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A B S T R A C T

Background: Cryopreservation is a key method of preservation of biological material for both medical treatments
and conservation of endangered species. In order to avoid cellular damage, cryopreservation relies on the ad-
dition of a suitable cryoprotective agent (CPA). However, the toxicity of CPAs is a serious concern and often
requires rapid removal on thawing which is time consuming and expensive.
Scope of review: The principles of Cryopreservation are reviewed and recent advances in cryopreservation
methods and new CPAs are described. The importance of understanding key biophysical properties to assess the
cryoprotective potential of new non-toxic compounds is discussed.
Major conclusions: Knowing the biophysical properties of a particular cell type is crucial for developing new
cryopreservation protocols. Similarly, understanding how potential CPAs interact with cells is key for optimising
protocols. For example, cells with a large osmotically inactive volume may require slower addition of CPAs.
Similarly, a cell with low permeability may require a longer incubation time with the CPA to allow adequate
penetration. Measuring these properties allows efficient optimisation of cryopreservation protocols.
General significance: Understanding the interplay between cells and biophysical properties is important not just
for developing new, and better optimised, cryopreservation protocols, but also for broader research into topics
such as dehydration and desiccation tolerance, chilling and heat stress, as well as membrane structure and
function.

1. Introduction

Cryopreservation offers huge opportunities for both research and
medical treatments. Through cryopreservation, blood banks can ensure
sufficient supplies, stem cell therapies can be used to treat a range of
diseases, and the field of assisted reproductive technology has under-
gone huge advances [1]. Furthermore, cryopreservation can be used for
long-term storage of seeds [2], endangered plants [3] and animals [4].
In the area of plant cryopreservation in particular a lot of effort is being
directed not only to optimising the use of CPAs to decrease cell mem-
brane damage and toxicity, but also toward developing new cryopro-
tection methods and ameliorating damage arising from oxidative stress
[5].

Successful cryopreservation relies on more than simply freezing
cells, which exposes them to numerous stresses including dehydration
and mechanical pressures. Usually, a cryoprotective agent (CPA) is
added to minimise freezing damage through inhibiting ice formation,
preserving cellular membranes and promoting vitrification [6,7].

The two most commonly used CPAs are glycerol and dimethyl
sulfoxide (DMSO). Glycerol was first identified as a CPA in 1949 [8]
while DMSO was identified in 1959 [9]. Unfortunately, both have levels
of toxicity making them unsuitable for many applications, and often
require extensive washing during thawing to prevent cell death or
subsequent adverse reactions if used in medical treatments [10–13]. In
the decades since their discovery, many other CPAs have been explored,
but very few have shown the same efficacy as glycerol or DMSO [14].
Therefore, the search for new, effective, non-toxic CPAs is ongoing.

In addition to the toxicity problems of existing cryoprotectants,
current methods of cryopreservation do not work for certain cell types,
for example granulocytes [13] and pluripotent human stem cells [15].
Research is on-going to develop efficient cryopreservation protocols for
stem cell therapies - Chen et al. [16] examined the effects of various
cryoprotectants on human umbilical cord blood stem cells, and a recent
review by Hunt [17] highlights the need for a holistic approach to
designing stem cell cryopreservation protocols by considering not only
the choice of CPA, but also the freezing container, the cooling rate and
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so on. Current methods are also not suitable for whole organs, or even
whole tissue cryopreservation, due to the variety of cell types (and
therefore different cryopreservation requirements) [18]. There is also
the issue of achieving sufficient CPA penetration into deeper cell layers
within tissue, without which deeper tissue layers suffer extensive da-
mage [1].

Thus, there is an obvious need for new CPAs that can overcome the
limitations of existing protocols. CPAs may be classified as either non-
penetrating—meaning they do not enter the cells and instead act in the
extracellular space—or penetrating—meaning that they do enter the
intracellular space. Both classes will be discussed later, but the focus of
this review is on penetrating CPAs.

In 1969, Karow published a review entitled “Cryoprotectants – A
New Class of Drugs” [14]. Now, more than 50 years later, we are fol-
lowing up on that work to discuss the progress made in developing new
methods of cryopreservation and in identifying new CPAs. Despite a
half a century of research, there is still a lot that remains unknown
about CPAs and the search for alternatives to DMSO and glycerol
continues. In 2004, Fuller's group detailed the mechanisms of action of
known CPAs and re-iterated that many potential CPAs are toxic at the
concentrations required for cryopreservation [19]. The same group
conducted an extensive review in 2017 of the different types of CPAs,
including alcohols, sugars, and polymers [7]. That review again high-
lighted problems with CPA toxicity and the modes of action of the
different CPA groups. The review presented here builds on this by
specifically focusing on the rational design of novel CPAs based on our
current understanding of how CPAs function. The last few years have
seen targeted investigations that have specifically modified potential
CPAs to improve their activity e.g. by making them better able to pe-
netrate cells. Other work has focused on using naturally produced
molecules such as amino acids as CPAs. The outcomes of these targeted
and novel approaches will be summarised here, with an outlook toward
rational design of future CPAs.

2. Mechanisms of damage during freezing

For many cells, low temperatures are not in themselves damaging,
but freezing is often lethal. There are a number of different mechanisms
that may cause damage during freezing, including mechanical damage
due to ice crystals, and solute damage due to changes in concentration
of electrolytes [6]. There is some disagreement in the literature about
which mechanisms are the most important, however it is likely that the
most pertinent mechanism of damage is different for different cell
types, and is a function of their permeability, lipid composition and
intracellular makeup.

The formation of an ice crystal is stochastic, which means that the
probability of ice formation is proportional to the volume of water
available: at a given sub-zero temperature, ice is more likely to form in
a large volume than a small volume [20]. As the volume of any in-
dividual cell is much smaller than the volume of the extracellular
aqueous environment, ice will normally form in the extracellular space
first [14].

Ice, however, is a poor solvent – water molecules need to align very
specifically with each other in order to form crystalline ice, and the
inclusion of any contaminant (salts or other solutes) would disrupt the
ice structure. Therefore when an ice crystal forms, it forms as very pure
water ice, with very low concentrations of other molecules [21]. Thus,
the formation of ice outside the cells leads to freeze-concentration of
the solutes into a co-existing unfrozen fraction. This fraction will have a
much higher concentration of salts, sugars, proteins etc. than the iso-
tonic solution [22,23]. High solute concentrations could damage cells
in a number of ways such as influencing bilayer structure, changing
protein conformations or creating osmotic stress on thawing
[6,18,19,24–27]. The importance of electrolyte concentration for cell
survival may vary between cell types and may be especially relevant to
red blood cells due to their high water permeability and simple

structure. The removal of water by ice also leads to dehydration, which
can lead to membrane phase changes and cell damage [6,20,28–31].
Other mechanisms of damage may be more important to other cell
types [22]. Mazur has reviewed the various contributing factors to
damage due to slow cooling, including high electrolyte concentrations
and dehydration effects [26]. The physical formation of ice inside the
cell depends on the concentration of solutes, the presence of nucleation
sites, and the rate of freeze/thaw. At rapid cooling rates, the in-
tracellular water will be supercooled and eventually ice will nucleate
[6,26,32]. Other factors such as the presence of pores, and the proxi-
mity of extracellular ice may also influence intracellular ice formation,
and this is discussed elsewhere [6,20,24,33]. Most importantly, for-
mation of intracellular ice is almost universally lethal and so must be
avoided [26].

These contrasting mechanisms (solute effects vs. ice damage) led to
Mazur developing the ‘Two Factor Hypothesis’ [32,34]. At slow cooling
rates the cells will be exposed to high solute concentrations and un-
dergo dehydration, both of which can be toxic. However, if the cooling
rate is too fast, there will be intracellular ice formation [34]. The two-
factor hypothesis suggests that there may be an ideal intermediate
cooling rate that leads to maximum cell viability, represented by the
classical inverted ‘U’curve as illustrated in Fig. 1 (black solid curve in
the bottom figure). It must be understood that this ‘ideal’ intermediate
cooling rate will vary between cell types depending on factors such as
size and permeability [32,35].

However, this inverted ‘U’ curve cannot be applied for thermal
stabilisation by the process known as vitrification. For conventional
cryopreservation, cell injury is related to the high concentration of CPA
used, leading to cell damage due to osmotic stress and interruptions in
the normal metabolic pathways at super-zero temperatures prior to
cooling and after warming the cells [36–38]. But in the case of vi-
trification with low concentrations of CPAs, cells are brought to the
vitrified phase using ultra-fast cooling, without any ice formation or
freeze concentration. Therefore, the traditional inverted ‘U’ curve for
cell viability vs. cooling rate can be modified and extended into the
ultra-fast cooling region where cell viability increases with increasing
cooling rate (black dotted line in Fig. 1- Bottom). This phenomenon
typically occurs when the cooling rate is very high (thousands to mil-
lions of °C/Sec) and CPA concentration is very low (<2–4 M) [38].

It should be noted that the stability of cells in the optimal cooling
rate regime described above is due to the fact that the combination of
CPA and dehydration leads to the intracellular contents becoming very
viscous and eventually forming a glass – that is, the intracellular con-
tents vitrify, thus preventing further dehydration and providing long
term stability. This is different to the “vitrification” regime, where the
entire contents of the sample (intracellular and extracellular) are vi-
trified due to ultra-fast cooling.

Thus, when seeking to minimise cell damage and death during
cryopreservation there are two primary mechanisms of damage which
must be considered and controlled: i) solute effects and dehydration,
and ii) intracellular ice formation.

3. Mechanism of action of CPAs based on biophysical properties

Cryoprotective agents (CPAs) are used to protect biological samples
from freezing damage during cryopreservation. This is achieved by
different mechanisms depending on the CPA, but even for well-known
CPAs there is still some doubt as to the exact mechanism of protection
[19,28,40–42]. The potential mechanisms are discussed briefly below,
but have been reviewed in more depth elsewhere [7,19,40,43].

CPAs are separated into two broad categories: penetrating and non-
penetrating [7,14,19,40,42,44,45]. Fig. 2 shows a schematic re-
presentation of cellular responses to these two types of CPAs. Pene-
trating CPAs are generally small, non-ionic molecules that can easily
diffuse through cell membranes. Non-penetrating CPAs include small
molecules which cannot penetrate membranes (such as sugars) as well
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Fig. 1. Top: Illustration of the effects of different cooling rates on cell
survival during freezing; with slow cooling (A), there is shrinkage due
to water loss and dehydration; solute concentration effects may cause
cell death. With intermediate cooling (B) there is a balance between
solute effects and intracellular ice formation, leading to maximum
viability. With rapid cooling (C) there is supercooling of the in-
tracellular space which leads to intracellular ice formation and cell
death. Bottom: Graphical representation of Mazur's Two-Factor
Hypothesis, highlighting damage due to cooling too slowly or too
quickly, with an optimal cooling rate (CRsf) which maximises survival.
The optimal cooling rate is dependent on cell type and cryoprotectant
concentration. When the cooling rate is higher than a critical cooling
rate (CRv), cells are vitrified without freezing (or ice formation) and
high cell survival ensues. Adapted from Mazur (1972,1977) [35,39], He
(2011) [38] and Zhao and Fu (2017) [25].

Fig. 2. Schematic representation of the effects of cryoprotective agents. Initially on addition of a CPA (1), osmotic pressure forces water out of the cell which results
in shrinkage. If the CPA is penetrating (2A) then it will enter the cell, thus reversing the osmotic balance and causing the cell to swell back to near its original size. If
the CPA is non-penetrating (2B) then the cell will continue to shrink until it reaches osmotic equilibrium with the extracellular fluid. The amount of shrinkage will
depend on the increase in osmolality, so is generally minimal when adding large biopolymers.
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as large, long chain polymers, added to aqueous cryoprotective solu-
tions (commonly called vitrification solutions). These molecules inhibit
ice growth, but do not enter cells. Non-penetrating cryoprotectants are
usually less toxic than penetrating cryoprotectants at the same con-
centration. They reduce the amount of penetrating cryoprotectants
needed by mimicking outside the cell the cryoprotective effects of
proteins inside the cell. Note that in the case of large non-penetrating
CPAs such as biopolymers, dehydration effects are usually minimal.

The focus of this review is on penetrating CPAs, which are the most
widely used type, but a brief description of non-penetrating CPAs is
provided here for completeness. Non-penetrating CPAs such as sugars
or long-chain polymers remain on the outside of cells as they cannot
permeate the membrane [7,13,14,43]. Primarily, non-penetrating CPAs
act by increasing the osmolarity of the extracellular environment which
results in cell dehydration, thus requiring slow cooling rates. Thus,
there is a higher solute concentration inside of the cell which inhibits
intracellular ice formation [40]. For the same reason, non-penetrating
CPAs can be included in the thawing media to prevent osmotic shock
and lysis by slowing the return of water to cells and thus stopping
traumatic expansion [7,19]. It has been postulated that non-penetrating
CPAs can absorb to the cell membrane surface, thus inhibiting ice for-
mation in the immediate vicinity of the cell by preventing the necessary
formation of crystal lattices and promoting vitrification [30,46,47].
However, at low hydrations, large molecules such as non-penetrating
polymers are excluded from the bilayer region and have no effect on
membrane phase transitions [30,46–48].

As discussed in the introduction, glycerol and DMSO are the two
most commonly used CPAs. Both are penetrating CPAs, and both have
some toxicity which limits their use [10–13]. In order to pass through
the cell membrane and enter a cell, penetrating CPAs are often small,
non-ionic molecules that are highly water soluble at room temperature
[9,40,43,49]. Common groups of penetrating CPAs include molecules
consisting of sulfoxides, alcohols, amides, and imides [43].

Penetrating CPAs have multiple mechanisms of action, although as
discussed above, the full contribution of these to the preservation of
different cell types is not yet fully understood. Because of their pene-
trating nature, and thus their ability to interact with cellular compo-
nents including enzymes, penetrating CPAs tend to be more toxic than
non-penetrating CPAs [19].

3.1. Preventing ice formation

By increasing the glass transition temperature and/or reducing the
freezing point of the solvent, a penetrating CPA can prevent ice for-
mation inside of the cell [20]. As discussed above, intracellular ice
formation can lead to both mechanical damage and solute concentra-
tion effects and is almost universally lethal [26].

Some CPAs increase membrane permeability, which allows further
leakage of water from the cell and decreases the chance of intracellular
ice formation [42,44,50]. Penetrating CPAs can also prevent or inhibit
ice recrystallization during thawing [51]. Ice recrystallization, a form of
Ostwald ripening, can be defined as the growth of large ice crystals at
the expense of smaller ones, thereby reducing the overall surface energy
of the system [52]. This growth and coarsening of ice crystals can lead
to mechanical damage of biological membranes at or around zero de-
grees and can occur during the freeze-thaw cycles of cryopreservation
[53]. Many studies that investigate new CPAs use inhibition of ice re-
crystallization as one of the primary screens to identify potential can-
didates [54–56]. However, inhibition of ice recrystallization alone does
not mean that a molecule will be an effective CPA. For example, many
naturally derived antifreeze molecules might inhibit ice formation at
moderately low temperatures, but as the temperature is further de-
creased below the depressed freezing point, these molecules cause un-
controlled ice crystal growth [33].

3.2. Protein stabilisation

Solutes and CPAs that are excluded from the hydration shell of
proteins can enhance stability during freezing. This is because un-
folding of the protein would expose more surface area, requiring more
exclusion of the solute which is energetically unfavourable. Thus pro-
tein stability is favoured [11]. This is in contrast to solutes such as urea
which directly bind to and destabilise proteins [11].

Note that this mechanism for protein stabilisation is different to the
‘water replacement hypothesis’, which suggests that CPAs interact di-
rectly with the protein, thus taking over the role of water [44,57].
Whilst this does appear to be a potential mechanism for protection
during desiccation, it has been argued that such bound water is not
removed during freezing, and therefore CPA binding to the protein is
irrelevant [28]. In fact, a detailed study by Crowe et al. demonstrated
that the mechanisms of damage and protection during dehydration
were different to that during freezing. Therefore, some molecules may
stabilise proteins during dehydration (e.g. trehalose) while others
cannot (e.g. glycerol). Similarly, some molecules may stabilise proteins
during freezing but have no protective effect during dehydration such
as proline [29].

3.3. Membrane interactions

One of the key requirements for cell survival is that the membrane
retains its integrity. Without a selectively permeable barrier, the cell's
contents will be lost, and the cell will die. The lipids that provide the
structure to cellular membranes undergo phase transitions with chan-
ging temperature and with changing hydration. During freezing, the
membrane is exposed to both [24]. These transitions can not only lead
to ‘leakiness’ of the membrane, but may also cause intramembrane
protein aggregation or loss [30,46,58].

Several studies have been carried out on the effects of non-pene-
trating CPAs such as sugars, especially disaccharides, and their me-
chanisms of action are becoming clearer [30,46,59–65]. During dehy-
dration, these solutes are known to protect cellular membranes by
lowering deleterious phase transition temperatures (Fig. 3) [47,66,67].
Studies of the effects of sugars on membrane phase transitions at dif-
ferent hydrations suggest that the phase transition modification arises
due to non-specific osmotic and volumetric effects [46,47]. In order to
explain how sugar molecules help to protect from lethal phase transi-
tions, two molecular scale theories have been proposed: the water re-
placement hypothesis and the hydration forces explanation [46], which
are not mutually exclusive, and are discussed in detail elsewhere
[59–63,68].

The effects of penetrating cryoprotectants on membranes have been
less widely studied, with most attention being given to DMSO and
glycerol [58,69–75]. CPAs may bind to the cell membrane, either the
polar or non-polar region depending on the chemical composition of the
CPA [69]. Some CPAs can protect membranes from phase transition
damage by inhibiting fusion e.g. of adjacent membranes [28], or by
modifying the phase transition behaviour of the lipids (Fig. 3)
[30,46,58].

Interactions between membrane lipids and DMSO have been studied
by numerous methods and summarised elsewhere [76]. DMSO desta-
bilizes the lamellar liquid crystal phase in favour of the gel phase [58],
but can also inhibit membrane compression by partitioning between the
intermembrane space and forming a physical barrier [77]. At low
concentrations, DMSO causes membrane thinning and increased
fluidity, while at high concentrations it causes pore formation
[70,72,77,78]. DMSO can dehydrate the lipid headgroup area [79–81]
and a recent study demonstrated that while DMSO decreases the hy-
drated headgroup volume by competing for interactions with water,
glycerol strengthens the H-bond network of water [82]. These inter-
pretations are further supported by recent Langmuir monolayer ex-
periments, which also highlighted that CPAs have differential
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interactions with different lipid species [83].
So, while both DMSO and glycerol are effective CPAs, it appears that

their mechanisms of interaction with membranes are different. Over the
last decade, Molecular Dynamics techniques have shed considerable
light on the mode of action of a range of CPAs, and also highlighted the
fact that membrane composition is critical– for example, addition of
sterols significantly reduces the damaging effects of some CPAs [84,85].

3.4. Optimising CPAs

Because different cryoprotectants have different mechanisms of
protection, often mixtures are used to maximise cell viability
[19,44,86]. Examples of this include plant vitrification solutions (PVS)
which combine a number of CPAs. These mixtures form glasses and
avoid ice crystallization during both cooling and thawing [87,88].
Different types of PVS are used for different species of plants including
citrus callus [89], wasabi [90], and asparagus [91]. Variations on PVS
are made by modifying the concentration of the constituent CPAs [92].
Similarly, mixtures of CPAs have demonstrated greater protective ca-
pacity than individual CPAs for the cryopreservation of mammalian and
bacterial cells [19,93]. Furthermore, some studies have shown that
mixtures of CPAs can result in reduced toxicity [86]. Such effects have
been linked to the synergistic action of combined CPAs – for example it
has been shown that replacing some DMSO with glycerol or ethylene
glycol still achieves vitrification but with significantly reduced mem-
brane damage [94].

Toxicity of CPAs may also be reduced by adding them at a lower
temperature. Equilibration times and temperatures can also be modified
to minimise toxicity [95]. Alternatively, stepwise addition or gradually
increasing CPA concentration can reduce toxicity [96]. Similarly,
stepwise removal during thawing can minimise osmotic stress [95].

4. Rational design of Novel CPAs

As discussed by Elliott et al., despite more than half a century of
studies into cryopreservation, the same few CPAs continue to be used
[19]. Therefore, there is a need for targeted, rational design of new
cryoprotectants.

While non-penetrating CPAs are important to cryopreservation and

can greatly improve outcomes when used as an additive, penetrating
CPAs offer the greatest potential for freezing new cell types, or even
tissues and organs, because they inhibit intracellular ice formation
[19,49,97].

Based on the above discussion, the ideal penetrating CPA will pro-
mote vitrification, inhibit ice recrystallization and reduce membrane/
protein damage without being in itself too toxic. Therefore, many in-
vestigations into new CPAs begin with a few simple experiments to test:
a) Does the solute penetrate the cell? b) Does the solute/water mixture
have a glass transition in a reasonable temperature range? c) Does the
solute inhibit intracellular ice formation and/or recrystallisation?

In order to better understand the cryopreservation protocols best
suited to different cell types, an understanding of a cell's biophysical
properties is vital. These properties include the osmotically inactive
volume (Vb), which is the portion of the cell volume that does not re-
spond to osmotic pressure and is calculated using the Boyle van't Hoff
relationship (Eq. (1)) [98].
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where V is the cell volume, Vo is the total cell isotonic volume, Vwo is the
isotonic volume of water in the cell, and π and πo are the osmolality and
isotonic osmolality respectively. By exposing the cell to different ani-
sotonic (hypertonic and hypotonic) solutions containing an imperme-
able solute and allowing for equilibration, the relative volumes can be
determined. Plotting the normalised volume V

Vo
vs. the normalised in-

verse osmolality o then yields a straight line whose intercept is equal to

the osmotically inactive volume fraction =b V
V

b
o
. A schematic of this is

shown in Fig. 4.
The osmotically inactive volume can be used to give an indication of

the ‘safe’ volume changes a cell can experience without loss of viability:
some protocols use a two-step or gradual addition of CPA, rather than a
one-step addition which could lead to the cell volume change exceeding
‘safe’ levels [99,100]. By knowing the Vb value, a protocol for adding
CPA can be designed to avoid these extreme volume changes. However,
it is more complicated than this simple picture – in particular it has
been reported that the osmotically inactive volume is temperature de-
pendent: the variation of inactive volume with temperature and number

Fig. 3. Schematic representation of the effect of dehydration on membrane lipid organisation. A) Without solutes, dehydration causes a transition from the liquid to
the gel phase. B) With solutes, the cell membrane remains in the fluid phase. Image adapted from Bryant et al. [46].
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of osmotic cycles, and how this is related to designing CPA protocols, is
described in detail by Casula et al. [101]. An early study by Gilmore
et al. [102] analysed the effect of various cryoprotectant solutes on
water permeability of human spermatozoa in order to better understand
the parameters relevant for optimising preservation protocols [102].

In addition to Vb, the water permeability (hydraulic conductivity)
and the CPA/solute permeability of a cell are important for optimising
cryopreservation protocols [103,104]. This information can be used to
predict a cell's response to hypo- or hyper-osmotic solutions, the con-
centration of CPA inside a cell at a given time point, and the con-
centration/volume of water inside a cell under certain conditions
[105,106]. For example, if a given cell type has a low permeability to
the CPA, then it will probably require extended incubation in the CPA
before freezing to allow adequate penetration, as has been demon-
strated previously for glycerol [45] and other CPAs [12,107].

4.1. Testing potential CPAs

In order to test if a molecule has the potential to act as a CPA, there
are several key questions that can be asked.

• Can the CPA inhibit ice formation during cooling and promote vi-
trification?
• Is the toxicity of the CPA low enough that exposure during cryo-
preservation protocols does not lead to irreparable damage?
• Can the CPA penetrate cells, and if so, how quickly?

The thermal properties of solutions containing the potential CPA
can be measured routinely using methods such as differential scanning
calorimetry (DSC) [20,97,108,109]. As these are widely known, they
are not discussed further here.

Inhibition of ice recrystallization is measured by splat cooling assays
where the mean size of ice crystals during thawing is measured
[12,33,97,110]. An effective recrystallization inhibitor will result in
observably smaller crystals.

The most critical of these tests is the determination of the ability of
CPAs to penetrate cells, as without this none of the other properties
matter. Permeability can be measured in a variety of ways which were
reviewed by McGrath [111], including stopped-flow light scattering
[112–114], electronic particle counters [102], differential scanning
calorimetry [115], and micropipette perfusion [116]. Each of these
methods have advantages and disadvantages depending on cell type,
availability, and the conditions under examination [111].

One of the simplest methods of measuring CPA penetration is a
‘shrink-swell’ light microscopy experiment, whereby changes in cell size
are observed as the suspending solution is changed from an isotonic
solution to one containing the CPA. If the CPA is permeable, the cell
will initially shrink due to water leaving the cell, but will swell again as
the CPA enters the cell and restores osmotic equilibrium [117]. If the
cell does not swell and return to near its starting size, then the CPA
cannot penetrate [118]. Both of these cases are shown in Fig. 5.

The above microscopic method can be further improved by using
microfluidic technologies. In recent years, several microfluidic devices
with perfusion chambers [119] or single cell traps [117,120,121] have
been developed, some of them specifically for the measurement of cell
permeability [25,119,122–124]. Microfluidic devices are now con-
sidered essential technology in cell biology, as they enable the user to:
(i) monitor the changes of cellular conditions following the perfusion of

Fig. 4. A Boyle-Van't Hoff plot used to calculate the osmotically inactive vo-
lume of a cell. Normalised cell volume is plotted against normalised inverse
osmolality and the fitted straight line is extrapolated to find the normalised
volume at infinite osmolality which is b. The difference between the osmoti-
cally inactive volume (indicated by the red line) and the non-water volume (cell
solids, indicated by the green dashed line) is sometimes called “unfreezable”
water, though this terminology has been questioned [31]. Hypertonic and hy-
potonic regimes are highlighted.

Fig. 5. Change in cell volume during shrink-swell experiments as a result of osmotic changes with penetrating and small non-penetrating CPAs. The solid and long-
dash lines show example behaviour of penetrating CPAs that have different permeabilities and osmolalities where the rate of shrink/swell are different.
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various media; (ii) confine cells within a chamber/trap to prevent
imaging ambiguity due to overlapping of cells or their movement out of
the focal plane; (iii) study the single cell response to osmotic pressure
and calculate the cell membrane parameters; (iv) use low cell numbers
and reagent volumes; and (v) perform kinetic analysis of non-adherent
suspension cells by maintaining their position in place over long times
without any dislodgement during image acquisition [119,120]. Tech-
nological advances in high-resolution three dimensional (3D) printing
with direct laser writing (DLW) using multi-photon polymerization has
enabled the fabrication of microfluidic devices in a single step
[125–128].

The shrink-swell behaviour can be modelled to extrapolate perme-
ability parameters and related activation energies. Mazur and collea-
gues [129,130] introduced the first one-parameter model for calcu-
lating solute permeability. This was refined to a two-parameter model
called 2P [131,132] for finding water and solute permeability. Kedem
and Katchalsky [132] developed the three-parameter model (also called
the Kedem–Katchalsky (KK) formalism) which is most commonly used
today. The KK formalism adds a ‘σ’ term to the 2P, which is the term
representing the interaction between solute and solvent [133]. An Ar-
rhenius plot is used to find the activation energies of these permeability
parameters [133].

4.2. Recent developments in CPAs

Many synthetic CPAs are based on naturally occurring compounds
found in cold-resistant plants and animals. One of the most common
protectants found in nature are antifreeze proteins and glycoproteins.
These were first identified in arctic fish and their protective capacity
attributed to binding to ice crystals [134]. Since then, many attempts
have been made to isolate or design analogous antifreeze proteins and
mimics [7,43].

Many anti-freeze proteins successfully inhibit ice formation at
moderately low temperatures, but further cooling leads to uncontrolled
oriented crystal growth which can be damaging [33]. Thus, anti-freeze
proteins must be designed by taking into account the effect of molecular
modifications such as side groups, and chain lengths, etc. in order to
maximise cryoprotective properties [33]. C-linked anti-freeze proteins
offered some protection during cryopreservation, but not as much as
DMSO [135]. Extensive simulations have been carried out to better
understand how anti-freeze proteins provide protection, including the
mechanisms of binding to ice [136,137].

Similarly, glycolipids have been identified as offering protection
against freeze damage in some species [138]. Similar to the (glyco)
proteins, the activity of glycolipids could come from binding to nu-
cleation sites and preventing crystal formation, or alternatively, gly-
colipids could stabilise the cell membrane. Further investigations have
shown that glycolipids can inhibit vesicle fusion during freeze drying,
especially when used in combination with glucose [139].

In addition to (glyco)proteins and glycolipids, other carbohydrate
derivatives have undergone extensive testing as potential CPAs. Many
cold-resistant species use sugars as natural CPAs, for example, trehalose
and sucrose are well-known naturally occurring CPAs. However, these
naturally occurring sugars are produced (and act) intracellularly [43].
They present a problem as artificial CPAs because they are non-pene-
trating, and therefore cannot be easily introduced to the interior of cells
where they would have an effect [11,140]. This has led to attempts to
modify naturally-occurring carbohydrate CPAs to make them more
permeable while still retaining their cryoprotective activity [141]. Al-
ternative methods such as electroporation or genetic modification have
been used to get such CPAs inside cells [11,142].

Carbohydrates offer interesting insights into the mechanisms of
cryoprotectant activity. One study found that disaccharides were twice
as effective at preventing ice recrystallization as monosaccharides but at
high concentrations the disaccharides were more toxic to the cell lines
tested [51]. Ultimately, this work showed that some sugars could be

used in combination with low concentrations of DMSO to achieve
successful cryopreservation, with less toxicity. In fact, at 200 mM, many
of the carbohydrates tested (including D -galactose and D -lactose) had
the same cryoprotective activity and resulted in the same cell viability
following freeze-thaw as 5% DMSO [51]. Another important finding of
this study was that many of the sugars were effective CPAs but at
physiological temperatures were highly cytotoxic. Ideally, a CPA would
be non-toxic at physiological temperatures to avoid cell death during
thawing or incubation. This study found that D -galactose may be ideal
because at 200 mM D-galactose results in 78% viability at physiological
temperatures and 75% viability post-cryopreservation.

Similarly, glyceryl glucoside (GG, α-D-glucosylglycerol) which is a
natural glycerol derivative found in alcoholic drinks, is found to be a
better alternative cryoprotectant as this compound has lower geno-
toxicity than glycerol and lower cytotoxicity than DMSO [143].

Other carbohydrate molecules have been tested for inhibition of ice
recrystallization, but not yet for cryopreservation activity, including
carbohydrate-based surfactants [55,56].

Sugar surfactants show some promise for stabilising proteins during
freeze-thaw and freeze-drying [144]. The authors attributed the stabi-
lising activity to direct interaction between the surfactant and the
proteins, with shorter tailed surfactants offering better protection be-
cause they were less likely to self-aggregate than longer tailed surfac-
tants [144]. They are also less likely to dissolve lipid membranes.

In a recent study, n-octyl (thio)glycoside derivatives showed pro-
mising glass transition behaviour, and some could penetrate human
monocytes (THP-1 cells [145]) without causing lysis [97]. These results
provide useful insight for further modification and fine-tuning of ana-
logue molecules to maximise permeability and glass transition beha-
viour.

Similarly, O-aryl glycosides have been investigated by the Ben
group for cryopreservation activity. Some derivatives at low con-
centrations in conjunction with 15% glycerol could achieve the same
cryopreservation activity as 40% glycerol on its own, which is pro-
mising for the purposes of reducing toxicity post-thaw [146].

Betaine and its analogues are found in cold-resistant plants and fish
[147,148]. Some betaine analogues can preserve enzymes during
freezing to the same level, or even better, than traditional CPAs such as
DMSO. In fact, some enzymes retained activity even after 100 freeze-
thaw cycles. The authors propose that protection comes from the ana-
logues promoting ice nucleation which prevents aggregation [148].
Betaine has also demonstrated protection against fusion of vesicle
membranes during freeze-thaw cycles, probably through interaction
with the non-polar regions of the lipids [69]. Even more importantly,
betaine has demonstrated even better CPA activity than DMSO for a
number of cell types (HeLa, MCF-10 and GLC-82), including when used
with rapid-freeze protocols [107]. Furthermore, betaine can be used for
cryopreservation of whole blood with a one-step removal process; a
method that would result in haemolysis if applied to blood preserved
with glycerol [149].

Proline is a known natural CPA and has shown some promise as a
synthetic additive for cryopreservation [43]. Proline has also been
shown to inhibit fusion of vesicles and stabilise membranes during
freezing, but did not interact with phospholipid headgroups, suggesting
an alternate mode of protection [69]. Proline is also known to increase
the allowed change in surface area of a cell membrane (as occurs during
shrinking and swelling) before cell death occurs, and acts as a protein
stabiliser [24]. As discussed above, betaine has CPA activity, but cell
viability was improved even further by combining betaine and proline,
even at very low concentrations [149]. This demonstrates that even a
simple amino acid such as proline could have huge potential as a non-
toxic CPA.

Foetal bovine serum (FBS) is often used in cell culture and some-
times in cryopreservation. However, there is inherent variation be-
tween batches as well as immunological, infectious, ethical, and re-
ligious concerns around its use. Sericin—a protein derived from
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silkworm cocoons—offers a possible alternative [150]. Sericin has been
used instead of FBS in the freezing media for a number of cell types,
including Chinese-hamster ovaries [151], adipose tissue-derived stem
cells [142], human mesenchymal stromal cells [150], and mouse hy-
bridoma cells [152]. However, in all of these studies, the main CPA was
DMSO at 10%, and this could not be replaced by sericin. Therefore,
while sericin might offer a serum-free option for cryopreservation it
does not in itself offer sufficient CPA activity.

Deep eutectic solvents (DESs) are composed of a hydrogen bond
donor and a hydrogen bond acceptor. They are characterised by having
freezing points at much lower temperatures than either of the compo-
nents [153]. Many DESs have glass transitions which makes them of
interest for cryopreservation [154–156]. In addition, DESs are highly
tuneable and can be made from non-toxic components including amino
acids and sugars, or even betaine and proline, which as discussed above
are already promising CPAs. However, so far there has been only one
investigation into using DESs for cryopreservation. That study used a
DES composed of trehalose and glycerol (at a 1:30 mol ratio) and found
equitable cell viability as those preserved using DMSO [108].

Examining the work that has been done so far can help to streamline
the search for new CPAs. In addition, predictive modelling can help to
identify promising CPAs and reduce the number of required tests [157].
For example, a recent study used a differential evolution algorithm to
successfully design a CPA solution that functioned even better than
DMSO for the target cell type, reducing the number of required ex-
periments from over a thousand to just eight [158].

5. Conclusion

The most commonly used CPAs (DMSO and glycerol) are not only
toxic, which makes them unsuitable or inefficient for many clinical
applications, but they are also ineffective for hundreds of cell types.
Therefore, new, non-toxic CPAs must be developed.

In order to efficiently design CPAs and cryopreservation protocols, a
number of factors must be considered including the biophysical prop-
erties of the cells to be preserved, the penetration ability of the CPA, the
rate of cooling, and the ice inhibition capacity of the CPA. These
parameters will provide vital information that will help fine-tune
cryopreservation parameters such as cooling rate, or pre-incubation
time.

As well as optimising the cryopreservation procedure, there is huge
scope for developing new CPAs. The research outlined above highlights
that glycerol and DMSO are just two options, but that there are many
more which are worthy of further exploration, including: sugar deri-
vatives, amino acids, other additives (such as betaine), and deep eu-
tectic solvents.

Many of the studies detailed above demonstrated that combinations
of CPAs are more effective and less toxic than individual CPAs on their
own. Whilst this can make it harder to quantify, and creates ex-
ponentially more combinations to test, it appears that this is the most
promising avenue for future development of CPAs.

Despite more than fifty years of research, the development of novel
CPAs is still very much in its infancy. However, with improved ex-
perimental methods such as microfluidics, predictive modelling, and
molecular simulations, the library of promising CPAs is likely to in-
crease exponentially which offers significant promise for the many
applications that rely on cryopreservation. This includes medical ap-
plications, such as blood and organ banks, and storage of seeds and
endangered species.
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