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1 Introduction

Group theory has for many years provided fertile ground for mathematicians working
in C∗-algebras. Indeed, the notion of a group C∗-algebra is as old as the field itself,
and possesses many interesting and natural properties. For instance, it is well known
that the C∗-algebra of the direct product of groups G and H is the tensor product
of the individual group C∗-algebras C∗(G) and C∗(H) (see, for instance, [3, Exam-
ples II.10.3.15]). It is also well known that the C∗-algebra of the semidirect product
induced by an action H � G is the crossed product C∗-algebra induced by the action
H � C∗(G) (see also [3, Examples II.10.3.15]). In this article we are interested in a
third, and more general, notion of a product of groups called the Zappa–Szép product.
As a consequence of our main result we are able to answer the natural questions: what
is the group C∗-algebra of the Zappa–Szép product of two groups G and H , and what
does it have to do with C∗(G) and C∗(H)?

A Zappa–Szép product of groups G and H is a generalisation of a semidirect
product, in the sense that neither group is necessarily normal in the product. Like the
semidirect product, there is an internal and external Zappa–Szép product. A group
K is the internal Zappa–Szép product of G and H if G, H are subgroups of K such
that K = G H as a set, and G ∩ H = {e}. It then follows that K is in bijection with
G × H as a set. If G, H are both normal in K , then K is isomorphic to the direct
product of groups G × H with pointwise multiplication. If only G is normal, then H
acts on G by conjugation (h, g) �→ hgh−1, and K is isomorphic to the semidirect
product G � H . In general neither G nor H need be normal in K , so that direct
and semidriect products are special cases of the Zappa–Szép product. In any case,
since K = G H , given any h ∈ H and g ∈ G there are elements h · g ∈ G and
h|g ∈ H such that hg = (h · g)h|g , and the condition G ∩ H = {e} forces h · g
and h|g to be uniquely determined. The action map · : H × G → G is given by
(h, g) �→ h · g, and the restriction map | : H × G → H is given by (h, g) �→ h|g .
Thesemaps can be used to define an associativemultiplication and inversion on G× H
by

(g, h)(g′, h′) = (g(h · g′), h|g′h′) and (g, h)−1 = (h−1 · g−1, h−1|g−1),

respectively. The resulting group G �� H is called the Zappa–Szép product of G and
H and there is an isomorphism G �� H ∼= K given by (g, h) �→ gh (see [20–22,26]).
Given an arbitrary pair of groups G and H with a left action of H on G and a right
action of G on H we construct the external Zappa–Szép product G �� H as the set
G × H with a product defined analogously.

In this article we extend the definitions given above to the more general setting of
groupoids. Groupoids have featured prominently in the study of C∗-algebras since the
seminal work of Renault [17]. The diversity of examples of groupoid C∗-algebras has
been a feature of their success, especially in the study of C∗-algebras associated to
dynamical systems. Building on the recent work on Zapp–Szép product semigroups
[5] (which was influenced by the work on self-similar actions in [10,11,13,23]),
we introduce the Zappa–Szép product of topological groupoids. Our notion of the
Zappa–Szép product of groupoids is not new on an algebraic level. In [1] Aguiar
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502 N. Brownlowe et al.

and Andruskiewitsch introduced the notion of a matched pair of groupoids; a pair of
groupoids (G,H) is a matched pair if and only if there is a well-defined Zappa–Szép
product G �� H (Note that in [1] 	 corresponds to our restriction, and 
 corresponds
to our action.) More generally, a Zappa–Szép product of categories was introduced
in the work of Brin [4]. However, in the specific case of groupoids, in which every
morphism is an isomorphism, Brin’s axioms (P1)–(P8) (see [4, p. 406]) can be sim-
plified.

After formalising the Zappa–Szép product G �� H of topological groupoids, we
switch focus to C∗-algebras, and consider the relationship between the groupoid C∗-
algebras of G, H and G �� H. In our main theorem we prove that C∗(G �� H)

is a C∗-blend of C∗(G) and C∗(H). C∗-blends were recently introduced by Exel
in [7] during his examination of the possible algebraic and C∗-algebraic struc-
tures one can put on the tensor product A ⊗ B of two algebras A and B. While
several examples are examined in [7], any new theory in C∗-algebras always
benefits from additional examples. Our main theorem allows us to work at the
level of groupoids to describe concrete examples of C∗-blends, rather than with
their C∗-algebraic completions. We are thus able to describe several new exam-
ples, including those involving Deaconu–Renault groupoids, and skew product
groupoids.

While we were at first surprised to learn that C∗(G �� H) is a C∗-blend of the
individual groupoid C∗-algebras, once you scratch beneath the surface, the answer
is a natural one. As discussed in [7], C∗-blends generalise crossed products of C∗-
algebras by groups, in the sense that A � G is a C∗-blend of A and C∗(G). The
theory of C∗-blends then feels like a natural home for the C∗-algebras of Zappa–Szép
products of groups, given that they generalise semidirect products, whoseC∗-algebras
are crossed products. There is also an interesting similarity between the conditions
under which the product of two groups is a Zappa–Szép product, and when the prod-
uct of two C∗-algebras is a C∗-blend. If G and H are subgroups of a group K , then
G H = {gh : g ∈ G, h ∈ H} is a group if and only if G H = H G, and is isomorphic
to G �� H if and only if G ∩ H = {e}. If A, B are C∗-subalgebras of a C∗-algebra
C , it is not hard to show that the statements AB = span{ab : a ∈ A, b ∈ B} is
a C∗-algebra, AB = B A, and AB is a C∗-blend of A and B are equivalent (See
Remark 16).

This article is organised as follows. Section 2 provides preliminaries on topologi-
cal groupoids and gives three specific examples that will be used heavily throughout
the paper: transformation groupoids, Deaconu–Renault groupoids, and skew product
groupoids. In Sect. 3 we discuss the Zappa–Szép product G �� H of two groupoids
G and H, and show how the so called “arrow space” of each groupoid along with
certain identifications describes the “arrow space” of G �� H. We then provide
an internal characterisation of a Zappa–Szép product groupoid and show that if G
and H are étale groupoids, then so is G �� H. In Sect. 4 we prove our main theo-
rem, which says that C∗(G �� H) is a C∗-blend of C∗(G) and C∗(H). We finish in
Sect. 5 by examining several examples of Zappa–Szép product groupoids and their
C∗-algebras.
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2 Preliminaries

Let G be a set and suppose G(2) ⊂ G × G. We say G is a groupoid if there is a
multiplication (g, h) �→ gh from G(2) to G and an inverse map g �→ g−1 from G to G
satisfying the following.

(1) If (g, h), (h, k) ∈ G(2) then (gh, k), (g, hk) ∈ G(2) and g(hk) = (gh)k.
(2) We have (g−1)−1 = g for all g ∈ G.
(3) We have (g, g−1) ∈ G(2) for all g ∈ G and if (g, h) ∈ G(2), then g−1(gh) = h

and (gh)h−1 = g.

We call G(2) the set of composable pairs and G(0) := {gg−1 : g ∈ G} the set of units.
The range map G → G(0) is given by g �→ gg−1 and the source map G → G(0) is
given by g �→ g−1g.

A useful interpretation of this definition is that an element g of a groupoid G is an
arrow pointing from the source of g to the range of g.

We think of inversion as reversing the direction of the arrow, and a pair (g, h) ∈ G(2)

whenever the source of g agrees with the range of h in G(0); the product gh is then the
composition of arrows.

We call G a topological groupoid if G is a topological space and the multiplication
and inversion maps are continuous, where G(2) has the relative product topology. We
call a topological groupoid étale if the range (and hence also the source) map is a local
homeomorphism.

Example 1 (Tranformation groupoids [14, p. 8]). Let G be a topological group acting
continuously on a topological space X . There is a groupoid G � X given by

G � X = G × X

(G � X)(2) = {((g, y), (h, x)) : g, h ∈ G, x, y ∈ X, and y = h · x}
(g, h · x)(h, x) = (gh, x)

(g, x)−1 = (g−1, g · x)

We call G � X a transformation groupoid. The unit space is given by {e} × X ∼= X
and an element (g, x) has range g · x and source x . When given the product topology
G � X is a topological groupoid, and is étale if and only if G has the discrete topology.

Example 2 (Deaconu–Renault groupoids [19, Section 3]). The study of topological
groupoids associated with endomorphisms began with the seminal paper of Deaconu
[6], and has been extended in various directions. In order to associate a groupoid C∗-
algebra to a k-graph, Kumjian and Pask [9] began the extension of Deaconu–Renault
groupoids to transformations of N

k . More recently, a completely general description
of groupoids associated with transformations of N

k and their topology is given in [19,
Section 3].
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Let X be a topological space and suppose k ≥ 1. Following the literature [2] we
say that σ : X → X is an endomorphism if σ is a surjective local homeomorphism.
Suppose θ : N

k → End(X) is an action of N
k on X by continuous endomorphisms.

Define the Deaconu–Renault groupoid X �θ N
k by

X �θ N
k = {(x, m − n, y) : x, y ∈ X, m, n ∈ N

k, θm(x) = θn(y)}
(X �θ N

k)(2) = {((x, k − l, y), (w, m − n, z)) : y = w}
(x, k − l, y)(y, m − n, z) = (x, (k + m) − (l + n), z)

(x, m − n, y)−1 = (y, n − m, x)

The unit space is {(x, 0, x) : x ∈ X} ∼= X and an element (x, m − n, y) has range x
and source y. With the topology described in [19, Section 3], the groupoid X �θ N

k

becomes a topological groupoid.

Example 3 (Skew product groupoids [8, Section 4]) Fix an étale groupoidG, a discrete
group A and a continuous homomorphism c : G → A. The skew-product groupoid
G(c) is is given by

G(c) = G × A

G(c)(2) = {(g, α)(h, β) : (g, h) ∈ G(2), β = αc(g)}
(g, α)(h, αc(g)) = (gh, α)

(g, α)−1 = (g−1, αc(g)).

We will denote1 the range and source maps by b, t : G(c) → G(c)(0) respectively. We
have

b(g, α) = (g, α)(g−1, αc(g)) = (gg−1, α)

t (g, α) = (g−1, αc(g))(g, α) = (g−1g, αc(g)).

The unit space is therefore G(c)(0) = G(0) × A.

3 Zappa–Szép products of groupoids

In this sectionwewill describe theZappa–Szép product of twogroupoidswith bijective
unit spaces. To do this we need to recall a fibre product of two sets. Suppose G, H ,
and X are sets such that γ : G → X and η : H → X are maps. The fibre product (or
pull-back) of G and H over X is the set

G ×γ η H := {(g, h) ∈ G × H : γ (g) = η(h)}.

1 This unusual choice of labelling the range and source maps by b and t is explained in Sect. 3.
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Let G and H be groupoids and suppose there is a bijection G(0) → H(0). For
simplicity, we will consider them the same set and write G(0) = U = H(0). As in
[1] we will think of elements of G as vertical arrows and elements ofH as horizontal
arrows as shown below:

We have denoted the range and source maps of G by b for bottom and t for top, respec-
tively, and the range and source maps of H by l for left and r for right, respectively.
Suppose that there are maps

· : H ×r b G → G given by (h, g) �→ h · g

and

| : H ×r b G → H given by (h, g) �→ h|g

satisfying

whenever these formulae make sense. We call · the action map and | the restriction
map. These axioms appear in [1], where the action is denoted 
, and the restriction is
denoted 	.

Before we can construct the Zappa–Szép product groupoid, we need the following
lemma.

Lemma 4 (cf. [1, Lemma 1.2]). For any (h, g) ∈ H ×r b G we have

(1) h · r(h) = l(h),
(2) b(g)|g = t (g),
(3) (h · g)−1 = h|g · g−1, and
(4) (h|g)−1 = h−1|h·g.

Proof For (1), using (ZS2), (ZS9), and that b(g) = r(h) we compute

h · g = h · (b(g)g) = (h · b(g))(h|b(g) · g) = (h · r(h))(h · g),

which implies h · r(h) = b(h · g) = l(h) by (ZS5).
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For (2), using (ZS4) and then (ZS8) we compute

h|g = (hr(h))|g = h|(r(h)·g)r(h)|g = h|b(g)·gb(g)|g = h|gb(g)|g,

which implies that b(g)|g = r(h|g) = t (g) by (ZS6).
For (3) and (4), using (ZS5), part (1), and (ZS2) we have

(h · g)(h · g)−1 = b(h · g) = l(h) = h · r(h) = h · b(g)

= h · (gg−1) = (h · g)(h|g · g−1)

and (3) follows by cancelling (h · g) on the left. Similarly, using (ZS6), part (2), and
(ZS4) we have

(h|g)−1(h|g) = r(h|g) = t (g) = b(g)|g = r(h)|g = (h−1h)|g = (h−1|h·g)(h|g)

and (4) follows by cancelling (h|g) on the right. ��
We define the Zappa–Szép product as the set

G �� H = G ×t l H,

with the range of (g, h) ∈ G �� H given by (b(g), b(g)) ∈ U × U , and the source of
(g, h) given by (r(h), r(h)) ∈ U × U . We have

(G �� H)(2) = {((g1, h1), (g2, h2)) : r(h1) = b(g2)}.

We define multiplication by

(g1, h1)(g2, h2) = (g1(h1 · g2), h1|g2h2)

and inversion by

(g, h)−1 = (h−1 · g−1, h−1|g−1).

Proposition 5 With the above structure, G �� H is a groupoid with unit space G(0) ×t l
H(0) ∼= U .

Proof Conditions (ZS5) and (ZS6) imply that the multiplication is well-defined and
(ZS7) shows G �� H is closed under multiplication. Suppose ((g1, h1), (g2, h2)) and
((g2, h2), (g3, h3)) ∈ (G �� H)(2). It is easy to see that (g1(h1 ·g2), h1|g2h2), (g3, h3))

∈ (G �� H)(2) and ((g1, h1), (g2(h2 ·g3), h2|g3h3)) ∈ (G �� H)(2). Some parenthetical
gymnastics using (ZS1-4) shows that the following associativity holds:

((g1(h1 · g2), h1|g2h2))(g3, h3) = (g1, h1)(g2(h2 · g3), h2|g3h3).
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For (g, h) ∈ G �� H we have

((g, h)−1)−1 = (h−1 · g−1, h−1|g−1)−1

= ((h−1|g−1)−1 · (h−1 · g−1)−1, (h−1|g−1)−1|(h−1·g−1)−1). (3.1)

By Lemma 4 (3) the first term in (3.1) becomes

(h−1|g−1)−1 · (h−1 · g−1)−1 = (h−1|g−1)−1 · (h−1|g−1 · g) = g

and by Lemma 4 (4) the second term in (3.1) becomes

(h−1|g−1)−1|(h−1·g−1)−1 = (h|(h−1·g−1))|(h−1·g−1)−1 = h.

So ((g, h)−1)−1 = (g, h) as required. From (ZS5) we have ((g, h), (h−1 ·
g−1, h−1|g−1)) ∈ G �� H(2). Using (ZS1), (ZS3), (ZS8) and Lemma 4 (2) we have

(g, h)(h−1 · g−1, h−1|g−1) = (g(h · (h−1 · g−1)), h|h−1·g−1h−1|g−1)

= (g(l(h) · g−1), l(h)|g−1)

= (g(b(g−1) · g−1), b(g−1)|g−1)

= (b(g), b(g)),

so if ((g1, h1), (g2, h2)) ∈ (G �� H)(2), then Lemma 4 (1) and (ZS9) imply

(g1, h1)(g2, h2)(g2, h2)
−1 = (g1, h1)(b(g2), b(g2))

= (g1(h1 · r(h1)), (h1|r(h1))r(h1)) = (g1, h1).

A similar argument shows

(g, h)−1(g, h) = (r(h), r(h)) and (g1, h1)
−1(g1, h1)(g2, h2) = (g2, h2),

as required. ��
Remark 6 In the proof of Proposition 5, note that we used all of the axioms (ZS1–9).
This shows the necessity of the rather large number of axioms.

From now on we will freely identify (G �� H)(0) with U . We can consider G and
H as subgroupoids of G �� H via

G ∼= {(g, t (g)) : g ∈ G} and H ∼= {(l(h), h) : h ∈ H}.

Since G �� H = G ×t l H as a set, we may represent elements (g′, h′) ∈ G �� H and
(h, g) ∈ H ×r b G as pairs of arrows between elements of U as follows:
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respectively. In the Zappa–Szép product G �� H, the element (h, g) ∈ H ×r b G is
identified with (h · g, h|g) ∈ G �� H. Visually, this amounts to the following two
diagrams being identified:

This geometric identification corresponds to the algebraic axioms (ZS5–7). Now
suppose ((g1, h1), (g2, h2)) ∈ (G �� H)(2), then the product (g1, h1)(g2, h2) =
(g1(h1 · g2), h1|g2h2) is represented by

Finally, if (g, h) ∈ G �� H, then the inverse (g, h)−1 = (h−1 · g−1, h−1|g−1) is
represented by

The following proposition determines when a given groupoid decomposes as a Zappa–
Szép product.

Proposition 7 (Internal Zappa–Szép products)LetK be a groupoid and letG andH be
subgroupoids. Suppose that for any k ∈ K there is a unique pair (g, h) ∈ (G×H)∩K(2)

such that k = gh. Then K ∼= G �� H.

Proof We must first show that G andH admit the structure required to take a Zappa–
Szép product. First, fix u ∈ K(0). Then there is a unique g ∈ G and h ∈ H with
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u = gh. But then u = gg−1 ∈ G and u = h−1h ∈ H. Since u = uu, uniqueness
forces h = u = g. Hence K(0) = G(0) = H(0). We define action and restriction
maps using the unique decomposition; given a pair (g, h) ∈ (G × H) ∩ K(2) let
(g · h, g|h) ∈ (G × H) ∩ K(2) be the unique pair such that

gh = (g · h)(g|h).

Routine calculations show thesemaps satisfy (ZS1–9), and k �→ (g, h), where k = gh,
is an isomorphism K ∼= G �� H. ��

Using Proposition 7 and Lemma 4 we can show that taking groupoid Zappa–Szép
products is symmetric.

Corollary 8 Any groupoid Zappa–Szép product G �� H is isomorphic to a Zappa–
Szép product H �� G.

Proof In light of Proposition 7 it suffices to notice that any (g, h) ∈ G �� H can be
rewritten uniquely as

(g, h) = (b(g), h|h−1·g−1)(h−1|g−1 · g, r(h)). (3.2)

That (3.2) holds is a straightforward computation involving several applications of
Lemma 4 (3) and (4). For the uniqueness, suppose (g, h) = (l(h′), h′)(g′, t (g′)) for
some g′ ∈ G and h′ ∈ H. Then g = h′ · g′ and h = h′|g′ . Substituting these equations
into (3.2) and applying Lemma 4 shows that h′ = h|h−1·g−1 and g′ = h−1|g−1 · g.
Thus the decomposition in (3.2) is unique. ��

If G and H are topological groupoids with homeomorphic unit spaces, then after
endowing G ×t l H with the relative product topology of G × H it is natural to ask
whether G �� H is a topological groupoid. It is easy to check that this is true if and
only if the action and restriction maps are continuous, whereH ×r b G has the relative
product topology.

A similar question may be asked when G and H are étale.

Proposition 9 A Zappa–Szép product groupoid G �� H endowed with the relative
product topology of G×H is étale if and only if both G and H are étale and the action
and restriction maps are continuous.

Proof Since G and H are both isomorphic to subgroupoids of G �� H, assuming
G �� H is étale immediately implies G and H are étale.

For the reverse implication, supposeG andH are étale.Wemust show that (g, h) �→
b(g) is a local homeomorphism. To this end, fix (g, h) ∈ G �� H. Using that G andH
are étale we can find open subsets

U, V ⊂ G, W ⊂ H

with g ∈ U ∩ V and h ∈ W such that b|U , t |V and l|W are all homeomorphisms.
Define

X := ((U ∩ V ) × W ) ∩ (G ×t l H) ⊂ G �� H.
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Then X is open, (g, h) ∈ X and for any (g′, h′), (g′′, h′′) ∈ X we have

b(g′) = b(g′′) ⇐⇒ g′ = g′′ since g′, g′′ ∈ U

⇐⇒ t (g′) = t (g
′′
) since g′, g′′ ∈ V

⇐⇒ l(h′) = l(h′′) since (g′, h′), (g′′, h′′) ∈ G ×t l H
⇐⇒ h′ = h′′ since h′, h′′ ∈ W.

We see that the range map (g, h) �→ b(g) is a homeomorphism on X as required. ��

Corollary 10 Suppose G,H and K are étale groupoids such that G and H are sub-
groupoids of K and K ∼= G �� H, as in Proposition 7. Then K ∼= G �� H is an
isomorphism of topological groupoids and K is étale.

Proof We know from Proposition 7 that there is a bijective homomorphism G �� H →
K satisfying (g, h) �→ gh. Since multiplication is continuous, to see that this map is
a homeomorphism it suffices to show it is open. This follows immediately from the
fact that G �� H is étale. ��

Remark 11 AsubsetU of an étale groupoidG is called a bisection if both the range and
source maps restricted toU are injective. The collection B(G) of all open bisections in
G is an inverse semigroup under the compositionU V = {gh : (g, h) ∈ U ×V ∩G(2)}.
If we identify a bisectionU with the homeomorphism r(U ) → s(U ) onG(0) satisfying
r(g) �→ s(g), then it is easily checked that B(G) is a pseudogroup of homeomorphisms
of the topological space G(0), in the sense of [18, Section 3].

The Zappa–Szép product of inverse semigroups (and semigroups more broadly)
are studied in [24]. It is natural to examine the existence of a Zappa–Szép product of
B(G) and B(H), and whether there is a connection to the collection of bisections of
G �� H. We considered these problems, and there seems to be no obvious definitions
for the action and restriction maps. In particular, there is no reason that the sets

V · U := {h · g : h ∈ V, g ∈ U, r(h) = b(g)} and

V |U := {h|g : h ∈ V, g ∈ U, r(h) = b(g)},

for U ∈ B(G), V ∈ B(H), are open bisections in B(G) and B(H), respectively.

4 The C∗-algebra of a Zappa–Szép groupoid

In this section we prove the main result of this paper, which says that the groupoid C∗-
algebra of the Zappa–Szép product of two groupoids G andH is a C∗-blend of the two
groupoid C∗-algebras C∗(G) and C∗(H). Before we state this result, we briefly recall
the construction of groupoid C∗-algebras, and the formal definition of a C∗-blend
from [7].
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Zappa–Szép product groupoids and C∗-blends 511

For G a locally compact Hausdorff étale groupoid with range and source maps r
and s, define a multiplication and involution on Cc(G) by

ξ ∗ η(g) =
∑

g1g2=g

ξ(g1)η(g2) and ξ∗(g) = ξ(g−1).

With these operations, pointwise scalar multiplication and addition, and ∗-algebra
norm given by

‖ξ‖I = sup
u∈G(0)

max

⎧
⎨

⎩
∑

r(g)=u

|ξ(g)|,
∑

s(g)=u

|ξ(g)|
⎫
⎬

⎭ ,

Cc(G) becomes a normed ∗-algebra. This norm, called the I -norm, is typically not a
C∗-norm. However, there is a C∗-norm on C∗(G) given by

‖ξ‖ = sup{‖π(ξ)‖ : π is a ‖ · ‖I -bounded ∗ -representation of Cc(G)},

and the completion of Cc(G) under ‖ · ‖ is called the full groupoid C∗-algebra of G.
There is also a reduced groupoid C∗-algebra. For each u ∈ G(0) there is an I -

norm-bounded representation Indu of Cc(G) on 
2(s−1(u)) given by Indu( f )δg =∑
r(h)=r(g) f (h−1g)δh . The reduced norm is given by ‖ f ‖r = supu∈G(0) ‖ Indu( f )‖.

The completion of Cc(G) under ‖ · ‖r is called the reduced groupoid C∗-algebra of
G. For more details of these constructions we refer the reader to Renault’s original
treatment [17].

We now recall Exel’s notion of a C∗-blend from [7].

Definition 12 For C∗-algebras A and B we denote by A ⊗C B the algebraic tensor
product. Given a C∗-algebra X and ∗-homomorphisms

i : A → M(X) and j : B → M(X),

the bilinear maps (a, b) �→ i(a) j (b) and (b, a) �→ j (b)i(a) induce linear maps

i � j : A ⊗C B → M(X) satisfying a ⊗ b �→ i(a) j (b)

and

j � i : B ⊗C A → M(X) satisfying b ⊗ a �→ j (b)i(a).

A C∗-blend is a quintuple (A, B, i, j, X), consisting of: C∗-algebras A, B, and X ;
and ∗-homomorphisms i and j as above, with the property that the range of i � j is
contained and dense in X (or, equivalently, range( j �i) = (range(i � j))∗ is contained
and dense in X ).

We can now state our main theorem.
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Theorem 13 Suppose G �� H is a locally compact Hausdorff étale Zappa–Szép prod-
uct groupoid. The maps i : Cc(G) → C∗(G �� H) and j : Cc(H) → C∗(G �� H),
given by

i(ξ)(g, h) = δh,t (g)ξ(g) and j (η)(g, h) = δg,l(h)η(h),

extend to ∗-homomorphisms i : C∗(G) → C∗(G �� H) and j : C∗(H) → C∗(G ��

H), and the quintuple (C∗(G), C∗(H), i, j, C∗(G �� H)) is a C∗-blend.

Remark 14 Notice that the range of i and j are in C∗(G �� H), rather than the
multiplier algebra, since G �� H is étale by Proposition 9.

To prove this result we need a lemma about slices, which are precompact open
subsets of a groupoid on which the range and source maps are bijective. We think this
lemma is well known, but we could not find a proof, so we include one here. Note that
‖ · ‖∞ denotes the usual supremum norm on functions.

Lemma 15 Let G be a locally compact Hausdorff étale groupoid. Let ξ ∈ Cc(G) ⊂
C∗(G) such that supp(ξ) is a slice. Then

‖ξ‖ = ‖ξ‖r = ‖ξ‖I = ‖ξ‖∞.

Proof We first show that ‖ξ‖I = ‖ξ‖∞. For any unit u ∈ G(0) we have

|r−1(u) ∩ supp(ξ)|, |s−1(u) ∩ supp(ξ)| ≤ 1

since r, s are local homeomorphisms on supp(ξ). Therefore

‖ξ‖I = sup
u∈G(0)

max

⎧
⎨

⎩
∑

r(g)=u

|ξ(g)|,
∑

s(g)=u

|ξ(g)|
⎫
⎬

⎭ = sup
g∈G

|ξ(g)| = ‖ξ‖∞.

To see that ‖ξ‖r = ‖ξ‖∞, first fix g ∈ G. We have

ξ∗ξ(g) =
∑

hk=g

ξ∗(h)ξ(k) =
∑

hk=g

ξ(h−1)ξ(k).

If ξ∗ξ(g) �= 0, there exists h, k ∈ G with hk = g and ξ(h−1)ξ(k) �= 0. Then
h−1, k ∈ supp(ξ), and since r |supp(ξ) is injective, we have

g = hk �⇒ r(h−1) = r(k) �⇒ h−1 = k �⇒ g ∈ G(0).

Hence ξ∗ξ ∈ C0(G(0)). Now, fix u ∈ G(0) and δg ∈ 
2(Gu), where Gu := {g ∈ G :
g−1g = u}. Since supp(ξ∗ξ) ⊂ G(0) we have

Indu(ξ∗ξ)δg =
∑

r(h)=r(g)

ξ∗ξ(h−1g)δh = ξ∗ξ(g−1g)δg = ξ∗ξ(u)δg,
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and so ‖ Indu(ξ∗ξ)‖ = |ξ∗ξ(u)|. Hence

‖ξ‖2r = ‖ξ∗ξ‖r = sup
u∈G(0)

‖ Indu(ξ∗ξ)‖ = sup
u∈G(0)

|ξ∗ξ(u)| = ‖ξ∗ξ‖∞ = ‖ξ‖2∞.

Finally, ‖ξ‖r ≤ ‖ξ‖ ≤ ‖ξ‖I = ‖ξ‖r , so we have shown all the required equalities. ��
Proof of Theorem 13 Fix ξ ∈ Cc(G). We claim that i(ξ) ∈ Cc(G �� H). To see that
i(ξ) is continuous, fix an open subset V ⊆ C. If 0 /∈ V , then

i(ξ)−1(V ) = {(g, t (g)) : ξ(g) ∈ V } = (ξ−1(V ) × H(0)) ∩ (G ×t l H).

If 0 ∈ V , then

i(ξ)−1(V ) = {(g, t (g)) : ξ(g) ∈ V } ∪ {(g, h) ∈ G ×t l H : h ∈ H \ H(0)}
= ((ξ−1(V ) × H(0)) ∪ (G × H \ H(0))) ∩ (G ×t l H).

Since ξ is continuous, we have ξ−1(V ) open, and sinceH is Hausdorff and étale, both
H(0) andH\H(0) are open. So in either case, i(ξ)−1(V ) is open in the relative product
topology, and i(ξ) is continuous. The support of i(ξ) is the set supp(ξ) ×t l H(0), which
is homeomorphic to supp(ξ) via (g, t (g)) �→ g. Since supp(ξ) is compact, we have
i(ξ) ∈ Cc(G �� H), as claimed. A symmetric argument using that G is Hausdorff and
étale shows that j (η) ∈ Cc(G �� H) for any η ∈ Cc(H).

We extend i and j to ∗-homomorphisms C∗(G) → C∗(G �� H) and C∗(H) →
C∗(G �� H), respectively, and we now claim that (C∗(G), C∗(H), i, j, C∗(G �� H))

is a C∗-blend. Firstly, for each ξ ∈ Cc(G) and η ∈ Cc(H) we have

i � j (ξ ⊗ η)(g, h) = ξ(g)η(h),

from which we see that i � j (ξ ⊗ η) is continuous. We also have

supp(i � j (ξ ⊗ η)) = (supp(ξ) × supp(η)) ∩ (G ×t l H),

which is compact. So the image of i � j is contained in Cc(G �� H). To complete the
proof we need to show that this image is dense in C∗(G �� H).

For an arbitrary function θ ∈ Cc(G �� H)we can cover the support by a finite num-
ber of precompact open bisections {Uk : 1 ≤ k ≤ n}. If {πk : 1 ≤ k ≤ n} is a partition
of unity for supp(θ) with supp(πk) ⊂ Uk , then θ = ∑n

k=1 θπk , where supp(θπk) is a
precompact open bisection. Since we know from Lemma 15 that ‖θπk‖∞ = ‖θπk‖I ,
it suffices to show that the image of i � j is uniformly dense inCc(G �� H). To this end,
fix (g, h) �= (g′, h′). By the Stone–Weierstrass theorem for locally compact spaces,
it is enough to find ξ ∈ Cc(G) and η ∈ Cc(H) with i � j (ξ ⊗ η)(g, h) = 1 and
i � j (ξ ⊗ η)(g′, h′) = 0. Without loss of generality assume g �= g′. Fix ξ ∈ Cc(G)

with ξ(g) = 1, ξ(g′) = 0 and η ∈ Cc(H) with η(h) = 1. Then

i � j (ξ ⊗ η)(g, h) = ξ(g)η(h) = 1 and i � j (ξ ⊗ η)(g′, h′) = ξ(g′)η(h′) = 0,
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as required. ��
Remark 16 If G and H are subgroups of a group K , then G H = {gh : g ∈ G, h ∈ H}
is a group if and only if G H = H G. Moreover, G H is isomorphic to G �� H if and
only ifG∩H = {e} (see [16, Satz 6]). There is a similar characterisation for the product
of subsets of a C∗-algebra to be a C∗-blend. Suppose A and B are C∗-subalgebras
of a C∗-algebra C , and denote by AB the set span{ab : a ∈ A, b ∈ B}. Then the
following are equivalent:

(1) AB = B A,
(2) AB is a C∗-algebra,
(3) there exist C∗-homomorphisms i : A → M(AB) and j : B → M(AB) such that

(A, B, i, j, AB) is a C∗-blend.
For (2) �⇒ (3) we use maps i : A → M(AB) and j : B → M(AB) given
by i(a)x = ax and j (b)x = bx . Implications (3) �⇒ (2) and (1) ⇐⇒ (2) are
straightforward exercises.

5 Examples

In our final section we examine several examples of Zappa–Szép product groupoids
and their C∗-algebras.

5.1 ∗-Commuting endomorphisms

In this section we show that every pair of ∗-commuting endomorphisms of a topo-
logical space gives rise to a Zappa–Szép product of Deaconu–Renault groupoids (see
Example 2).

Recall from [2] that a pair of commuting endomorphisms S and T of a topological
space X are said to ∗-commute if, for every x, y ∈ X with T x = Sy, there exists
a unique z ∈ X with Sz = x and T z = y. We call such S and T ∗-commuting
endomorphisms.

Proposition 17 Suppose S and T are ∗-commuting endomorphisms of a topological
space X. Then there is an action θ of N

2 on X given by θ(m1,m2) = Sm1T m2 , and the
Deaconu–Renault groupoid for this action is the internal Zappa–Szép product of the
individual Deaconu–Renault groupoids for the actions of N on X induced by S and
T .

Since S and T commute, θ(m1,m2) := Sm1T m2 gives an action θ ofN
2 by continuous

endomorphisms of X . Let X �θ N
2 be the corresponding Deaconu–Renault groupoid,

and X �S N and X �T N be the Deaconu–Renault groupoids for the actions of N on
X induced by S and T , respectively. Notice that X �S N and X �T N can be viewed
as subgroupoids of X �θ N

2 via

X �S N
∼= {(x, m − n, y) : m, n ∈ N × {0}}, and

X �T N
∼= {(x, m − n, y) : m, n ∈ {0} × N}.
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So to prove Proposition 17 we need to show that

X �θ N
2 ∼= (X �S N) �� (X �T N).

Proof of Proposition 17 We aim to use Proposition 7. Fix (x, m − n, y) ∈ X �θ N
2.

Write m = (m1, m2) and n = (n1, n2). By definition of X �θ N
2 we have

Sn1T n2 y = T m2 Sm1x

Since S and T ∗-commute, the maps Sm1 and T m2 also ∗-commute. Therefore, there
is a unique z ∈ X such that Sn1 z = Sm1x and T m2 z = T n2 y. This information is
summarised in the following diagram:

Hence, we have elements

(x, (m1, 0) − (n1, 0), z) ∈ X �S N ⊂ X �θ N
2

and

(z, (0, m2) − (0, n2), y) ∈ X �T N ⊂ X �θ N
2

with (x, (m1, 0) − (n1, 0), z)(z, (0, m2) − (0, n2), y) = (x, m − n, y). Since z was
unique, this decomposition is also unique and so Proposition 7 provides us with the
desired isomorphism. ��
Remark 18 Applying Theorem 13 in this setting gives a C∗-blend

(C∗(X �S N), C∗(X �T N), i, j, C∗(X �θ N
2)).

5.2 1-coaligned 2-graphs

We know from [12, Defintion 2.1] (also see [25]) that examples of ∗-commuting maps
come from the shift map on certain 2-graphs. We recall the details.

We view the monoid N
2 as a category with one object in the usual way. We write

e1 = (1, 0) and e2 = (0, 1) for the canonical generators. Recall from [9] that a 2-graph
is a small category � equipped with a degree functor d : � → N

2 which satisfies
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the factorisation property, in the sense that whenever λ ∈ � and m, n ∈ N
2 satisfy

d(λ) = m + n, there are unique elements μ, ν ∈ � satisfying d(μ) = m, d(ν) = n
and λ = μν. The objects of � can be identified with �0 := d−1(0). The codomain
and domain maps are denoted by r and s, and are called the range and source maps.
A 2-graph is called row-finite and with no sources if for every v ∈ �0 and n ∈ N

2 the
set {λ ∈ � : d(λ) = n, r(λ) = v} is nonempty and finite.

Let �2 be the category with objects N
2, morphisms {(m, n) : m, n ∈ N

2, m ≤
n} where N

2 has the usual partial order, and range and source maps r(m, n) =
m, s(m, n) = n. With the degree functor d(m, n) = n−m,�2 is a 2-graph. If� is a 2-
graph, an infinite path in � is a degree-preserving functor x : �2 → �. We write �∞
for the space of infinite paths. If� is row-finite andwith no sources, then�∞ equipped
with the topology generated by cylinder sets Z(λ) := {x ∈ �∞ : x(0, d(λ)) = λ}
is a totally disconnected locally compact Hausdorff space. For each p ∈ N

2 consider
the shift map σ p : �∞ → �∞ given by σ p(x)(m, n) = x(m + p, n + p). Each
σ p is a local homeomorphism. If in addition � has no sinks, in the sense that for the
each v ∈ �0 and n ∈ N

2 the set {λ ∈ � : d(λ) = n, s(λ) = v} is nonempty, then
each σ p is also surjective. So for � a 2-graph which is row-finite and with no sinks
or sources, the map k �→ σ k determines an action of N

2 by endomorphisms �∞. Let
G� = �∞

� N
2 be the associated Deaconu–Renault groupoid.

Definition 19 [12, Defintion 2.1] A 2-graph � is 1-coaligned if for every pair
(e1, e2) ∈ �e1 ×s s �e2 there exists a unique pair ( f 1, f 2) ∈ �e1 ×r r �e2 such
that f 1e2 = f 2e1.

A large class of examples of 1-coaligned 2-graphs are provided in [12, Theorem 3.1].
The connection between 1-coaligned 2-graphs and ∗-commuting endomorphisms
comes from the following result (which applies to more general k-graphs, but we
state only for 2-graphs).

Theorem 20 ([12, Corollary 2.4]) If � is a 1-coaligned row-finite 2-graph with no
sinks or sources, then for each i �= j , σ ei and σ e j are ∗-commuting surjective local
homeomorphisms.

Using our results we can now decompose both the graph groupoid of a 1-coaligned
row-finite 2-graph with no sinks or sources, and its groupoid C∗-algebra, the graph
algebra. We direct the reader to [15] for an account of directed graphs, k-graphs, and
their C∗-algebras. For a 2-graph � we define the blue graph B� and the red graph
R� to be the directed graphs

B� := (B0
� := �0, B1

� := �e1, r |�e1 , s|�e1 ) and

R� := (R0
� := �0, R1

� := �e2 , r |�e2 , s|�e2 ).

Theorem 21 For every 1-coaligned row-finite 2-graph � with no sinks or sources we
have

G�
∼= (�∞

�σ e1 N) �� (�∞
�σ e2 N).
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Moreover, there are ∗-homomorphisms i : C∗(B�) → C∗(�) and j : C∗(R�) →
C∗(�) which make (C∗(B�), C∗(R�), i, j, C∗(�)) a C∗-blend.

This result follows from Theorem 13 once the isomorphisms C∗(B�) ∼=
C∗(�∞

�σ e1 N) and C∗(R�) ∼= C∗(�∞
�σ e2 N) are established; this is an exercise in

finding appropriate Cuntz-Krieger families in C∗(�∞
�σ e1 N) and C∗(�∞

�σ e2 N),
and applying the gauge-invariant uniqueness theorem. We leave the details to the
reader.

5.3 Skew product groupoids

Fix an étale groupoid G, a discrete group A and a continuous homomorphism c : G →
A. Recall from Example 3 the construction of the skew product groupoid G(c); this
groupoid is also étale because A is discrete.

The formula β · (g, α) := (g, αβ−1) defines a left action of A on the space G(c).
For a composable pair ((g, α), (h, αc(g))) ∈ G(c)(2), this action satisfies

β · (g, α)(h, αc(g)) = β · (gh, α) = (gh, αβ−1)

= (g, αβ−1)(h, αβ−1c(g))

= (
β · (g, α)

)
(h, αc(g)c(g)−1β−1c(g))

= (
β · (g, α)

)(
c(g)−1βc(g) · (h, αc(g))

)
.

This identity is suggestive of a Zappa–Szép product structure on G(c)× A with restric-
tion given by β|(g,α) := c(g)−1βc(g). The next result says that is indeed the case,
although we have to be careful with the unit spaces, which makes the details a little
more complicated.

Proposition 22 Fix an étale groupoid G, a discrete group A and a continuous homo-
morphism c : G → A. There is a left action of A on the space G(0) × A given by
β · (u, α) := (u, αβ−1). If H := A � (G(0) × A) denotes the corresponding trans-
formation groupoid, with range and source maps denoted l and r, then the maps
· : H ×r b G(c) → G(c) and | : H ×r b G(c) → H given by

(β, (gg−1, α)) · (g, α) := (g, αβ−1) and

(β, (gg−1, α))|(g,α) := (c(g)−1βc(g), (g−1g, αc(g)))

satisfy (ZS1–9), and hence induce a Zappa–Szép product groupoid G(c) �� H.

The proof of this result is nothing more than a checklist of what it takes for β ·
(u, α) := (u, αβ−1) to give an action, and the axioms (ZS1–9). As each calculation is
routine, we leave the details to the reader. Notice that an arbitrary element of G(c) ��

H has the form ((g, α), (β, (g−1g, αc(g)β))), and is completely determined by the
elements (g, α) ∈ G(c) and β ∈ A. So as a space it is homeomorphic to G(c)× A and
in some sense should be considered as the Zappa–Szép product of the groupoid G(c)
with the group A.
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The C∗-algebras of skew product groupoids are well studied in [8,17], and we use
thenotationof [17].Weknowfrom[8] that c induces a coaction δc : C∗(G) → C∗(G)⊗
C∗(A) satisfying δc(ξ) = ξ ⊗Ub whenever ξ ∈ Cc(G) satisfies supp ξ ⊂ c−1({b}). In
[8, Theorem 4.3] the authors show that C∗(G(c)) is isomorphic to the coaction crossed
product C∗(G) �δc A. The canonical left-action β · (g, α) �→ (g, βα) commutes with
right multiplication in G(c) and hence induces an action γ : A → Aut C∗(G(c))
characterised by γβ(ξ)(g, α) = ξ(β−1 ·(g, α)), for ξ ∈ Cc(G(c)). In [8, Corollary 4.5]
it is shown thatγ is dual to the coaction δc, so thatC∗(G(c))�γ A ∼= C∗(G)⊗K(
2(A)).

The alternative left action β · (g, α) = (g, αβ−1) that we used to build the Zappa–
Szép product does not commute with right multiplication in G(c), and hence does not
induce an action of A on C∗(G(c)). We do not therefore expect a crossed-product
description of C∗(G(c) �� H). Theorem 13 does apply and says that C∗(G(c) �� H)

is the blend of C∗(G(c)) and C∗(H).
We can also say a little more about the Zappa–Szép product groupoid G(c) �� H.

There is a right action of G by automorphisms of A given by α · g = c(g)−1αc(g),
from which we can form the semidirect product groupoid G� A. Pairs ((g, α), (h, β))

are composable in G � A if (g, h) ∈ G(2), and composition and inversion are given by
(g, α)(h, β) = (gh, c(h)−1αc(h)β) and (g, α)−1 = (c(g)α−1c(g)−1, α−1). One can
check that themap c̃ : G�A → A satisfying c̃(g, α) = c(g)α is a continuous groupoid
homomorphism, and that the map ((g, α), β) �→ ((g, α), (β, (g−1g, αc(g)β))) is a
groupoid isomorphism of (G � A)(̃c) onto G(c) �� H. So despite C∗(G �� H) not
admitting a natural crossed-product description,we canuse the results of [8] to describe
it as the coaction crossed product C∗(G � A) �δ̃c A.
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