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Abstract: Unoccupied aerial vehicles (UAVs) have become increasingly commonplace in aiding
planning and management decisions in agricultural and horticultural crop production. The ability of
UAV-based sensing technologies to provide high spatial (<1 m) and temporal (on-demand) resolution
data facilitates monitoring of individual plants over time and can provide essential information
about health, yield, and growth in a timely and quantifiable manner. Such applications would
be beneficial for cropped banana plants due to their distinctive growth characteristics. Limited
studies have employed UAV data for mapping banana crops and to our knowledge only one other
investigation features multi-temporal detection of banana crowns. The purpose of this study was
to determine the suitability of multiple-date UAV-captured multi-spectral data for the automated
detection of individual plants using convolutional neural network (CNN), template matching (TM),
and local maximum filter (LMF) methods in a geographic object-based image analysis (GEOBIA)
software framework coupled with basic classification refinement. The results indicate that CNN
returns the highest plant detection accuracies, with the developed rule set and model providing
greater transferability between dates (F-score ranging between 0.93 and 0.85) than TM (0.86–0.74) and
LMF (0.86–0.73) approaches. The findings provide a foundation for UAV-based individual banana
plant counting and crop monitoring, which may be used for precision agricultural applications to
monitor health, estimate yield, and to inform on fertilizer, pesticide, and other input requirements for
optimized farm management.

Keywords: unoccupied aerial vehicle; UAV; banana plant; geographic object-based image analysis;
convolutional neural network; CNN; template matching; local maximum filter

1. Introduction

Worldwide, banana (Musa spp.) cultivation is vital to economies, having an estimated
value of USD 31 billion and export value of USD 8 billion, with the majority of production
based in Asia, Latin America, and Africa [1]. The largest producers are India and China,
with an annual production of 29 and 11 million tonnes, respectively [2]. Aside from
commercial importance, bananas are also considered the third most important starchy
food source, with approximately 85% sourced from subsistence agriculture and providing
25% of calorific intake in rural production areas [3,4]. Although minor in comparison,
commercial banana cropping is an important industry in Australia, with bananas being
the most popularly purchased fruit and with a wholesale value (fresh supply) of AUD
723 million annually [5].
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To maximise production, commercial crops require dedicated management to provide
appropriate water and fertiliser inputs, monitor crop condition, and detect the presence
of pests or disease [6]. Crop management needs to balance the cost return against the
timing and intensity of treatments based on plant physiology, morphology, phenology,
and abiotic and biotic factors, particularly as banana plants are considered to be heavy
feeders. This balance must also consider the need to reduce the potential of harmful excess
fertilizer runoff [7–10]. Traditionally, crop management assessments are carried out in-field
using visual appraisal and rudimentary scheduling, with follow-on activities guided by
manually placed markers located on plants. These activities can be labour intensive, often
subjective, and lacking rigour, as they are generally based on an individual’s experience [6].
Morphological attributes such as plant height, leaf area, leaf number, and crown size [11],
as well as physiological attributes, including leaf biochemical composition and internal
structure, have been linked to plant health, vigour, disease, disease susceptibility, and
yield [8,12]. Plant phenology related to the various growth stages influences morphology,
including plant size, individual leaf area, leaf number, and associated overall crown
size [13], and can also be linked to leaf pigment characteristics, which in turn may affect
nutrient uptake and plant growth [14]. It is also important to understand influences of
age and biotic and abiotic stress factors. Establishing trends in banana crop development
using a whole field approach to monitoring can be problematic due to the asynchronous
and often rapid growth of individual plants [14,15]. Additional characteristics that make
monitoring challenging include the absence of a fixed woody trunk and branch structure
(like that of tree crops), with each generation reproducing from a different location on the
parent corm and subsequently changing crown position [16,17]. Such characteristics dictate
the need for frequent monitoring of individual plants.

The use of remote sensing technologies may aid planning and management decisions
in agricultural crop production through the provision of actionable and near real-time
information [18]. Application of multi- and hyper-spectral sensors used to capture spec-
tral information can be linked to biochemical attributes and the internal structure of
leaves [19,20]. Canopy height models (CHM) created from structure from motion (SfM)
of optical image data or light detection and ranging (LiDAR) can be used to determine
structural information such as plant height, canopy size, and associated biomass [20–23].
Application examples include determination of fertilizer and nutrient requirements [24,25],
tracking growth [26,27], yield estimation [26,28], and pest and disease monitoring [29–31].
The morphology of banana plants makes the detection and delineation of crowns chal-
lenging. Due to their leaf arrangement and shape, plants do not form a distinct apex, and
the crown structure can change over the course of a day in response to leaf folding, heat,
and shredding caused by wind [16,17,32]. The non-woody structure, mobile crown that
changes position and variable appearance (irregular shape) of banana plants make image
detection challenging.

Limited research has focused on the mapping of banana crops from satellites, aircraft,
and unoccupied aerial vehicles. Johansen et al. used SPOT-5 satellite imagery [33] to distin-
guish banana plantations from the surrounding land-cover classes based on a geographic
object-based image analysis (GEOBIA) approach and found textural and contextual infor-
mation useful for mapping mixed-age banana plantations. Johansen et al. [32] developed a
more advanced GEOBIA approach for automatic delineation of individual and clusters of
banana plants from high spatial resolution multi-spectral orthophotos captured within a
week, and achieved a user’s mapping accuracy of 88%. Edge detection and line features
were found particularly useful for identifying banana plant candidates. More recently,
Clark and McKechnie [34] classified mixed-age banana crops from high resolution aerial
orthomosaics over two capture periods (2015, 2018) using a convolutional neural network
(CNN) with great success (total accuracy of 0.99) and ability to upscale to large areas.
Both Johansen and Clark and McKechnie noted that banana crops have similar spectral
attributes to other vegetation, causing pixel-based classification to be less effective. The
integration of shape, and textual and contextual information afforded by higher spatial and
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temporal resolution imagery improved classification results and enabled the delineation of
banana plants.

In remote sensing there are several approaches that can be used for the detection
and delineation of individual plant crowns across all species, with some of the most com-
mon and well established being local maximum filter (LMF) [35,36], template matching
(TM) [37,38], watershed segmentation [39], and GEOBIA [40]. The application of ma-
chine learning, specifically deep learning methods, based on neural networks has been
increasingly applied for the detection of individual plant crowns [41,42]. Several neural
network models exist; however, the most popular and widely used of these is the CNN
approach [43]. The application of CNN for individual crown detection has advantages due
to its ability to utilize large datasets to provide flexible detection under varying environ-
mental conditions such as illumination and changes to morphology, reporting high success
and outperforming many other methods [44,45]. Drawbacks to CNN approaches compared
to well-established non-machine learning approaches are the required computing power
and initial supervised training, which can be time-consuming, as it is often an iterative
process [34,44]. Although other deep learning options exist and are often utilised and
suited for sophisticated tasks with relevant additional complexity [46], for the purpose of
crown object detection, CNN provides an appropriate model that, due to its mechanism
of detection, is well suited for the detection of spectral and spatial features that indicate
plant crowns.

Unoccupied aerial vehicles (UAV), also referred to as unmanned aerial vehicles or
remotely piloted aerial systems (RPAS), as a sensor platform are particularly appropriate
for banana crop monitoring, as they permit low flight altitude to yield high resolution
imagery in a relatively cost-effective manner [18,21]. UAVs also enable flight operations
on a responsive or ad hoc basis, providing greater temporal resolution with the potential
for near real-time or farm-based data processing and analysis (e.g., Trimble Geospatial
oil palm solution https://geospatial.trimble.com/products-and-solutions/ecognition-oil-
palm-solution, accessed on 25 March 2021). Recent studies utilizing UAVs for the purpose
of delineating crops or stands of banana from surrounding land-cover classes include Harto
et al. [47] and Handique et al. [48], both of whom used GEOBIA to detect plants based on
spectral, textural, and shape attributes and reporting a user’s accuracy of 80% and 87%,
respectively.

More related to this study, the detection of individual banana plant crowns, specifically
targeted to planned commercial cropping, include Kestur et al. [49], who reported success
in the detection and delineation of banana crowns from red, green, blue (RGB) imagery
using a combination of spectral and spatial features. A K-means spectral classifier was
compared to machine learning in the form of extreme learning machine (ELM) neural
networking for initial individual plant-crown detection, with the machine learning ap-
proach outperforming K-means. Following this, crown delineation and separation was
accomplished using a watershed and region-growing approach [49]. Similarly, Neupane
et al. used a neural network approach to detect objects representing whole banana crowns
of young banana plants using a bounding box with high success (>95% overall accuracy)
by merging the results of UAV RGB imagery captured at three different altitudes (40, 50,
and 60 m) [50]. Their mapping results were facilitated by the fact that young banana
plants present greater homogeneity in crown morphology and their crowns exhibit greater
separation than mature plants that often have overlapping crowns. Both studies utilized
single-date imagery with training and analysis based on subsets of the same imagery pre-
senting reduced variance in lighting conditions, seasonal difference, and plant morphology.
They also highlighted that the lack of such variation may be a constraint when applying
these methods to different imagery, with further studies required to assess transferability
over time and for different areas (spatial and temporal variability), stating an intention to
improve results by additional training.

A recent study that did include spatial and temporal variability is that of
Gomez Selvaraj et al. [51], part of a broader investigation based in West and Central Africa
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(Democratic Republic of the Congo and Republic of Benin) detecting stands, crown objects,
and disease identification using pixel classification and object recognition on satellite and
UAV imagery. Most relevant was their use of UAV RGB captures to isolate mixed-age
individual banana crown objects from surrounding land cover at differing locations and
on differing capture dates, with an approximate overall accuracy of 70% for whole-crown
object detection using a bounding box on the test dataset based on a CNN architecture
approach. Overall, these studies demonstrate the suitability of UAVs for data capture
of banana crops, with all studies [49–51] aiming for individual crown detection utilizing
some form of deep learning. As highlighted by the authors, individual banana crown
detection research is ongoing, with further work required to improve detection success and
robustness of models.

UAV multispectral sensors, often specifically designed for plant and agricultural
application, have become increasingly available, with several off-the-shelf (reasonably)
affordable options marketed toward crop monitoring, such as Parrot Sequoia and MicaS-
ense RedEdge or turnkey-integrated UAV and sensor solutions from manufacturers such
as Parrot (Bluegrass and Disco-Pro AG) and DJI (P4 Multispectral or enterprise range). The
benefits of multispectral sensors that include red edge (RE) and/or near infrared (NIR)
portions of the spectrum are well established in vegetation and crop monitoring [31,52,53].
The use of multispectral sensors as a basis for the detection of banana plants provides
potential for enhanced monitoring and gaining important information on plants and crops
not offered by traditional RGB capture [18]. Basing detection on a multispectral sensor
increases the utility of gathered data and minimizes the need for additional captures and
processing (as opposed to the need for discrete RGB and multispectral captures), extending
the capability of UAV as a platform for monitoring crops.

Based on existing literature, there are knowledge gaps for selecting appropriate de-
tection and mapping approaches for banana plants. The few studies that exist focus
predominantly on machine learning methods of differing architectures (Table 1). No stud-
ies assess long-established crown-detection methods such as TM and LMF for the detection
of banana plant crowns. Although banana crowns are inherently complex due to their
crown structure, an investigation of TM and LMF methods is considered valuable, as they
have potential to provide suitable crown-detection results. However, the results gener-
ally depend on the application (location and resource context) and provide the benefit of
reduced computational requirements and potential for faster and less complex application.

Table 1. Overview of existing studies on banana crown detection.

Author UAV/Sensor Detection/Implementation Region/Crop Type Purpose

Kestur et al.
Fixed wing and

quadcopter/GoPro RGB
video footage

K-means, ELM on
single-date

imagery frames

India/structured
smallholder open-field crops

with mixed-age plants

Demonstrate potential for
UAV for tree-crown studies

by detection
and delineation

Neupane et al. DJI Phantom 3
/RGB orthomosaic

Faster RCNN on
single-date imagery

Thailand/structured
open-field commercial crop

with young plants

Detect and count (by
bounding box

and localization)

Gomez Selvaraj et al. DJI Phantom
4 Pro/RGB orthomosaics

Retinanet on
multi-date imagery

West and Central
Africa/unstructured

smallholder crops with
mixed-age plants

Crown detection (by
bounding box)

Current study
3DR Solo/Multispectral

(G, R, RE, NIR)
orthomosaics

CNN, TM, and LMF with
GEOBIA on

multi-temporal imagery

Australia/structured
open-field commercial crop

with mixed-age plants

Detection of inner crown of
individual plants over

multiple dates

As discussed in cited studies on the detection of banana crowns [49–51], further
development and research is required to test the capability and improve the robustness
of plant detection, including testing and training at different locations and bioregions
and over larger areas. Including image data at all of these scales introduces additional
variability in spatial and spectral reflectance/absorption properties of banana plant crowns,
with the inclusion of the temporal domain adding further complexity to detection. Further
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work toward the evaluation of detection methods and particularly their ability to perform
satisfactorily on multi-temporal imagery is important for the monitoring of banana plants,
with only one identified study (Gomez Selvaraj et al. [51]) having assessed the suitability
of their methods on imagery captured on different dates. As such, no study exists on a
structured commercial crop-monitoring scenario (repeat monitoring of same crop over time)
whereby multi-temporal detection of individual plants of mixed age and asynchronous
growth is made using multispectral UAV data.

This study provides an innovative investigation of a range of methods for detecting
individual multi-age banana plants, grown at a commercial banana-crop farm located in
South East Queensland Australia, using UAV multispectral imagery with particular focus
on the targeted detection of the plants’ inner crown in order to help facilitate automatic
counting and further assessment of banana plants. Approaches investigated herein include
CNN, TM, and LMF with classification refinement using a GEOBIA method. Each method
was developed using a discrete (not subset) dataset and applied to multi-temporal imagery
to determine transferability and robustness of the detection methods. An investigation into
the detection accuracy in relation to UAV-derived morphological measurements (height
and crown spread) is also presented. Successful data collection, processing, and mapping
approaches provided by this investigation are part of a larger proof-of-concept study to
determine the capability of high spatial resolution remotely sensed data to map in-field
plant condition and age variability and discriminate multi-temporal changes in banana
plants and ratoon crops under commercial cropping conditions over a bunch growth cycle.

2. Materials and Methods
2.1. Study Location

The study site for this investigation was a commercial banana farm located in Wamu-
ran, Queensland, Australia (Figure 1), approximately 11 km west of Caboolture in South
East Queensland. UAV data were acquired over an area of 0.5 ha, located on a northerly
aspect at 170 m above sea level and falling to 113 m above sea level, with an average slope
of approximately 21 degrees. Wamuran, situated in South East Queensland in the Moreton
Bay region, is considered to be a humid subtropical climate with moderate to hot summer
months (December to February) and cool to mild winters (June to August). Recordings
from the Beerburrum weather station (#040284), located approximately 11 km west of Wa-
muran, shows that temperatures during summer have a maximum average of 30.2 ◦C and
winter average lows of 9.3 ◦C [54]. Rainfall primarily occurs in summer, with a maximum
monthly summer average of 203.2 mm and a low of 45.9 mm in the winter months. The
surrounding region hosts forestry, farming (primarily strawberries and pineapple), and
residential land uses. This irrigated site cultivates approximately 600 Cavendish (Williams)
banana plants spaced 2.5–3.0 m apart, with the general age of plants over 6 years and
new plantings established on an as-needed basis. Older crops generally display higher
levels of asynchronous growth, likely due to management practices (harvest regime and
plant propagation methods) and biotic and abiotic causes [15]. Due to the age and planting
strategy, this crop comprises asynchronous mixed growth.

Figure 1. (a) Location of study site in Wamuran, Queensland, Australia, illustrating typical AeroPoint distribution, and
(b) aerial view of the upper portion of the study site taken from the north eastern corner of the site facing south west.



Remote Sens. 2021, 13, 2123 6 of 24

2.2. UAV Data Collection and Ground Validation

Multispectral imagery was captured using a Parrot Sequoia camera (Parrot Drone
SAS, Paris, France) mounted to a 3DR Solo quadcopter (3D Robotics, Berkeley, CA, USA).
The Sequoia camera utilizes a 1280 × 960 pixel CMOS sensor that captures information
in the green (550 nm, 40 nm bandwidth), red (660 m, 40 nm bandwidth), red-edge (RE)
(735 nm, 10 nm bandwidth), and near-infrared (NIR) (790 nm, 40 nm bandwidth) parts
of the spectrum with an upward-facing irradiance sensor for radiometric normalization
purposes. UAV flight plans were programmed as a grid-pattern flight line following the
direction of row plantings at a height of 50 m above ground level (AGL), with 80% sidelap,
~92% forward overlap (1 second capture interval), and 5 m/s flight speed using Mission
Planner and loaded into the 3DR Tower App for flight control. In an effort to maintain
consistent altitude, flights were programmed perpendicular to the slope direction with
waypoints set at 50 m AGL based on a 1 m digital terrain model (DTM) obtained from
the Queensland Spatial Catalogue [55]. Flights were conducted on three dates to capture
a range of seasonal differences, plant morphology, growth (various mixed phenological
stages), and condition, including on 28 August 2017 at 11:13–11:26 am, 20 September 2017 at
11:50–12:04 pm, and 19 March 2018 at 11:19–11:30 am, with approximate sun elevations of
53◦, 62◦, and 63◦, respectively. The first two flights were undertaken under clear cloud-free
conditions, whereas the final flight occurred with ~20% cloud cover. However, the images
of the final flight were collected during a period with no clouds obscuring the sunlight or
casting shadows on the study area.

Ten Propeller AeroPoints (Propeller Aerobotics Pty Ltd., Surry Hills, Australia) Ground
Control Points (GCPs) were deployed with locations (Figure 1) recorded for a minimum
of 4.5 h and geometric correction processing made using a Propeller network base station
located 11 km from the study site. Eight gradient greyscale targets constructed of ma-
sonite with three coatings of matte Dulux Wash and Wear paint were deployed in the field
within the study area for radiometric correction purposes similar to the method described
by Johansen et al. [56] and Wang and Myint [57], with reflectance characteristics of each
measured using an ASD FieldSpec 3 spectrometer (Malvern Panalytical Ltd., Malvern,
UK) and found to be near Lambertian. Field data included an overall count of banana
plants to determine a baseline number of plants. Plants identified as suckers were omitted
from counts. Attributes such as plant spacing and number of rows were also observed. To
support counts, manual interpretation of high spatial resolution UAV RGB captures and
same-day orthomosaics based on similar flight planning were also used.

Field measurements of 29 banana plants spanning the capture dates were made for
height and crown spread (horizontal width of the crown) using a survey staff or a laser
rangefinder as per the manufacturer’s recommendations (Laser Tech Inc., Centennial, CO,
USA). Height was measured from the ground to the crown apex and average crown spread
measurements were based on the distance measured from the outermost leaf edge of the
crown (dripline) horizontally to intersect the psuedostem in 6 directions calculated as:

Average crown spread = 2 (SUM r/n) (1)

where SUM is the aggregate, r is the radius measurement of the crown (psuedostem to
edge of crown measurement), and n represents the number of measurements [58].

2.3. UAV Data Pre-Processing

Agisoft PhotoScan Pro (Agisoft LLC, St. Petersburg, Russia) was used to create
orthomosaics and digital surface models (DSM) from the multispectral data (processing
information provided in Table 2). Prior to image processing, photos were visually inspected
and removed if they were captured during turns and height adjustment at the end of a
flight line. For the photo alignment, the key and tie point limits were set to 40,000 and
10,000, respectively. GCPs were visually located in the images for geo-referencing and a
dense point cloud was built using the high-quality setting and mild depth filtering in order
to retain as much banana canopy detail as possible. The point cloud was then used to first
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produce a digital surface model (DSM) and digital terrain model (DTM) by classifying
ground objects in the point cloud. Prior to orthomosaic generation, the colour-correction
setting was enabled to account for Sequoia automatic capture settings (shutter speed and
ISO values) and image vignetting.

Table 2. UAV data pre-processing values produced by Agisoft Photoscan Pro.

28 August 20 September 19 March

GCP root mean square error (RMSE) 0.01 m 0.13 m 0.10 m
Re-projection error (pixels) 0.396 0.487 0.524

Dense cloud point density (ppm2) * 209 246 248
Ground-sampling distance (GSD) 4.22 cm/pix 4.02 cm/pix 4.07 cm/pix

* Points per square meter based on average point density for the study site.

The ground-sampling distance (GSD) of the orthomosaic was generated using the
default mosaic blending mode and the DSM as the surface. A canopy height model
(CHM) was created by subtracting the DTM from the DSM [57,59]. Following orthomosaic
generation, it was observed that the central parts of several banana plant crowns had a
halo effect, caused by the inability of the 3D reconstruction of the dense point cloud to
identify the thin tips of the leaves, which in turn affected the DSM used as the surface
for the orthomosaic generation (Figure 2) [20,21]. The use of the NIR band to prevent the
halo appearance was trialled with minimal improvement. In order to preserve the spectral
information of the orthomosaic, imagery was re-processed using the DTM. Although the
use of the DTM for the orthomosaic generation solved the issue with the halo effect, it
also meant that the banana plant crowns were not correctly orthorectified, causing slight
geometric offsets, specifically in the taller parts of banana plants. However, in this study,
preservation of the spectral information was considered more important than geometric
accuracy. The orthomosaics based on the DTMs were converted to at-surface reflectance
using a simplified empirical correction based on the greyscale radiometric calibration
panels with the aide of a Python script [59]. Dark-object subtraction based on minimum
values of each band within the study area was carried out on the orthomosaics, as negative
reflectance values were encountered in some captures. The negative values occurred in
portions of shaded area cast by crowns [59].

Figure 2. (a) Example of the halo effect occurring in the orthomosaic based on the DSM surface and (b) its absence in the
orthomosaic generated using a DTM presented as false colour imagery (band 4 as red, band 1 as green, and band 2 as blue).
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2.4. Image Classification

For comparative purposes, classification of the orthomosaics across multiple dates was
trialled using three classification methods for the detection of tree crowns: convolutional
neural network (CNN), template matching (TM), and local maximum filter (LMF). Classifi-
cation testing and development was carried out using eCognition software and allowed for
flexible development and testing of GEOBIA for CNN, TM, and LMF workflows (Figure 3).
It also streamlined the classification process by including a sampling environment for CNN
and TM and algorithms for pre-processing data such as layer creation, augmentation, and
filtering as well as algorithms used for post-processing such as classification refinement
and exportation of results. Use of the eCognition GEOBIA environment allowed developed
classification approaches to be saved to a single ruleset able to be transferred between dates
and flexibility to permit further development of the ruleset in future planned analysis.

Figure 3. Overview of the main components of the image classification workflow within the eCognition Developer software.
Orthomosaic classification was carried out using convolutional neural network (CNN), template matching (TM), and local
maximum filter (LMF) approaches.

2.4.1. CNN

The CNN analysis was based on the Google TensorFlow API (https://www.tensorflow.
org/api_docs/, accessed on 25 March 2021) integrated into Trimble’s eCognition Developer
9.5 (Trimble Geospatial, Munich, Germany). Training of the CNN was based on samples
created from the orthomosaic from the first capture date (28 August), with image segmen-
tation created for each class, including the inner crown (50 cm buffer surrounding the
centre point of each banana plant), vegetation consisting of all non-banana vegetation (e.g.,

https://www.tensorflow.org/api_docs/
https://www.tensorflow.org/api_docs/
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grass, weeds, tree crowns), and soil. The crown class was created using a vector-buffering
algorithm based on manually created centre points, followed by a vector-based segmenta-
tion algorithm and assign-class algorithm. Soil and vegetation classes were created using
a threshold segmentation algorithm based on thresholds set by an automatic threshold
algorithm using the Enhanced Vegetation Index 2 (EVI2) layer. Minimal manual editing
was required to separate areas of vegetation and banana crown overlap. In order to increase
the sample size and improve results [41], the CNN sampling algorithm creates samples at
random locations within each of the defined classification objects (inner crown, vegetation,
and soil). At each of these random locations, samples are made using a user-defined win-
dow size (Figure 4). Trials of differing sample window sizes determined that 36 × 36 pixels
provided more consistent detection of crowns than larger windows, whereas a smaller
window led to greater false positives. Based on this, 8000 samples of crown, vegetation,
and soil class were created using a 36 × 36 window.

Figure 4. Examples of training samples of banana crowns based on a 36 × 36 pixel window showing
four examples in each row for the (a) green band, (b) near-infrared band, and (c) Canny edge-detection
algorithm based on the Enhanced Vegetation Index 2 (EVI2).

Four bands of the Sequoia sensor were included in the model with three additional
vegetation indices (VI), and three edge-detection filters (Lee Sigma, Canny, and 2D mor-
phology) created in the eCognition Developer software. To aide selection of the most
effective VIs to include in the model, the feature space-optimization tool was utilized
to select the Green Red Vegetation Index (GRVI)(2) [60], Enhanced Vegetation Index 2
(EVI2)(3) [52,61], and Normalised Difference Vegetation Index (NDVI)(4) [62].

NDVI = (Red + NIR)/(Red − NIR), (2)

GRVI = (Green − Red)/(Green + Red), (3)

EVI2 = 2.5 × ((NIR − Red)/(NIR + 2.4Red + 1)) (4)

Optimising a CNN model is an iterative process that requires selection of hyper-
parameters and user inputs defining the architecture of the network and manner in which
it will be trained. Selection of these hyper-parameters influences the detection success
and required processing [63]. Although some generally accepted approaches apply to
this selection, many journal articles exist and studies are ongoing on model designs and
optimization. Even so, inputs are often required to be tailored toward the study subject
through experimentation for best results.
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Hyper-parameters required to define a CNN architecture include the selection of the
number of hidden layers and the number of feature maps (filtered outputs) generated for
each hidden layer. A user-defined matrix filter (or kernel) carries out a local convolution,
creating a hidden layer. Kernel size, multiplicative weights selected, and the number of
resultant feature maps created influence the extraction of features used to identify the object
of interest (in this case, banana crowns) and works by attempting to find a distinct structure
or uniform arrangement of pixels able to detect the object of interest [44,63]. Features
extracted that might be used to identify objects include a distinct structure or uniformity
in pixels such as edges, lines, focal point, or other such pattern able to detect the object
of interest.

After several iterations trialling different hyper-perimeter settings, a CNN model
(Figure 5) was selected consisting of two hidden layers: a 5 × 5 kernel size with 32 feature
maps and a 3 × 3 kernel with 64 feature maps, to which max pooling was applied, aiming
to preserve the most prominent features by down-sampling data in order to reduce its
complexity. Max pooling used a 2 × 2 filter with a stride of 2 in the horizontal and vertical
image direction. The inclusion of two hidden layers provided a slightly more robust result
across dates compared to a single hidden layer with minimal change in processing time.

Figure 5. Example of the convolutional neural network (CNN) model architecture developed for the detection of banana
crowns with samples input based on the 28 August image capture.

During the CNN training step, random batches of sample imagery were input into
the model for the classifier to form a representation of a banana crown and characteristics
able to be used for detection. Weights and biases used to compute this representation
were based on a backpropagation algorithm. The user-defined hyper-parameters that
influenced the training success most were the adjustments made to the learning rate,
which influenced how weight was adjusted during each iteration of the statistical gradient
descent optimization [63,64]. A learning rate of 0.0015 was set with 50 training samples
and 5000 training steps initially used based on recommended eCognition default settings
and guidance from agricultural tree-crown investigations by Csillik et al. [41]. In order
to optimize training, a trial of different learning rates was conducted and it was found
that increasing the learning rate either reduced the effectiveness of crown detection whilst
providing minimal improvement to processing time or failed to provide a result (did not
converge). The selected CNN model was saved and applied to subsequent capture dates,
producing a probability heat map of plant locations. To reduce noise in the resultant
probability heat map and to aid in isolating potential crown centres, a 15 × 15 Gaussian
filter (2D morphology pixel filter algorithm) was applied followed by a layer arithmetic
filter to highlight the local maxima if they exceeded a set probability heat-map threshold.
Threshold values ranged from 0 to 1, with those closer to 1 indicating a greater likelihood
of inner crown detection [64]. Different probability heat-map thresholds were trialled to
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optimize classification results, with a threshold of 0.65 for primary detections, which was
later lowered to 0.5 to improve recall (defined below).

2.4.2. Template Matching

TM was carried out using eCognition’s template-matching algorithm based on Pear-
son’s correlation coefficient (Figure 6). Template matching requires the manual collection
of samples from imagery to create a template patch of user-defined size, representative
of the object of interest (in this case, banana crowns). Templates are then compared to
the imagery requiring analysis and the results of a cross-correlation are output as a layer
displaying the level of similarity across the image, with larger values representing areas
of greater similarity and likely to be banana crowns. To increase the robustness of the
detection method to changes in illumination between the template and analysis datasets,
they were normalised prior to correlation calculations [65]. For banana crown detection,
template-sample generation was based on the dataset collected on 28 August using banana
crown centre-point locations identical to those utilized for the CNN model to provide a
comparative representation of samples using a template size of 36 × 36 pixels. Template
matching in eCognition is based on a single input layer, and following trials of the various
layers identified during feature optimization, EVI2 was selected as the most effective. eCog-
nition’s template editor was used to create grouped-type templates whereby the algorithm
creates a user-defined number of templates from subgroups of similar objects identified
within the samples. Implementation of the template-matching algorithm provides options
for sample augmentation based on rotation (angle input) and requires a correlation thresh-
old to be set to identify valid targets in the correlation layer. Adjustments were made
to rotation and correlation thresholds and trials of the different layers determined that a
suitable combination for template generation was 50 sample subgroups with 10◦ sample
rotation applied based on the EVI2 layer using a correlation threshold of 0.5.

Figure 6. Overview of workflow for template matching (TM) within eCognition Developer software for the classification of
individual banana crowns.

2.4.3. Local Maxima Filter

The underlying assumption for successful detection of individual banana plants using
LMF is that plant crowns represent greater pixel brightness/values than surrounding areas
in imagery [66]. To isolate crown locations, a fixed window approach was utilized, that is, a
window of a fixed user-defined size was applied to the September and March orthomosaics
to filter locations with a maximum response as potential plant crown candidates [66]. The
LMF approach was implemented in the eCognition software by using a combination of
algorithms (Figure 7). First, the selected image layer was smoothed using a 2D Gaussian
filter of 35 × 35 pixels (2D morphology pixel filter algorithm), which was found to be an
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appropriate size due to majority of crowns having similar dimensions. Smoothing can help
identifying crowns, as pixels that make up individual crowns may not appear homogenous
when using high-spatial-resolution imagery, leading to multiple false positive detections.
A dilation filter of 35 × 35 pixels was then applied to further detect locations of maxima
representing possible crown centres. Finally, a user-defined LMF threshold was applied
to identify crown centres. This method was tested on layers identified during feature
optimization, with the EVI2 layer providing the greatest contrast and consequently best
LMF crown-detection result.

Figure 7. Overview of workflow and example outputs for local maximum filter (LMF) based on the Enhanced Vegetation
Index 2 (EVI2) layer within the eCognition Developer software for the classification of individual banana crowns.

2.4.4. Classification Refinement

A universal method was applied to improve upon the initial classification of the
three detection methods by reducing the detection of false positives, effectively improving
precision. Initially, false positives of non-banana vegetation were removed based on the
CHM, using a threshold-segmentation algorithm to retain plants identified to be >1.5 m
and <8.5 m in height. Due to the slight misalignment of the CHM and imagery layers
(from the orthomosaics generated from the DTM surface), a buffer was created based
on the distance map algorithm, with the buffer size adjusted to cover the inner crown
extent. On application of the CHM, a small number of correctly identified banana crowns
(true positives) was removed. The removal of the smaller banana plants (<1.5 m) did not
decrease the effectiveness of classification as these plants were not in production and were
likely to be removed during crop-management practices such as de-suckering and plant
thinning, whereby unwanted side shoots and plants are removed.

On some of the classified outputs, particularly CNN, some single crowns had multiple
detections tending to occur on larger crowns or when a lower threshold was set for heat-
map detection. In order to preclude crowns having multiple centre points, points within
1 m of one another were merged to form a single location. This distance was chosen as
few distinct crowns were observed to be within 1 m of each other. Within the eCognition
software, the omission of points within 1 m of each other was achieved by growing crown
centre points to 50 cm (pixel-based object resizing algorithm), merging adjoining crowns
after the object growing (merge region algorithm) and exporting the results to a vector layer
based on a single point representing the centre of gravity (export vector layer algorithm).
To facilitate further testing, this operation was also carried out using GIS software (buffer-
dissolve-centroids), producing identical results.

2.4.5. Accuracy Assessment

To determine the performance of each of the three classification approaches, an ac-
curacy assessment was carried out for the September and March orthomosaics against
identified crown locations. A successful inner crown detection was considered to be within
1 m of the crown centre point; for the majority of banana plants this area encompasses the
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greatest density of aboveground biomass. From these inner crown locations, true positives
(TP) (correct identification), false positives (FP) (incorrect identification), and false nega-
tives (FN) (a crown is not identified) were identified and used to calculate precision, the
ratio of banana plant predictions that belonged to the banana class, with greater precision
indicating that fewer features were incorrectly classified as banana plants; recall, the pro-
portion of banana plants not detected during classification, with greater recall indicating
that fewer banana plants were omitted from the classification; and F-score, the overall
accuracy, taking into account equal representation of precision and recall results [50].

Precision = TP/(TP + FP), (5)

Recall = TP/(TP + FN), (6)

F-score = 2 × ((P × R)/(P + R)) (7)

2.5. Relation of Plant Morphology and Detection Rate

To determine whether the UAV orthomosaics provided a representative estimation
of banana plant morphology across capture dates, the individual crowns of 29 plants that
had been measured in the field were manually delineated from the orthomosaic using GIS
software. Following delineation, zonal statistics were used to extract the maximum value
from the CHM to estimate height. A minimum oriented bounding box was then applied to
each delineation from which minimum and maximum lengths were derived and average
crown spread calculated [58]. Estimated maximum height and crown spread based on the
CHM and orthomosaic data were compared to field measurements, from which a linear
regression was calculated along with goodness of fit (R2) and root mean of square error
(RMSE) to assess the relationship between field- and UAV-derived measurements. The
comparison of field-measured and orthomosaic-derived plant height and crown spread
provided information on the ability to derive height and crown spread directly from the
UAV data to expand the assessment of height and crown spread to banana plants that were
omitted (false negatives) during the detection process using the three different approaches.
Further investigation into false negative detections for each of the detection methods
was carried out to determine whether a visible trend was apparent in the orthomosaics
or whether specific morphological characteristics affected the detection rates. From the
orthomosaics of each detection date, omitted crowns (false negatives) were manually
delineated and a minimum oriented bounding box was applied to each. Based on the
bounding box, perpendicular minimum and maximum crown diameter lengths were
derived, from which average crown spread was calculated (Equation (1)) [58]. The derived
measurements of crown spread for the false negatives were subsequently compared for
each of the three detection approaches to assess how crown morphology impacted the
detection rate.

3. Results
3.1. Detection Rate of Banana Plants

Detection rates of banana plants based on the CNN, TM, and LMF approaches were
assessed and compared for the data collected on 20 September and 19 March. Comparing
accuracy assessment results of the CNN classification for the two dates revealed high and
similar recalls of 0.97 and 0.92, indicating that most of the banana plants were successfully
detected. However, there was a reduction in precision between 20 September and 19 March,
causing the overall accuracy (F-scores) to drop from 0.93 (20 September) to 0.85 (19 March)
(Table 3). The results of the banana plant detection (Figure 8) showed that reductions in
precision were mostly attributed to false positives due to multiple detections of the same
crown. The crowns with multiple detections were generally too large for the specified
crown-centre buffer (50 cm) to effectively prevent multiple detections. This issue was more
prevalent on 19 March, where banana plants had larger and denser crowns with greater
levels of crown overlap.
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Table 3. Precision and recall results following classification refinement.

20 September 19 March

CNN TM LMF CNN TM LMF

Precision 0.89 0.99 0.98 0.79 0.98 0.97
Recall 0.97 0.77 0.77 0.92 0.60 0.59
F-score 0.93 0.86 0.86 0.85 0.74 0.73

Figure 8. Detection of the individual banana plants (dots) displayed on an EVI2 background layer
based on rows. (a) convolutional neural network (CNN) (b), template matching (TM), and (c) local
maxima filtering (LMF) for the UAV image data collected on 20 September and 19 March.

The TM and LMF approaches returned near-identical precision, recall, and overall
accuracy results for 20 September and 19 March. Precision was high for both dates (0.99
and 0.98), indicating very limited false positives, i.e., the mapped detections did in fact
represent a banana plant. Although precision remained similar over both dates, there
was a reduction in recall on 19 March. The F-score for the TM detection of banana plants
was 0.86 (20 September) and 0.74 (19 March), whereas the LMF approach returned 0.86
and 0.73, respectively. The derived maps of banana plant detections demonstrate reduced
crown detection (increased false negatives) on 19 March, causing the decreased recall. The
reduction in individual distinctive crowns caused by greater levels of crown overlap and
changes to morphology with larger, denser crowns on 19 March is likely to have reduced
the effectiveness of classifiers to detect crowns. As opposed to the CNN approach, neither
the TM nor the LMF classifiers returned false positives caused by multiple crown detections
on a single crown, which is likely a function of the window size defined for detection.

When comparing F-scores, CNN provided a superior result to both the TM and LMF
approach. TM and LMF provided a better result for precision compared to CNN, but
they detected fewer crowns (lower recall), with a further reduction in performance on the
second capture date, whereas CNN recall was higher and consistent on both dates despite
visible changes to the banana crowns and increases in other vegetation (ground-cover
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weeds and grass). Classification refinement improved results for each detection method in
a slightly different manner. CNN classification improvements were mostly concerned with
reductions in the occurrence of multiple detections on single crowns, whereas TM and LMF
both displayed a similar detection pattern of having false positives on other vegetation
(not banana crowns).

To improve recall prior to the application of classification refinement, detection thresh-
olds were decreased for the probability heat map (CNN), correlation coefficient (TM), and
the LMF. Improvements to recall were evident for CNN, whereas lowering detection thresh-
olds for TM and LMF introduced additional false positive detections that were completely
unrelated to the banana crowns, with no noticeable improvement to recall. A lowered
threshold of 0.5 was applied to both 20 September and 19 March CNN probability heat
maps with subsequent improvements to recall. As a result, the number of false positives
increased, returning a precision of 0.52 and 0.5, respectively. As the majority of these false
positives were caused by multiple detections on single crowns, the application of classifica-
tion refinement, specifically the merging of multiple points within the single crown, was
an effective method of improving results. An indicative result of CNN without the above
classification refinement, but with the initial elevated detection threshold of 0.65 applied,
provided a precision of 0.9, a recall of 0.86, and an F-score of 0.88 for the orthomosiac based
on UAV image data acquired on 20 September, whereas a precision of 0.81, a recall of 0.79,
and an F-score of 0.8 were achieved based on the UAV image data from 19 March.

A review of the classified orthomosaics revealed an increased amount and vigour of
vegetation (banana and non-banana) on 19 March compared to 20 September, represented
by areas of brighter pixel response on the background EVI2 layer. Increased growth of
grass and weeds was observed on inter-row tracks and was particularly present in the
north eastern portion of the site. From field observations, banana plants growing in the
north eastern plot were in visibly worse condition than the rest of the site. The results from
this portion of the site revealed lower detection rates than those for the rest of the site, with
a reduction in recall averaging close to 20% for both dates. Despite this reduction, when
included in the overall calculations, there was little effect on recall for the rest of the site, as
the north eastern plot represented only a small proportion of all the plants.

3.2. Individual Plant Morphology Estimation

Field-based plant height and crown spread were related to UAV-derived estimates to
assess whether UAV-measured plant height and crown spread could reliably be extracted
for plants not measured in the field, specifically those plants representing false negatives.
The linear regression between the CHM-estimated plant heights and field measurements
provided a positive correlation, with an R2 value of 0.84 (Figure 9a). The field-derived
average height of measured plants was 3.24 m, whereas the CHM-estimated average was
3.83 m (n = 29), with a calculated RMSE of 0.78. Inconsistency in height between the
CHM-derived plant heights and the field measurements could be related to a combination
of factors, with the most likely being 3D reconstruction inaccuracies of the point cloud,
overlapping crowns causing intermingled CHM measurements, or in-field crown height
measurement variability due to the crowns’ non-rigid structure.

A positive correlation was found between the average crown spread derived from the
orthomosaic and the field measurements, with the linear regression producing an R2 value
of 0.85 (Figure 9b). Average crown spread for the field measurements and orthomosaic
was 2.58 m and 2.46 m, respectively (n = 29), with an RMSE of 0.45. As both plant height
and crown spread could be extracted from the orthomosaics, further assessment was
undertaken to evaluate the impact of crown morphology on detection accuracies of the
three approaches. Both plant height and crown spread of banana plants that were omitted
(false negatives) by the three different detection approaches were evaluated. As height
characteristics were used during classification refinement, understanding the accuracy of
the heights extracted from CHM is a consideration when determining height thresholds
to be used during classification refinement. However, as CHM was often observed to be
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influenced by overlapping crowns of neighbouring plants it was considered that crown
spread was more relevant for the assessment of crown morphology on detection accuracies.
Crown spread also provided a more accurate representation of physical measurements and
could have more relevance for comparison due to the detection mechanism of each of the
methods. Only the results of crown spread are provided below.

Figure 9. Scatterplot and linear regression of (a) banana plant height derived from the CHM created from UAV data
and field-measured height, and (b) banana plant crown spread based on the orthomosaic created from UAV data and
field-measured crown spread.

3.3. Effects of Crown Morphologies on Banana Plant Detection Rates

The spread of undetected crowns for the CNN approach on both 20 September (n = 18)
and 19 March (n = 28) showed slightly less variation compared to the TM (20 Septem-
ber n = 122, 19 March n = 243) and LMF (20 September n = 121, 19 March n = 245)
approaches (Figure 10). The median crown spread of the false negatives was slightly lower
for the CNN approach on both dates than those for TM and LMF (September = −0.22 m,
March = −0.34–0.39 m). The CNN interquartile range was larger than those for TM and
LMF, indicating that the CNN detections had greater variability in crown spread around
the median than TM and LMF.

Figure 10. Box plot of average crown spread based on all false negative detections of the convolution neural network (CNN),
template matching (TM), and local maximum filter (LMF) approaches from the 20 September and 19 March orthomosaics. A
point plot of each plant’s average crown spread is represented by circles for each date.



Remote Sens. 2021, 13, 2123 17 of 24

Observations from the orthomosaics indicate that CNN detection performance was
affected by large crown overlap from multiple directions, or in situations where crowns
were in close proximity to one another, whereby crowns were either obscured or their
shape was changed by neighbouring crowns. Although the median crown spread of false
negatives was smaller for CNN than the other methods, it was observed that false negative
detections generally occurred in areas of higher plant density (reduced spacing). Hence,
the crown spread of individual plants is not specifically an indication of the amount of
crown overlap, e.g., neighbouring plants may have had large crowns that encroached
on the omitted plant, or cases of double crown plants growing from the same corm (e.g.,
large follower plants). A second observation is that false negatives occurred in plants
that appeared to have oddly shaped crowns or had leaves missing, which could relate to
poor health or an orthomosaic abnormality. Plants located in the north eastern portion
of the site that were observed to be in poor health provide an example of poor detection
rates, with a cluster of undetected plants present on 19 March. It appears that false
negative detections were more related to visible incomplete crown structure as opposed to
a particular crown spread.

No obvious trend could be observed for TM and LMF in regard to average crown
spread, with false negatives represented across a wide range of crown spreads on both
dates and displaying similar performance on each consecutive date with no obvious trend
relatable to the orthomosaic. A general observation is that both detection methods appeared
to be affected by crown overlap, which was particularly the case for the March 19 capture.
Based on these results, i.e., the large variation in crown spread of false negatives, it appears
that the morphology of the banana plants had no obvious impact on the detection rate of
TM and LMF, and in comparison to CNN, performed equally poorly across all crown-size
morphologies of undetected plants. However, the condition and crown structure could be
linked to the performance of the CNN approach. Hence, CNN results may be affected by
banana plants with poor leaf structure, which can occur due to plant phenological stage,
poor health, wind damage, or during fruit development when leaf growth ceases.

4. Discussion

Similar to most tree crops, detection (and further delineation) of individual plants is
important in order to enable plant-specific monitoring and targeted management [21,56].
This is particularly relevant to banana plants, considering phenology, morphology, and
growth characteristics such as asynchronous growth and mobile crowns. Different seasons
also affect banana plant growth, with plants growing faster in warmer periods due to
the associated longer photoperiod and summer rainfall [67,68]. Previous studies have
demonstrated that UAV-based remote sensing is able to produce orthomosaics and height
data (DSM/DEM/CHM) with suitable spectral and spatial resolutions to detect individual
crowns at high accuracy through use of neural network approaches [49,50]. Our study
also ascertained the feasibility of UAV data for banana plant detection, identified potential
alternative methods that are more computationally efficient, and verified the transferability
of methods between dates. Contrasting with other cited studies, importance was placed on
the detection of the plants’ inner crown for this study to assist automatic plant counting
and assess plant density. Plant detection may also facilitate leaf and crown delineation.

4.1. Evaluation of the Different Classification Methods

Given the effort and time required to manually demarcate and generate image tem-
plates suited for the TM approach, and TM returning similar accuracy to that of LMF, there
seems no reason to choose TM. LMF provides a faster process, requiring no sampling or
template generation. TM’s ability to detect individual banana crowns could relate to the
irregular crown shape and unique crown structure of the banana plants [50]. Attributes
such as leaf folding and shredding, causing uneven illumination and varying spectral
reflectance properties [32,38], have been identified as a problem for template matching
in other studies [69]. The TM method could be improved by applying several templates
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based on various spectral layers and vegetation indices and using templates of different
dimensions to improve the detection of plants of different crown sizes. Although TM has
been effective for the detection of other species of plants such as coniferous trees and oil
palms, which have greater homogeneity in crown structure [66,70], the application seemed
poorly suited to banana plants, as demonstrated by a reduction in detections between
different capture dates, likely due to pronounced changes to plant morphology in response
to plant growth on the later capture date (19 March).

The LMF approach provided a reasonable result similar to TM, but with minimum
processing and analysis required, and was more time-efficient than TM. The LMF approach
provided a distinct contrast between banana plant crowns and background non-target
classes (soil and weeds) due to limited ground cover. During different seasons or for
applications at other sites, LMF may not be suitable due to its reliance on contrast between
ground objects and crowns. For this study, LMF’s reduced banana crown detection over
the capture dates is likely to be related to increases both in ground cover (non-banana
vegetation) and banana crowns with a higher amount of leaf overlap, causing a decrease
in single crown definition and pixel contrast. It has been recognized that the application
of LMF for crown detection in other species is prone to providing multiple false positives
of the same crown, likely caused by crown structure [66]. For banana plants at our study
site, multiple detections of the same banana plant was not apparent when using the LMF
approach. However, a suitable filter size is important, considering that the structure of
a banana crown, with all leaves emerging and often overlapping from a single central
psuedostem, provides a focal density of biomass near the centre of the crown, distinguished
by brighter pixels and leading to greater detection success. Further exploration of the use of
multiple LMF window sizes may improve (omission) results with the possibility of linking
crown size to development (with larger crowns generally belonging to mature plants).

The CNN approach provided the best overall result compared to TM and LMF and
could be considered more temporally robust over the capture dates, with detection levels
remaining similar, which is consistent with the fundamental design of CNN architecture.
Importantly, most detections of false positives were either caused by multiple detections of
a single banana crown or situated on the outer crown and not able to be resolved during
classification refinement, in contrast to TM and LMF, which had all false positive detections
situated on other vegetation or ground objects. In general terms, considering the location of
false positives, CNN was more effective in that the majority of false positives were situated
on banana crowns as opposed to the other methods that detected unrelated objects.

4.2. Evaluation of Classification Refinement

By optimizing the initial banana plant detection and applying classification refinement
to reduce multiple detections of the same crown, the CNN F-score improved by almost
5% for both dates in relation to the CNN F-score prior to applying the refinement steps.
After classification refinement of the TM and LMF results, the F-score of the banana plant
detection improved by 9–10%. The refinement steps were simple but effective, and may
be further improved by adding additional criteria or the inclusion of additional GEOBIA
refinement [41]. Given the classification refinement application focused on removing false
detections to reduce overestimation, only precision, and not recall, was improved. As part
of the refinement method was reliant on CHM thresholds, depending on individual farming
practices and capture location, thresholds may to be tailored to suit, and the method and
may not be applicable when banana plants are of mixed varieties with different growth
heights (e.g., Dwarf varieties), are younger or have new plantings, or occur among mixed
vegetation, with the latter an unlikely scenario under commercial settings.

Many studies utilise CHMs for individual tree-crown detection and delineation [71].
Most commonly, a CHM aides in the detection of individual crowns and crown centres
by determining the location of apexes based on height. For banana plants and palm crops
(e.g., date, coconut, and oil palms), the apex might not correspond to the crown centres,
hence, causing the highest point to be offset in relation to the centre. Such an approach
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would have been interesting for this study, but further integration of a CHM was hampered
by the requirement to use a DTM for orthomosaic creation, causing an offset between
orthomosaic and CHM datasets. As a result, use of the CHM was limited to the creation of
a distance map representation of the CHM for classification refinement, causing a reduction
in spatial accuracy and detail. Contrarily, the use of a CHM may not be beneficial for
locating individual banana plants or crown centres when plants have high levels of leaf
overlap due to banana plants lacking a distinct crown apex [33,50].

4.3. Application Effectiveness for Multi-Temporal Detections

For this study, the banana plant detection results of the earlier date (20 September) had
greater accuracy, which was attributed to the training dataset (28 August) having a much
larger time gap than the UAV image data collected on 19 March. Therefore, the growth
stage/morphology of the banana plants was similar for the training dataset (28 August) and
the UAV image data collected on 20 September. In the later March capture, the plant crowns
were noticeably larger and the leaves had greater surface area with greater levels of crown
overlap, making visual discrimination of individual crowns difficult. Morphology change
such as leaf folding or leaf shredding could have caused changes to crown appearance,
and so could accelerated growth and vigour in response to increased rainfall, higher
temperatures [67], and an increased photoperiod [68], a situation that may have affected
this study, with initial captures taking place in spring (late August and September), whereas
the second capture was in early autumn, just following the end of the summer growth
period. It is also noted that the later capture in March was partially cloudy, which could
have led to reduced leaf folding [68]. Further training and testing, additional sampling,
sample augmentation, and time spent on optimization and validation may improve results
further. For CNN model creation, future work should focus on automated sensitivity
testing to optimize the CNN and evaluation of differing architectures, which could make
the process more efficient and improve accuracy [43–45].

By testing transferability of the different detection methods on different capture dates,
this study introduced variation to capture conditions in relation to weather and season,
plant phenology, and morphological changes (size of crown, structure, etc.). However, as
this study was based in a specific regional setting, identical methods may not be applicable
for detection of banana plants in different geographic regions or even different farms.
Variation in banana plant variety, growth, surrounding vegetation, soil, farming practices,
and many other environmental and management/cultural factors can make transferability
challenging [72]. Aside from training CNN models, gathering representative and high-
quality samples is time-consuming. The creation of a larger, high-quality, and more
diverse sample library or database would provide a great tool for broader adoption of
CNN and improve transferability for UAV-based detection of individual plants in banana
cropping systems.

4.4. Evalution of Crown Morphology on Detection Success

Investigation into the occurrence of false negatives aids future development by deter-
mining the weaknesses of each of the detection methods and potential required refinement.
It is vital for detection methods to have the ability to classify plants of varying morpholo-
gies, particularly considering banana plants’ asynchronous growth and potential for plants
to have highly variable morphologies related to their growth stage within the same field.

Commonly derived morphological attributes from the data presented include the
physical size of crowns and the height of the plant. In comparison to other studies of
UAV-derived tree height, underestimation is generally most common, and occurred in
studies on avocado [20,73], lychee [56], and olive trees [21]. Height was found to be
overestimated for 28 of the 29 banana plants investigated, which may have been caused by
several factors. Flight-planning choices such as flight altitude, speed, and flight pattern
and image capture rate influence GSD and the amount of imagery overlap, which was
attributed to errors in CHM-derived height. Likewise, image-processing inaccuracies can
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be introduced during 3D reconstruction and incorrect DTM estimation [20,73], and finally,
error can be introduced from physical measurements in the field.

As opposed to height derived from the CHM, which may have been influenced by
neighbouring overlapping plants, the crown spread was found to be a better option for the
assessment of false negatives. The use of UAV-derived average crown spread calculations
based on the two-axis method [58] were found to be more appropriate than height, as
often only the innermost part of the crown was correctly reconstructed in the DSM-based
orthomosaics (Figure 2). The UAV-based derivation of crown spread also corresponded to
the way field-based measurements of average crown spread were measured and calculated.

From our investigation on the occurrence of false negative detections, in addition to
the above recommendations for improvement of detection (Section 4.1), there is evidence
that false negative crown detections could be reduced through the use of different-sized
template samples (TM) and filters (LMF) to address the variance in crown spread. However,
success of these recommendations in the detection of inner crowns requires further testing.
The number of false negative detections of the CNN approach could be further improved
through additional training. However, due to the small number of false negative detections
in this study, further development was not considered worthwhile, as remaining undetected
crowns could quickly be detected manually. For time-series monitoring, historical plant
crown detection locations can be carried forward over the season, with crown locations
established and confirmed over time (e.g., pre- and post-capture dates). Therefore, further
development of detection methods would only be required if problems are discovered in
future deployments or when testing on imagery at different locations, with any further
improvement relating to quality checking the orthomosaics prior to detection.

5. Conclusions

Considering the unique manner in which banana plants grow and their specific mor-
phological and growth characteristics, mapping individual banana plants is an important
step toward gaining accurate measurements and valuable information about plant growth,
status, and condition through the use of spectral and morphological information (height,
crown size, etc.) derived from UAV image data. The addition of multi-temporal image
captures provides important insight into the dynamics of the crop, such as phenology, yield
prediction, and timing for maintenance activities. In this study, multispectral UAV imagery
was captured over different dates to determine the ability of three different methods to
detect banana crowns within a GEOBIA environment. Detection results demonstrated that
the application of CNN for the detection of banana plants was best suited compared to
TM and LMF. The CNN models were transferable between differing dates with acceptable
results, with further improvement based on classification refinement utilizing contextual
(distance between crowns) and crown elevation information (CHM). An exploration of
the relationship between field- and UAV-derived measurements of plant morphology was
found to provide insight into plant characteristics of those plants that were omitted by the
three classification approaches. Given these results, the application of the CNN method
described is suitable for the purpose within the bounds of this study and adds important
information for the development of suitable methods and further application possibilities
in future research, as well as working toward applications in crop management.

Successful detection results from this study support the use of UAVs as an appropriate
platform for further development of banana crop monitoring approaches. Similar to
their application for other crops, once scientifically valid results and methods have been
established through further research, UAV sensor platforms have the potential to provide
a cost-effective solution for many facets of banana crop monitoring. It is the aim of
future work to further develop the use of UAV-captured imagery for extracting useful
information relevant to real crop management. Specifically, development is underway on
crown delineation methods from UAV imagery and an assessment of its ability to measure
banana plant morphological attributes (e.g., crown spread, height) in a more automated
manner to ease crop monitoring. Following this, multi-temporal captures over the life cycle
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of banana plants will be used to monitor changes to growth and morphology to discover
any noticeable trends and determine suitability for crop monitoring.
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