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SUMMARY

No exact method for determining genotypic and identity-by-descent probabilities is available for large,
complex pedigrees. Approximate methods for such pedigrees cannot be guaranteed to be unbiased. A
new method is proposed that uses the Metropolis-Hastings algorithm to sample a Markov Chain of descent
graphs which fit the pedigree and known genotypes. Unknown genotypes are determined from each descent
graph. Genotypic probabilities are estimated as their means. The algorithm is shown to be unbiased for

small, complex pedigrees and feasible and consistent for large complex pedigrees.
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1 INTRODUCTION

Many methods are currently used for estimating genotypic and identity by descent (IBD) probabilities
in human and animal pedigrees. Genotypic and IBD probabilities are of interest to geneticists studying
the transmission of genes through complex pedigrees, where a gene might be for a genetic disorder, a
molecular test or marker. Commonly, the genotypes of some individuals in the population are known with
certainty, partially known for other individuals (in that some genotypes can be excluded), and unknown for
the remainder of the population. Most methods for estimating genotypic and IBD probabilities are suitable
for small pedigrees, but have disadvantages when applied to large and complex pedigrees, where “complex”

implies the presence of many marriage and inbreeding loops.

Gene dropping provides unbiased estimates, but it is only feasible for very small pedigrees. Methods
based on peeling (e.g. ??????) provide unbiased estimates of genotypic probability for small pedigrees or
pedigrees without loops. However, exact peeling is computationally infeasible for large complex pedigrees.
Pedigree simplification and iterative peeling are two feasible methods used for large complex pedigrees, but

estimates can no longer be guaranteed to be unbiased (?).

To solve the problem, a number of Markov chain Monte Carlo (MCMC) methods have been used to estimate
genotypic and IBD probabilities (e.g. ?????). These methods sample either genotypes or descent graphs.
They can produce unbiased samples for large complex pedigrees, provided that the sampling algorithm
can traverse the parameter space efficiently; however, impediments to traversing the parameter space can
be severe. Furthermore, when there are more than two alleles at the locus, MCMC methods for sampling
genotypes are not necessarily irreducible (?). MCMC methods which operate by sampling descent graphs
need not be subject to irreducibility problems, but as noted by ?, “mixing” may be very poor. Adjacent
samples are highly correlated and it may be infeasible to obtain sufficient samples to guarantee estimates

have a low probability of error.

Attempts to improve the performance of descent graph sampling algorithms have focused on the correlation



of adjacent samples, and on drawing legal descent graphs through genotype elimination. At one extreme
are MCMC algorithms such as those of ? where the autocorrelation of legal candidate samples is high. To
reduce this autocorrelation composite transmission rules have been proposed (e.g. ???), in which structured
groups of elements of the descent graph are changed together. However, changing more of the descent graph
reduces the probability that the result will be legal, so more samples may be required. At the other extreme
are methods for sampling uncorrelated descent graphs, such as those of ??. By applying the genotype
elimination through inheritance constraint (GEIC) algorithm, all samples are legal, but the density of the
samples drawn is due not only to the likelihood of the sample, but also to properties of the algorithm
used to obtain the sample (the GEIC sampling density). While it is easy to use importance sampling or
a Metropolis Hastings step to adjust for the GEIC sampling density, for pedigrees of reasonable size this

adjustment results in a small number of effective samples, resulting in estimates of low accuracy.

In this paper a new MCMC method for sampling descent graphs is proposed in which the independent
descent graph method of ? is placed into a MCMC context. A Metropolis-Hastings (MH) step is used to
accept or reject candidate graphs which have far less autocorrelation than the candidate graphs used in other
MCMC methods. The paper shows that the algorithm can produce unbiased estimates on small complex

pedigrees and that it is feasible for large complex pedigrees.



2 METHOD

?? describe a method (GEIC) for estimating genotypic and IBD probabilities from independently sampled
descent graphs. Each descent graph is sampled de novo and consequently adjacent samples are completely

uncorrelated.

This new algorithm puts the GEIC algorithm into an MCMC framework. An initial descent graph is sampled
using GEIC. Subsequent samples are obtained by using the GEIC and MH algorithms. A subset of the
primary descent graph is retained from the previous sample, and the remainder of the the primary descent
graph is sampled using GEIC. MH is used to accept or reject the candidate. This sampling procedure in the

algorithm differs to that described in ? in two important ways.

Firstly, a partial primary descent graph is sampled from the inheritance constraints of the current sample
primary descent graph. This is a legal subset of the current descent graph. GEIC is then used to complete a

new primary descent graph. Base alleles and a secondary descent graph are then sampled as in ?.

Secondly, the MH algorithm is used to accept or reject candidate samples, based on the likelihood of the
sample, and the probability of moving from the current descent graph to the candidate descent graph, rather
than using importance sampling to weight samples. This probability is similar to the importance sampling
density in the method of ?, and is a function of the number of elimination and base gamete sampling steps

required to produce each sample. MH is of benefit here as adjacent samples are correlated.

The new algorithm is an MCMC descent graph sampling algorithm, but has the ability to make long jumps
between adjacent samples. Accordingly it is referred to here as the long jumping descent graph sampler

(LIDGS). A full description of the algorithm follows:

1. Obtain a legal descent graph and associated likelihood (n(y)) and GEIC sampling density (g(y)) using

the method of ?.



2. Repeat

(a) Setm(x) = n(y) and g(x) = g(y).
(b) Sample a subset of the primary descent graph to retain.

(c) Apply GEIC to the pedigree, constrained to the retained subset of the primary descent graph, to

obtain a new descent graph, with likelihood 7t(y) and GEIC sampling density g(y).

(d) Apply MH, with g(x,y) = g(»), ¢(y,x) = g(x), and acceptance criterion

min((n(y)g(y,x))/(n(x)gq(x,y)), 1).

(e) If the candidate sample is rejected, then set t(y) = m(x) and g(y) = g(x).

(f) Accumulate the most recently accepted descent graph and associated genotypes.

3. Summarise parameters of interest as means of the samples.

(i) Subset sampling algorithm

It is critical to the success of the algorithm that the method of sampling subsets of the primary descent
graph to retain (step ??) is balanced, and does not affect the candidate generating density g(y). It may not
be possible to prove that a particular subset sampling algorithm satisfies this criterion, but exhaustive testing

has failed to find fault with the strategy described below.

A primary descent graph consists of the set of paths connecting informative gametes to base gametes. Before
choosing the subset to be retained, a binary variable is initialised to “save” for all gametes in the primary
descent graph. All paths connecting informative gametes to base gametes are traversed. With each step
(gamete) on the traverse, a random number between zero and one is drawn. If the random number exceeds
a predetermined non-zero probability b, then the binary variable associated with the gamete switches from
the “save” state to a “discard” state. All binary variables associate with gametes on the path between, and

including, it and the base gamete are set to “discard” (the initial change to “discard” breaks the link between



the informative and base gametes). It is possible for paths connecting a number of informative gametes to
intersect at the same gamete. If when traversing a path a gamete with a variable set to “discard” is found
then the remainder of that path has also been set to “discard” and is not reset again. For any individual
on a path where one of its gametes’ variables has been set to “discard”, the state of the variable associated
with its other gamete (and all gametes between it and the connected base gamete) is also set to “discard”.
Gametes that remain set to “save” retain their current inheritance state when a new primary descent graph

is sampled.

The variable b need not remain constant, and the algorithm may be “tuned” to different pedigrees by varying

the method of selecting b.

3 TEST ANALYSES

Two test pedigrees were used to test the LIDGS algorithm.

A pedigree with 11 individuals (pedigree A, table 1) was used to validate that the method was able to
produce unbiased estimates. This pedigree is small, allowing the calculation of exact genotypic probabilities
for comparison purposes. A single locus, with 4 alleles with founder allele frequencies (0.5, 0.25, 0.2, 0.05)
was assumed, and test data sets obtained by sampling base gametes and Mendelian transmission. On each
test data set genotypes were made available for four randomly chosen individuals, and assumed unknown

on the remaining seven individuals.

From pedigree A, 1000 random datasets were analysed twice, once with adjacent samples independent -
essentially the algorithm used by ? but with a MH step instead of importance sampling (IDGS), and once
with the LIDGS, with correlated descent graph samples. With LIDGS, the parameter b did not remain
constant, but for each sample was drawn from a (1, 1) distribution. Genotypic and IBD probabilities were

estimated as the mean of 10,000 samples. As the MH algorithm is used, the effective number of samples



is less than 10,000. A simple estimate of the effective number of samples was used. The sample which
was retained for the most MH cycles (r,,,,) was assumed to have contributed one to the effective number

of samples, the effective number of samples then being

where n; is the total number of samples. This
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measure is less appropriate for LIDGS than IDGS, because in LIDGS adjacent samples are correlated.

Exact genotypic probabilities were obtained using MENDEL (?), which uses a peeling based algorithm.

To compare the sampled genotypic probabilities to the exact probabilities, the test statistic used in ? was
used, x2 = ZEkl;éO %, where k relates to the individual, / is the unordered (no distinction between
paternal and maternal) genotype, Ey; is the number of samples expected to occur for genotype / in individual
k (calculated from the probabilities obtained using MENDEL and the effective number of samples) and Oy,
is the effective number of samples which were observed for genotype [/ in individual k. This statistic has
an approximate ¥ distribution, with n — 11 degrees of freedom, where n is the number of non-zero Ej; in
the sum. The distribution of the test statistic is only approximate as both within and across individuals,

genotype probabilities are not independent, and the effective number of samples is only an approximation.

A larger pedigree with 1600 individuals was used to evaluate the performance of the LIDGS algorithm on
more challenging data. This pedigree, modeled on the simulated pedigree of ?, consisted of 20 discrete
generations, each with 80 individuals. These were the ten progeny from each of 8 matings between males
and females from the previous generation. A single locus with 16 alleles, with uniform frequencies in the
base individuals, was assumed. A single data set was obtained by sampling base gametes and Mendelian
transmission. Analyses were then performed with varying proportions of the simulated genotypes made
available. For all analyses genotypes for all individuals born in the final generation were available. Three
datasets were constructed, with genotypes made available on 0%, 25% or 50% of the remaining individuals,

with individuals to be genotyped chosen at random (pedigrees BO, B25 and B50).

Each of pedigrees B0, B25 and B50 was analysed using two methods, once with no correlation between

adjacent samples (IDGS) and once with correlated descent graph samples (LJDGS). Each analysis involved



drawing 10,000 samples, and was repeated five times, using different seeds for the random number generator
each time. With LIDGS, the parameter b did not remain constant, but for each sample was drawn from a
B(80,1) distribution. Genotypic and IBD probabilities were estimated as means, and the effective number

of samples calculated as described above.

Mixing was assessed in three ways. First, by examining the degree of symmetry in the inheritance of base
gametes, as the probability of a base gamete being sampled as “paternal” should equal the probability of it

being sampled as “maternal”. The test statistic used was

SYM=1— T2 X0 Yaey IPijk — it

np

where ny, is the number of base individuals (= 80), n, is the number of alleles (= 16) and p; j is the proba-
bility that individual i inherited allele j from its sire and allele k from its dam. This statistic can take values

from zero to one, with lower values less symmetric in the inheritance of base alleles.

For the second measure of mixing unordered genotypic probability estimates were considered across the
five replicates. The number of genotypic probability estimates in which at least one replicate had a zero
probability while at least one replicate had a probability greater than 0.00, 0.01, 0.02 , 0.05 or 0.10 was
calculated. The statistics Zy,Zo1 , Zo2, Zos and Zjg are these counts, expressed as percentages of the total

number of cells with non-zero probabilities, excluding cells in which there was no variation.

For the third measure of mixing unordered genotypic probability estimates were again considered across
replicates. The statistics So1, Sz, Sos and Sjo are number of cells in which the standard deviation (over
replicates) of the genotypic probability estimate exceeded 0.01, 0.02 , 0.05 or 0.10 respectively, expressed

as percentages of the total number of cells with non-zero standard deviations.

While these tests may identify inadequate mixing, that inadequate mixing has not been identified is not a

guarantee of adequate mixing.



4 RESULTS

The genotypes for pedigree A are well estimated (Figure 1). The test statistics obtained for the 1000
analyses of pedigree A are plotted against the approximate degrees of freedom, for both IDGS and LIDGS.
The test statistics show chance deviations from expectation. Although the distributions of test statistics are

similar for the two methods, there appear to be fewer extreme test statistics for LIDGS.

However, with large complex pedigrees LIDGS performs much better than IDGS (Table 2). Of the 10,000
samples, the number accepted is far higher with LIDGS than IDGS, and this is reflected in the much higher
effective number of samples for LIDGS. The effective number of samples for IDGS is so low that genotypic
probability estimates would be expected to be of very low accuracy while with LIDGS one would expect
reasonable estimates. However, for LIDGS samples are not independent, so it is possible that the effective

number of samples is an overestimate.

The measures of mixing, while of dubious value, indicate that LIDGS shows better mixing than IDGS.
The first measure of mixing, symmetry in the base individuals, provides no evidence of mixing problems
with LJIDGS. However, reasonably high levels of symmetry also occur for IDGS for pedigree B0, despite
only 2.5 effective samples, suggesting that base symmetry is not in itself an indicator of good mixing. The
second measure of mixing, the percentage of genotypes in which at least one zero probability was observed
while the maximum probability observed was greater than 0.00, 0.01, 0.05 or 0.10, suggests that mixing
has been good with LIDGS for all pedigrees. Again however, no problem with mixing has been observed
for IDGS for one pedigree, in this case B50. This casts some doubt on the worth of this statistic as an
indicator of mixing. The third measure of mixing, the standard deviation of genotype probabilities across
replicates, suggests that LJIDGS mixes better than IDGS. Standard deviations of less than 5 (%) suggest that
genotypic probability estimates are accurate to around 5%, which may be acceptable for some applications.
A relatively small percentage of genotypic probabilities had standard deviations above 5 (%), especially for

pedigrees B25 and B50.
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The behaviour of the MH step shows that samples are more likely to be accepted if a larger proportion of
the primary descent graph is retained. In table 3 the mean and minimum percentage of the primary descent
graph saved is provided for both accepted and rejected samples. These are for the last 9,000 of the 10,000
samples, to increase the probability that the algorithm was sampling from the equilibrium distribution. It is
clear that samples are more likely to be accepted if a large proportion of the current primary descent graph
is retained. However, it is also evident that on occasions samples are accepted which retain little of the

current primary descent graph.

Runs of 10,000 samples took on average 16.6, 3.4 and 4.5 hours for LIDGS on pedigrees BO, B25 and B50

respectively, using a Pentium III Xeon 1.7GHz processor.

5 DISCUSSION

By using the GEIC (genotype elimination by inheritance constraint) algorithm the method described in
this paper generalises the method of ? for sampling descent graphs. The GEIC algorithm ensures that all
candidate descent graphs are legal, and there is no need to “tunnel through” illegal descent graphs. As with
all descent graph sampling algorithms, LIDGS is suitable for loci with more than two alleles to be evaluated

without concern about the Markov chain being reducible.

The results from pedigree B suggest that this method is feasible on moderately sized pedigrees, with large
numbers of alleles per locus. The large variation in time taken for pedigrees B0, B25 and B50 suggests that
size and number of alleles are not the only factors affecting feasibility, the proportion and distribution of
genotyped individuals in the pedigree is also very important, with pedigrees rich in genotyped individuals

more quickly analysed than pedigrees with sparse genotype information.

The evaluation of the small pedigrees described in table 1 indicates that the results from this algorithm are

unbiased. Nevertheless, we found that the choice of too few nodes for resampling could limit mixing. The

11



variation in the MH acceptance rate between pedigrees B0, B25 an B50 suggests that the algorithm may be
tuned by varying the method of sampling b, the proportion of the primary descent graph to retain. Here,
b was sampled from a B(a, 1) distribution, where a = max(5g, 1) and n was the number of individuals. Tt
may be more appropriate to use a function of the number of genotyped individuals as the first parameter in
the beta distribution. This tuning may be very important. If b is consistently small, then fewer candidate
graphs will be accepted, and the effective number of samples will be reduced. If b is consistently large, then

adjacent samples will be more correlated, again reducing the number of effective samples. This could be

determined while the algorithm is running.

The method for sampling descent graphs, by randomly drawing a number of nodes to be resampled, permits
rapid exploration of the parameter space, and enhances mixing. While it has not been shown that mixing is a
problem in descent graph sampling methods such as ?, it is difficult to be sure that it is not. These methods
are roughly equivalent to LJIDGS but with a value of b very close to 1.0. The methods used here to test
mixing are not perfect, for example, the methods which use the similarity between replicates would give a
favourable statistic if all replicates were similar, even if this similarity was solely due to the use of similar
starting values. This could be a problem with any MCMC method that requires a valid descent graph as a
starting value, as the descent graph sampling density of ? shows that some descent graphs are thousands
of times more likely to be found than others, and this variation is not due to the likelihood of the descent
graph. Therefore, there may be a significant chance that sampled descent graphs, drawn for use as “fresh”
starting values, all share some characteristic. It would appear that this is less likely to be a problem with

LIDGS, as the descent graph sampling density is explicitly included in the MH step.

The execution times presented are for development software, and it is likely that significant speedups could
be made through enhancements to the GEIC algorithm such as those proposed by ?. As they are cheap
to obtain, it is possible to sample many secondary descent graphs for each primary descent graph, and

use a weighted average for determining genotypic and IBD probabilities. Even with significant speedups
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it will not be possible to draw as many samples as is possible with other MCMC descent graph sampling
algorithms, such as those of ?. However, as adjacent samples obtained with LIDGS should be less correlated
than those from other MCMC algorithms, fewer samples need be drawn to get good genotypic probability
estimates. A composite method, using a conventional MCMC descent graph sampler to sample in the region

of each LIDGS sample is also possible.

While the results presented here are for single loci, the extension to multiple loci is straight forward, using
the likelihoods in ?. Descent graph sampling methods for quantitative trait loci (QTL), such as that of ? can

also be combined with LIDGS, to sample QTL linked to markers.

6 CONCLUSIONS

By combining the best elements of existing MCMC descent graph sampling algorithms with the best ele-
ments of independent descent graph sampling methods, the method proposed here has the potential to be
of use in estimating genotypic probabilities and IBD probabilities in large complex pedigrees. Adjacent
samples are far less correlated than those produced using other MCMC descent graph sampling algorithms,
reducing the number of samples required to produce reliable estimates. At the same time, allowing some

correlation ensures that enough samples are accepted to make the analysis of large pedigrees feasible.
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(Legend for table 1)
Table 1. Pedigree A. For each analysis, genotype was sampled for base individuals and Mendelian trans-
mission was sampled for non-base individuals. Unordered genotype was then made available for only four

randomly chosen individuals.
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Table 1.

id father mother

1 0 0
2 0 0
3 0 0
4 2 1
5 2 3
6 2 4
7 5 4
8 5 3
9 7 6
10 7 8
11 10 9

17



(Legend for table 2)

Table 2. Results of five repeated analyses of a pedigree with 1600 individuals. A 16 allele locus was
simulated, with genotypes available on the last generation and on 0% (B0), 25% (B25) or 50% (B50) of the
remaining individuals. 10,000 samples were drawn using the independent descent graph sampler (IDGS)
and the long jumping descent graph sampler. The number of samples accepted (Nacc) and an approximation
of the effective number of samples (Ngrr) is provided. For these, along with a measure of mixing, base
allele symmetry (SYM), larger values are desirable. Two other measures of mixing are provided, for which
smaller values are desirable. They are the percentage of genotypes in which at least one replicate had
a zero probability while at least one replicate had a probability greater than 0.00 (Zp), 0.01 (Zp;), 0.02
(Zn2), 0.05 (Zys) or 0.10 (Z10), and the percentage of genotypes in which the standard deviation of the
probability estimate across replicates exceeded 0.01 (Sp1), 0.02 (Sp2), 0.05 (Sos), 0.10 (S19) or 0.20 (S>0).

These percentages are calculated using only genotypes in which there was some variation across replicates.
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Table 2.

Pedigree BO B25 B50
IDGS LIDGS IDGS LJDGS IDGS LJDGS
Nace 17 4132 16 3229 37 5996
NEFF 2.5 538.7 1.9 397.8 3.4 848.5
SYM 0.958 0.986 0.793 0.979 0.834 0.990
Zy 9.5 1.2 52 2.5 1.0 14
Zo 7.9 0.3 3.4 0.6 0.4 0.1
Zon 7.5 0.2 33 0.4 0.2 0.0
Zos 7.1 0.2 3.0 0.3 0.2 0.0
Z10 6.6 0.2 2.5 0.3 0.1 0.0
Soi 75.3 57.2 74.5 38.0 85.0 7.7
So2 68.5 35.1 68.0 16.6 77.9 1.2
Sos 53.8 13.3 56.7 4.8 60.8 0.1
S10 39.9 4.0 50.6 1.4 39.5 0.0
820 18.7 0.4 36.0 0.5 10.1 0.0
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(Legend for table 3)
Table 3. Summary statistics for accepted and rejected samples for pedigrees BO, B25 and B50. The percent-
age of samples accepted (ACC) is provided, along with the mean and minimum percentage of the primary

descent graph retained for both the accepted samples (u, and min,) and rejected samples (1, and min,) .
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Table 3.

ACC Uqg U min, min,
BO 041 093 061 023 0.09
B25 032 092 057 022 0.12
B50 0.60 0.78 043 0.14 0.09
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(Legend for figure 1)
Figure 1 Distribution of test statistic obtained for 1,000 pedigrees analysed using the descent graph sampler
with independent samples (IDGS) and the long jumping descent graph sampler with correlated samples

(LIDGS).
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