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Abstract

Consider a product system over the positive cone of a quasi-lattice ordered group. We
construct a Fell bundle over an associated groupoid so that the cross-sectional algebra of
the bundle is isomorphic to the Nica–Toeplitz algebra of the product system. Under the
additional hypothesis that the left actions in the product system are implemented by in-
jective homomorphisms, we show that the cross-sectional algebra of the restriction of the
bundle to a natural boundary subgroupoid coincides with the Cuntz–Nica–Pimsner algebra
of the product system. We apply these results to improve on existing sufficient conditions
for nuclearity of the Nica–Toeplitz algebra and the Cuntz–Nica–Pimsner algebra, and for
the Cuntz–Nica–Pimsner algebra to coincide with its co-universal quotient.

1. Introduction

In [21], Pimsner associated to each C∗-correspondence over a C∗-algebra A two C∗-
algebras TX and OX . His construction simultaneously generalised the Cuntz–Krieger algeb-
ras and their Toeplitz extensions, graph C∗-algebras and crossed products by Z, and has been
intensively studied ever since.

It is standard these days to present TX as the universal C∗-algebra generated by a rep-
resentation of the module X , and then OX as the quotient of TX determined by a natural
covariance condition. However, this was not Pimsner’s original definition. In [21], OX is by
definition the quotient of the image of the canonical representation of X as creation oper-
ators on its Fock space by the ideal of compact operators on the Fock space. Pimsner then
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provided two alternative presentations of OX , the second of which is the one in terms of its
universal property.

The first, which is the one germane to this paper, is an analogue of the realisation of C(T)

by dilation of the canonical representation of the classical Toeplitz algebra on �2. Pimsner
constructed a direct-limit module X∞ over the direct limit A∞ of the algebras of compact
operators on the tensor powers of X . He showed that one can make sense of X⊗n

∞ for all
integers n, and so form a 2-sided Fock space

⊕
n∈Z

X⊗n
∞ . This space carries a natural repres-

entation of X∞ by translation operators, and the image generates OX∞ which is isomorphic
to OX .

More recently [13], Fowler introduced compactly aligned product systems of Hilbert A–
A bimodules over the positive cones in quasi-lattice ordered groups (G, P), and studied
associated C∗-algebras TX and OX , and an interpolating quotient NT X (Fowler denoted it
by Tcov(X), but we follow the notation of [4]). When (G, P) = (Z, N), TX = NT X agrees
with Pimsner’s Toeplitz algebra, and OX with Pimsner’s Cuntz–Pimsner algebra. But even
for (Z2, N

2) the situation is more complicated. The algebra NT X is essentially universal for
the relations encoded by the natural Fock representation of X , so it is a natural analogue of
Pimsner’s Toeplitz algebra. But the quotient by the ideal of compact operators on the Fock
space is much too large to behave like an analogue of Pimsner’s OX . (This is analogous to
the fact that C∗(Z) is the quotient of C∗(N) by the compact operators on �2(N), but C∗(Z2)

is much smaller than the quotient of C∗(N2) by the compact operators on �2(N2).) Fowler
also lacked an analogue of X∞; the direct limit should be taken over P , but P is typically
not directed. So Fowler’s approach to defining OX was to mimic Pimsner’s second alternat-
ive presentation of OX : identify a natural covariance relation and define OX as the universal
quotient of TX determined by this relation. Subsequent papers [5, 27] have modified Fowler’s
definition to accommodate various levels of additional generality, but have taken the same
fundamental approach of defining NOX as the universal C∗-algebra determined by a repres-
entation of TX satisfying some additional, essentially ad hoc, relations. Nevertheless, there
is strong evidence [5, 13] that the resulting C∗-algebra NOX can profitably be regarded as
a generalised crossed product of the coefficient algebra A by the group G. In particular, in
the case that (G, P) = (Zk, N

k) and X is the product system arising from an action α of
N

k on A by endomorphisms, a new characterisation and analysis of NOX , closely related
to Pimsner’s dilation approach, is achieved in [7] using the powerful machinery of Arveson
envelopes of non-self-adjoint operator algebras. The authors answer in the affirmative a
question raised in [5] about whether NOX can be recovered using Arveson’s approach, and
use this to show, amongst other things, that NOX is Morita equivalent (in fact isomorphic
in the case that the αp are all injective) to a genuine crossed-product by Z

k .
In this paper we provide an analogue of Pimsner’s first representation of OX that is ap-

plicable to compactly aligned product systems over quasi-lattice ordered groups, under the
additional hypothesis that the left A-actions are implemented by nondegenerate injective ho-
momorphisms φp : A → L(X p). Our approach is to use a natural groupoid G associated to
(G, P) [18], and construct a Fell bundle over G whose cross-sectional C∗-algebra coincides
with NT X . The groupoid G has a natural boundary, which is a closed subgroupoid (see
[6]), and the restriction of our Fell bundle to this boundary subgroupoid has cross-sectional
algebra isomorphic to the algebra NOX of [27]. This is strong evidence that the relations
recorded in [27] are the right ones, at least for nondegenerate product systems with injective
left actions. As practical upshots of our results, we deduce that if the groupoid G is amenable,
then: (1) each of NT X and NOX is nuclear whenever the coefficient algebra A is nuclear,
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and (2) NOX coincides with its co-universal quotient NOr
X as in [5]. This improves on

previous results along these lines, which assume that the group G is amenable, a stronger
hypothesis than amenability of G.

We mention that the work of Kwasniewski and Szymański in [16], is related to our con-
struction. There the authors consider product systems over semigroups P that satisfy the
Ore condition but are not necessarily part of a quasi-lattice ordered pair, and assume that
the left actions in the product system are by compact operators. Here, by contrast, we insist
that P is quasi-lattice ordered, but do not require compact actions. Both approaches use the
machinery of Fell bundles, but Kwasniewski and Szymański construct Fell bundles over the
enveloping group G of P , whereas we construct a bundle over the associated groupoid G.
As mentioned above, an advantage of the latter is that G can be amenable even when G is
not; and then our results guarantee immediately that NOX and NOr

X coincide, whereas to
draw the same conclusion from [16], one must verify separately that the Fell bundle over G
constructed there is an amenable Fell bundle.

2. Preliminaries

2·1. Product systems over quasi-lattice ordered groups

Let G be a discrete group and let P be a subsemigroup of G satisfying P � P−1 = {e}.
Define a partial order � on G by

g � h ⇐⇒ g−1h ∈ P.

We call the pair (G, P) a quasi-lattice ordered group if, whenever two elements g, h ∈ G
have a common upper bound in G, they have a least common upper bound g ∨ h in G. We
write g ∨ h < ∞ if two elements g, h ∈ G have a common upper bound and g ∨ h = ∞
otherwise.

A product system over a quasi-lattice ordered group (G, P) is a semigroup X equipped
with a semigroup homomorphism d : X → P such that the following hold. For each p ∈ P ,
let X p = d−1(p). Then we require that A = Xe is a C∗-algebra, thought of as a right-Hilbert
module over itself in the usual way, and that each X p is a right-Hilbert A-module together
with a left action of A by adjointable operators denoted ϕp : A → L(X p). We require that ϕe

is given by left multiplication. Furthermore, for each p, q ∈ P with p � e, we require that
multiplication in X determines a Hilbert bimodule isomorphism X p⊗A Xq → X pq satisfying
x p ⊗xq �→ x pxq . The product system is nondegenerate if multiplication Xe × X p → X p also
determines an isomorphism Xe ⊗A X p → X p for each p; that is, if each X p is nondegenerate
as a left A-module. Every right Hilbert module is automatically nondegenerate as a right A-
module by the Hewitt–Cohen factorisation theorem.

If p, q ∈ P satisfy e � p � q, then there is a homomorphism i p−1q : L(X p) → L(Xq)

characterised by

i p−1q(S)(xy) = (Sx)y for all x ∈ X p, y ∈ X p−1q .

If we identify A with K(Xe) in the usual way then the corresponding map i p : K(Xe) →
L(X p) is i p = ϕp. We say that a product system X is compactly aligned if, whenever
S ∈ K(X p), T ∈ K(Xq) and p ∨ q < ∞ we have

i p−1(p∨q)(S)iq−1(p∨q)(T ) ∈ K(X p∨q).

If g ∈ G \ P we define ig to be 0.
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Example 2·1. The pair (Z, N) is a quasi-lattice ordered group, where � agrees with the
usual ordering on Z. Let A be a C∗-algebra and let E be an A-correspondence; i.e. E is a
right Hilbert A-module with a left action A → L(E). Let X0 := A and for each n ∈ N \ {0}
let Xn := E⊗n . Then

X := ⋃
n∈N

Xn

is a product system over (Z, N). With multiplication given by ξη := ξ ⊗ η.

Example 2·2. For each k � 1, the pair (Zk, N
k) is a quasi lattice ordered group where, for

m, n ∈ Z
k and 1 � i � k

(m ∨ n)i = max{mi , ni }.
Suppose that (�, d) is a k-graph. For each n ∈ N

k , Cc(d−1(n)) is a pre-Hilbert A = C0(�
0)

module. Let Xn = Cc(d−1(n)). Then

X = ⋃
n∈Nk Xn

is a product system over (Zk, N
k). (See [24].)

2·2. Representations of product systems

For details of the following, see [5, 13, 27].

Definition 2·3. Let X be a compactly aligned product system over a quasi-lattice ordered
group (G, P). A Toeplitz representation of X in a C∗-algebra B is a map ψ : X → B
satisfying:

(T1) ψp := ψ |X p : X p → B is linear for all p ∈ P and ψe is a homomorphism;
(T2) ψ(xy) = ψ(x)ψ(y) for all x, y ∈ X ; and
(T3) for any p ∈ P and x, y ∈ X p, ψ(〈x, y〉) = ψ(x)∗ψ(y).
Given a Toeplitz respresentation ψ : X → B, for each p ∈ P there is a homomorphism

ψ(p) : K(X p) → B satisfying

ψ(p)(θx,y) = ψp(x)ψp(y)∗.

We call a Toeplitz representation ψ : X → B Nica covariant if
(N) for all S ∈ K(X p), T ∈ K(Xq) we have

ψ(p)(S)ψ(q)(T ) =
{

ψ p∨q
(
i p−1(p∨q)(S)iq−1(p∨q)(T )

)
if p ∨ q < ∞

0 otherwise.

Following [4], we will write NT X for the universal C∗-algebra generated by a Nica-
covariant Toeplitz representation iX of X . (Fowler shows that such a C∗-algebra exists in
[13], but denotes it Tcov(X).)

Given a predicate P on P , we say P is true for large s if for every q ∈ P , there exists an
r � q such that P(s) is true whenever s � r .

We now present the definition of the Cuntz–Nica–Pimsner algebra NOX of a product sys-
tem X under the assumption that the left action on each fibre is implemented by an injective
homomorphism ϕp. This hypothesis is not needed for NOX to make sense (see [27]); but if
the left actions are not implemented by injective homomorphisms, then the relation (CNP)
as described below does not hold in NOX . In particular, this hypothesis will be necessary
in all statements that involve Cuntz–Nica–Pimsner covariance and representations of NOX :
Proposition 4·2, Theorem 5·2 and the results in Section 6
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Product systems and Fell bundles 565

Definition 2·4. Let X be a compactly aligned product system over a quasi-lattice ordered
group (G, P) and suppose that for each p ∈ P the left action φp : A → L(X p) is inject-
ive. We say a Nica covariant Toeplitz representation ψ : X → B is Cuntz–Nica–Pimsner
covariant if it satisfies the following property:
(CNP) for each finite F ⊂ P and collection of elements Tp ∈ K(X p), p ∈ F ,

if
∑

p∈F i p−1q(Tp) = 0 for large q, then
∑

p∈F ψ(p)(Tp) = 0.

We write NOX for the universal C∗-algebra generated by a Cuntz–Nica–Pimsner covariant
representation jX of X .

2·3. Fell bundles over groupoids

We say that a groupoid G is a topological groupoid if G is a topological space and the
multiplication and inversion are continuous functions. We call a topological groupoid G étale
if the unit space G(0) is locally compact and Hausdorff, and the range map r : G → G(0) is
a local homeomorphism. It follows that the source map s is also a local homeomorphism.
A bisection of G is an open subset U ⊆ G such that r |U and s|U are homeomorphisms; the
topology of a Hausdorff étale groupoid admits a basis consisting of bisections. See [10] for
an overview of étale groupoids.

Given a Hausdorff étale groupoid G, a Fell bundle over G is an upper-semicontinuous
Banach bundle p : E → G with a multiplication

E (2) = {(e, f ) ∈ E × E : (p(e), p( f )) ∈ G(2)} −→ E

and an involution

∗ : E −→ E , e �−→ e∗

satisfying the following properties:

(i) the multiplication is associative and bilinear, whenever it makes sense;
(ii) p(e f ) = p(e)p( f ) for all (e, f ) ∈ E (2);

(iii) multiplication is continuous in the relative topology on E (2) ⊆ E × E ;
(iv) ‖e f ‖ � ‖e‖‖ f ‖ for all (e, f ) ∈ E (2);
(v) p(e∗) = p(e)−1 for all e ∈ E , and involution is continuous and conjugate linear;

(vi) (e∗)∗ = e, ‖e∗‖ = ‖e‖ and (e f )∗ = f ∗e∗ for all (e, f ) ∈ E (2);
(vii) ‖e∗e‖ = ‖e‖2 for all e ∈ E ;

(viii) e∗e � 0 as an element of p−1(s(p(e)))—which is a C∗-algebra by ((i))–((vii))—for
all e ∈ E .

We denote by Eγ the fibre p−1(γ ) ⊂ E .
Given a Fell bundle E over a locally compact Hausdorff étale groupoid, we write �c(G;E )

for the vector space of continuous, compactly supported sections ξ : G → E . If H ⊆ G is a
closed subset, we will write �c(H;E ) for the compactly supported sections of the restriction
of E to H; that is, �c(H;E ) := �c(H;E |H).

There are a convolution and involution on �c(G;E ) such that for ξ, η ∈ �c(G;E ),

(ξ ∗ η)(γ ) =
∑
αβ=γ

ξ(α)η(β) and ξ ∗(γ ) = ξ(γ −1)∗.

This gives �c(G;E ) the structure of a ∗-algebra. The I -norm on �c(G;E ) is given by

‖ f ‖I := sup
u∈G(0)

(
max

( ∑
s(γ )=u

‖ f (γ )‖,
∑

r(γ )=u

‖ f (γ )‖
))

.
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566 ADAM RENNIE, DAVID ROBERTSON AND AIDAN SIMS

A ∗-homomorphism L : �c(G;E ) → B(HL) is called a bounded representation if
‖L( f )‖ � ‖ f ‖I for all f ∈ �c(G;E ). It is nondegenerate if span{L( f )ξ : f ∈
�c(G;E ), ξ ∈ HL} = HL is dense. The universal C∗-norm on �c(G;E ) is

‖ f ‖ := sup{‖L( f )‖ : L is an bounded representation}.
We define the cross-sectional algebra C∗(G,E ) to be the completion of �c(G;E ) with re-
spect to the universal C∗-norm. If H ⊆ G is a closed subgroupoid, then we write C∗(H,E )

for the completion of �c(H,E ) in the universal norm on �c(H,E ).

3. From a product system to a Fell bundle

In this section, given a product system X over a quasi-lattice ordered group (G, P), we
construct a groupoid G and a Fell bundle E over G. We will show in Section 5 that the C∗-
algebra of this Fell bundle coincides with the Nica–Toeplitz algebra of X , and has a natural
quotient that coincides with the Cuntz–Nica–Pimsner algebra.

Standing notation: we fix, for the duration of Section 3, a quasi-lattice ordered group
(G, P), and a nondegenerate compactly aligned product system X over P . For the time
being, we do not require that the left actions on the fibres of X are implemented by injective
homomorphisms; as mentioned before, this additional hypothesis will be needed only in
Proposition 4·2, Theorem 5·2 and the results of Section 6.

3·1. The groupoid

We first construct a groupoid from (G, P). This construction is by no means new—for
example, it appears in the work of Muhly and Renault [18] in the context of Wiener–Hopf
algebras. Fix a quasi-lattice ordered group (G, P). We say that ω ⊂ G is directed if

g, h ∈ ω =⇒ ∞� g ∨ h ∈ ω

and hereditary if

h ∈ ω and g � h =⇒ g ∈ ω.

Let � = {ω ⊂ G : ω is directed and hereditary}. With the relative product topology in-
duced by identifying � with a subset of {0, 1}G in the usual way, � is a totally disconnected
compact Hausdorff space: the sets

Z(A0, A1) := {ω ∈ � : g ∈ Ai =⇒ χω(g) = i},
indexed by pairs A0, A1 of finite subsets of G constitute a basis of compact open sets.

We say that ω ∈ � is maximal if ω ⊂ ρ ∈ � implies ω = ρ. Let �max = {ω ∈ � :
ω is maximal}. Define the boundary of � to be

∂� := �max ⊂ �.

Given g ∈ G and ω ∈ �, let

gω := {gh : h ∈ ω}.
For finite A0, A1 ⊆ G and g ∈ G, we have g−1Z(A0, A1) = Z(g−1 A0, g−1 A1). Hence
g · ω := gω defines an action of G by homeomorphisms of �. Given p ∈ P , the set
ωp := {g ∈ G : g � p} belongs to �, so we can regard P as a subset of �.

PROPOSITION 3·1. The boundary ∂� is invariant under the action of G.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004117000202
Downloaded from https://www.cambridge.org/core. University of New England, on 09 Nov 2021 at 23:01:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004117000202
https://www.cambridge.org/core


Product systems and Fell bundles 567

Proof. By continuity of the G-action, it suffices to show that �max is invariant. Fix ω ∈
�max and g ∈ G and suppose that gω ⊂ ρ for some ρ ∈ �. Then ω ⊂ g−1ρ and hence
ω = g−1ρ, since ω is maximal. So gω = gg−1ρ = ρ.

The set

G = {(g, ω) : P � ω �∅ and P � gω �∅}
becomes a groupoid when endowed with the operations

(g, hω)(h, ω) = (gh, ω) and (g, ω)−1 = (g−1, gω).

The unit space is {e} × �, which we identify with �, and the structure maps are

r(g, ω) = (e, gω) and s(g, ω) = (e, ω).

One can check that G is equal to the restriction of the transformation groupoid G � � to
the closure of the copy of P in �; in symbols, G = (G � �)|P . We write G|∂� for the
subgroupoid

G|∂� := {(g, ω) ∈ G : ω ∈ ∂�}.
Notice that for any (g, ω) ∈ G, s is bijective on the open neighbourhood {g} × � ⊂ G, and
so G, and then also ∂G, are étale groupoids.

3·2. The fibres of the Fell bundle

For a fixed r ∈ P and any p, q ∈ P there is a map

ir : L(X p, Xq) −→ L(X pr , Xqr )

such that, for x ∈ X p and y ∈ Xr

ir (S)(xy) = S(x)y.

There is no notational dependence on p and q, but this will not cause confusion—indeed, it
is helpful to think of ir as a map from

⊕
p,q∈P L(X p, Xq) to

⊕
p,q∈P L(X pr , Xqr ).

For ω ∈ � and p ∈ ω, we define [p, ω) := {q ∈ ω : p � q}. Given any (g, ω) ∈ G, we
have [e ∨ g−1, ω) = {p ∈ P �ω : gp ∈ P}, and this set is directed (under the usual ordering
on P). So we can form the Banach-space direct limit

lim−→p∈[e∨g−1,ω)
L(X p, Xgp)

with respect to the maps ir : L(X p, Xgp) → L(X pr , Xgpr ) where pr, gpr ∈ ω. By definition
of the direct limit, there are bounded linear maps L(X p, Xgp) → lim−→L(X p, Xgp), p ∈
[e∨g−1, ω), that are compatible with the linking maps ir . To lighten notation we regard all of
these maps as components of a single map i(g,ω) : ⊕

p L(X p, Xgp) → lim−→L(X p, Xgp). Since
each K(X p, Xgp) ⊆ L(X p, Xgp) the map i(g,ω) restricts to a map i(g,ω) : K(X p, Xgp) →
lim−→L(X p, Xgp) for each p ∈ [e ∨ g−1, ω). So we can define

E(g,ω) := span
⋃

p∈[e∨g−1,ω) i(g,ω)(K(X p, Xgp)) ⊆ lim−→L(X p, Xgp).

LEMMA 3·2. Each Aω := E(e,ω) is a C∗-algebra and each E(g,ω) is an Agω–Aω imprimit-
ivity bimodule.

Proof. By definition of the maps ir , if T ∈ L(X p, X p′) and S ∈ L(X p′, X p′′), then
ir (T )ir (S) = ir (T S), and ir (T )∗ = ir (T ∗). Using this, one checks that, identifying each
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L(X p ⊕ Xgp) with the algebra of block-operator matrices
(

L(X p) L(Xgp,X p)

L(X p,Xgp) L(Xgp)

)
, the maps ir

determine a homomorphism ir : L(X p ⊕ Xgp) → L(X pr ⊕ Xgpr ). In the same vein as above,
we use the notation ı̃g,ω for all of the homomorphisms L(X p ⊕ Xgp) → lim−→L(X p, Xgp).

The following is adapted from the proof of [17, lemma 4·1]. Since ω is directed, each finite
subset H ⊆ [e ∨ g−1, ω) is contained in a finite F ⊆ [e ∨ g−1, ω) which is closed under ∨,
and each such F has a maximum element pF . By definition of the maps ir described in the
preceding paragraph, each s ∈ F satisfies is−1 pF (K(Xs ⊕ Xgs)) ⊆ is−1 pF (L(Xs ⊕ Xgs)) ⊆
L(X pF ⊕ L(XgpF ). For each such F , let

BF :=
∑
s∈F

is−1 pF (K(Xs ⊕ Xgs)) ⊆ L(X pF ⊕ XgpF ).

If F ⊆ ω is finite with more than one element and ∨-closed, and if q ∈ F is minimal, then
F ′ := F \ {q} is also ∨ closed, and pF ′ = pF . We have BF = iq−1 pF (K(Xq ⊕ Xgq)) + BF ′ .
Nica covariance and minimality of q ensures that

iq−1 pF (K(Xq ⊕ Xgq))is−1 pF (K(Xs ⊕ Xgs)) ⊆ i(q∨s)−1 pF (K(Xq∨s ⊕ Xg(q∨s))) ⊆ BF ′,

so BF ′ BF , BF BF ′ ⊆ BF ′ . Assuming as an inductive hypothesis that BF ′ is a C∗-algebra, we
deduce from [8, corollary 1·8·4] that BF is a C∗-algebra. Since each B{p} = K(X p ⊕ Xgp) is
clearly a C∗-algebra, we conclude by induction that each BF is a C∗-algebra. By definition
ı̃g,ω carries each K(X p ⊕ Xgp) into lim−→L(X p ⊕ Xgp), and we deduce that

span
⋃

p∈[e∨g−1,ω) ı̃g,ω(K(X p ⊕ Xgp)) ⊂ lim−→L(X p ⊕ Xgp)

is canonically isometrically isomorphic to Lg,ω := lim−→F
ı̃g,ω(BF), so is a C∗-algebra.

Put p = e ∨ g−1, so p ∈ ω � P and gp ∈ gω � P . Since X is nondegenerate,
the spaces Aω and Agω appear as the complementary full corners ı̃g,ω(1X p)Lg,ω ı̃g,ω(1X p)

and ı̃g,ω(1Xgp)Lg,ω ı̃g,ω(1Xgp) of Lg,ω, so they are C∗-algebras. Furthermore, E(g,ω) =
ı̃g,ω(1Xgp)Lg,ω ı̃g,ω(1X p), and since ı̃g,ω(1Xgp) and ı̃g,ω(1X p) are full projections, we deduce
that Eg,ω is an Agω–Aω-imprimitivity bimodule with linking algebra Lg,ω.

3·3. The operations on the Fell bundle

Let

E := ⋃
(g,ω)∈G E(g,ω).

Then E is a bundle over G, with π : E → G defined by π(E(g,ω)) = {(g, ω)}.
LEMMA 3·3. Fix p, p′, q, q ′ ∈ P with p ∨ q ′ < ∞ and let r = p−1(p ∨ q ′), and

r ′ = q ′−1(p ∨ q ′). Then for any S ∈ K(X p, X p′) and T ∈ K(Xq, Xq ′) we have

ir (S)ir ′(T ) ∈ K(Xqr ′, X p′r ).

Proof. Since both the left and right actions are nondegenerate, it is enough to prove the
result for SU and V T where S ∈ K(X p,p′), U ∈ K(X p) and T ∈ K(Xq, Xq ′), V ∈ K(Xq ′).
We have

ir (SU )ir ′(V T ) = ir (S)ir (U )ir ′(V )ir ′(T ).

Since X is compactly aligned, we have ir (U )ir ′(V ) ∈ K(X p∨q ′), and hence ir (SU )ir ′(V T ) ∈
K(Xqr ′, X p′r ) as claimed.
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Fix ((g, hω), (h, ω)) ∈ G(2), hp ∈ [e ∨ g−1, hω), q ∈ [e ∨h−1, ω) and S ∈ K(Xhp, Xghp),
T ∈ K(Xq, Xhq). Let r = p−1(p ∨ q), r ′ = q−1(p ∨ q), and define

i(g,hω)(S)i(h,ω)(T ) := i(gh,ω) (ir (S)ir ′(T )) .

The right hand side makes sense by Lemma 3·3. This extends to a multiplication

E (2) := {(e, f ) ∈ E × E : (π(e), π( f )) ∈ G(2)} −→ E .

For (g, ω) ∈ G and p ∈ [e ∨ g−1, ω), the usual adjoint operation ∗ : L(X p, Xgp) →
L(Xgp, X p) = L(Xgp, Xg−1(gp)) is isometric. So for each (g, ω) it extends to an involution
lim−→L(X p, Xgp) → lim−→L(Xgp, X p), which then restricts to an involution E(g,ω) → E(g−1,gω).

3·4. The topology on the Fell bundle

Given p, q ∈ P and S ∈ L(X p, Xq) define f S : G → ⋃
(g,ω)∈G lim−→p∈[e∨g−1,ω)

L(X p, Xgp)

by

f S(g, ω) =
{

i(qp−1,ω)(S) if g = qp−1 and p ∈ ω,

0 otherwise.

LEMMA 3·4. For any p, q ∈ P and any S ∈ L(X p, Xq), the map

(g, ω) �−→ ‖ f S(g, ω)‖
is upper semicontinuous.

Proof. Since ‖ f S(g, ω)‖ = ‖ f S∗ S(ω)‖1/2 for any (g, ω) ∈ G, it is enough to check upper
semicontinuity on the unit space G(0) = �. Fix p ∈ P , S ∈ L(X p) and α > 0. We must
show that the set

{ω : ‖ f S(ω)‖ < α}
is open. Since p � ω implies that f S(ω) = 0, we see that

{ω : ‖ f S(ω)‖ < α} = Z({p}, ∅) � {ω : p ∈ ω and ‖iω(S)‖ < α}
and so it is enough to show that {ω : p ∈ ω and ‖ f S(ω)‖ < α} is open. Fix ω in this set. By
the definition of the norm on Aω, and using the fact that each iqp−1 is norm-decreasing as a
C∗-homomorphism, we have

‖ f S(ω)‖ = ‖iω(S)‖ = lim
q�p

‖i p−1q(S)‖ = inf
q�p

‖i p−1q(S)‖.
Therefore, there exists a q � p such that ‖i p−1q(S)‖ < α. Suppose that ω′ ∈ Z(∅, {q}).
Then p ∈ ω′, and so

‖ f S(ω′)‖ = ‖iω′(S)‖ � ‖i p−1q(S)‖ < α

as required.

Now let

� = span{ f S : p, q ∈ P, S ∈ K(X p, Xq)}.
Given finitely many pairs (p1, q1), . . . , (pn, qn) and operators Si ∈ K(X pi , Xqi ), there are
finitely many maximal subsets F1, . . . , Fm of {p1, . . . , pn} such that each Fj has an upper
bound r j in P . Putting Tj := ∑

pi ∈Fj
i p−1

i r j
(Si) for each j , we have Tj ∈ L(Xr j , Xqi p−1

i r j
),

and since each iqi p−1
i ,ω ◦ i p−1

i r j
= iqi p−1

i ,ω|L(X pi ,Xqi )
, we have∑n

i=1 f Si = ∑m
j=1 f Tj ,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004117000202
Downloaded from https://www.cambridge.org/core. University of New England, on 09 Nov 2021 at 23:01:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004117000202
https://www.cambridge.org/core


570 ADAM RENNIE, DAVID ROBERTSON AND AIDAN SIMS

where the f Tj have mutually disjoint support. So Lemma 3·4 shows that the sections in �

are upper semicontinuous.
Given (g, ω) ∈ G we have

{ f (g, ω) : f ∈ �} = {
i(g,ω)(S) : p ∈ [e ∨ g−1, ω), S ∈ K(X p, Xgp)

}
= ⋃

[e∨g−1,ω) i(g,ω)(K(X p, Xgp))

which densely spans E(g,ω). Hence [12, section II·13·18] shows that there is a unique topo-
logy on E such that (E , π) is a Banach bundle and all the functions in � are continuous
cross sections of E ; and E becomes a Fell-bundle over G in this topology.

4. Representing the product system

4·1. Toeplitz representation

Let (G, P) be a quasi-lattice ordered group, and X a nondegenerate compactly aligned
product system over P . For p ∈ P , identify X p with K(Xe, X p) as usual: x ∈ X p is iden-
tified with the operator a �→ x · a. We then write x∗ for the operator y �→ 〈x, y〉Xe in
K(X p, Xe). Define ψp : X p → C∗(G,E ) by ψp(x) = f x .

PROPOSITION 4·1. Let (G, P) be a quasi-lattice ordered group, and X a nondegenerate
compactly aligned product system over P. Let G and E be the groupoid and Fell bundle
constructed in Section 3. The map ψ : X → C∗(G,E ) such that ψ |X p = ψp is a Nica
covariant Toeplitz representation of X, and for S ∈ K(X p), we have ψ(p)(S) = f S.

Proof. We need to check the conditions of Definition 2·3. For x, y ∈ X p and a ∈ Xe,

ψp(x)∗ψp(y)(g, ω) = [( f x ∗
) ∗ f y](g, ω) =

∑
hω�P�∅

f x((gh−1, hω)−1)∗ f y(h, ω)

=
∑

hω�P�∅

f x(hg−1, gω)∗ f y(h, ω) = δg,e f x(p, ω)∗ f y(p, ω)

= δg,ei(p,ω)(x)∗i(p,ω)(y) = δg,ei(p−1,pω)(x∗)i(p,ω)(y)

= δg,eiω(〈x, y〉A) = f 〈x,y〉A(g, ω) = ψe(〈x, y〉).
Likewise,

[ψe(a)ψp(x)](g, ω) = [ f a ∗ f x ](g, ω) =
∑

hω�P�∅

f a(gh−1, hω) f x(h, ω)

= δg,pi pω(a)i(p,ω)(x) = δg,pi(p,ω)(ax) = f ax(g, ω) = ψp(ax)

and

[ψp(x)ψe(a)](g, ω) = [ f x ∗ f a](g, ω) =
∑

hω�P�∅

f x(gh−1, hω) f a(h, ω)

= δg,pi(p,ω)(x)iω(a) = δg,pi(p,ω)(xa) = f xa(g, ω) = ψp(xa).
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To see that each ψ(p)(S) = f S , consider S = θx,y and calculate:

ψ(p)(θx,y)(g, ω) = [ψp(x)ψp(y)∗](g, ω) = [ f x ∗ f y](g, ω)

=
∑

hω�P�∅

f x(gh−1, hω) f y((h, ω)−1)∗

=
∑

hω�P�∅

f x(gh−1, hω) f y(h−1, hω)∗ = δg,pi(p,p−1ω)(x)i(p,p−1ω)(y)∗

= δg,pi(p,p−1ω)(x)i(p−1,ω)(y∗) = δg,piω(θx,y) = f θx,y (g, ω).

So continuity and linearity give ψ(p)(S) = f S for all S ∈ K(X p). Fix p, q ∈ P with
p ∨ q < ∞ and S ∈ K(X p), T ∈ K(Xq). Then

[ψ(p)(S)ψ(q)(T )](g, ω) = [ f S ∗ f T ](g, ω) =
∑

hω�P�∅

f S(gh−1, hω) f T (h, ω)

= δg,eiω(S)iω(T ) = δg,eiω(i p−1(p∨q)(S)iq−1(p∨q)(T ))

= f i p−1(p∨q)
(S)iq−1(p∨q)

(T )(g, ω)

= [ψ(p∨q)(i p−1(p∨q)(S)iq−1(p∨q)(T ))](g, ω).

Thus all the conditions of Definition 2·3 are satisfied.

4·2. Restriction of the representation to the boundary groupoid

Consider πp : X p → C∗(G|∂�,E ) satisfying

πp(x) = f x |G|∂�

Define π : X → C∗(G|∂�,E ) by π |X p = πp.

PROPOSITION 4·2. Let (G, P) be a quasi-lattice ordered group, and X a nondegenerate
compactly aligned product system over P. Suppose that the homomorphisms φp : A →
L(X p) implementing the left actions are all injective. Let G and E be the groupoid and Fell
bundle constructed in Section 3. The map π : X → C∗(G|∂�,E ) is a Cuntz–Nica–Pimsner
covariant Toeplitz representation.

Before we prove this, we need two lemmas.

LEMMA 4·3. Suppose that ω ∈ ∂� and q ∈ P satisfy q ∨ p < ∞ for all p ∈ ω. Then
q ∈ ω.

Proof. Consider the set

q ∨ ω := {q ∨ p : p ∈ ω}.
If q ∨ p1, q ∨ p2 ∈ q ∨ ω we have

(q ∨ p1) ∨ (q ∨ p2) = q ∨ (p1 ∨ p2) ∈ q ∨ ω

since p1 ∨ p2 ∈ ω. So q ∨ ω is directed. Let Her(q ∨ ω) denote the hereditary closure
Her(q ∨ ω) = {g ∈ G : g � p for some p ∈ q ∨ ω} of q ∨ ω. Notice that q = q ∨ e ∈
Her(q ∨ ω). For any p ∈ ω,

p � q ∨ p ∈ q ∨ ω

and hence p ∈ Her(q ∨ω). So ω ⊂ Her(q ∨ω) and hence ω = Her(q ∨ω) because ω ∈ ∂�.
So q ∈ ω.
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LEMMA 4·4. Fix a sequence (ωn)
∞
n=1 ⊂ � with p ∈ ωn for all n, and suppose that

ωn → ω. Then p ∈ ω, and for T ∈ K(X p),

iωn (T ) −→ iω(T ) in E as n −→ ∞.

Proof. We know that the set Z(∅, {p}) is closed and ωn ∈ Z(∅, {p}) for all n. Hence
ω ∈ Z(∅, {p}) and so p ∈ ω.

Now, fix T ∈ K(X p) and U ⊂ E open with iω(T ) ∈ U . By definition of the topology
on E , the function f T is continuous, so ( f T )−1(U ) ⊂ G is open. Since ωn → ω and G
has the relative product topology, (e, ωn) → (e, ω) in G. We have f T (e, ω) = iω(T ) ∈ U ,
and hence (e, ω) ∈ ( f T )−1(U ). Thus there exists N such that (e, ωn) ∈ ( f T )−1(U ) for all
n > N , and so

f T (e, ωn) = iωn (T ) ∈ U for all n > N ,

giving iωn (T ) → iω(T ).

Proof of Proposition 4·2. Replacing ω ∈ � with ω ∈ ∂� in the proof of Proposition
4·1 shows that π is a Nica covariant Toeplitz representation. Since all the left actions are
by injective homomorphisms, the representation π is Cuntz–Nica–Pimsner covariant if it
satisfies relation (CNP) of Definition 2·4.

Fix a finite set F ⊂ P and elements Tp ∈ K(X p), p ∈ F such that∑
p∈F iqp−1(Tp) = 0

for large q. We must show that
∑

p∈F π(p)(Tp) = 0. So, since each π(p)(T ) = ψ(p)(T )|∂�,
we have to check that ∑

p∈F f Tp(g, ω) = 0

for all (g, ω) ∈ G|∂�. Fix (g, ω) ∈ G|∂� with ω ∈ �max, and observe that∑
p∈F f Tp(g, ω) = δg,e

∑
p∈F�ω iω(Tp).

Since F � ω ⊂ P is finite and ω is directed, the element

r := ∨
p∈F�ω p

belongs to ω, and ∑
p∈F�ω iω(Tp) = iω

(∑
p∈F�ω i p−1r (Tp)

)
.

Since ω is directed and countable we can choose a sequence (rn)
∞
n=1 ⊂ ω satisfying:

(i) r1 � r ;
(ii) rn+1 � rn for all n;

(iii) for all q ∈ ω, there exists n with rn � q.

For each n, choose qn � rn and ωn ∈ ∂� with qn ∈ ωn (and hence rn ∈ ωn) such that∑
p∈F i p−1qn (Tp) = 0.

Then in particular, ∑
p∈F�ωn

i p−1qn (Tp) = ∑
p∈F i p−1qn (Tp) = 0 (4·1)

since p ∈ F \ ωn implies p � qn and so i p−1qn
p = 0. We claim that ωn → ω as n → ∞. To
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see this fix Z(A0, A1) containing ω. Since A1 ⊆ ω and ω is directed, A1 has an upper bound
in P . Let

s = ∨
p∈A1

p.

By definition of (rn)
∞
n=1 there is an n1 with rn1 � s. Then A1 ⊂ ωrn for any n � n1.

For each q ∈ A0, let Nq := max{n : q ∈ ωn}. Suppose for contradiction that q ∈ A0

satisfies Nq = ∞. For any p ∈ ω we can find r j � p. Since Nq = ∞ we can find k � j
with q ∈ ωk . But then

q ∨ rk < ∞ =⇒ q ∨ r j < ∞ =⇒ q ∨ p < ∞.

Since p ∈ ω was arbitrary we deduce that q ∨ p < ∞ for all p ∈ ω and hence q ∈ ω by
Lemma 4·3. This contradicts ω ∈ Z(A0, A1). Therefore Nq is finite for every q ∈ A0. Now
put

N := max
{
n1, maxq∈A0 Nq

}
< ∞.

Then ωn ∈ Z(A0, A1) for any n > N and ωn → ω as claimed. Since F is finite, there exists
NF such that n � NF implies F � ωn = F � ω.

Hence, using Lemma 4·4 at the third equality and (4·1) at the last one, we have

∑
p∈F

f Tp(g, ω) = δg,e

∑
p∈F�ω

iω(Tp) = δg,eiω

⎛
⎝ ∑

p∈F�ω

i p−1r (Tp)

⎞
⎠

= δg,e lim
n→∞ iωn

⎛
⎝ ∑

p∈F�ω

i p−1r (Tp)

⎞
⎠ = δg,e lim

n→∞ iωn

⎛
⎝ ∑

p∈F�ω

i p−1qn (Tp)

⎞
⎠

= δg,e lim
n→∞ iωn

⎛
⎝ ∑

p∈F�ωn

i p−1qn (Tp)

⎞
⎠ = 0.

Since �max is dense in ∂� and
∑

p∈F π(p)(Tp) is a continuous section of E , we deduce that∑
p∈F π(p)(Tp) = 0.

5. The isomorphisms

In this section, we prove our main results: that the C∗-algebra of the Fell bundle E con-
structed in Section 3 is isomorphic to the Nica–Toeplitz algebra NT X and, under the hy-
pothesis that the left actions of A on the X p are implemented by injective homomorphisms,
that the C∗-algebra of the restriction of E to the boundary groupoid G|∂� is isomorphic to
the Cuntz–Nica–Pimsner algebra NOX .

THEOREM 5·1. Let X be a compactly aligned product system over a quasi-lattice ordered
group (G, P). Let G and E be the groupoid and Fell bundle constructed in Section 3. Then
the homomorphism � : NT X → C∗(G,E ) induced by the Toeplitz representation ψ of
Proposition 4·1 is an isomorphism.

Proof. We begin by showing that � is surjective. By definition of the topology on E ,
it suffices to show that f S ∈ Im � for all S ∈ K(X p, Xq). If S, T ∈ K(X p, Xq) then
f S + f T = f S+T , so it suffices to show that f θy,x ∈ Im � for all x ∈ X p and y ∈ Xq . Given
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(g, ω) ∈ � we have

[ψq(y)ψp(x)∗](g, ω) = [ f y ∗ f x ∗](g, ω) =
∑

hω�P�∅

f y(gh−1, hω) f x(h−1, hω)∗

= δg,qp−1 f y(q, p−1ω) f x(p, p−1ω)∗ = δg,qp−1 i(q,p−1ω)(x)i(p,p−1ω)(y)∗

= δg,qp−1 i(q,p−1ω)(x)i(p−1,ω)(y∗) = δg,qp−1 i(qp−1,ω)(xy∗) = f θx,y (g, ω)

as required. To see that � is injective, we construct an inverse. We begin by showing that
there is a well-defined map � : span

( ⋃
p,q∈P{ f S : S ∈ K(X p, Xq)}

) → NT X satisfying

�( f θy,x ) = iX (y)iX (x)∗ for all x, y ∈ X . (5·1)

To see that such a map exists, suppose that∑n
j=1 f θy j ,x j = 0 ∈ �c(G;E ).

It suffices to show that ∑n
j=1 iX (y j )iX (x j )

∗ = 0 ∈ NT X .

Since the Fock representation l : X → L(F(X)) is isometric [13, page 340], this is equival-
ent to ∑n

j=1 l(y j )l(x j )
∗ = 0 ∈ L(F(X)).

To see this, fix z ∈ Xr and a ∈ A. For any p ∈ P we have⎛
⎝ n∑

j=1

l(y j )l(x j )
∗(z · a)

⎞
⎠ (p) =

∑
p j �r

q j p−1
j r=p

y j

(
i p−1

j r (x j )
∗(z · a)

)
.

Hence
(∑n

j=1 f θy j ,x j

)
∗ f θz,a = 0, and so

0 =
⎛
⎝( n∑

j=1

f θy j ,x j

)
∗ f θz,a

⎞
⎠ (p, [e]) =

∑
q j p−1

j r=p
p j ∈[r ]

i(q j p−1
j ,[r ])(θy j ,x j )i(r,[e])(θ(z,a))

=
∑
p j �r

q j p−1
j r=p

i p−1
j r (θy j ,x j )ie(θz,a) =

∑
p j �r

q j p−1
j r=p

y j

(
i p−1

j r (x j )
∗(z · a)

)
.

Hence (∑n
j=1 l(y j )l(x j )

∗(z · a)
)

(p) = 0.

Since z ·a and p were arbitrary, we see that there is a well-defined linear map satisfying (5·1).
We now show that � in continuous in the inductive limit topology. Suppose that fi → f

in �c(G;E ). Fix a compact subset K ⊂ G such that f and each of the fi vanishes off K .
Write f = ∑n

j=1 f S j where each Sj ∈ K(X p j , Xq j ). Inductively define

A1 = supp( f S1) and Ak+1 = supp( f Sk+1) \
( ⋃k

j=1 Ak

)
, for 1 � k � n.

Then each Ak ⊂ G is a bisection, so that ‖( fi − f )|Ak ‖C∗(G,E ) = ‖( fi − f )|Ak ‖∞ for all i .
Define the set

An+1 = K \
(⋃n

j=1 Ak

)
.
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Without loss of generality, we may assume that An+1 is also a bisection. Then there exists
N � 1 such that for all i � N and 1 � k � n

‖( fi − f )|Ak ‖∞ <
ε

n + 1
.

So for i � N

‖�( fi) − �( f )‖ =
∥∥∥

n∑
j=1

�( fi − f S j )

∥∥∥ =
∥∥∥

n∑
j=1

n+1∑
k=1

�(( fi − f S j )|Ak )

∥∥∥

�
n∑

j=1

n+1∑
k=1

‖�(( fi − f S j )|Ak )‖ �
n∑

j=1

n+1∑
k=1

‖( fi − f S j )|Ak ‖∞ < ε.

So �( fi) → �( f ). Since the inductive limit topology on �c(G;E ) is weaker than the norm
topology, we see that � is bounded in norm. Since �c(G;E ) is norm dense in C∗(G,E ), �

extends to a ∗-homomorphism

� : C∗(G,E ) −→ NT X

which is, by construction, an inverse for �. So C∗(G,E )�NT X .

THEOREM 5·2. Let X be a nondegenerate compactly aligned product system over a
quasi-lattice ordered group (G, P). Suppose that the homomorphisms φp : A → L(X p)

implementing the left actions are all injective. Let G and E be the groupoid and Fell bundle
constructed in Section 3. Then the homomorphism � : NOX → C∗(G|∂�,E ), induced by
the Cuntz–Nica–Pimsner covariant representation π of Proposition 4·2, is an isomorphism.

Before we prove Theorem 5·2, we need to do some background work on coactions. The
first lemma that we need is a general statement about coactions of discrete groups. The
following brief summary of discrete coactions is based on [9, section A·3]. Given a dis-
crete group G, the universal property of C∗(G) shows that there is a homomorphism δG :
C∗(G) → C∗(G)⊗C∗(G) whose extension to MC∗(G) satisfies δg(iG(g)) = iG(g)⊗iG(g).
A coaction of a discrete group G on a C∗-algebra A is a nondegenerate homomorphism
δ : A → A ⊗ C∗(G) which satisfies the coaction identity

(δ ⊗ 1C∗(G)) ◦ δ = (1 ⊗ δG) ◦ δ.

The coaction δ is coaction-nondegenerate if span δ(A)(1M(A) ⊗ C∗(G)) = A ⊗ C∗(G).
It is claimed at the beginning of [23, section 1] that, in our setting of discrete groups G,

every coaction of a discrete group is coaction-nondegenerate. This assertion was used in
results of [5] that we in turn will want to use in the proof of Theorem 5·2. However, this
assertion in [23] depends on [22, proposition 2·5], and a gap has recently been identified in
the proof of this result [15]. The following simple lemma is well known, but hard to find in
the literature. We will use it first to show that the coactions used in [5] are indeed coaction-
nondegenerate (so the results of [5] are not affected by the issue identified in [15]), and then
again in the proof of Lemma 5·5 below.

Recall that if δ : A → A ⊗ C∗(G) is a coaction of a discrete group, then for each g ∈ G,
we write Ag for the spectral subspace {a ∈ A : δ(a) = a ⊗ iG(g)}.

LEMMA 5·3. Let A be a C∗-algebra and G a discrete group. Suppose that δ : A →
A⊗C∗(G) is a coaction. Then δ is coaction-nondegenerate if and only if A = span

⋃
g∈G Ag.
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Proof. First suppose that δ is coaction-nondegenerate. Then [9, proposition A·31] shows
that A is densely spanned by its spectral subspaces. Now suppose that A is densely spanned
by its spectral subspaces. Fix a typical spanning element a ⊗ iG(G) of A ⊗ C∗(G). Fix ε

and choose finitely many gi ∈ G and ai ∈ Agi such that ‖a − ∑
i ai‖ < ε. Then∥∥∥ ∑

i δ(ai)(1 ⊗ iG(g−1
i g)) − a ⊗ iG(g)

∥∥∥ =
∥∥∥(∑

i ai − a
)

⊗ iG(g)

∥∥∥ < ε,

completing the proof.

COROLLARY 5·4. The coactions of G on NT X and NOX used in [5] are coaction-
nondegenerate.

Proof. By construction (see [13]), the algebra NT X is the closure of the span of the
elements iX (x)iX (y)∗ where x, y ∈ X . Hence NOX is densely spanned by the corresponding
elements jX (x) jX (y)∗. The coactions of [5] are given by δ(iX (x)) = iX (x) ⊗ iG(g) and
δ( jX (x)) = jX (x) ⊗ iG(g) whenever x ∈ Xg. So each spanning element of NT X and of
NOX belongs to a spectral subspace for δ. Hence NT X and NOX are spanned by their
spectral subspaces. Thus Lemma 5·3 shows that the coactions δ are coaction-nondegenerate.

The second lemma that we need establishes that the C∗-algebra of the Fell bundle of
Section 3 carries a coaction of G that is compatible with the gauge coactions on NT X and
NOX .

LEMMA 5·5. Let c be a continuous grading of a Hausdorff étale groupoid G by a discrete
group G, and let E be a Fell bundle over G. Let iG : G → C∗(G) denote the universal rep-
resentation of G. There is a coaction-nondegenerate coaction δ of G on C∗(E ,G) satisfying

δ( f ) = f ⊗ iG(g)

whenever g ∈ G and f ∈ �c(G;E ) satisfies supp( f ) ⊂ c−1({g}).
Proof. As a vector space, the space �c(G;E ) is equal to the algebraic direct sum⊕
g∈G �c(c−1(g);E ). So there is a linear map δ : �c(G;E ) → �c(G;E ) ⊗ C∗(G) such that

δ( f ) = f ⊗ iG whenever f ∈ �c(c−1(g);E ). It is routine to check that this map is multiplic-
ative and ∗-preserving and continuous in the inductive-limit topology, and therefore extends
to a homomorphism δ : C∗(G,E ) → C∗(G,E )⊗C∗(G). An elementary calculation checks
the coaction identity on f ∈ �c(c−1(g);E ), which suffices by linearity and continuity. To
check that δ is coaction-nondegenerate, observe that the spectral subspaces C∗(G,E )g are
precisely the spaces �c(c−1(g));E ). By definition, C∗(G,E ) is the closure of �c(G;E ),
which is spanned by the spaces �c(c−1(g));E ). It follows that C∗(G,E ) is densely spanned
by its spectral subspaces, and so δ is coaction-nondegenerate by Lemma 5·3.

Recall that the Cuntz–Nica–Pimsner algebra NOX has a quotient NOr
X that possesses a

co-universal property described in [5, theorem 4·1].

Proof of Theorem 5·2. To show that � is an isomorphism, it is enough to show that the
homomorphism � = �−1 of (5·1) factors through the quotient map

ρ : C∗(G,E ) −→ C∗(G|∂�,E )

defined on �C(G;E ) by

ρ( f ) = f |G|∂�
.
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To see this we use the co-universal property of NOr
X . Since G|∂� is G-graded via (g, ω) �→

g, Lemma 5·5 gives a coaction β : C∗(G|∂�,E ) → C∗(G|∂�,E ) ⊗ C∗(G) such that

β( f S) = f S ⊗ iG(qp−1) for all X ∈ K(X p, Xq).

For any x ∈ X p, we have

β(π(x)) = β( f x) = f x ⊗ iG(p) = ((π ⊗ 1) ◦ δ)( jX (x)),

where jX : X → NOX is the universal representation. So π is gauge-compatible in the sense
of [5]. We aim to apply [5, Theorem 4.1] to π , so we must show that πe : A → C∗(G|∂�,E )

is injective. Since the φp are injective, the maps ir : L(X p) → L(X pr ) appearing in the
construction of the fibres Aω, ω ∈ G(0) in Section 3·2 are all injective. Hence the canonical
map iω : A = Xe → Xω is injective for each unit ω. In particular, for each a ∈ A, the
element πe(A) := f a satisfies f a(ω) = iω(a)� 0 for all ω, and πe is injective.

Now, writing λr for the canonical quotient map from NOX to NOr
X , [5, theorem 4·1]

yields a homomorphism

φ : C∗(G|∂�,E ) −→ NOr
X

that carries f S to λr ( j (p)

X (S)) for S ∈ K(X p).
Fix f ∈ ker(ρ). Without loss of generality, assume that supp( f ) ⊂ G is a bisection.

Then φ(ρ( f )) = 0 and hence φ(ρ( f ∗ f )) = 0. So we have λr (ρ(�( f ∗ f ))) = 0. But
ρ(�( f ∗ f )) ∈ (NOX )e and λr |(NOX )e is isometric because the reduction map for any coac-
tion is isometric on each spectral subspace. Hence

‖q(�( f ))‖2 = ‖q(�( f ∗ f ))‖ = 0

as required.

6. Applications

To state the results in this section, we recall that a C∗-algebra A is nuclear if the iden-
tity homomorphism on A is point-norm approximately factorisable by completely positive
contractions through finite-dimensional C∗-algebras [3, definitions 2·1·1 and 2·3·1]. It turns
out that A is nuclear if and only if A ⊗min B = A ⊗max B for all C∗-algebras B [3, the-
orem 3·8·7]. We also recall that a groupoid is amenable if it admits an approximate invariant
mean (see, for example, [1, proposition 2·2·13(ii)]). By [1, corollary 6·2·14], for a locally
compact étale groupoid (and indeed more generally), amenability is equivalent to nuclearity
of the associated reduced C∗-algebra.

Takeishi [28] has recently characterised nuclearity for C∗-algebras of Fell bundles over
étale groupoids as follows.

THEOREM 6·1 ([28, theorem 4·1]). Let E be a Fell bundle over an étale locally compact
Hausdorff groupoid G. If G is amenable, then the following conditions are equivalent:
(i) the C∗-algebra C∗

r (E ) is nuclear;
(ii) the fibre Ex is nuclear for every x ∈ G(0);

(iii) the C∗-algebra C0(E |G(0) , G(0)) is nuclear.

For our example, the following lemma shows that (ii) holds whenever the coefficient
algebra Xe of the product system X is nuclear.
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LEMMA 6·2. Let (G, P) be a quasi-lattice ordered group, and let X be a nondegenerate
compactly aligned product system over P. If the coefficient algebra Xe of the product system
is nuclear, then the fibres Aω, ω ∈ � = G(0) are nuclear.

Proof. Fix ω ∈ �. Arguing as in Lemma 3·2, for each finite F ⊆ ω that is closed under
∨, writing pF for the maximum element of F the set BF = ∑

p∈F i p−1 pF (K(X p)) is a C∗-
algebra. If F is not a singleton and q ∈ F is minimal, then BF\{q} is an ideal of BF and the
quotient BF/BF\{q} is a quotient of iq−1 pF (K(Xq)) and hence a quotient of K(Xq).

Each K(X p) is nuclear because it is Morita equivalent to Xe via X p, and nuclearity is
preserved by Morita equivalence [14, Theorem 15]. Fix a finite F ⊆ ω and a minimal
q ∈ F , and write F ′ = F \ {q}. Assume as an inductive hypothesis that BF ′ is nuclear. Since
BF/BF ′ is a quotient of the nuclear C∗-algebra K(Xq), it is nuclear. So BF is an extension
of a nuclear C∗-algebra by a nuclear C∗-algebra, so also nuclear [25, proposition 2·1·2(iv)].
Now Aω = lim−→F

BF is nuclear because direct limits of nuclear C∗-algebras are nuclear.

We therefore have the following theorem.

THEOREM 6·3. Let X be a nondegenerate compactly aligned product system over a
quasi-lattice ordered group (G, P), and suppose that the coefficient algebra Xe is nuclear.
If the groupoid G of Section 3 is amenable, then NT X and NOX is nuclear. If G|∂� is amen-
able and the homomorphisms φp : A → L(X p) implementing the left actions in X are all
injective, then NOX is nuclear.

Proof. If G is amenable, then C∗(G,E ) is amenable by [28, theorem 4·1] and Lemma 6·2.
Since NT X �C∗(G,E ) by Theorem 5·1, we have NT X nuclear, and then NOX (as defined
in [27]) is nuclear because it is a quotient of NT X . If G|∂� is amenable then C∗(G|∂�,E ) is
nuclear by [28, theorem 4·1] and Lemma 6·2. If the φp are injective, then Theorem 5·2 gives
an isomorphism NOX �C∗(G∂�,E ), and so NOX is nuclear.

We also obtain an improvement on [5, corollary 4·2]. There it is proved that NOX and
NOr

X coincide whenever the group G is amenable. But our results show that in fact NOX =
NOr

X whenever G|∂� is amenable.

PROPOSITION 6·4. Let X be a nondegenerate compactly aligned product system over a
quasi-lattice ordered group (G, P), and suppose that the homomorphism φp : Xe → L(X p)

implementing the left actions in X are all injective. If G|∂� is amenable, then the quotient
map λr : NOX → NOr

X is an isomorphism.

Proof. Theorem 5·2 gives an isomorphism �−1 : C∗(G|∂�,E ) → NOX . Write c :
G → G for the continuous cocycle c(g, ω) = g. Since supp π(x) ⊆ {p} × ∂� whenever
x ∈ X p, we see that �((NOX )g) = �c(c−1(g);E ) for each g. In particular �−1 re-
stricts to an isomorphism of the closure of �c(c−1(e);E ) ⊆ C∗(G,E ) with (NOX )e. Since
c−1(e) = G(0), the closure of �c(c−1(e);E ) is �0(G(0);E ) ⊆ C∗(G,E ). It is standard that
restriction of compactly supported sections to G(0) extends to a faithful conditional expecta-
tion C∗

r (G,E ) → �0(G(0);E ). [26, theorem 1] implies that C∗(G|∂�,E ) = C∗
r (G|∂�,E ), so

we obtain a faithful conditional expectation R : C∗(G,E ) → �0(G(0);E ) extending restric-
tion of compactly supported sections. [23, lemma 1·3(a)] shows that there is a conditional
expectation P : NOX → (NOX )e that annihilates (NOX )g for g � e, and it is routine
to check that � ◦ P = R ◦ �. Since � is an isomorphism and R is a faithful conditional
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expectation, it follows that P is a faithful conditional expectation as well. That is, the coac-
tion ν on NOX such that δ( jX (x)) = jX (x) ⊗ iG(p) for x ∈ X p is a normal coaction, and
(NOX , G, ν) is a normal cosystem. [5, corollary 4·6] shows that NOr

X is the C∗-algebra
appearing in the normalisation of the cosystem (NOX , G, ν), and λr is the normalisation
homomorphism. Since this cosystem is already normal, we conclude that λr is injective.

Remark 6·5. It is worth pointing out, in light of the results in this section, that it is not
uncommon for the groupoid G|∂� of Section 3 to be amenable, even when G is not amenable.
For example, G|∂� is amenable when G is a finitely generated free group—or more generally
a finitely-generated right-angled Artin group—and P its natural positive cone.
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[16] B. KWASNIEWSKI and W. SZYMAŃSKI. Topological aperiodicity for product systems over semi-

groups of Ore type. J. Funct. Anal. 270 (2016), 3453–3504.
[17] M. LACA and I. RAEBURN. Semigroup crossed products and the Toeplitz algebras of nonabelian

groups. J. Funct. Anal. 139 (1996), 415–440.
[18] P.S. MUHLY and J. RENAULT. C∗-algebras of multivariable Wiener–Hopf operators. Trans. Amer.

Math. Soc. 274 (1982), 1–44.
[19] P.S. MUHLY and D.P. WILLIAMS. Equivalence and disintegration theorems for Fell bundles and their

C∗-algebras. Dissertationes Mathematicae, Warszawa (2008).
[20] A. NICA. C∗-algebras generated by isometries and Weiner–Hopf operators. J. Operator Theory 27

(1992), 17–52.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004117000202
Downloaded from https://www.cambridge.org/core. University of New England, on 09 Nov 2021 at 23:01:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004117000202
https://www.cambridge.org/core


580 ADAM RENNIE, DAVID ROBERTSON AND AIDAN SIMS

[21] M.V. PIMSNER. A class of C∗-algebras generalizing both Cuntz-Krieger algebras and crossed
products by Z. Fields Inst. Commun. 12, Free probability theory (Waterloo, ON, 1995) (Amer.
Math. Soc., Providence, RI, 1997), 189–212.

[22] J. QUIGG. Full and reduced C∗-coactions. Math. Proc. Camb. Phil. Soc. 116 (1994), 435–450.
[23] J. QUIGG. Discrete C∗-coactions and C∗-algebraic bundles. J. Austral. Math. Soc. Ser. A 60 (1996),

204–221.
[24] I. RAEBURN and A. SIMS. Product systems of graphs and the Toeplitz algebras of higher-rank graphs.

J. Operator Theory 53 (2005), no. 2, 399–429.
[25] M. RØRDAM. Classification of nuclear, simple C∗-algebras. Classification of nuclear C∗-algebras.

Entropy in operator algebras. Encyclopaedia Math. Sci. 126, (Springer, Berlin, 2002), 1–145.
[26] A. SIMS and D.P. WILLIAMS. Amenability for Fell bundles over groupoids. Illinois J. Math. 57

(2013), 429–444.
[27] A. SIMS and T. YEEND. C∗-algebras associated to product systems of Hilbert bimodules. J. Operator

Theory 64 (2010), 349–376.
[28] T. TAKEISHI. On nuclearity of C∗-algebras of Fell bundles over étale groupoids. Publ. Res. Inst. Math.

Sci. 50 (2014), 251–268.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004117000202
Downloaded from https://www.cambridge.org/core. University of New England, on 09 Nov 2021 at 23:01:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004117000202
https://www.cambridge.org/core

