Existence and Exact Multiplicity for Quasilinear Elliptic Equations in Quarter-Spaces

Yihong $Du^{1(\boxtimes)}$ and Messoud Efendiev²

 1 School of Science and Technology, University of New England, Armidale, NSW 2351, Australia ydu@turing.une.edu.au 2 Institute of Computational Biology, Helmholtz Zentrum München, Ingostädter Landstrasse 1, 85764 Neuherberg, Germany messoud.efendiyev@helmholtz-muenchen.de

Abstract. We consider positive solutions of quasilinear elliptic problems of the form $\Delta_p u + f(u) = 0$ over the quarter-space $Q = \{x \in \mathbb{R}^N :$ $x_1 > 0, x_2 > 0$, with $u = 0$ on ∂Q . For a general class of nonlinearities $f \geq 0$ with finitely many positive zeros, we show that, for each $z > 0$ such that $f(z) = 0$, there is a bounded positive solution satisfying

 $\lim_{x_1 \to \infty} u(x_1, x_2, ..., x_N) = V(x_2), \lim_{x_2 \to \infty} u(x_1, x_2, ..., x_N) = V(x_1),$

where *V* is the unique solution of the one-dimensional problem

 $\Delta_p V + f(V) = 0$ in $[0, \infty)$, $V(0) = 0$, $V(t) > 0$ for $t > 0$, $V(\infty) = z$.

When $p = 2$, we show further that such a solution is unique, and there are no other types of bounded positive solutions to the quarter-space problem. Thus in this case the number of bounded positive solutions to the quarter-space problem is exactly the number of positive zeros of *f*.

Keywords: P-laplacian equation · Positive solution · Asymptotic behavior · Quarter-space

Mathematics Subject Classification: 35K20 · 35J60

1 Introduction

Consider the quasilinear elliptic problem

$$
\Delta_p u + f(u) = 0 \text{ in } Q, \ u = 0 \text{ on } \partial Q,
$$
\n(1.1)

Dedicated to Bernold Fiedler on the occasion of his 60th birthday.

The research of Y. Du was supported by the Australian Research Council.

⁻c Springer International Publishing AG, part of Springer Nature 2017

P. Gurevich et al. (eds.), *Patterns of Dynamics*, Springer Proceedings

in Mathematics & Statistics 205, DOI 10.1007/978-3-319-64173-7_8

where $Q = (0, \infty) \times (0, \infty) \times \mathbb{R}^{N-2}$ is a quarter space in \mathbb{R}^N $(N \geq 2)$, $\Delta_p u =$ $\text{div}(|\nabla u|^{p-2}\nabla u)$ is the usual p-Laplacian operator with $p > 1$.

For the nonlinear function f , we assume that

 $\left\{f : \mathbb{R}_+ \to \mathbb{R} \text{ is continuous, nonnegative and} \right\}$ \int is the continuous except possibly at its zeros, (1.2)

$$
\{z > 0 : f(z) = 0\} = \{z_1, ..., z_k\}, \ k \ge 1,\tag{1.3}
$$

and for $i = 1, ..., k$,

$$
\liminf_{s \searrow z_i} \frac{f(s)}{(s - z_i)^{\sigma_{N,p}}} \in (0, +\infty], \ \limsup_{s \nearrow z_i} \frac{f(s)}{(z_i - s)^{p-1}} < +\infty,
$$
 (1.4)

where

$$
\sigma_{N,p} = (p-1)\frac{N}{N-p}
$$
 if $N > p$,

and $\sigma_{N,p}$ stands for an arbitrary number in $[1,\infty)$ if $N \leq p$.

Moreover, we assume

either
$$
f(0) > 0
$$
, or $f(0) = 0$ and $\liminf_{s \searrow 0} \frac{f(s)}{s^{p-1}} > 0$. (1.5)

Let us note that since f is nonnegative, we automatically have

$$
\liminf_{s \searrow z_i} \frac{f(s)}{(s-z_i)^{p-1}} \ge 0.
$$

This and the second inequality in (1.4) guarantee that the ODE problem (1.6) below has at most one solution. The first inequality in [\(1.4\)](#page-1-0) ensures that any bounded nonnegative solution of $\Delta_p u + f(u) = 0$ in \mathbb{R}^N must be a constant (see Theorem 2.8 of [\[7\]](#page-9-0)). This is not needed in Proposition [1.1](#page-1-2) below, but is required in the other results.

Since $f(s) > 0$ for $s \in (0, +\infty) \setminus \{z_1, ..., z_k\}$, we automatically have

$$
\int_0^z f(s)ds < \int_0^{z_i} f(s)ds
$$
 for $z \in [0, z_i)$, $i = 1, ..., k$.

Hence by Theorems 2.2 and 2.4 of [\[7\]](#page-9-0), we have the following result.

Proposition 1.1. *Let* f *satisfy* (1.2) *,* (1.3) *,* (1.4) *and* (1.5) *. Then for every* z_i *,* $i = 1, \ldots, k$, the problem

$$
\Delta_p V + f(V) = 0 \text{ in } \mathbb{R}_+, \ V(0) = 0, \ V(t) > 0 \text{ for } t > 0, \ V(\infty) = z_i \tag{1.6}
$$

has a unique solution, which we denote by V_{z_i} *. Moreover,* $V_{z_i}(t)$ *is a strictly increasing function.*

Let us note that if $p = 2$ and $0 < z_1 < z_2 < \ldots < z_k$, then

$$
f_1(u) = \Pi_{i=1}^k |u - z_i| \text{ and } f_2(u) = |u| f_1(u)
$$
 (1.7)

satisfy all the conditions (1.2) , (1.3) , (1.4) and (1.5) .

Our first main result in this paper is the following:

Theorem 1.2. *Let* f *satisfy* [\(1.2\)](#page-1-3)*,* [\(1.3\)](#page-1-4)*,* [\(1.4\)](#page-1-0) *and* [\(1.5\)](#page-1-5)*. Then for each* $z \in$ $\{z_1, ..., z_k\},$ [\(1.1\)](#page-0-0) has a bounded positive solution u satisfying

$$
\lim_{x_1 \to \infty} u(x_1, x_2, ..., x_N) = V_z(x_2), \quad \lim_{x_2 \to \infty} u(x_1, x_2, ..., x_N) = V_z(x_1). \tag{1.8}
$$

Our next result shows that when $p = 2$, [\(1.1\)](#page-0-0) has no other types of bounded positive solutions.

Theorem 1.3. Suppose that f is as in Theorem [1.2](#page-2-0) and $p = 2$. Let u be any *bounded positive solution of* (1.1) *(with* $p = 2$ *). Then it satisfies* (1.8) *for some* $z \in \{z_1, ..., z_k\}$.

If we assume further that there exists $\epsilon > 0$ small such that

$$
f(s) \text{ is nonincreasing in } (z_i - \epsilon, z_i) \text{ for each } i \in \{1, ..., k\},\tag{1.9}
$$

then we have the following uniqueness and exact multiplicity result.

Theorem 1.4. *Suppose that, in addition to the conditions in Theorem [1.3,](#page-2-2)* f *satisfies* [\(1.9\)](#page-2-3). Then for each $z \in \{z_1, ..., z_k\}$, [\(1.1\)](#page-0-0) *(with* $p = 2$ *)* has exactly *one bounded positive solution satisfying* (1.8) *. Therefore* (1.1) *(with* $p = 2$ *)* has *exactly* k *bounded positive solutions.*

We note that $f_1(u)$ and $f_2(u)$ given in [\(1.7\)](#page-1-6) also satisfy [\(1.9\)](#page-2-3). Problem [\(1.1\)](#page-0-0) with the boundary condition $u|_{\partial Q} = 0$ replaced by

 $u = 0$ for $x_2 = 0$ and $u \geq \neq 0$ for $x_1 = 0$

was considered in [\[8](#page-9-1)] (for the case $p = 2$) and [\[7\]](#page-9-0) (for the case $p > 1$). The main concern in these papers is the asymptotic limit of the solution as $x_1 \to \infty$; the question of uniqueness and exact multiplicity of bounded positive solutions was not discussed.

When $p = 2$, the existence of a positive solution of [\(1.1\)](#page-0-0) (with $p = 2$) satisfying [\(1.8\)](#page-2-1) was essentially proved in [\[9\]](#page-9-2), where the special case $k = N = 2$ was considered. Problem (1.1) with $p = N = 2$ was also considered in [\[4\]](#page-8-0), where it was assumed that f is C^1 , $f(0) = 0$ and all the positive zeros of f are nondegenerate (i.e., $f(c) = 0$ and $c > 0$ imply $f'(c) \neq 0$), which forces f to change sign, and therefore the case treated in this paper is excluded in [\[4](#page-8-0)].

2 Proof of Theorem [1.2](#page-2-0)

In this section, we prove Theorem [1.2.](#page-2-0) A key step is the following result.

Lemma 2.1. *With* f *as in Proposition* [1.1,](#page-1-2) for each $z \in \{z_1, ..., z_k\}$ *and any given small* $\delta > 0$ *, there exists* $R = R_{\delta} > 0$ *and a function* $v \in W_0^{1,p}(B)$ *, with* $B = B_R := \{x \in \mathbb{R}^N : |x| < R\}$, satisfying

(i) $\Delta_p v + f(v) \ge 0$ *in* B, $v = 0$ *on* ∂B, *(ii)* $0 < v < z$ *in* B *,* (iii) $v(x_1, x_2, ..., x_N) \leq \min\{V_z(x_1 + R + 1), V_z(x_2 + R + 1)\}\$ in B, (iv) sup_B $v > z - \delta$.

Proof. To find such a function v we follow the construction in sub-step 2.1 of the proof of Theorem 3.1 in [\[7\]](#page-9-0). We provide the details for convenience of the reader. Since the zeros of f are isolated, we can find $0 < M_0 < z$ such that $f(s) > 0$ in $[M_0, z]$ and $M_0 > z - \delta$. Define

$$
F_1(s) = \int_s^z f(t)dt.
$$

Clearly $F_1(s) > 0$ in $[0, z)$. For any small $\epsilon > 0$, we consider

$$
g(s) = g_{\varepsilon}(s) := f(s) - \varepsilon s^{\sigma} \text{ in } [0, z],
$$

where $\sigma = \max\{1, \sigma_{N,p}\}\$ in the case $f(0) = 0$, and $\sigma = 1$ when $f(0) > 0$. There exists $M_{\varepsilon} \in (M_0, z)$ such that $g(M_{\varepsilon}) = 0$ and $g(s) > 0$ in $[M_0, M_{\varepsilon})$. Set

$$
G(s) = G_{\varepsilon}(s) := \int_s^{M_{\varepsilon}} g(t) dt.
$$

Clearly $G(s) > 0$ in $[M_0, M_\varepsilon]$, and $M_\varepsilon \to z$ as $\varepsilon \to 0$. Since $G_\varepsilon(s) \to F_1(s)$ uniformly in $[0, z]$ as $\varepsilon \to 0$, and $F_1(s) \geq F_1(M_0) > 0$ in $[0, M_0]$, we thus find that there exists $\varepsilon_0 > 0$ sufficiently small such that for each $\varepsilon \in (0, \varepsilon_0]$,

$$
\begin{cases}\nM_{\varepsilon} - \varepsilon > M_0, \\
G_{\varepsilon}(s) > 0 \text{ in } [0, M_{\varepsilon}), \\
G_{\varepsilon}(s) > G_{\varepsilon}(M_{\varepsilon} - \varepsilon) \text{ for } s \in [0, M_{\varepsilon} - \varepsilon), \\
G_{\varepsilon}(s) \text{ is decreasing in } [M_0, M_{\varepsilon}).\n\end{cases}
$$

Let us also notice that due to [\(1.4\)](#page-1-0), we always have $f(s) > g_{\epsilon}(s) > 0$ for small positive s, say $s \in (0, s_0)$, and s_0 can be chosen independent of $\varepsilon \in (0, \varepsilon_0]$. Set

$$
\quad \ \ \text{et}
$$

$$
\tilde{g}(s) = \begin{cases} g(0) & \text{for } s < 0, \\ g(s) & \text{for } s \in [0, M_\varepsilon], \\ 0 & \text{for } s > M_\varepsilon, \end{cases}
$$

and

$$
\tilde{G}(s) = \int_s^{M_{\varepsilon}} \tilde{g}(t) dt.
$$

Clearly $\tilde{G}(s) \geq 0$ for all $s \in \mathbb{R}$.

We now consider the functional

$$
I_r(v) = \frac{1}{p} \int_{B_r(0)} |\nabla v|^p + \int_{B_r(0)} \tilde{G}(v)
$$

for all $v \in H_0^p(B_r(0))$. It is well-known that a critical point of I_r corresponds to a weak solution of

$$
\Delta_p v + \tilde{g}(v) = 0 \text{ in } B_r(0), \ v|_{\partial B_r(0)} = 0.
$$

Since $\tilde{g} \ge 0$ in $(-\infty, 0]$ and $\tilde{g} = 0$ for $s \ge M_{\varepsilon}$, by the weak maximum principle, any such solution satisfies $0 \le v \le M_{\varepsilon}$. Consequently for any such solution we have $\tilde{g}(v) = g(v)$. Moreover, by elliptic regularity for p-Laplacian equations we know that such a solution also belongs to $C^{1,\alpha}(\overline{B}_r(0))$.

It is easily seen that the functional I_r is well-defined and is coercive. Thus by standard argument we know that it has a minimizer v_r , which is a critical point of I_r and thus, as discussed above, is a nonnegative solution to

$$
\Delta_p v_r + g(v_r) = 0 \text{ in } B_r(0), \ v_r|_{\partial B_r(0)} = 0.
$$

Since v_r is a minimizer, by well-known rearrangement theory it must be radially symmetric and decreasing away from the center of the domain. Thus $0 \le v_r(x) \le$ $v_r(0) \leq M_\varepsilon$ in $B_r(0)$.

We claim that there exists $r > 0$ such that $v_r(0) \geq M_\varepsilon - \varepsilon$. Otherwise $v_r \leq M_{\varepsilon} - \varepsilon$ for all $r > 0$. Hence, recalling $G(s) \geq G(M_{\varepsilon} - \varepsilon)$ for $s \in [0, M_{\varepsilon} - \varepsilon]$, we obtain

$$
I_r(v_r) \geq \int_{B_r(0)} G(v_r) \geq \int_{B_r(0)} G(M_\varepsilon - \varepsilon) = \alpha_N r^N G(M_\varepsilon - \varepsilon), \ \forall r > 0,
$$

where α_N stands for the volume of $B_1(0)$. On the other hand, for $r > 1$ define

$$
w_r(x) = \begin{cases} M_{\varepsilon} & \text{for } |x| < r - 1, \\ M_{\varepsilon}(r - |x|) & \text{for } r - 1 \le |x| \le r. \end{cases}
$$

This function belongs to $W_0^{1,p}(B_r(0))$, and $|\nabla w_r|^p$ and $G(w_r)$ are supported on the annulus $\{r-1 \leq |x| \leq r\}$. Thus there exists a constant C independent of r such that

$$
I_r(w_r) \le C[r^N - (r-1)^N] \quad \forall r > 1.
$$

Since v_r is the minimizer of I_r , we have $I_r(v_r) \leq I_r(w_r)$. Thus

$$
\alpha_N G(M_{\varepsilon}-\varepsilon)r^N \le C[r^N-(r-1)^N] \ \forall r>1.
$$

Since $G(M_{\varepsilon}-\varepsilon) > 0$, the above inequality does not hold for large r. This contradiction shows that $v_r(0) \geq M_\varepsilon - \varepsilon > z - \delta$ for all large r, say $r \geq R =$ $R_{\varepsilon}, \varepsilon = \varepsilon(\delta).$

Therefore if we take $v = v_R$ then

$$
\Delta_p v + g(v) = 0 \text{ in } B_R, v = 0 \text{ on } \partial B_R,
$$

and $v(0) = \sup_{B_R} v \in (z - \delta, z)$ provided that $\epsilon > 0$ is small enough. Thus v has properties (i), (ii) and (iv). (The fact that $v > 0$ in B_R follows from the strong maximum principle.)

It remains to prove (iii). We make use of the week sweeping principle (see Proposition 2.1 in [\[7](#page-9-0)]). Denote $u(x) = V_z(x_1)$ and let x^* be an arbitrary point in $[R+1, +\infty) \times \mathbb{R}^{N-1}$. Let $x^n = (x_1^n, 0, ..., 0)$ with $x_1^n \to +\infty$. Clearly $u(x^n) \to z_i$. Thus we can find a point $x^0 = (x_1^0, 0, ..., 0)$ with $x_1^0 > R+1$ such that $u(x) \ge M_{\varepsilon}$ in $B_R(x^0)$. We now define $x^t = tx^* + (1-t)x^0$ and $u^t(x) = u(x+x^t)$. Clearly $x_1^t \geq R+1$ and thus $B_R(x^t) \subset [1, +\infty) \times \mathbb{R}^{N-1}$ for all $t \in [0, 1]$.

Since $u > 0$ on the compact set $\bigcup_{t \in [0,1]} \overline{B_r(x^t)}$, we can find $\delta > 0$ such that $u \ge \delta$ on this set. Let $r_1 \in (0, R)$ be chosen so that $v \in (0, \delta/2)$ on $\{|x| = r_1\}$. Denote $\mathcal{D} := B_{r_1}(0)$. Then we have, for $t \in [0,1]$,

$$
v + \delta/2 \le u^t
$$
 on $\partial \mathcal{D}$

and

 $-\Delta_p v = g(v) \le f(v) - \zeta$, $-\Delta_p u^t = f(u^t)$ in \mathcal{D} ,

where

$$
\zeta := \inf_{x \in B_{r_1}(0)} [f(v(x)) - g(v(x))] > 0.
$$
\n(2.1)

Moreover, $u^0 > M_{\epsilon} > v$ on \mathcal{D} . Thus we can apply Proposition 2.1 in [\[7](#page-9-0)] to conclude that $u^t \geq v$ in $\mathcal D$ for all $t \in [0,1]$. In particular, $u(x^* + x) = u^1(x) \geq$ $v(x)$ in D. Letting $r_1 \to R$ we obtain $u(x^* + x) \ge v(x)$ in B_R . Taking $x^* =$ $(R + 1, 0, ..., 0)$ yields

$$
v(x) \le V_z(x_1 + R + 1) \text{ for } x \in B_R.
$$

Similarly we can take $u(x) = V_z(x_2)$ and use the weak sweeping principle to prove that

$$
v(x) \le V_z(x_2 + R + 1) \text{ for } x \in B_R.
$$

The proof of the lemma is now complete. \Box

Proof of Theorem [1.2.](#page-2-0) Let $\delta > 0$ be small enough such that $f(s) > 0$ in $[z - \delta, z]$. Then let $R = R_{\delta}$ and v be given by Lemma [2.1.](#page-2-4) Fix $x_0 \in \mathbb{R}^N$ such that the ball $B_{R+1}(x_0) := \{x \in \mathbb{R}^N : |x - x_0| < R + 1\}$ is contained in Q. Then define

$$
v_{x_0}(x) = \begin{cases} v(x - x_0) & \text{if } x \in B_R(x_0), \\ 0 & \text{otherwise} \end{cases}
$$

Since $f(0) \geq 0$, it is clear that v_{x_0} is a subsolution of [\(1.1\)](#page-0-0). Define

$$
\underline{u} = \sup_{B_{R+1}(x_0) \subset Q} v_{x_0}.
$$

Then u is again a subsolution of (1.1) , and it satisfies

$$
\underline{u}(x) \ge z - \delta \text{ when } x_1 \ge R + 1, \ x_2 \ge R + 1. \tag{2.2}
$$

Define

$$
\overline{u}=\min\{V_z(x_1),V_z(x_2)\}.
$$

Then \overline{u} is a supersolution to [\(1.1\)](#page-0-0), and by Lemma [2.1](#page-2-4) and the monotonicity of V_z , we have $\overline{u} \geq u$ in Q. Therefore we can apply the standard sub- and supersolution argument to conclude that (1.1) has a positive solution u satisfying

$$
\underline{u} \le u \le \overline{u} \text{ in } Q.
$$

By equation (3.21) in the proof of Theorem 3.7 in [\[7](#page-9-0)], we find that

$$
\lim_{h \to \infty} u(x_1 + h, x_2 + h, ..., x_N) = m
$$

and m is a positive zero of f. By (2.2) and the definition of \overline{u} , we necessarily have $m \in [z-\delta, z]$. It then follows from the choice of δ that $m = z$. On the other hand, we have $u \leq \overline{u} < z$ in Q. Therefore we are able to apply Remark 3.4 of [\[7](#page-9-0)] to the proof of Theorem 3.7 in [\[7\]](#page-9-0) to conclude that

$$
\lim_{x_1 \to \infty} u(x_1, x_2, ..., x_N) = V_z(x_2)
$$

uniformly for $(x_2, ..., x_N) \in \mathbb{R}_+ \times \mathbb{R}^{N-2}$. We similarly have

$$
\lim_{x_2 \to \infty} u(x_1, x_2, ..., x_N) = V_z(x_1)
$$

uniformly for $(x_1, x_3, ..., x_N) \in \mathbb{R}_+ \times \mathbb{R}^{N-2}$. Thus [\(1.8\)](#page-2-1) holds.

3 Proof of Theorems [1.3](#page-2-2) and [1.4](#page-2-5)

In this section we prove Theorems [1.3](#page-2-2) and [1.4.](#page-2-5) We note that here we only need to consider the case $p = 2$.

Proof of Theorem [1.3.](#page-2-2) Under the conditions of Theorem [1.3,](#page-2-2) it is well known (see [\[6](#page-9-3)] and [\[1](#page-8-1)]) that the monotonicity condition for half-space solutions in Theorem 3.3 of [\[7](#page-9-0)] is automatically satisfied. Therefore, by Remark 3.8 in [\[7](#page-9-0)], for any bounded positive solution of (1.1) (with $p = 2$), we can apply Theorem 3.7 of [\[7](#page-9-0)] to conclude that

$$
\lim_{h \to \infty} u(x_1 + h, x_2, ..., x_N) = V_{z_i}(x_2)
$$
 uniformly in $[A, \infty) \times \mathbb{R}_+ \times \mathbb{R}^{N-2}$

and

$$
\lim_{h \to \infty} u(x_1, x_2 + h, ..., x_N) = V_{z_j}(x_1)
$$
 uniformly in $\mathbb{R}_+ \times [A, \infty) \times \mathbb{R}^{N-2}$

for every $A \in \mathbb{R}$, where $i, j \in \{1, ..., k\}$. Using the moving plan method as in [\[3](#page-8-2)], one deduces that u is symmetric about the hyperplane $x_1 = x_2$, and it is strictly increasing in any direction $\zeta = (\zeta_1, \zeta_2, ..., \zeta_N)$ with $\zeta_1 > 0$ and $\zeta_2 > 0$. It follows that $i = j$ in the above limits. Thus (1.8) holds with $z = z_i$. The \Box proof is complete. \Box

Proof of Theorem [1.4.](#page-2-5) It suffices to show that for each $i \in \{1, ..., k\}$, [\(1.1\)](#page-0-0) (with $p = 2$) has exactly one bounded positive solution u satisfying [\(1.8\)](#page-2-1) with $z = z_i$. The existence is shown in Theorem [1.3.](#page-2-2) It remains to prove the uniqueness.

From equation (3.21) in [\[7\]](#page-9-0), and the symmetry of u with respect to the hyperplane $x_1 = x_2$, we obtain that

$$
\lim_{d(x)\to\infty} u(x) = z_i,
$$

where $d(x)$ denotes the distance of $x \in Q$ to ∂Q . As observed above, by the moving plan method $u(x)$ is strictly increasing in any direction $\zeta = (\zeta_1, \zeta_2, ..., \zeta_N)$ with $\zeta_1 > 0$ and $\zeta_2 > 0$. In particular, it is increasing in the direction $\zeta_0 =$ $(1, 1, 0, \ldots, 0).$

We may now use the sliding method in the direction ζ_0 as in Sect. 5 of [\[2\]](#page-8-3) to prove the uniqueness of u. For completeness, we give the details below.

Firstly, making use of (1.5) we can show that any positive solution u satisfying (1.8) with $z = z_i$ has the property that, for every $\tau > 0$,

$$
\inf_{x \in Q, d(x) \ge \tau} u(x) > 0, \sup_{x \in Q, d(x) \le \tau} u(x) < z_i.
$$
 (3.1)

Now suppose that u_1 and u_2 are two positive solutions satisfying [\(1.8\)](#page-2-1) with $z = z_i$. For $\tau, \sigma \geq 0$ we define

$$
Q_{\sigma} := Q + \sigma \zeta_0 = \{ x \in Q : x = y + \sigma \zeta_0 \text{ for some } y \in Q \}
$$

and

$$
u_1^{\tau}(x) := u_1(x + \tau \zeta_0).
$$

Fix large σ so that $u_1(x), u_2(x) \geq z_i - \epsilon$ when $x \in Q_{\sigma}$, where $\epsilon > 0$ appears in [\(1.9\)](#page-2-3). We may then choose $\tau > 0$ large to ensure that $u_1^{\tau}(x) > u_2(x)$ on $Q \setminus Q_{\sigma}$. It then follows from (1.9) and the maximum principle (see Lemma [2.1](#page-2-4) in [\[2\]](#page-8-3)) that

 $u_1^{\tau}(x) \ge u_2(x)$ for $x \in Q_{\sigma}$.

We thus obtain

 $u_1^{\tau}(x) \ge u_2(x)$ for $x \in Q$ and all large $\tau > 0$.

Define

$$
\tau_* := \inf \{ \tau > 0 : u_1^{\tau}(x) \ge u_2(x) \text{ for } x \in Q \setminus Q_{\sigma} \}.
$$

We want to show that $\tau_* = 0$. If this is proved, then $u_1 \geq u_2$ in $Q \setminus Q_{\sigma}$ and using Lemma [2.1](#page-2-4) of [\[2](#page-8-3)] as above we deduce $u_1 \geq u_2$ in Q. We may similarly show $u_2 \geq u_1$. Hence $u_1 \equiv u_2$ and the required uniqueness is established.

So to complete the proof, it suffices to show $\tau_* = 0$. Arguing indirectly we assume that $\tau_* > 0$. By the definition of τ_* we have $u_1^{\tau_*} \geq u_2$ in $Q \setminus Q_{\sigma}$, and there exists a sequence $\tau_n \nearrow \tau_*$ and $x_n \in Q \setminus Q_{\sigma}$ such that

$$
u_1^{\tau_n}(x_n) < u_2(x_n) \text{ for all } n \ge 1. \tag{3.2}
$$

Applying Lemma [2.1](#page-2-4) of [\[2\]](#page-8-3) again we obtain $u_1^{\tau_*} \geq u_2$ in Q. In view of the monotonicity of u_1 and (3.1) , we have

$$
u_2(x_n) > u_1^{\tau_n}(x_n) \ge u_1^{\tau_n/2}(x_n) \ge \inf_{x \in \partial Q} u_1^{\tau_n/2} > 0
$$

for all large n, and hence the sequence $\{x_n\}$ is bounded away from ∂Q . Define

$$
Q_n := Q - x_n = \{x : x + x_n \in Q\}
$$

and for $\phi \in \{u_1, u_2\}$, $x \in Q_n$, set

$$
\phi_n(x) := \phi(x + x_n).
$$

It can be easily shown that by passing to a subsequence, Q_n converges to some \tilde{Q} which is either a quarter space or half space in R^N , and $u_{1n} \to \tilde{u}_1$, $u_{2n} \to \tilde{u}_2$ in $C^2_{loc}(\tilde{Q})$, and for $i = 1, 2$,

$$
\Delta \tilde{u}_i + f(\tilde{u}_i) = 0, \ \tilde{u}_1(\cdot + \tau_* \zeta_0) \ge \tilde{u}_2 \text{ in } \tilde{Q}.
$$

By [\(3.2\)](#page-7-1) we deduce $\tilde{u}_1(\tau_*\zeta_0) \leq \tilde{u}_2(0)$ and so necessarily $\tilde{u}_1(\tau_*\zeta_0) = \tilde{u}_2(0)$. Since $0 \in \hat{Q}$ (due to $\{x_n\}$ being bounded away from ∂Q) the strong maximum principle infers $\tilde{u}_1(\cdot+\tau_*(\zeta_0))\equiv \tilde{u}_2$ in \tilde{Q} . On the other hand, by (3.1) we have $\tilde{u}_1(x+\tau_*(\zeta_0) \tilde{u}_2(x) > 0$ for all $x \in Q$ close to ∂Q . Thus $\tau_* > 0$ leads to a contradiction. Hence we must have $\tau_* = 0$, as we wanted. we must have $\tau_* = 0$, as we wanted.

Remark 3.1. It is unclear whether the conclusions in Theorems [1.3](#page-2-2) and [1.4](#page-2-5) remain valid for $p \neq 2$. The proof for the $p = 2$ case relies on the use of the strong comparison principle. A general strong comparison principle is lacking when $p \neq 2$. However, under various restrictions on p and on the nonlinear function $f(u)$, some strong comparison principles for p-Laplacian equations of the form $\Delta_p u + f(u) = 0$ are known; see [\[5,](#page-8-4)[10](#page-9-4)[,11\]](#page-9-5) and the references therein.

References

- 1. Berestycki, H., Caffarelli, L., Nirenberg, L.: Symmetry for elliptic equations in a halfspace. In: Lions, J.L., et al. (eds.) Boundary Value Problems for Partial Differential Equations and Applications, pp. 27–42. Masson, Paris (1993)
- 2. Berestycki, H., Caffarelli, L., Nirenberg, L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm. Pure Appl. Math. **50**, 1089–1112 (1997)
- 3. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil Mat. (N.S.) **22**:1–37 (1991)
- 4. Buska, J., Efendiev, M., Zelik, S.: Classification of positive solutions of semilinear elliptic equations. C. R. Acad. Sci. Paris, Ser. I **338**:7–11 (2004)
- 5. Damascelli, L., Sciunzi, B.: Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations. Calc. Var. PDE. **25**, 139–159 (2006)
- 6. Dancer, E.N.: Some notes on the method of moving planes. Bull. Austral. Math. Soc. **46**, 425–434 (1992)
- 7. Dancer, E.N., Du, Y., Efendiev, M.: Quasilinear elliptic equations on half- and quarter-spaces. Adv. Nonlinear Studies (special issue dedicated to Klaus Schmitt) **13**, 115–136 (2013)
- 8. Efendiev, M., Hamel, F.: Asymptotic beavior of solutions of semilinear elliptic equations in unbounded domains: two approaches. Adv. Math. **228**, 1237–1261 (2011)
- 9. Efendiev, M., Ibrahim, H., Monneau, R.: Different profiles for a semi-linear elliptic equation in unbounded domain, preprint
- 10. Farina, A., Montoro, L., Sciunzi, B.: Monotonicity and one-dimensional symmetry for solutions of $\Delta_p u = f(u)$ in half-spaces. Cal. Var. PDE. 43, 123-145 (2012)
- 11. Roseli, P., Scinuzi, B.: A strong comparison principle for the p-Laplacian. Proc. Amer. Math. Soc. **135**, 3217–3224 (2007)