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Abstract We prove that N = 2 theories that arise by taking n free hypermultiplets
and gauging a subgroup of Sp(n), the non-R global symmetry of the free theory, have
a remaining global symmetry, which is a direct sum of unitary, symplectic, and special
orthogonal factors. This implies that theories that have SU(N ) but not U(N ) global
symmetries, such as Gaiotto’s TN theories, are not likely to arise as IR fixed points of
RG flows from weakly coupled N = 2 gauge theories.
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1 Introduction

Classifying the different possible phases of quantum field theories has been a long-
standing goal of high-energy theoretical physics, and understanding and constraining
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the symmetries that arise in particular realizations is a key tool in this effort. In some
cases, such as in two dimensions, there has been a significant amount of progress in this
direction, e.g. the known restriction of unitary conformal field theories (CFTs) with
c < 1 to the minimal models, where the chiral algebra essentially fixes the theories.
In four dimensions, however, significantly less is known, even in the case of CFTs.

It has long been known that it is possible to engineer four-dimensional CFTs,
which do not obviously have any free-field limit. An early class of examples are the
N = 2 SCFTs found byMinahan andNemeschansky [1,2]. These theories have E6,7,8
global symmetries and can be studied via the Seiberg and Witten [3,4] curve and the
powerful techniques available in N = 2 theories. Although much is known about
these theories, including the dimensions of various operators, ’t Hooft anomalies, and
even some chiral ring relations [5], there is no known way of directly constructing the
theories via an asymptotically free UV theory.1 It is worth noting though that recently
[9] constructed anN = 1 theory that in certain limits is enhanced toN = 2 realizes an
un-gaugedMinahan–Nemeschansky E6 theory. Shortly after the discoveryofArgyres–
Seiberg duality, it was realized [10] that the Minahan–Nemeschansky CFTs are in fact
special cases of a much broader class of N = 2 theories that come from wrapping
M5-branes on a three-punctured sphere. The E6 theory is a special case of Gaiotto’s
[10] TN theories, and E7,8 are special cases that emerge when allowing more general
punctures on the sphere [11–13]. For all but a few very special cases, which are free
theories, these theories do not have known UV Lagrangian descriptions. Needless to
say, such a description could be of great use—for instance, one could apply powerful
localization techniques to constrain and perhaps fix the chiral ring structure of a given
theory. This leads to a natural question: are there theories for which we can rule out
the existence of a useful Lagrangian formulation?2

Despite the lack of a Lagrangian description, it is still possible to do detailed
calculations in these theories. This is because for many quantities of interest, knowing
information about the global symmetries such as the leading behaviour of current
two- and three-point OPEs is sufficient, and global symmetry currents are among the
limited set of operators to which we have reliable access. Although useful in general,
global symmetry information has proved particularly important for studying N = 1
generalizations of the TN theories, as in [14] and subsequent work. This brings up the
general question of what sorts of constraints follow from the global symmetries of
these theories.

In this work, we make the observation that these two questions, i.e. the constraints
on possible symmetries and existence of a Lagrangian, have an interesting relation in
the context ofN = 2 gauge theories. We will show that some (non-R) global symme-
tries, such as the SU(N )3 global symmetry possessed by Gaiotto’s TN theories, are not
straightforwardly realized by asymptotically freeN = 2 theories. The essence of our

1 It is worth noting that these theories, albeit with certain global symmetries gauged, can be realized via
Argyres and Seiberg [6] duality and generalizations [7]. However, much like in the case of Argyres and
Douglas [8] theories, there is not a straightforwardmapping between theweakly coupled degrees of freedom
and those of the un-gauged En theories.
2 By utility we mean that the connection between UV and IR physics is relatively simple, ideally without
the complications of a strong coupling limit or accidental symmetries.
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argument is that such SU(N ) symmetries are always accompanied by an additional
U(1), which enhances the symmetry to U(N ). Although we will not be able to com-
pletely rule out the possibility that the TN theory has a UV Lagrangian description,
we will be able to place constraints on any gauge theory realization. We will discuss
these constraints and their limitations further in Sect. 4.

The main result of our paper is a proof that the global symmetries of certain N =
2 gauge theories fall into a straightforward classification depending on the matter
representation. Our starting point will be a theory of n free hypermultiplets, which
has a non-R global symmetry group Sp(n). We prove that after gauging a subalgebra
g of the global symmetry algebra sp(n), the remaining global symmetry algebra is
a direct sum of so, sp, and u factors. In particular, we note that su factors without
accompanying u(1)’s do not appear. This classification is certainly known to some
experts (see, for example, [7,15]), but we are not aware of a general proof in the
literature. Our aim is to provide such a proof and explore some of the consequences.

2 Symmetries of free fields

It is instructive to first understand the global symmetry of a theory of n free hyper-
multiplets. In N = 1 superspace, a hypermultiplet consists of a chiral superfield Q
with propagating component fields (q, ψ), and a chiral superfield ˜Q with compo-
nents (q̃, ˜ψ). Requiring N = 2 supersymmetry implies there is a U(1)R × SU(2)R
R-symmetry, under which (q, q̃†) transform as a doublet under SU(2)R, while the
fermions are neutral. We parametrize the SU(2)R action on the bosons as

TR :
(

q
q̃

)

�→
(

aq + bq̃†

−bq† + aq̃

)

, |a|2 + |b|2 = 1. (1)

In what follows we split the 2n chiral multiplets into a column vector Q and a row
vector ˜Q (with transpose ˜Qt ), so that the Lagrangian for n free hypermultiplets is

L =
∫

d4θ Q†Q, Q ≡
(

Q
˜Qt

)

. (2)

We want to identify global symmetries that commute with both N = 1 and SU(2)R.
The first requirement means that these global symmetries must act linearly on the
superfields Q:

TM : Q → MQ, TM :
(

Q
˜Qt

)

→
(

M1 N1
N2 M2

) (

Q
˜Qt

)

, (3)

where M satisfies MM† = 12n , i.e. M ∈ U(2n). Since the SU(2)R acts trivially on
fermions, we just need to determine the set ofM restricted to the bosons that commute
with the SU(2)R action. Evaluating the composition of two arbitrary rotations on the
chiral fields explicitly,
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TR TM :
(

q
q̃

)

�→
(

a
(

M1q + N1q̃ t
) + b

(

N∗
2 q∗ + M∗

2 q̃†
)

−b
(

q̃∗N †
1 + q†M†

1

)

+ a
(

qt N t
2 + q̃ Mt

2

)

)

,

TMTR :
(

q
q̃

)

�→
(

a
(

M1q + N1q̃ t
) + b

(

M1q̃† − N1q∗)

a
(

qt N t
2 + q̃ Mt

2

) + b
(

q̃∗N t
2 − q†Mt

2

)

)

, (4)

we see that [TM, TR] = 0 if and only if

M1 = M∗
2 , N1 = −N∗

2 . (5)

Equivalently, MJMt = J , where J is the symplectic structure

J =
(

0 1n

−1n 0

)

. (6)

Hence, M ∈ U(2n) ∩ Sp(2n,C) ≡ Sp(n), the compact unitary symplectic group.3

We have uncovered the global symmetry group of n free hypermultiplets: U(1)R ×
SU(2)R×Sp(n), withmatter in the fundamental of Sp(n), a pseudoreal representation.4

3 Representation theory

In this section, we will characterize the global symmetry algebra of a weakly coupled
LagrangianN = 2 gauge theory. Starting with a free theory of n hypermultiplets, we
gauge a semisimple subalgebra g of the global symmetry algebra sp(n) of the free
theory. The global symmetry algebra Cg is the commutant of g in sp(n), i.e.

Cg = {x ∈ sp(n) | [x, y] = 0 for all y ∈ g} . (7)

This is also known as the centralizer of g in sp(n).Wewill prove the following theorem.

Theorem 1 Let g be a semisimple subalgebra of sp(n). Then, the commutant subal-
gebra Cg of g in sp(n) is of the form

Cg =
⊕

i

sp(ki ) ⊕
⊕

p

so(l p) ⊕
⊕

q

u(mq),

and the fundamental of sp(n) decomposes under sp(n) ⊃ g ⊕ Cg as

2n =
⊕

i

(

r+i , 2ki
) ⊕

⊕

p

(

r−p , l p
)

⊕
⊕

q

[(

rcq,mq

)

⊕
(

rcq,mq

)]

,

3 In these conventions Sp(1) = SU(2).
4 As discussed in [4], at the level of groups this action is not completely disjoint from that of the Lorentz
group, but that will not affect our analysis at the level of the algebra.
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where r+i , r−p , rcq are distinct irreducible representations of g that are, respectively,
real, pseudoreal, or complex, and 2ki , l p, and mq denote the fundamental represen-
tations of the corresponding factors in Cg.

The result has a simple implication for the physics: if we gauge a semisimple
g ⊂ sp(n), then the global symmetry group will be a sum of classical Lie algebras
acting on the different flavours in fundamental representations.

In Sect. 3.1, we will illustrate Theorem 1 for a simple g. In Sect. 3.2, we review the
branching rule for pseudoreal representations when g is semisimple, before turning to
a proof of Theorem 1 in Sect. 3.3.

3.1 A few familiar gaugings for a simple g

Before we turn to the general case where g is a semisimple algebra, we will review
some familiar cases ofN = 2 SQCDwith g a simple Lie algebra of type su(p), sp(q),
or so(m) [15,16]. This gauging is accomplished by considering the embeddings

sp(pm) ⊃ su(p) ⊕ u(m) , 2 pm = ( p,m) ⊕ ( p,m) ,

sp(qm) ⊃ sp(q) ⊕ so(m) , 2qm = (2q,m). (8)

It is straightforward to then construct embeddings for any simple g ⊂ sp(n). Suppose r
is an irreducible representation (irrep) ofgof dimension k. Then, depending onwhether
r is real, pseudoreal, or complex, there is an S-subalgebra embedding g ⊂ so(k),
g ⊂ sp(k), or g ⊂ su(k), respectively [17]. It is then a simple matter to use the
embeddings in (8) to construct suitable gauge theories. For instance, to build a e6
gauge theory with s hypermultiplets in the 27, we need s conjugate multiplets in 27,
and we use the embedding

sp(27s) ⊃ su(27) ⊕ u(s) ⊃ e6 ⊕ u(s), 54s = (27, s) ⊕ (27, s). (9)

In all of these cases, the reality properties of various irreps play a key role in con-
structing the embedding. As we will see, this will also be the case more generally. Our
strategy will rely on two simple facts:

1. the decomposition of 2n under sp(n) ⊃ g⊕ Cg determines the decomposition of
adj sp(n) = Sym22n;

2. 2n is usefully decomposed according to reality properties of irreps of h, a semisim-
ple subalgebra of g.

3.2 Decomposing pseudoreal representations for semisimple g

We continue our warm-up by reviewing the branching rules for a pseudoreal represen-
tation of a semisimpleLie algebra g, whichwewill need for the proof of Theorem1.We
begin by fixing some useful conventions and reviewing a few definitions and familiar
facts from representation theory. We only work with compact Lie algebras, so that all
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representations may be taken to be unitary (i.e. to admit an invariant Hermitian metric)
with anti-Hermitian generators. We will denote the generators in representation r by
Tr . The complex conjugate generators T ∗

r define the conjugate representation r , i.e.
T ∗
r = Tr . The standard definitions for real/pseudoreal/complex representations are

then as follows [17–19]:

Property 1 Let r be an irrep of g.

(a) r is real if there is a choice of basis such that the generators are real: T ∗
r = Tr .

(b) r is pseudoreal if there is a choice of basis such that T ∗
r = J TrJ −1 for some

non-unitary matrix J ; Schur’s lemma and properties of complex matrices imply
that J is anti-symmetric and J 2 = −1, i.e. J is a complex structure on r .

(c) r is complex if T ∗
r and Tr are not related by a similarity transformation. In this

case, T ∗
r define the conjugate representation r , and r is not equivalent to r by a

change of basis.

Schur’s lemma assures that these are mutually exclusive possibilities, and there is
an equivalent characterization of the possibilities in terms of bilinear invariants of r:
an irrep r admits at most one bilinear invariant, which must either be symmetric or
skew-symmetric [17–19], and this correlates with the reality properties of r as follows.

Property 2 Let r be an irrep of g.

(a) r is real if and only if it admits a symmetric bilinear invariant, i.e. Sym2 r ⊃ 1;
in the basis where T ∗

r = Tr , the bilinear is simply the identity. If, in addition, r is
faithful 5 , then ∧2r ⊃ adj g.

(b) r is pseudoreal if and only if it admits a skew-symmetric bilinear invariant, i.e.
∧2r ⊃ 1; in the basis where T ∗

r = −J TrJ , and J is a complex structure on
r , the bilinear is J . In this case dim r is necessarily even. If, in addition, r is
faithful, then Sym2 r ⊃ adj g.

(c) r is complex if it is neither real or pseudoreal, in which case r ⊗ r ⊃ 1. If, in
addition, r is faithful, then r ⊗ r ⊃ 1 ⊕ adj g.

We denote real, pseudoreal, and complex representations of g by r+, r−, and rc

The conjugate representation r of a semisimple g is related by a similarity trans-
formation to r if and only if r is real or pseudoreal. We see from above that for any
irrep r , r ⊗ r ⊃ 1. In fact, using crossing symmetry, that is associativity of the tensor
product, we have the following result [19,20]:

Lemma 1 Given two irreps r1 and r2 of a semisimple Lie algebra g, r1 ⊗ r2 ⊃ 1 if
and only if r1 = r2.

The more general statement of crossing symmetry is that if r1 ⊗ r2 ⊃ r3, then
r1 ⊗ r3 contains r2. Our result follows by setting r3 = 1.

Having reviewed some basic terminology, we end this section with two results on
the branching of pseudoreal representations.

5 Let Vr denote the vector space of the irrep r . A representation μr : g → gl(Vr ) is faithful if μr has a
trivial kernel.
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Lemma 2 Let R be a pseudoreal irrep of a semisimple Lie algebra g, and let h be a
semisimple subalgebra of g. Then

R =
⊕

i

(

r+i ⊕ r+i
)⊕ki ⊕

⊕

p

(

r−p
)⊕l p ⊕

⊕

q

(

rcq ⊕ rcq
)⊕mq

,

where r+i , r−p , and rcq are distinct real, pseudoreal, and complex irreps of h.

Proof We can decompose R as

R =
⊕

i

(

r+i
)⊕Ki ⊕

⊕

p

(

r−p
)⊕l p ⊕

⊕

Q

(

rcQ
)⊕m Q

, (10)

where r+i , r
−
p , and rcQ are inequivalent irreps with Ki , l p and m Q their multiplicity.

The generators TR are block-diagonal with respect to the decomposition and satisfy

J T ∗
R = TRJ . (11)

J must act block-diagonally on each block of inequivalent real or pseudoreal repre-
sentations in the sum. Furthermore, since rcQ is not conjugate to rcQ , in order to match

the two sides of (11), rcq occurs in the decomposition only if rcq occurs as well. Hence,

R =
⊕

i

(

r+i
)⊕Ki ⊕

⊕

p

(

r−p
)l p ⊕

⊕

q

(

rcq ⊕ rcq
)⊕mq

. (12)

Consider the action of J on (r+i )⊕Ki , denoted by Ji , and let n = dim r+i so that Ji is
a nKi ×nKi matrix. Reality of r+i means its generators ti may be taken to be real. Let
A, B, C, D ∈ {1, . . . , Ki } and let E AB be a Ki ×Ki matrixwith (E AB)C D = δACδB D .
Without loss of generality, we can write

Ji = ∑

A,B E AB ⊗ τAB,

where τAB are arbitrary n × n matrices acting on r+i . Therefore, the restriction of the
requirement (11) to the block (r+i )⊕Ki is

∑

A,B

E AB ⊗ (−tiτAB + τABti ) = 0. (13)

Using the form of E AB , this is only possible if [τAB, ti ] = 0 for all A, B and ti . But,
because r+i is an irrep, that is only possible if τAB = xAB1n for some constants xAB .
Thus,Ji = M ⊗1n for some Ki × Ki matrix M , and forJi to be a complex structure,
M must be skew-symmetric and satisfy M2 = −1Ki . Hence, Ki = 2ki , and M is a
complex structure on C

ki . So, the claim follows for the (r+i )⊕Ki block.
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Analogous considerations determine the action of the complex structure J on the
remaining blocks: Jp = 1l p ⊗ jp, where jp is the bilinear invariant of r−p , while the
action of Jq on (rcq ⊕ rcq)

⊕mq has the same form as Ji , but with ki replaced by mq .
The result follows. 
�

We can decompose the previous result further with respect to h ⊕ h′, a semisible
subalgebra of g.

Lemma 3 Let R be a pseudoreal irrep of a semisimple Lie algebra g, and let h ⊕ h′
be a semisimple subalgebra of g. Decomposing R with respect to h ⊕ h′, Lemma 2 is
refined to

R =
⊕

i

(

r+i , Ri
) ⊕

⊕

p

(

r−p , Rp

)

⊕
⊕

q

[(

rcq, Rq

)

⊕
(

rcq, Rq

)]

.

While Ri , Rp, Rq need not be irreps of h′ , ∧2Ri ⊃ 1 and Sym2Rp ⊃ 1.

The proof is simple: for instance, Ri must admit a skew-symmetric invariant that
plays the role of the matrix M in the proof of Lemma 2.

3.3 Global symmetries

We now have the tools to prove Theorem 1, and we present the proof in this section.
Let g ⊂ sp(n) be a semisimple subalgebra with commutant Cg. It is easy to show that
g ∩ Cg = 0, so that g ⊕ Cg is a subalgebra of sp(n), and Cg is reductive, i.e. a sum
Cg = h⊕ u(1)⊕A of a semisimple factor h and an abelian factor. Using Lemma 3, we
decompose 2n as

2n =
⊕

i

(

r+i , Ri
) ⊕

⊕

p

(

r−p , Rp

)

⊕
⊕

q

(

rcq, Rq

)

⊕
(

rcq, Rq

)

, (14)

where r+i , r
−
p and rcq denote distinct irreps of gwith indicated reality properties. Since

adj sp(n) = Sym22n, we find

adj sp(n) ⊃
⊕

i

(

Sym2r+i ,Sym2Ri

)

⊕
⊕

p

(

∧2r−p ,∧2Rp

)

⊕
⊕

q

(

rcq ⊗ rcq, Rq ⊗ Rq

)

⊃
⊕

i

(

1,Sym2Ri

)

⊕
⊕

p

(

1,∧2Rp

)

⊕
⊕

q

(

1, Rq ⊗ Rq
)

. (15)

By Lemma 1 every g-singlet in adj sp(n) is obtained this way, and by assumption,
these g singlets are precisely the generators of Cg. Decomposing further into irreps of
h as
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Ri =
⊕

α

ρiα, Rp =
⊕

σ

ρ pσ , Rq =
⊕

μ

ρqμ, (16)

we obtain

adj h ⊕ u(1)A =
⊕

i

⊕

α

Sym2ρiα ⊕
⊕

p

⊕

σ

∧2ρ pσ ⊕
⊕

q

⊕

μ

ρqμ ⊗ ρqμ

⊕
⊕

i

⊕

α>β

ρiα ⊗ ρiβ ⊕
⊕

p

⊕

σ>τ

ρ pσ ⊗ ρ pτ ⊕
⊕

q

⊕

μ�=ν

ρqμ ⊗ ρqν .

(17)

Decomposing h = ⊕shs into its simple summands, we observe that every summand
in

adj h = (adj h1, 1, . . . , 1) ⊕ (1, adj h2, . . . , 1) ⊕ · · · ⊕ (1, . . . , 1, adj hk) (18)

must be contained in exactly one of the summands in (17), and moreover, (17) can-
not contain non-trivial representations of hs other than those appearing in (18). This
implies that the second line of (17) must be absent; if it is present and contains the
representations appearing in (18), then the first line of (17) will necessarily contain
additional representations. This means that Ri , Rp and Rq must in fact be irreps of h.

Analogous reasoning show that each simple factor hs must act non-trivially on
exactly one of Ri , Rp, Rq ; otherwise, (17) will have additional non-trivial represen-
tations not contained in (18). So, we may write

⊕

s

hs =
⊕

i

hi ⊕
⊕

p

hp ⊕
⊕

q

hq , (19)

with

adj hi = Sym2Ri , adj hp = ∧2Rp, u(1)⊕A ⊕
⊕

q

adj hq =
⊕

q

Rq ⊗ Rq .

(20)

We recognize the classical groups hi = sp(ki ), hp = so(l p), and hq = su(mq), with
Ri , Rp, and Rq the corresponding fundamental representations.Moreover, the abelian
factor u(1)⊕A = ⊕qu(1)q , and u(1)q acts with charge +1 on Rq and −1 on Rq . This
completes the proof of Theorem 1.

4 Discussion

Having found that gauging a subalgebra of sp(n) does not yield su(m) factors without
accompanying u(1)’s, we now turn to the question of whether it is possible to get such
factors in some other way. In particular, we consider two possibilities: gauging discrete
subgroups and moving out on the Higgs branch. We will find that discrete gaugings
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do not yield su(m)’s, whereas special loci on the baryonic branch of SQCD do. Of
course, we also cannot rule out the possibilities of emergent (accidental) symmetries
yielding su(m) factors, and we will have nothing further to say about this possibility
here.

4.1 Discrete gauge symmetries

One way to decrease the global symmetry group G is to introduce a further gauging by
a discrete subgroup 
 ⊂ G. As shown in a beautiful paper [21], forN = 2 supersym-
metric theories the only consistent gauging of global symmetries are combinations of
the outer automorphism group of the flavour symmetry algebra, discrete subgroups of
the U(1)R and the low-energy EM duality group SL(2,Z). The duality group contains
the field theory coupling, and its gauging renders the theory non-perturbative. This is
beyond the scope of our analysis here which is perturbative in nature.

4.2 Higgs branch

The moduli space of N = 2 SU(Nc) SQCD with N f flavours was comprehensively
analysed in [15]. In this work, the authors describe the remaining global symmetries
on the various possible sub-branches of the Higgs branch. When Nc ≤ N f < 2Nc,
the remaining non-R global symmetry on the baryonic branch is SU(2Nc − N f ) ×
U(1)N f −Nc . When N f = Nc, the U(1) factors are spontaneously broken, and the
global symmetry is simply SU(N f ). Moreover, even when N f > Nc, the U(1) factors
do not enhanceSU(2Nc−N f ) toU(2Nc−N f ). Thus, it is possible to get non-enhanced
SU(m) factors on the Higgs branch of N = 2 theories.

4.3 General discussion and conclusions

Let us now comment on some special cases of interest, in particular those of the low-
rank TN theories. The first non-trivial case is the T2 theory. This has a naïve global
symmetry algebra su(2)⊕3 and is known to be equivalent to a free theory of 8 chiral
multiplets transforming in the tri-fundamental representation of su(2)⊕3. From the
perspective of the analysis in Sect. 2, it is clear that the global symmetry algebra is
sp(4), and under sp(4) ⊃ su(2)⊕3 the matter decomposes as 8 = (2, 2, 2).

The T3 theory has a similar structure. Naïvely this theory has a global symmetry
algebra su(3)⊕3 with chiral multiplets transforming in the tri-fundamental (3, 3, 3).
In fact, it is enhanced to e6 [10], and the representation theory works out nicely: there
is a maximal embedding su(3)⊕3 ⊂ e6 under which

78 = (8, 1, 1) ⊕ (1, 8, 1) ⊕ (1, 1, 8) ⊕ (3, 3, 3) ⊕ (3, 3, 3) . (21)

In other words, the tri-fundamental fields are additional global currents that enhance
the naive su(3)⊕3 to e6.
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Finally, consider the T4 theorywith its global symmetry algebra su(4)⊕3 ∼= so(6)⊕3

and matter in (4, 4, 4). At first glance, one might hope that here a simple weakly
coupled UV Lagrangian is not ruled out by our results, since of course we can easily
construct an so(6)⊕3 symmetry algebra. Alas, the hope is short-lived—in a theory so
obtained the matter would transform in 6 for each of the so(6) factors, and no tensor
product could produce the desired 4 spinor representations.

We now conclude with a few brief comments. Although it is too strong to say
that we have proven that TN theories do not arise via gauging the symmetries of free
hypermultiplets, we have ruled out the simplest realizations that do not explore the
Higgs branch of theN = 2 gauge theory. Consider moving out onto the Higgs branch
by giving a field a vev v, and let the strong coupling scale of the UV gauge theory
be denoted by �. If v � �, the IR gauge-neutral degrees of freedom, whose vevs
parametrize the flat directions, will decouple from the IR gauge sector. The symmetries
of the IR gauge theory will then again be constrained by Theorem 1. If, on the other
hand, v ∼ �, then the dynamics is necessarily strongly coupled and outside of the
domain of validity of our results.

Of course a Lagrangian realization for TN has long been suspected to be highly
unlikely, in light of the poorly understood dynamics of the M5-brane origin of such
theories; for example, the N 3 scaling of the number of degrees of freedom in these
systems does not seem to have any obvious gauge theory realization. Moreover, the
TN theories have no marginal deformations, so they do not seem to arise as SCFTs in
the same way as N f = 2Nc gauge theories, which have an exactly marginal gauge
coupling.

However, even aside from possible applications to strongly coupled theories, our
main result indicates just how strongly constrained the global symmetries of N = 2
gauge theories are and will perhaps provide a useful step towards a classification
of such theories. For instance, by combining our results with the recent work [22],
it should be easy to give a comprehensive list of all possible symmetry algebras of
conformal and asymptotically free theories. It would be interesting to extend that to
include possible discrete gaugings. It may perhaps also be useful to extend our results
toN = 1 theories as well, though there we expect important new complications from
possible superpotential interactions.

Acknowledgements We would like to thank Ibrahima Bah, Jacques Distler, Ken Intriligator, and David
Tong for useful discussions. IVM was supported by the NSF Focused Research Grant DMS-1159404 and
Texas A&M. BWwas supported in part by the STFC Standard Grant ST/J000469/1 “String Theory, Gauge
Theory andDuality.” IVMandBWwould like to thank the organizers of SMUK’13,where this collaboration
began. JMO and BW would like to thank the Albert Einstein Institute for hospitality while this work was
undertaken, and JMOwould like to thank Texas A&M for hospitality while this work was being completed.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/


1556 J. McOrist et al.

References

1. Minahan, J.A., Nemeschansky, D.: Superconformal fixed points with E(n) global symmetry. Nucl.
Phys. B 489, 24–46 (1997). arXiv:hep-th/9610076 [hep-th]

2. Minahan, J.A., Nemeschansky, D.: An N = 2 superconformal fixed point with E(6) global symmetry.
Nucl. Phys. B 482, 142–152 (1996). arXiv:hep-th/9608047 [hep-th]

3. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2
supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). arXiv:hep-th/9407087 [hep-th]

4. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric
QCD. Nucl. Phys. B 431, 484–550 (1994). arXiv:hep-th/9408099

5. Gaiotto, D., Neitzke, A., Tachikawa, Y.: Argyres–Seiberg duality and the Higgs branch. Commun.
Math. Phys. 294, 389–410 (2010). arXiv:0810.4541 [hep-th]

6. Argyres, P.C., Seiberg, N.: S-duality in N = 2 supersymmetric gauge theories. JHEP 0712, 088 (2007).
arXiv:0711.0054 [hep-th]

7. Argyres, P.C., Wittig, J.R.: Infinite coupling duals of N = 2 gauge theories and new rank 1 supercon-
formal field theories. JHEP 0801, 074 (2008). arXiv:0712.2028 [hep-th]

8. Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B
448, 93–126 (1995). arXiv:hep-th/9505062 [hep-th]

9. Gadde, A., Razamat, S.S., Willett, B.: “Lagrangian” for a non-lagrangian field theory with N =
2 supersymmetry. Phys. Rev. Lett. 115(17), 171604 (2015). doi:10.1103/PhysRevLett.115.171604.
[arXiv:1505.05834 [hep-th]]

10. Gaiotto, D.: N = 2 dualities. JHEP 1208, 034 (2012). arXiv:0904.2715 [hep-th]
11. Tachikawa, Y.: Six-dimensional D(N) theory and four-dimensional SO-USp quivers. JHEP 0907, 067

(2009). arXiv:0905.4074 [hep-th]
12. Chacaltana, O., Distler, J.: Tinkertoys for Gaiotto duality. JHEP 1011, 099 (2010). arXiv:1008.5203

[hep-th]
13. Chacaltana, O., Distler, J.: Tinkertoys for the DN series. arXiv:1106.5410 [hep-th]
14. Benini, F., Tachikawa, Y., Wecht, B.: Sicilian gauge theories and N = 1 dualities. JHEP 1001, 088

(2010). arXiv:0909.1327 [hep-th]
15. Argyres, P.C., Plesser, M.R., Seiberg, N.: The moduli space of vacua of N = 2 SUSYQCD and duality

in N = 1 SUSY QCD. Nucl. Phys. B 471, 159–194 (1996). arXiv:hep-th/9603042 [hep-th]
16. Argyres, P.C., Plesser, M.R., Shapere, A.D.: N = 2 moduli spaces and N = 1 dualities for SO(n(c))

and USp(2n(c)) superQCD. Nucl. Phys. B 483, 172–186 (1997). arXiv:hep-th/9608129 [hep-th]
17. Cahn, R.: Semi-simple Lie Algebras and Their Representations. Benjaming Cummings, San Francisco

(1985)
18. McKay, W.G., Patera, J.: Tables of Dimensions, Indices, and Branching Rules for Representations of

Simple Lie Algebras. Lecture Notes in Pure and Applied Mathematics, vol. 69. Marcel Dekker Inc.,
New York (1981)

19. Slansky, R.: Group theory for unified model building. Phys. Rep. 79, 1–128 (1981)
20. Di Francesco, P., Mathieu, P., Senechal, D.: Conformal Field Theory. Springer, New York (1997)
21. Argyres, P.C., Martone, M.: 4d N = 2 theories with disconnected gauge groups. arXiv:1611.08602

[hep-th]
22. Bhardwaj, L., Tachikawa, Y.: Classification of 4d N = 2 gauge theories. arXiv:1309.5160 [hep-th]

123

http://arxiv.org/abs/hep-th/9610076
http://arxiv.org/abs/hep-th/9608047
http://arxiv.org/abs/hep-th/9407087
http://arxiv.org/abs/hep-th/9408099
http://arxiv.org/abs/0810.4541
http://arxiv.org/abs/0711.0054
http://arxiv.org/abs/0712.2028
http://arxiv.org/abs/hep-th/9505062
http://dx.doi.org/10.1103/PhysRevLett.115.171604
http://arxiv.org/abs/1505.05834
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/0905.4074
http://arxiv.org/abs/1008.5203
http://arxiv.org/abs/1106.5410
http://arxiv.org/abs/0909.1327
http://arxiv.org/abs/hep-th/9603042
http://arxiv.org/abs/hep-th/9608129
http://arxiv.org/abs/1611.08602
http://arxiv.org/abs/1309.5160

	Global symmetries and calN=2 SUSY
	Abstract
	1 Introduction
	2 Symmetries of free fields
	3 Representation theory
	3.1 A few familiar gaugings for a simple mathfrakg
	3.2 Decomposing pseudoreal representations for semisimple mathfrakg
	3.3 Global symmetries

	4 Discussion
	4.1 Discrete gauge symmetries
	4.2 Higgs branch
	4.3 General discussion and conclusions

	Acknowledgements
	References




