training load to impose an internal training 
load that elicits a suitable fitness/fatigue response to maximise 
favourable training outcomes (e.g. adaptation/performance) 
(Banister et al., 1975; Impellizzeri et al., 2005). However, in prac
tice, this is extremely difficult to achieve as the internal training 
load is an abstract latent construct that involves multiple dimen
sions, given it is defined as the response to the external load 
across psychological (Soligard et al., 2016), physiological (e.g. 
oxygen consumption, blood lactate) (Impellizzeri et al., 2005; 
Soligard et al., 2016) and biomechanical (e.g. cartilage, bone, 
muscle, tendon; Vanrenterghem et al., 2017) systems. 
Therefore, for any athlete, the magnitude of the resultant fatigue 
response for each of these systems is likely mediated by an array 
of personal characteristics (e.g. training and injury history and 
psycho-emotional state) and the specific external training load 
that is prescribed over a period of time (Kiely, 2018; Impellizzeri 
et al., 2019).

By quantifying the dose–response relationship between the 
training load prescribed to athletes and their fatigue response, 
it is hoped that short-term training prescription can be better 
managed (Impellizzeri et al., 2005; Oxendale et al., 2016; Thorpe 
et al., 2017). Measurements such as the session-rating-of- 
perceived-exertion (sRPE), heart rate or microtechnology are 
often used to represent the training load prescribed 
(Akenhead & Nassis, 2016). Monitoring the fatigue response 
often includes cardiovascular measures such as changes in 
heart rate variability or heart rate response to a controlled 
bout of running (Scott et al., 2018; Veugelers et al., 2016; 
Williams et al., 2018) and neuromuscular function measures 
such as the countermovement jump (Twist & Highton, 2013). 
Repeated musculoskeletal screening measurements are also 
popular in applied practice to detect changes in musculoskele
tal (rather than physiological/neuromuscular) specific 
responses such as hip adductors’ strength (Roe et al., 2016) or 
lower back/hamstring/calf flexibility (e.g. sit and reach [S&R] or 
dorsiflexion lunge tests [DLT]) (Esmaeili et al., 2018). Overall, 
coaches and sports scientists collect a variety of measurements 
to capture the different dimensions of the training load and 
fatigue constructs but limited attention has been paid to the 
dose–response relationship between training load and muscu
loskeletal fatigue responses.
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Given the theoretical frameworks of training dose-response, 
it is likely that a training load variable could be important to 
understand the fatigue response of one system (e.g. cardiovas
cular fatigue) but might be unimportant for another (e.g. mus
culoskeletal fatigue) (Esmaeili et al., 2018; Lonie et al., 2020; 
Williams et al., 2018). For example, whilst Williams et al. (2018) 
reported sRPE to explain 44% of the variance in changes in 
heart rate variability (r = 0.66 ± 0.32) across an 8 week training 
period in elite rugby 7’s players, both Esmaeili et al. (2018) and 
Lonie et al. (2020) reported trivial effects of sRPE on the varia
bility of musculoskeletal response scores in elite Australian 
rules football players. Therefore, there also becomes an increas
ing requirement to evaluate and then omit training load vari
ables that are deemed unimportant to explain the fatigue 
response for any given system (i.e. cardiovascular vs. musculos
keletal response) (Vanrenterghem et al., 2017; Weaving et al., 
2020). In these examples, given the conceptual differences in 
the internal training loads required for adaptation between 
cardiovascular (e.g. ventricular hypertrophy; MacInnis & 
Gibala, 2017) and musculoskeletal (e.g. tendon stiffness) sys
tems (Vanrenterghem et al., 2017), it is possible that sRPE 
underrepresents the true internal load imposed on the muscu
loskeletal system and that external load measurements could 
provide a better relationship with musculoskeletal response 
measurements (Esmaeili et al., 2018; Vanrenterghem et al., 
2017). For example, Roe et al. (2016) reported that the accumu
lation of sprint distance (>80% of 40-m maximal sprint speed) 
during rugby union match play related to immediate 
(r = −0.52), +24 h (r = −0.47) and +48 h (r = −0.71) changes in 
adductor squeeze strength in academy rugby union players. 
This suggests that the external load could provide useful sur
rogate dose–response relationships with musculoskeletal 
responses when measured over longitudinal periods, although 
these relationships have yet to be investigated in any profes
sional team sport.

Another broader consideration is that due to the multidi
mensional aspects of both the training load and fatigue mea
surements (e.g. cardiovascular, neuromuscular, 
musculoskeletal) it can be hard to provide a parsimonious 
model of their dose–response relationship (Ryan et al., 2020). 
This is because the variables used to represent different dimen
sions of the training load and fatigue constructs frequently 
exhibit considerable multicollinearity (McLaren et al., 2017; 
Weaving et al., 2019). Consequently, a common approach is 
to conduct multiple univariate models involving each of the 
individual measurements (e.g. correlation between total dis
tance and adductor squeeze strength, total distance and 
ankle dorsiflexion). However, univariate analysis is limited as it 
assumes that each of the variables are independent and also 
does not “capture” any information that may be included 
within the covariance of the datasets. As a result, those models 
are evaluating the relationships between individual dimensions 
of the construct, rather than the multidimensional construct as 
a whole. This can be problematic with training load and fatigue 
measurements, as the magnitude of covariance differs depend
ing on the training modes prescribed over a training period 
(McLaren et al., 2017; Weaving et al., 2020). However, orthogo
nal data analysis approaches, such as singular value decompo
sition (SVD) (Till et al., 2016) or partial least squares correlation 

analysis can overcome this issue (PLSCA) (Abdi & Williams, 
2013; Weaving et al., 2019). PLSCA has potential to dose– 
response analyses, as key relationships between datasets that 
both include multiple variables can be evaluated together 
within a single analysis. This can enable complex load and 
response constructs to be evaluated more effectively and visua
lised more simply (Krishnan et al., 2011; Weaving et al., 2019). 
Whilst these techniques are regularly utilised in other fields 
such as chemometrics and genomics (Barker & Rayens, 2003; 
Liquet et al., 2012), their application has been limited in sports 
science. Therefore, the primary aim of the current study was to 
evaluate the relative importance of external load variables to 
relate to measures of musculoskeletal fatigue response in elite 
rugby league players through PLSCA. A secondary aim was to 
assess the extent to which group level (i.e. between-subject) 
variable importance was applicable to each individual players 
own dose–response relationship.

Method

Subjects

Sixteen elite male rugby league players (mean ± SD: age 24 ± 4 
y body mass, 100.2 ± 8.4 kg, height 182 ± 13 cm) from the same 
Australian-based National Rugby League (NRL) team were 
recruited to participate. For players to be included they had 
to satisfy the strict data exclusion criteria (detailed below). All 
players provided written voluntary consent to participate in this 
investigation and the study received institutional ethics 
approval (approval number: HMNS18/1801).

Design

The study used a longitudinal observational research design in 
which daily training load and musculoskeletal screening data 
were collected across three complete NRL seasons (observa
tions; n = 1699). Daily musculoskeletal screening tests were 
conducted throughout the pre-season (November – February) 
and competitive (March – October) phases. Exponentially 
weighted moving averages (EWMA) of the training load vari
ables were calculated across 2- to 7-day periods and that value 
aligned with the following days musculoskeletal screening tests 
(Williams et al., 2017). For example, if screening was conducted 
on Monday in pre-season, the EWMA calculated for each vari
able on the Sunday would be aligned with this value. This was 
to ensure that any training load accrued on the same day, but 
after the completion of the musculoskeletal screening tests, 
were not included in the calculation of the EWMA.

Methodology

External training load measures
Global positioning system (GPS) data were collected for each 
training session using 5 Hz interpolated to 15 Hz devices (SPI 
HPU GPSports, Canberra, Australia). The mean (± SD) number of 
satellites (12.6 ± 2.7) and horizontal dilution of precision 
(1.1 ± 0.1) during the data collection period suggest suitable 
accuracy of the collected data (Malone et al., 2017) . These 
devices possess acceptable levels of validity (standard error of 
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the mean = 0.07 to 0.14 m·s-1) and reliability (intra-unit: coeffi
cient of variation [CV] = 0.9–2.6%, inter-unit CV = 1.0–7.8%) for 
high-speed measurements against a timing gate criterion (Barr 
et al., 2019) alongside acceptable validity for total distance 
(intraclass correlation coefficient = 0.99) during court-based 
movements (Tessaro & Williams, 2018). Data from GPS were 
downloaded following the completion of each training session 
or match using Team AMS (GPSports, Canberra, Australia) and 
trimmed to include only active drill or match-play time.

Players completed the 30–15 Intermittent Fitness Test 
(30–15IFT) at the beginning and completion of the pre-season 
period of each season, with the end-stage velocity (VIFT) used to 
determine relative speed thresholds. All testing sessions were 
performed on the same outdoor grass field and at the same 
time of day (~0700–0900), with players wearing their issued 
training attire and own football boots. Sessions were per
formed under similar environmental conditions (21–26°C). 
Estimates of the first (VT1IFT; 68% VIFT = 12.8 ± 0.6 km∙h−1) 
and second ventilatory (VT2IFT; 87% VIFT = 16.6 ± 0.8 km∙h−1) 
thresholds (Scott et al., 2018) were calculated for each player. 
The distance (m) covered above each of these thresholds, 
comparable in the literature to high speed- and very high 
speed-running, respectively (McLaren et al., 2017), were quan
tified for each session for each player across the study period. 
Following each 30–15IFT testing period, any changes to 
a players terminal velocity, and therefore their relative running 
thresholds, were updated within the proprietary software 
(Team AMS, GPSports, Canberra, Australia). No testing was 
performed during the competitive phase as 30–15IFT perfor
mance has previously been reported to not change substan
tially in elite rugby league players across the in-season phase 
(typical error = 0.42 km·h−1, CV = 1.9%) (Scott et al., 2018).

Exponentially weighted moving average of external 
training load
On any given day, the EWMA was calculated for total distance, 
VT1IFT and VT2IFT distance for each player as described by 
Williams et al. (2017). The EWMA for a given day was calculated 
as per equation 1: 

EWMAtoday¼ Loadtodayxλaþ 1� λað ÞxEWMAyesterday
� �

(1) 

where λa is a value between 0 and 1 that represents the degree 
of decay, with higher values discounting older observations at 
a faster rate. The λa is calculated as per equation 2: 

λa¼ 2= Nþ 1ð Þ (2) 

where N is the chosen time decay constant. In the current 
study, time decay constants of 2,3,4,5,6,7 were chosen and 
calculated to represent the training load imposed for each of 
the external load variables (total distance, VT1IFT and VT2IFT 

distance). Therefore, 6 EWMA variables (2- to 7-day EWMA) 
were generated for each external load variable.

Data exclusion criteria
In the event of poor satellite coverage during match-play, data 
that possessed a mean satellite count of less than 8 during 
active match-play time were removed. As such, all daily EWMA 
calculations and musculoskeletal response measures that 

included any removed match data in the previous 7 days 
were similarly excluded from the analysis. Consequently, 250 
daily files were omitted (15%) from the original dataset (obser
vations n = 1699). For players to be included, they also had to 
possess a minimum of 50 repeated observations (arbitrarily 
chosen) of training load and musculoskeletal response to 
allow individual relationships to be established. Due to 
a variety of reasons across the 3 year observation period (e.g. 
retirement, player transfers, non-retention of youth players, 
injuries) 33 players (mean ± SD observations [range]: 21 ± 8 [8 
to 35]) were unable to be included due to this reason. As 
a result, 485 files were also removed from the original dataset 
representing 29%. Consequently, the final training data set 
contained 964 observations from 16 players (mean ± SD 
[range]: 61 ± 14 [53 to 82]).

Sit and Reach Test (S&R)
The Sit and Reach test is a commonly used measure of com
bined spinal and hamstring muscle extensibility. Placing one 
hand directly atop of the other and maintaining extension 
through both knees, the players were asked to stretch forward 
as far as possible, holding for a minimum of 1 s. The measure
ment was taken from the tip of the middle finger and the 
distance relative to the toe-line was recorded to the 
nearest cm. The standard error of measurement of this test 
has previously been reported as 1 cm (Gabbe, 2004).

Dorsiflexion Lunge Test (DLT)
The dorsiflexion lunge test (DLT) was performed using the 
knee-to-wall principle for both right (DLTRIGHT) and left 
(DLTLEFT) lower limbs. Players were instructed to keep their 
test heel firmly planted on the floor while they flexed their 
knee to the wall. Following a successful attempt, players 
moved further away from the wall until they were unable 
to maintain heel contact in order for the knee to touch the 
wall. Maximum dorsiflexion was measured in cm as their last 
successful attempt. The standard error of measurement of 
this test has previously been reported as 0.5 to 0.6 cm 
(Bennell et al., 1998).

Adductor Squeeze Test (AST)
Dynamometry tests are regularly used to assess adductor 
strength and monitor groin pain. Participants were instructed 
to lie supine on a massage table and flex one knee and hip 
until the heel of the foot aligned with the medial joint line of 
the opposite knee. The other foot was then raised to mirror 
the first foot position, resulting in approximately 60° of hip 
flexion (Hodgson et al., 2015). The participant was instructed 
to forcibly adduct their knees and squeeze a hand-held 
dynamometer (JTECH Medical, Midvale, USA) as hard as pos
sible, holding the maximal isometric contraction for 3 
s without lifting the hips. Participants rested for 2 min before 
completing a second test and the higher of the two scores 
was recorded for final analysis. The same measurement 
device, a hand-held dynamometer was used to collect all 
data. The typical error of this test has been shown to be 
14.4 N in elite rugby league players (Scott & Kelly, 2017).
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Statistical analyses

Partial Least Squares Correlation Analysis (PLSCA)
Partial least squares correlation analysis (PLSCA) was used to 
identify those 2 to 7 day EWMA training load variables that 
were of greatest relative importance to the collective muscu
loskeletal response (S&R, AST, DLTLEFT and DLTRIGHT) (Abdi & 
Williams, 2013; Barker & Rayens, 2003; Weaving et al., 2019). 
Prior to PLSCA, the data were mean centred and standardised 
to unit variance. The baseline PLSCA model included a [964 
x 18] matrix, X, containing the 18 variables that represent the 2 
to 7 day EWMA training load for total distance, VT1IFT and VT2IFT 

distance for each player observation (n = 964) and a [964 × 4] 
matrix, Y, containing the 4 musculoskeletal response measure
ments for each player observation (n = 964). The X and 
Y matrices were stored in a covariance matrix, R (YTX). SVD of 
the matrix, R, yielded three orthogonal matrices: a left singular 
vector matrix, U, containing the saliences (weights) for matrix Y, 
a right singular vector matrix, V, containing the saliences 
(weights) for matrix X and a diagonal matrix, S, containing the 
singular values (Abdi & Williams, 2013; Weaving et al., 2019). 
The amount of shared information between the X (i.e. training 
load) and Y (i.e. musculoskeletal response measures) matrices 
was determined by quantifying the singular value inertia (i.e. 
the sum of the singular values [S]) with the strength of the 
relationship between the X and Y matrices increasing with the 
magnitude of the inertia value (Weaving et al., 2019).

Determining relative variable importance
Firstly, we created a baseline PLSCA model with each of the 18 
training load variables included in matrix, X. Once the inertia 
was calculated for the baseline model, we used a leave-one- 
variable-out (LOVO) approach as per previous methods 
(Weaving et al., 2019). This involved repeating the PLSCA with 
one predictor variable (training load) omitted from the analysis 
and the new inertia noted. This process was repeated with 
a different predictor variable omitted each time (as described 
above) until the contribution of all the variables had been 
evaluated individually. The training load variables that created 
the largest decrease in singular value inertia compared to base
line PLSCA model were considered to possess the most relative 
importance to relate to the collective musculoskeletal 
response. This was determined independently by two research
ers through agreeing on a visual break (i.e. the “elbow”) within 
the decrease in singular value inertia plot.

Investigating individual player relationships
The variables deemed to possess the most relative variable 
importance were then included in a refined model, with only 
those variables included in the matrix, X. The PLSCA process 
was repeated, with the statistical significance of the calculated 
inertia value assessed using a permutation test in which the 
rows of Y were randomly permutated 10,000 times to produce 
the null distribution of all the possible inertia values that could 
occur just by chance (Abdi & Williams, 2013).

Finally, to investigate individual player relationships 
between the important training load variables and the collec
tive musculoskeletal response, the saliences of the refined 
PLSCA model were used to compute the “latent variables” of 

training load (X matrix) and musculoskeletal response (Y matrix) 
for each player observation. The latent variables are 
a composite score of training load and musculoskeletal 
response, enabling higher dimensional data to be visualised 
more simply. Therefore, a latent variable is a linear combination 
of the original variables and the weights of this linear combina
tion are the saliences (Abdi & Williams, 2013; Weaving et al., 
2019) generated from the refined PLSCA model.

The latent variables of the X (training load) and Y (fatigue) 
matrices were determined by multiplying the saliences from the 
refined PLSCA model with the mean centred and standardised 
data from the original X and Y matrices (Abdi & Williams, 2013; 
Weaving et al., 2019). The 1st dimensions of the X and Y latent 
variables were taken to reflect the collective training load and 
musculoskeletal response for each observation. To investigate 
their relationship, we conducted a repeated measures correla
tion of the X and Y latent variables of the 1st dimension using 
the rmcorr package (Bakdash & Marusich, 2017). This was cho
sen due to the non-independence arising from the repeated 
measurements of training load and fatigue that is an important 
consideration for ordinary least squares techniques. All PLSCA 
analysis was undertaken in R (version 3.3.2: utilising the 
packages: “psych”; “car”; and “pracma”) (open source software). 
For all analyses, p values <0.05 were deemed to be significant.

Results

The mean (SD) of total distance, VT1IFT distance, VT2IFT distance 
across the data collection period were 5254 ± 1749 m, 
1539 ± 546 m and 769 ± 321. The mean (SD) of the musculos
keletal response measurements were 5 ± 6 cm, 8 ± 2 cm, 
9 ± 2 cm and 232 ± 60 N for the S&R, DLTLEFT, DLTRIGHT and 
AST tests respectively.

Table 1 shows the results of the PLSCA, including the base
line model with all training load variables included and the 
refined model following the LOVO process (Figure 1). 2- and 
3-day EWMA total distance created the largest decrease in 
singular value inertia compared to the baseline PLSCA model 
(Figure 1) and therefore had the greatest relative importance as 
predictors of the collective musculoskeletal response. When 
included in the refined PLSCA model (Table 1), these variables 
were significant following 10,000 permutations (p < 0.0001).

Table 2 details the saliences of the 1st and 2nd dimensions of 
the refined PLSCA model when only 2- and 3-day EWMA TD were 
included along with the percentage variance captured by each 
dimension. The 1st dimension of the X and Y matrices from the 
refined PLSCA captured 99.9% of the variance in the dataset. The 
saliences are the linear weights of the X (training load) and 
Y (musculoskeletal responses) matrices produced from the 
refined PLSCA model. Therefore, to create the latent variables 
(composite variable) for each player observation, the saliences of 
the 1st dimension (Table 2) were multiplied by the original 
standardised and mean centred data for the X and Y matrices 
(Figure 2). As reported in Table 2, both 2-day (0.73) and 3-day 
(0.68) EWMA total distance provided similar weighted contribu
tion to the construction of the latent X variable (i.e. training load) 
whilst S&R (0.70) and AST (0.62) provided greater weighted con
tributions to the construction of the latent Y variable (i.e. muscu
loskeletal response) than DLTLEFT (0.08) and DLTRIGHT (0.36).

JOURNAL OF SPORTS SCIENCES 2421



Figure 2 highlights the correlation between the latent vari
ables of training load and musculoskeletal response for the first 
dimension for the group level analysis. The group level correla
tion (r value [95% confidence interval]) between the 1st dimen
sion latent variables of training load (X) and musculoskeletal 
response (Y) was r = 0.20 (0.14 to 0.27; p < 0.00001).

Figure 3 highlights the correlations between the latent vari
ables of training load and musculoskeletal response for the 1st 

dimension for each of the 16 individual players. The pooled 
repeated measures correlation (r value [95% confidence inter
val; p-value]) between the 1st dimension latent variables of 
training load (X) and musculoskeletal response (Y) (Figure 2) 
was r = 0.06 (0.00 to 0.13; p = 0.47).

Discussion

The primary aim was to utilise latent variable modelling 
(PLSCA) to (1) determine the relative importance of external 
load measurements to relate to multiple musculoskeletal 
responses measures and (2) calculate latent training load 
and musculoskeletal variables to identify the strength of 
relationship between the two on a group and individual 
level in elite rugby league players across three seasons. 
Although the total distance covered in the previous 2 and 
3 days (EWMA) were identified as the most relative impor
tant training load measures, the strength of such relation
ships on both a group (r = 0.20) and individual player level 

Table 1. Results of the partial least squares correlation analysis for the baseline model and the refined model following the leave one variable out process.

PLSCA 
model

Response 
Matrix (Y) Predictor Matrix (X)

No. of subjects 
included (daily 
observations)

Measured sin
gular value 

inertia

Odds from 
10,000 permutation 

test

Baseline 
Model

S&R,DLTLEFT,  
DLTRIGHT, 
AST

2 day TD, 3 day TD, 4 day TD, 5 day TD, 6 day TD, 7 day TD, 2 day VT1IFT, 3 day  
VT1IFT, 4 day VT1IFT, 5 day VT1IFT, 6 day VT1IFT, 7 day VT1IFT, 2 day VT2IFT, 
3 day VT2IFT, 4 day VT2IFT, 5 day VT2IFT, 6 day VT2IFT, 7 day VT2IFT

16 (937) 1163.11 0.076

Refined 
model

S&R,DLTLEFT,  
DLTRIGHT, 
AST

2 day TD, 3 day TD 16 (937) 322.16 < 0.0001

Abbreviations: PLSCA: partial least squares correlation analysis; TD: total distance; VT1IFT: distance covered between ≥68% 30–15 intermittent test speed; VT2IFT: 
distance covered ≥87% 30–15 intermittent test speed; S&R: sit and reach; DLTLEFT: left foot dorsiflexion lunge test; DLTRIGHT: right foot dorsiflexion lunge test; AST: 
adductor squeeze test.

Figure 1. Plot of relative variable importance showing the decrease in singular value inertia for each training load variable when omitted from the baseline partial least 
squares correlation analysis model. Abbreviations = VT1IFT: distance covered between ≥68% 30–15 intermittent test speed; VT2IFT: distance covered ≥87% 30–15 
intermittent test speed. EWMA = exponentially weighted moving average with _number representing different EWMA time periods.

Table 2. The saliences for the 1st and 2nd dimensions of the refined PLSCA model 
including the percentage variance explained by each dimension.

1st Dimension 2nd Dimension

Percentage of variance explained 99.9% 0.1%

Training Load (X Matrix)
2 day EWMA Total Distance 0.73 −0.68
3 day EWMA Total Distance 0.68 0.73

Musculoskeletal Response (Y matrix)
S&R 0.70 −0.25
DLTLEFT 0.08 0.42
DLTRIGHT 0.36 −0.63
AST 0.62 0.60

Abbreviations: PLSCA = partial least squares correlation analysis; 
EWMA = exponentially weighted moving average; S&R = sit and reach test; 
DLTLEFT = dorsiflexion lunge test left foot; DLTRIGHT = dorsiflexion lunge test 
right foot; AST = adductor squeeze test.
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(pooled r = 0.06) suggest a lack of relationship between the 
constructed latent training load and musculoskeletal 
response variables. Taken together, it would appear that 
common measures to represent the musculoskeletal 

response do not respond to changes in training load on 
a group or individual player level and so using such mea
sures to make conclusions on an athletes fatigue response 
would be limited.

Figure 2. Scatterplot of the X (training load) and Y (musculoskeletal response) latent variables for the 1st dimension of the refined PLSCA model for each observation for 
the group level analysis.

Figure 3. Scatterplots of the X (training load) and Y (musculoskeletal response) latent variables for the 1st dimension of the refined PLSCA model for each observation 
for each of the 16 individual players.
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The current study is the first to report the relationship 
between total- and individualised-high-speed-distances and 
musculoskeletal responses in team sport athletes. The current 
study findings support previous studies that have used internal 
load measures of sRPE and identified a lack of relationship with 
changes in musculoskeletal response (Esmaeili et al., 2018; 
Lonie et al., 2020). Collectively, both current and previous find
ings suggest that either (1) total- and individualised-high-speed 
-distances are unable to provide an estimate of future muscu
loskeletal responses or (2) the musculoskeletal response mea
surements lack sensitivity to changes in training load (Esmaeili 
et al., 2018). In the current study, Figure 2 highlights the greater 
variability in training load across a longitudinal observation 
period than the musculoskeletal response. This is supported 
by the findings of Esmaeili et al. (2018) who reported small to 
moderate within-individual variability in weekly sit and reach 
(0.92 ± 0.14 cm), dorsiflexion lunge test (0.50 ± 0.08 cm) and 
adductor squeeze (7.8 ± 0.8%) across pre- and in-season peri
ods within professional Australian Rules footballers. However, 
Lonie et al. (2020) reported significant changes in pooled 
adductor squeeze strength across pre-season, end of pre- 
season, mid-season, and post-season time points. Differences 
in the variability in musculoskeletal response between studies 
could be due to the different time periods in which the data 
were aggregated, with weekly (current study; Esmaeili et al., 
2018) and seasonal (e.g. pre-season and in-season) (Lonie et al., 
2020) time periods used. In addition, numerous studies have 
identified relationships with both external and internal training 
load measures and measurements of fatigue of other systems 
(e.g. cardiovascular, neuromuscular). For example, Oxendale 
et al. (2016) reported substantial relationships between the 
number of collisions during professional rugby league match 
play and changes in repeated plyometric push up performance 
(r = −0.48) whilst Williams et al. (2018) reported sRPE to explain 
a substantial amount of variability in changes in heart rate 
variability (r = 0.66) in elite rugby sevens players. Therefore, 
current and previous findings suggest that the stability in 
musculoskeletal screening measures over short time periods 
(i.e. daily and weekly) mean that these measures are unlikely to 
provide insight into the acute musculoskeletal recovery from 
the prescribed training load (i.e. as a measurement of the 
fatigue response). As such, the findings of current and previous 
research suggest practitioners utilising musculoskeletal mea
sures for this reason should do so with caution and explore 
other measurements to support insight into this construct such 
as power or force-related variables derived from sprinting and 
jumping activity (Twist & Highton, 2013).

In the age of technology (Coutts, 2014), it can difficult for the 
applied sports scientist to balance the requirements of evaluat
ing the multiple dimensions that comprise the training process 
yet also visualise multiple variables more simply to inform the 
decision makers of the training process (e.g. coaches) (Weaving 
et al., 2019). The current study is the first to provide an example 
of how PLSCA models can be implemented to represent and 
visualise the “composite” relationship between multiple inde
pendent and multiple dependent variables in a reduced num
ber of dimensions via the latent variable approach (Figure 2). By 
conducting PLSCA, the saliences (Table 2) can be used in com
bination with the mean centred and standardised data to 

create latent variables (akin to principal component scores) 
(Weaving et al., 2019). For example, in the current study, 
a latent variable of training load was computed by multiplying 
the original mean centred and standardised data by the sal
iences ([0.73 × 2 day EWMA total distance] + [0.68 × 3 day 
EWMA total distance]) and replicated for the musculoskeletal 
response measures ([0.70 * S&R] + [0.08×DLTLEFT] + 
[0.36×DLTRIGHT] + [0.62 *AST]). Such saliences can be used 
in day-to-day practice to allow practitioners to provide 
a latent variable composite score of training load and fatigue 
response for each training day. When faced with datasets com
prising multiple independent and dependent performance- 
related variables, such techniques can overcome issues of mul
ticollinearity (Abdi & Williams, 2013; Weaving et al., 2019) and 
also reduce the requirement to produce multiple competing 
models which frequently occurs when adopting univariate 
approaches such as linear regression (i.e. one independent to 
one dependent variable) or multiple linear regression (i.e. mul
tiple independent to one dependent variable). The issue of 
multiple comparisons centres on the increased likelihood of 
an inflated Type I error rate and should be considered when 
constructing dose–response relationships (Knudson & Lindsey, 
2014). However, PLSCA can represent multiple co-linear depen
dent variables within a single analysis whilst attempting to 
minimise the loss of information (i.e. variance). Consequently, 
we have for the first time, demonstrated the use of this method 
to analyse and visualise complex dose–response relationships 
that are comprised of multiple, interrelated variables. Future 
research is needed to understand the usefulness of such 
approaches in other areas of the training process.

A limitation of the current study is the lack of quantification 
of the collision training load imposed onto the players. 
Substantial increases in energy expenditure (Costello et al., 
2018) and markers of muscle damage (Oxendale et al., 2016; 
Naughton et al., 2018) are present following the addition of 
collisions (Costello et al., 2018; Naughton et al., 2018; Oxendale 
et al., 2016). Furthermore, we did not investigate the influence 
of certain locomotor movements (e.g. changes in speed; accel
erations and decelerations) or individual player characteristics 
(e.g. changes in body mass, physical qualities) that are also 
likely to contribute or mediate the biomechanical/musculoske
letal load imposed onto players across a longitudinal period of 
time. Therefore, by not quantifying these aspects of training 
and competition training load or changes in player character
istics, we are likely not accounting for a substantial proportion 
of the internal training load imposed onto these athletes fol
lowing training. Additionally, the current study did not test the 
30–15IFT and update the individualised high-speed thresholds 
during the in-season period. Collectively, these might explain 
the lack of significant relationships between any of the mea
sured external load variables and musculoskeletal response for 
the individual players in the current study.

Conclusions

This study provides practitioners with a better understanding 
of the relationship between total distance, and individualised 
high-speed threshold distances, EWMA periods and common 
measurements used to represent musculoskeletal function on 
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both a group- and individual-based level. Additionally, how latent 
variable models can help to analyse and visualise complex rela
tionships between multiple independent and dependent vari
ables. Our analysis demonstrates that on a group level, the 2– 
3 day EWMA of the total distance covered were most relatively 
important to explain the collective musculoskeletal fatigue 
response, as represented by adductor squeeze, sit and reach 
and left and right-leg ankle dorsiflexion tests. However, on both 
group and individual player level analyses, these training load 
variables had limited relationship to the collective musculoskele
tal response. Taken together, it would appear that common 
measures to represent the musculoskeletal response do not 
respond to changes in training load and so using such measures 
to make conclusions on an athletes fatigue response would be 
limited.
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