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Abstract. We consider positive solutions of quasilinear elliptic prob-
lems of the form Δpu + f(u) = 0 over the quarter-space Q = {x ∈ R

N :
x1 > 0, x2 > 0}, with u = 0 on ∂Q. For a general class of nonlinearities
f ≥ 0 with finitely many positive zeros, we show that, for each z > 0
such that f(z) = 0, there is a bounded positive solution satisfying

lim
x1→∞

u(x1, x2, ..., xN ) = V (x2), lim
x2→∞

u(x1, x2, ..., xN ) = V (x1),

where V is the unique solution of the one-dimensional problem

ΔpV + f(V ) = 0 in [0,∞), V (0) = 0, V (t) > 0 for t > 0, V (∞) = z.

When p = 2, we show further that such a solution is unique, and there
are no other types of bounded positive solutions to the quarter-space
problem. Thus in this case the number of bounded positive solutions to
the quarter-space problem is exactly the number of positive zeros of f .

Keywords: P-laplacian equation · Positive solution · Asymptotic
behavior · Quarter-space
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1 Introduction

Consider the quasilinear elliptic problem

Δpu + f(u) = 0 in Q, u = 0 on ∂Q, (1.1)
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where Q = (0,∞) × (0,∞) × R
N−2 is a quarter space in R

N (N ≥ 2), Δpu =
div(|∇u|p−2∇u) is the usual p-Laplacian operator with p > 1.

For the nonlinear function f , we assume that{
f : R+ → R is continuous, nonnegative and
locally Lipschitz continuous except possibly at its zeros, (1.2)

{z > 0 : f(z) = 0} = {z1, ..., zk}, k ≥ 1, (1.3)

and for i = 1, ..., k,

lim inf
s↘zi

f(s)
(s − zi)σN,p

∈ (0,+∞], lim sup
s↗zi

f(s)
(zi − s)p−1

< +∞, (1.4)

where
σN,p = (p − 1)

N

N − p
if N > p,

and σN,p stands for an arbitrary number in [1,∞) if N ≤ p.
Moreover, we assume

either f(0) > 0, or f(0) = 0 and lim inf
s↘0

f(s)
sp−1

> 0. (1.5)

Let us note that since f is nonnegative, we automatically have

lim inf
s↘zi

f(s)
(s − zi)p−1

≥ 0.

This and the second inequality in (1.4) guarantee that the ODE problem (1.6)
below has at most one solution. The first inequality in (1.4) ensures that any
bounded nonnegative solution of Δpu+ f(u) = 0 in R

N must be a constant (see
Theorem 2.8 of [7]). This is not needed in Proposition 1.1 below, but is required
in the other results.

Since f(s) > 0 for s ∈ (0,+∞) \ {z1, ..., zk}, we automatically have∫ z

0

f(s)ds <

∫ zi

0

f(s)ds for z ∈ [0, zi), i = 1, ..., k.

Hence by Theorems 2.2 and 2.4 of [7], we have the following result.

Proposition 1.1. Let f satisfy (1.2), (1.3), (1.4) and (1.5). Then for every zi,
i = 1, ..., k, the problem

ΔpV + f(V ) = 0 in R+, V (0) = 0, V (t) > 0 for t > 0, V (∞) = zi (1.6)

has a unique solution, which we denote by Vzi . Moreover, Vzi(t) is a strictly
increasing function.

Let us note that if p = 2 and 0 < z1 < z2 < ... < zk, then

f1(u) = Πk
i=1|u − zi| and f2(u) = |u|f1(u) (1.7)

satisfy all the conditions (1.2), (1.3), (1.4) and (1.5).
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Our first main result in this paper is the following:

Theorem 1.2. Let f satisfy (1.2), (1.3), (1.4) and (1.5). Then for each z ∈
{z1, ..., zk}, (1.1) has a bounded positive solution u satisfying

lim
x1→∞ u(x1, x2, ..., xN ) = Vz(x2), lim

x2→∞ u(x1, x2, ..., xN ) = Vz(x1). (1.8)

Our next result shows that when p = 2, (1.1) has no other types of bounded
positive solutions.

Theorem 1.3. Suppose that f is as in Theorem1.2 and p = 2. Let u be any
bounded positive solution of (1.1) (with p = 2). Then it satisfies (1.8) for
some z ∈ {z1, ..., zk}.

If we assume further that there exists ε > 0 small such that

f(s) is nonincreasing in (zi − ε, zi) for each i ∈ {1, ..., k}, (1.9)

then we have the following uniqueness and exact multiplicity result.

Theorem 1.4. Suppose that, in addition to the conditions in Theorem 1.3, f
satisfies (1.9). Then for each z ∈ {z1, ..., zk}, (1.1) (with p = 2) has exactly
one bounded positive solution satisfying (1.8). Therefore (1.1) (with p = 2) has
exactly k bounded positive solutions.

We note that f1(u) and f2(u) given in (1.7) also satisfy (1.9).
Problem (1.1) with the boundary condition u|∂Q = 0 replaced by

u = 0 for x2 = 0and u ≥, �≡ 0 for x1 = 0

was considered in [8] (for the case p = 2) and [7] (for the case p > 1). The main
concern in these papers is the asymptotic limit of the solution as x1 → ∞; the
question of uniqueness and exact multiplicity of bounded positive solutions was
not discussed.

When p = 2, the existence of a positive solution of (1.1) (with p = 2)
satisfying (1.8) was essentially proved in [9], where the special case k = N = 2
was considered. Problem (1.1) with p = N = 2 was also considered in [4],
where it was assumed that f is C1, f(0) = 0 and all the positive zeros of f
are nondegenerate (i.e., f(c) = 0 and c > 0 imply f ′(c) �= 0), which forces f to
change sign, and therefore the case treated in this paper is excluded in [4].

2 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. A key step is the following result.

Lemma 2.1. With f as in Proposition 1.1, for each z ∈ {z1, ..., zk} and any
given small δ > 0, there exists R = Rδ > 0 and a function v ∈ W 1,p

0 (B), with
B = BR := {x ∈ R

N : |x| < R}, satisfying
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(i) Δpv + f(v) ≥ 0 in B, v = 0 on ∂B,
(ii) 0 < v < z in B,
(iii) v(x1, x2, ..., xN ) ≤ min{Vz(x1 + R + 1), Vz(x2 + R + 1)} in B,
(iv) supB v ≥ z − δ.

Proof. To find such a function v we follow the construction in sub-step 2.1 of the
proof of Theorem 3.1 in [7]. We provide the details for convenience of the reader.
Since the zeros of f are isolated, we can find 0 < M0 < z such that f(s) > 0 in
[M0, z) and M0 > z − δ. Define

F1(s) =
∫ z

s

f(t)dt.

Clearly F1(s) > 0 in [0, z). For any small ε > 0, we consider

g(s) = gε(s) := f(s) − εsσ in [0, z],

where σ = max{1, σN,p} in the case f(0) = 0, and σ = 1 when f(0) > 0. There
exists Mε ∈ (M0, z) such that g(Mε) = 0 and g(s) > 0 in [M0,Mε). Set

G(s) = Gε(s) :=
∫ Mε

s

g(t)dt.

Clearly G(s) > 0 in [M0,Mε), and Mε → z as ε → 0. Since Gε(s) → F1(s)
uniformly in [0, z] as ε → 0, and F1(s) ≥ F1(M0) > 0 in [0,M0], we thus find
that there exists ε0 > 0 sufficiently small such that for each ε ∈ (0, ε0],⎧⎪⎪⎨

⎪⎪⎩

Mε − ε > M0,
Gε(s) > 0 in [0,Mε),
Gε(s) ≥ Gε(Mε − ε) for s ∈ [0,Mε − ε),
Gε(s) is decreasing in [M0,Mε).

Let us also notice that due to (1.4), we always have f(s) > gε(s) > 0 for small
positive s, say s ∈ (0, s0), and s0 can be chosen independent of ε ∈ (0, ε0].

Set

g̃(s) =

⎧⎨
⎩

g(0) for s < 0,
g(s) for s ∈ [0,Mε],
0 for s > Mε,

and

G̃(s) =
∫ Mε

s

g̃(t)dt.

Clearly G̃(s) ≥ 0 for all s ∈ R.
We now consider the functional

Ir(v) =
1
p

∫
Br(0)

|∇v|p +
∫
Br(0)

G̃(v)
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for all v ∈ Hp
0 (Br(0)). It is well-known that a critical point of Ir corresponds to

a weak solution of

Δpv + g̃(v) = 0 in Br(0), v|∂Br(0) = 0.

Since g̃ ≥ 0 in (−∞, 0] and g̃ = 0 for s ≥ Mε, by the weak maximum principle,
any such solution satisfies 0 ≤ v ≤ Mε. Consequently for any such solution we
have g̃(v) = g(v). Moreover, by elliptic regularity for p-Laplacian equations we
know that such a solution also belongs to C1,α(Br(0)).

It is easily seen that the functional Ir is well-defined and is coercive. Thus
by standard argument we know that it has a minimizer vr, which is a critical
point of Ir and thus, as discussed above, is a nonnegative solution to

Δpvr + g(vr) = 0 in Br(0), vr|∂Br(0) = 0.

Since vr is a minimizer, by well-known rearrangement theory it must be radially
symmetric and decreasing away from the center of the domain. Thus 0 ≤ vr(x) ≤
vr(0) ≤ Mε in Br(0).

We claim that there exists r > 0 such that vr(0) ≥ Mε − ε. Otherwise
vr ≤ Mε − ε for all r > 0. Hence, recalling G(s) ≥ G(Mε − ε) for s ∈ [0,Mε − ε],
we obtain

Ir(vr) ≥
∫
Br(0)

G(vr) ≥
∫
Br(0)

G(Mε − ε) = αNrNG(Mε − ε), ∀r > 0,

where αN stands for the volume of B1(0). On the other hand, for r > 1 define

wr(x) =
{

Mε for |x| < r − 1,
Mε(r − |x|) for r − 1 ≤ |x| ≤ r.

This function belongs to W 1,p
0 (Br(0)), and |∇wr|p and G(wr) are supported on

the annulus {r − 1 ≤ |x| ≤ r}. Thus there exists a constant C independent of r
such that

Ir(wr) ≤ C[rN − (r − 1)N ] ∀r > 1.

Since vr is the minimizer of Ir, we have Ir(vr) ≤ Ir(wr). Thus

αNG(Mε − ε)rN ≤ C[rN − (r − 1)N ] ∀r > 1.

Since G(Mε − ε) > 0, the above inequality does not hold for large r. This
contradiction shows that vr(0) ≥ Mε − ε > z − δ for all large r, say r ≥ R =
Rε, ε = ε(δ).

Therefore if we take v = vR then

Δpv + g(v) = 0 in BR, v = 0 on ∂BR,

and v(0) = supBR
v ∈ (z − δ, z) provided that ε > 0 is small enough. Thus v has

properties (i), (ii) and (iv). (The fact that v > 0 in BR follows from the strong
maximum principle.)
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It remains to prove (iii). We make use of the week sweeping principle (see
Proposition 2.1 in [7]). Denote u(x) = Vz(x1) and let x∗ be an arbitrary point in
[R+1,+∞)×R

N−1. Let xn = (xn
1 , 0, ..., 0) with xn

1 → +∞. Clearly u(xn) → zi.
Thus we can find a point x0 = (x0

1, 0, ..., 0) with x0
1 > R+1 such that u(x) ≥ Mε

in BR(x0). We now define xt = tx∗ + (1 − t)x0 and ut(x) = u(x + xt). Clearly
xt
1 ≥ R + 1 and thus BR(xt) ⊂ [1,+∞) × R

N−1 for all t ∈ [0, 1].
Since u > 0 on the compact set ∪t∈[0,1]Br(xt), we can find δ > 0 such that

u ≥ δ on this set. Let r1 ∈ (0, R) be chosen so that v ∈ (0, δ/2) on {|x| = r1}.
Denote D := Br1(0). Then we have, for t ∈ [0, 1],

v + δ/2 ≤ ut on ∂D

and

−Δpv = g(v) ≤ f(v) − ζ, −Δpu
t = f(ut) in D,

where

ζ := inf
x∈Br1 (0)

[f(v(x)) − g(v(x))] > 0. (2.1)

Moreover, u0 ≥ Mε ≥ v on D. Thus we can apply Proposition 2.1 in [7] to
conclude that ut ≥ v in D for all t ∈ [0, 1]. In particular, u(x∗ + x) = u1(x) ≥
v(x) in D. Letting r1 → R we obtain u(x∗ + x) ≥ v(x) in BR. Taking x∗ =
(R + 1, 0, ..., 0) yields

v(x) ≤ Vz(x1 + R + 1) for x ∈ BR.

Similarly we can take u(x) = Vz(x2) and use the weak sweeping principle to
prove that

v(x) ≤ Vz(x2 + R + 1) for x ∈ BR.

The proof of the lemma is now complete. �

Proof of Theorem 1.2. Let δ > 0 be small enough such that f(s) > 0 in [z − δ, z).
Then let R = Rδ and v be given by Lemma 2.1. Fix x0 ∈ R

N such that the ball
BR+1(x0) := {x ∈ R

N : |x − x0| < R + 1} is contained in Q. Then define

vx0(x) =
{

v(x − x0) if x ∈ BR(x0),
0 otherwise

Since f(0) ≥ 0, it is clear that vx0 is a subsolution of (1.1). Define

u = sup
BR+1(x0)⊂Q

vx0 .

Then u is again a subsolution of (1.1), and it satisfies

u(x) ≥ z − δ when x1 ≥ R + 1, x2 ≥ R + 1. (2.2)
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Define
u = min{Vz(x1), Vz(x2)}.

Then u is a supersolution to (1.1), and by Lemma 2.1 and the monotonicity of Vz,
we have u ≥ u in Q. Therefore we can apply the standard sub- and supersolution
argument to conclude that (1.1) has a positive solution u satisfying

u ≤ u ≤ u in Q.

By equation (3.21) in the proof of Theorem 3.7 in [7], we find that

lim
h→∞

u(x1 + h, x2 + h, ..., xN ) = m

and m is a positive zero of f . By (2.2) and the definition of u, we necessarily
have m ∈ [z −δ, z]. It then follows from the choice of δ that m = z. On the other
hand, we have u ≤ u < z in Q. Therefore we are able to apply Remark 3.4 of [7]
to the proof of Theorem 3.7 in [7] to conclude that

lim
x1→∞ u(x1, x2, ..., xN ) = Vz(x2)

uniformly for (x2, ..., xN ) ∈ R+ × R
N−2. We similarly have

lim
x2→∞ u(x1, x2, ..., xN ) = Vz(x1)

uniformly for (x1, x3, ..., xN ) ∈ R+ × R
N−2. Thus (1.8) holds. �

3 Proof of Theorems 1.3 and 1.4

In this section we prove Theorems 1.3 and 1.4. We note that here we only need
to consider the case p = 2.
Proof of Theorem 1.3. Under the conditions of Theorem 1.3, it is well known (see
[6] and [1]) that the monotonicity condition for half-space solutions in Theorem
3.3 of [7] is automatically satisfied. Therefore, by Remark 3.8 in [7], for any
bounded positive solution of (1.1) (with p = 2), we can apply Theorem 3.7 of
[7] to conclude that

lim
h→∞

u(x1 + h, x2, ..., xN ) = Vzi(x2) uniformly in [A,∞) × R+ × R
N−2

and

lim
h→∞

u(x1, x2 + h, ..., xN ) = Vzj (x1) uniformly in R+ × [A,∞) × R
N−2

for every A ∈ R, where i, j ∈ {1, ..., k}. Using the moving plan method as in
[3], one deduces that u is symmetric about the hyperplane x1 = x2, and it is
strictly increasing in any direction ζ = (ζ1, ζ2, ..., ζN ) with ζ1 > 0 and ζ2 > 0.
It follows that i = j in the above limits. Thus (1.8) holds with z = zi. The
proof is complete. �
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Proof of Theorem 1.4. It suffices to show that for each i ∈ {1, ..., k}, (1.1) (with
p = 2) has exactly one bounded positive solution u satisfying (1.8) with z = zi.
The existence is shown in Theorem 1.3. It remains to prove the uniqueness.

From equation (3.21) in [7], and the symmetry of u with respect to the
hyperplane x1 = x2, we obtain that

lim
d(x)→∞

u(x) = zi,

where d(x) denotes the distance of x ∈ Q to ∂Q. As observed above, by the
moving plan method u(x) is strictly increasing in any direction ζ = (ζ1, ζ2, ..., ζN )
with ζ1 > 0 and ζ2 > 0. In particular, it is increasing in the direction ζ0 =
(1, 1, 0, ..., 0).

We may now use the sliding method in the direction ζ0 as in Sect. 5 of [2] to
prove the uniqueness of u. For completeness, we give the details below.

Firstly, making use of (1.5) we can show that any positive solution u satisfying
(1.8) with z = zi has the property that, for every τ > 0,

inf
x∈Q,d(x)≥τ

u(x) > 0, sup
x∈Q,d(x)≤τ

u(x) < zi. (3.1)

Now suppose that u1 and u2 are two positive solutions satisfying (1.8) with
z = zi. For τ , σ ≥ 0 we define

Qσ := Q + σζ0 = {x ∈ Q : x = y + σζ0 for some y ∈ Q}

and
uτ
1(x) := u1(x + τζ0).

Fix large σ so that u1(x), u2(x) ≥ zi − ε when x ∈ Qσ, where ε > 0 appears in
(1.9). We may then choose τ > 0 large to ensure that uτ

1(x) > u2(x) on Q \ Qσ.
It then follows from (1.9) and the maximum principle (see Lemma 2.1 in [2])
that

uτ
1(x) ≥ u2(x) for x ∈ Qσ.

We thus obtain

uτ
1(x) ≥ u2(x) for x ∈ Q and all large τ > 0.

Define
τ∗ := inf{τ > 0 : uτ

1(x) ≥ u2(x) for x ∈ Q \ Qσ}.

We want to show that τ∗ = 0. If this is proved, then u1 ≥ u2 in Q \ Qσ and
using Lemma 2.1 of [2] as above we deduce u1 ≥ u2 in Q. We may similarly show
u2 ≥ u1. Hence u1 ≡ u2 and the required uniqueness is established.

So to complete the proof, it suffices to show τ∗ = 0. Arguing indirectly we
assume that τ∗ > 0. By the definition of τ∗ we have uτ∗

1 ≥ u2 in Q \ Qσ, and
there exists a sequence τn ↗ τ∗ and xn ∈ Q \ Qσ such that

uτn
1 (xn) < u2(xn) for all n ≥ 1. (3.2)
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Applying Lemma 2.1 of [2] again we obtain uτ∗
1 ≥ u2 in Q. In view of the

monotonicity of u1 and (3.1), we have

u2(xn) > uτn
1 (xn) ≥ u

τ∗/2
1 (xn) ≥ inf

x∈∂Q
u

τ∗/2
1 > 0

for all large n, and hence the sequence {xn} is bounded away from ∂Q. Define

Qn := Q − xn = {x : x + xn ∈ Q}

and for φ ∈ {u1, u2}, x ∈ Qn, set

φn(x) := φ(x + xn).

It can be easily shown that by passing to a subsequence, Qn converges to some
Q̃ which is either a quarter space or half space in RN , and u1n → ũ1, u2n → ũ2

in C2
loc(Q̃), and for i = 1, 2,

Δũi + f(ũi) = 0, ũ1(· + τ∗ζ0) ≥ ũ2 in Q̃.

By (3.2) we deduce ũ1(τ∗ζ0) ≤ ũ2(0) and so necessarily ũ1(τ∗ζ0) = ũ2(0). Since
0 ∈ Q̃ (due to {xn} being bounded away from ∂Q) the strong maximum principle
infers ũ1(·+τ∗ζ0) ≡ ũ2 in Q̃. On the other hand, by (3.1) we have ũ1(x+τ∗ζ0)−
ũ2(x) > 0 for all x ∈ Q̃ close to ∂Q̃. Thus τ∗ > 0 leads to a contradiction. Hence
we must have τ∗ = 0, as we wanted. �

Remark 3.1. It is unclear whether the conclusions in Theorems 1.3 and 1.4
remain valid for p �= 2. The proof for the p = 2 case relies on the use of the
strong comparison principle. A general strong comparison principle is lacking
when p �= 2. However, under various restrictions on p and on the nonlinear func-
tion f(u), some strong comparison principles for p-Laplacian equations of the
form Δpu + f(u) = 0 are known; see [5,10,11] and the references therein.
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