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Abstract: The Fourth Industrial Revolution (Industry 4.0), with the help of cyber-physical systems
(CPS), the Internet of Things (IoT), and Artificial Intelligence (AI), is transforming the way industrial
setups are designed. Recent literature has provided insight about large firms gaining benefits from
Industry 4.0, but many of these benefits do not translate to SMEs. The agent-oriented smart factory
(AOSF) framework provides a solution to help bridge the gap between Industry 4.0 frameworks
and SME-oriented setups by providing a general and high-level supply chain (SC) framework and
an associated agent-oriented storage and retrieval (AOSR)-based warehouse management strategy.
This paper presents the extended heuristics of the AOSR algorithm and details how it improves
the performance efficiency in an SME-oriented warehouse. A detailed discussion on the thorough
validation via scenario-based experimentation and test cases explain how AOSR yielded 60–148%
improved performance metrics in certain key areas of a warehouse.

Keywords: agent-oriented smart factory (AOSF); agent-oriented storage and retrieval system (AOSR);
cyber-physical systems (CPS); warehouse management system (WMS); small-to-medium-sized enter-
prises (SME)

1. Introduction

A significant proportion of the world’s economy is based on the manufacturing indus-
try [1]. Industrial setups have been evolving ever since their inception. This continuous
growth is supported by incorporating process integration, mechanisation of operations and
customised procedural manufacturing [2]. The industrial world is now moving towards
virtualisation and seamless operations with the help of artificial intelligence [3]. Extensive
research and development have provided the manufacturing industry with high-tech solu-
tions to speed up the process of production and delivery of end-products to customers by
utilising the concepts of distributed artificial intelligence [4], Internet of Things (IoT) [5],
Big Data [6], multi-agent systems (MAS) [7], cloud computing [8], and Industry 4.0 [9]. The
initiative of Industry 4.0 recommends IoT-enabled, sustainable, Big Data-driven decision-
making processes and digitized mass production within manufacturing systems [10] by
utilising advanced infrastructural transformation and incorporating smart machines within
the supply chain (SC), having nano- or micro-chips installed in them [11]. In order to
build such a structure, high-performance computing devices are required, which ultimately
increase the infrastructural and operational cost. Although large setups can afford such
solutions, small-to-medium-sized enterprises (SME), which are mostly centrally controlled
and mostly not compatible with such advanced systems [12], may lag behind [13].
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For SC operations, warehouses serve as the real backbone for maintaining the whole
value chain [14]. Handling warehouse operations efficiently is not possible without a
warehouse management system (WMS). A WMS is a software application that supports
day-to-day operations in a warehouse. Extensive research is conducted to provide com-
plete autonomous warehousing systems, e.g., the solutions with robo-machines and auto-
conveyor belts, such as the flow shop algorithm [15] and EMBBO [16] or niche warehousing
problems such as the pickup and delivery problem with cross-docking (PDPCD) [17]. Even
though the idea of Industry 4.0 is transforming the manufacturing industry via state-of-
the-art decision-making algorithms, automated production systems, and Big Data-driven
innovation [18,19], recent research claims that Industry 4.0 standards cannot be purely
mapped to SMEs [12,13]. The concept of Logistics 4.0 [20] is also a futuristic progression
in this domain, which recommends incorporating optimised routing, reduced storage
requirements, and autonomous robots with tracking and decision systems for optimised
inventory control and information exchange; however, Industry 4.0 is still at its very begin-
ning, and any future impacts on logistics management are rather uncertain [21]. SMEs are
still facing warehousing issues, such as wandering items or picking lists [22], inaccurate
stock values at runtime [23], unmanaged receiving and expedition areas [24], unmanaged
storage capacity, and inappropriate retrieval scheduling [4].

In order to provide an overarching solution to help bring the SMEs many of the
benefits of Industry 4.0, the agent-oriented smart factory (AOSF) framework [25] provides a
comprehensive and high-level SC architecture for SMEs under the umbrella of Industry 4.0,
and the agent-oriented storage and retrieval (AOSR) system [26] presents a complementary
addition to the novel approach of the AOSF framework, to provide a low-cost, semi-
autonomous warehouse system. The episodic series of this broad contribution includes: a
high-level SC architecture of the AOSF framework [25]; its problem and domain definition,
which provided the baseline model for the agent-oriented storage and retrieval (AOSR)
system [27]; the AOSF’s recommended six-feature strategy and the general workflow of
the AOSR system [26]; the validation of the AOSF framework in comparison with a
linear supply chain [28]; the validation of the time efficiency of the AOSR’s algorithmic
strategy [29]; and the conceptualisation of the AOSF as a customised CPS [30].

The main contribution of this paper is the definition of the extended heuristics of AOSR
2.0. This paper also demonstrates that AOSR improves existing warehouse algorithms.
This is performed via scenario-based test cases, in comparison with the standard linear
SC-based standard warehouse management system (WMS) strategies. The remainder of
this paper is structured as follows. Section 2 describes the methodology used in this paper.
This includes a complete overview of the AOSR 2.0 algorithmic heuristics, as well as a
description of the methods and data used to compare our new algorithm with existing
strategies. This includes a detailed discussion of different standard warehousing strategies
for product placement or retrieval, e.g., zone logic, FIFO, and pick from or put to the
fewest logic [31]. Section 3 includes the results of scenario-based experiments applied to
the AOSR 2.0 Java Agent Development Environment (JADE) [32] prototype, in comparison
with standard WMS strategies. The hybrid logic-based strategy of AOSR 2.0 heuristics
provides a thorough mechanism to utilise additional logic schemes in suitable scenarios,
such as “pick from/put to the nearest logic”, on top of the aforementioned schemes, which
helps reduce the overall activity-time and improve performance efficiency within the
warehouse. Section 4 concludes the paper, suggesting that AOSR 2.0’s superior performance
demonstrates that it could be used as a drop-in replacement for existing algorithms to
improve warehouse performance, and describes future research potentials in this area.

2. Methodology

We previously presented the general AOSR algorithm [26], which provides a simple
yet comprehensive solution to the baseline issues of a standard distribution warehouse,
especially for scheduling products via its hybrid slotting and re-slotting strategy. The focus
of the AOSR strategy is to minimise the main reasons that cause disruptions in general
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warehouse activities, such as by trying to reduce the number of the products in certain
key areas of a warehouse, e.g., receiving and expedition areas (RA/EA), and maximise the
number of products stored in the defined racks [33]. Although the AOSR system achieves
the main goal to overcome the aforementioned general warehouse problems, to equip it
with fortified sensing ability to detect the percepts from the environment and the defined
states of the system (as detailed in the algorithmic heuristics in the later section), some
advanced concepts have been employed (e.g., Belief Base and Knowledge Base, described in
Section 2.3), which help in building a dynamic product placement plan, by utilising the
hybrid logic-based strategy. Intelligent wireless sensor networks make it possible to obtain
an ever-increasing amount of data, which must be analysed efficiently and effectively to
support increasingly complex systems’ decision-making and management [34,35]. The
capability to sense from the environment and predict the upcoming space congestion on
the shop floor makes AOSR 2.0 more proactive in nature, which helps in managing the
warehouse capacity before reaching a bottleneck situation.

2.1. Objective

The main aim of this paper is to validate the AOSR 2.0 strategy against other standard
warehousing strategies using multiple test cases. In order to perform a thorough validation,
the test scenarios are subdivided through two major validating parameters: performance
efficiency (discussed as part of this article) and time efficiency (discussed in our other
work [29]).

The performance efficiency of the AOSR strategy is tested based on three KPIs, in three
different types of scenarios for the number of products:

• stored in Racks;
• stuck at a RA; and
• placed in a EA.

In order to provide a clear comparison of the AOSR 2.0 strategy with the other standard
approaches, the experiments are performed by combining the standard zoning logic with
two widely acceptable warehousing logics: (i) zoning logic with first in first out (FIFO)
logic [36], which picks and puts the products based on order of arrival; and (ii) zoning with
fewest logic [31], which picks and places products with a preference to pick products from
the most empty rack first or to put the products in the fullest rack in which they fit first to
maximise available space.

2.2. Data

As detailed in our previous work [26], the AOSR strategy provides a mechanism to
handle different classifications of products. It recommends a general structure of different
warehouse zones to match the SKU requirements. The racks in each zone can be further
divided into different levels. The number of racks and levels are flexible and can be
configured initially before launching the setup. As a constraint for experimental purposes
in this paper, all the AOSR racks are divided into three levels with each level containing
space for five SKUs, yielding a total of 15 SKUs in a rack. This implies that, for a minimal
setup, there is storage capacity for around 2000 products (distributed as defined in the
dataset used [26]) with the flexibility to support up to 20,000 products to be scheduled in a
single day in a larger setup. In order to justify the need and comprehensiveness of data,
the industrial dataset utilised to test AOSR 2.0 provides a variety of different classifications
of products, e.g., finished goods or raw materials and fast or slow-moving products,
in compliance with the test datasets provided by different logistics and warehousing
companies e.g., Eurosped [37] and DGI Global [38]. The details of different product
categorisations applied to the AOSR 2.0 strategy are discussed in our other work [28], which
includes how the products are classified in the datasets. In order to ensure comprehensive
experimentation, AOSR 2.0 caters to six different types of SKUs (Each/Box, Box/Case,
Case/Pallet, Barrel, Cylinder, Single Pallet) and six different types of product characteristics
(hazardous or non-hazardous, fast or slow, and finished good or raw material) with
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20 different product categories. Thus, the number of product possibilities that can be
catered for can be represented as:

n2 * Categories * Characteristics * SKUs. (1)

Then, the possibility of finding a certain product x in n advance shipment notices
(ASN) or n advance delivery notices (ADN) that has any particular category out of the
20 possible, with any particular characteristic out of the six possible, and having any
particular SKU out of the six possible, can be calculated with the following equation:

P(x) =
1

n2 ∗ 20 ∗ 6 ∗ 6
(2)

In a complex warehouse environment, finding product possibilities can sometimes
help to adjust space and product allocation within designated areas. A simplified solution to
find a product possibility in a certain warehouse region can help improve search ability and
efficiency in a warehouse solution [14]. As AOSR WMS maintains a more generic solution,
it becomes easier to apply a different set of requirements as per business requirements.

2.3. Methods: AOSR Heuristics

The foundations of the AOSR algorithm [26] are based on the classical belief desire
intention (BDI) agent model architecture [39] in conjunction with the constructs and AOSF’s
agent categorisation [25], which enables it to support a dynamic environment and remain
flexible. As depicted in Figure 1, the architecture of the AOSR 2.0 algorithmic heuristics
incorporates concurrent information threads [28] for defined products and racks, as well
as their characteristics and categorisations, via an important component called the Belief
Base, which serves as the main source of truth. Information regarding stock levels and
current system states are recorded or supplied via another parallel component called the
Knowledge Base, which keeps itself updated from the information provided by actuators.
The Knowledge Base continually uses actuators to update general information that is taken
to be true from the environment and the Belief Base keeps information that is considered a
central fact to compare with environmental percepts, but can be revised based on repetitive
factual information from the environment. There are three main actuators used in the AOSR
2.0 algorithm: (i) Search Rack; (ii) Placement Generator; and (iii) Extract Placement. These
actuators are responsible for sensing the percepts from the environment and updating
the Belief and Knowledge Base via the Knowledge Builder and Belief Builder as detailed in
Algorithm 1.

Other supporting sub-functions, such as extract characteristics and Generate CharcID,
which, respectively, find details of the characteristics of a given product or find a matching
product based on the given characteristics, are also incorporated within the AOSR 2.0
algorithmic heuristics, which support the role of actuators. The composite architecture
of AOSR 2.0 provides the agents with needed properties (e.g., goals or objectives, interac-
tion protocols, timestamped actions, available resources, knowledge and belief sets) and
transforms the AOSR 2.0 strategy into a pure agent-oriented solution. The functionality of
these components has been implemented in a prototype using JADE [32]. Algorithms 1–5,
described later in this section, give details of this implementation. First of all (and as
a continuous process), the Belief Builder extracts and updates the overall Belief Base by
utilising the Thread Reader, and takes care of any anomalies by utilising the Check-Exceptions
function. In parallel, Percept-Builder senses any upcoming changes for the environment by
utilising the Request-Analyser function. To process requests, the Planner Agent utilises either
SearchRack or Placement Generator and updates the overall plan. Algorithms 1–5 includes
the details of the overall flow of the execution.
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Figure 1. Algorithmic Architecture of AOSR 2.0.

Algorithm 1 Overview of Belief Builder Heuristics.

1: procedure BELIEF-BUILDER
2: CheckExceptions()
3: Initiate ThreadReader()
4: top:
5: if updateThreadReceived then
6: UpdateBeliefBase()
7: end if
8: BeliefStream[]← extractBeliefBase()
9: do:

10: Belie f ThreadProduct[i]← Belie f StreamProduct[i]
11: Belie f ThreadCharac[i]← Belie f StreamCharac[i]
12: Belie f ThreadRack[i]← Belie f StreamRack[i]
13: while (BeliefStream.hasNext())
14: CheckUpdates
15: if UpdatesAvailable then
16: goto top
17: end if
18: end procedure

Flexibility and reconfigurability are key features that make the AOSR 2.0 strategy
more adaptable for any implementation environment. All the baseline information sets
are stored in a form of Belief Sets (Belief Set Products, Belief Set Characteristics, Belief
Set Racks), which build the overall Belief Base for the AOSR 2.0. Algorithm 1 presents an
overview of how Belief Builder can initiate and update the Belief Base for AOSF agents.
These Belief Sets can be modified if needed as per any business requirements, which
provides volatility in terms of modifying the standard settings based on confidence about
the knowledge according to its date, nature, or the sender of the information (i.e., other
agents from AOSF environment).
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Belief-Builder holds the capability, in certain situations, to check on any upcoming
exceptions by utilising the Check-Exceptions function. For example, sometimes a request to
fetch data may not succeed because of a network failure or an empty record. In such a case,
the dataset may hold no record-tuple, which may cause errors when performing operations
through actuators. Belief-Builder manages such issues before initiating other components,
as highlighted in Algorithm 1. Belief-Builder converts all the information from the Belief
Base into data threads to read through and thoroughly compare every single data entry
and uses Thread-Reader() to extract, analyse, and combine each of them into different Belief
Streams. For the initial configuration, the Belief Builder builds the baseline beliefs for
Products and Racks, as well as their detailed characteristics. Similarly, Knowledge Builder
is based on the same strategy to build the pool of knowledge-constructs and maintain a
completely updated Knowledge Base.

The feature of sensing from the environment ensures AOSR 2.0 is constantly updated,
which helps ensure actions are planned in a timely manner. Algorithm 2 represents the
heuristics of Percept-Builder, which is responsible for pooling percepts from the environment.
It builds its beliefs and knowledge from Belief Builder and Knowledge Builder, respectively.
Based on knowledge threads related to products’ locations within the warehouse, it builds
a comprehensive placement plan (P), which keeps updating whenever a product batch
needs to be shipped or delivered.

Algorithm 2 Overview of Percept Builder-ECU Heuristics.

1: procedure REQUEST-ANALYSER-ECU
2: Initiate BeliefBuilder()
3: Initiate KnowledgeBuilder()
4: PlacementPlan[]← KnowledgeThreadPlan[]
5: request← ACLmessageReceiver()
6: P← request.requiredProduct
7: Q← request.requiredQuantity
8: C[]← Extract-Characteristics(P)
9: if request is from ECU then

10: AvailableRacks[]← Search-Rack(P , c[] , Q , Plan[])
11: if (AvailableRacks[]) then
12: FewestAvailableRacks[]← FindFewest(AvailRacks[])
13: NearestAvailableRack← FindNearest(FewestAvailableRacks[])
14: GeneratePlacement(P, Q, NearestAvailableRack)
15: UpdateBeliefBuilder()
16: UpdateKnowledgeBuilder()
17: Notification-Generator(SUCCESS, ECU)
18: end if
19: if (AvailableEA()) then
20: if (CheckReslottingNeed()) then
21: p← ExtractADNlogProduct()
22: q← ExtractADNlogQuanitity()
23: GeneratePlacement(p, q, EA)
24: GeneratePlacement(p, q, ExtractPlacement(P, Q)
25: UpdateBeliefBuilder()
26: UpdateKnowledgeBuilder()
27: NotificationGenerator(SUCCESS, ECU)
28: end if
29: end if
30: else
31: NotificationGenerator(FAILURE, ECU)
32: end if
33: CheckUpdates
34: end procedure
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The AOSR-WMS system interacts actively with two main SC entities via several
other agents (e.g., supplier side agents, customer side agents, smart device agents, me-
diator agents, and other user software agents) defined in the AOSF environment [25,30]:
(i) enterprise central unit (ECU), which further connects with the supply chain management
unit (SCM) to take account for all the suppliers’ management; and (ii) customer relationship
management unit (CRM), which takes account of all customer interactions. Both units,
ECU and CRM, send requests and desires to a warehouse planner agent for any shipment
or delivery operations, corresponding to certain product-batches. Percept-Builder utilises
its method of Request-Analyser() to identify two of its variations: requests from ECU side
agents; and requests from the CRM side agents; and performs tasks accordingly to the
context to ensure it reaches the desires of the requesting agents. The AOSR algorithm
completely complies with the FIPA-agent communication language (ACL) protocol [40]
to perform negotiation between different agents. All messages between different AOSR
components follow ACL constructs. The ACLmessageReceiver() function in Algorithm 2
extracts all the subcomponents of a request or desire and identifies the information related
to product details, e.g., their SKUs, characteristics, or quantity. The Extract-Characteristics()
function fetches all the characteristics related to a particular product highlighted in the
shipment or delivery details. The AOSR algorithm recommends advance notification of
products shipment (ASN) or delivery (ADN), as discussed in AOSR’s 6-Feature Strategy [26].
The set of characteristics included in ASN/ADN helps to find the right match to determine
a suitable rack to place the product within the warehouse at an appropriate location.

Algorithm 3 Overview of Actuator-SearchRack Heuristics.

1: procedure ACTUATOR-SEARCHRACK
2: Initiate Belief-Builder()
3: Initiate Knowledge-Builder()
4: foreach P in ASN:
5: matchCharacteristics(KnowledgeThread(Rack, P))
6: matchCapacity(KnowledgeThread(Rack, P))
7: if matched then
8: AvailableRacks[]← KnowledgeThread(RackNo)
9: AvailableRackLevels[]← KnowledgeThread(RackLevel)

10: end if
11: goto loop
12: if thenCheckConsolidation(AvailableRacks[], AvailableRackLevels[]))
13: AvailableRacks[]← f ewest(AvailableRacks[], AvailableRackLevels[]))
14: else
15: AvailableRack← nearest(AvailableRacks[], AvailableRackLevels[]))
16: end if
17: return AvailableRack
18: end procedure

If a request comes from an ECU side agent, the first step that the AOSR planner agent
performs is to find a suitable rack, as explained in Algorithm 3. Other than matching
the characteristics of products with those of racks, capacity is one of the main concerns
in order to completely store the batch. In contrast to a standard WMS ([4,41]), AOSR
2.0 provides an advanced and deeper approach to assign a rack to a product. It does
not just randomly assign a product to an available rack but instead analyses the list of
available racks based on capacity and location and then attempts to consolidate a slot
within the rack, e.g., by justifying the maximum possible space to completely fill the same
rack level (i.e., if a shipment is received with three products and there two of the same
product in a rack already, then it will place the new products in the same rack to take
it to its full capacity of five products), rather than putting the dispersed products into
different locations. Although this is not always achievable because of capacity and quantity
mismatch, it first tries and then finds the nearest possible rack, which ultimately reduces
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the overall activity-time on the shop floor. If the method of SearchRack() cannot find a
suitable available rack, only then does it attempt to find an available expedition area (EA)
while, in parallel, it checks for any upcoming delivery orders from its Knowledge Base. If it
perceives that some products need to be delivered within a given time threshold (with the
threshold defined by the company, e.g., 3–5 days), it initiates a task to move the existing
products from the racks and put the quantity specified in the ADNs into an available EA so
it can place products coming through ASNs directly into racks. Then, on the delivery day,
it picks the products from EA and ships them. Thus, through this re-slotting mechanism,
the warehouse remains more organised and better managed.

If Request-Analyser receives a request from CRM side agents, the Request-Analyser
utilises the RetrieveLocation() function, highlighted in Algorithm 4, to build a list of possible
locations for the required product and quantity. Similar to the product placement strategy,
the location retrieval strategy also ensures it consolidates the racks by finding the minimum
possible products to be fetched in order to clear a rack for upcoming products. If it is
not possible to consolidate, it identifies the nearest possible location which the product
can be picked to reduce the total activity-time. The RetrieveLocation() function returns a
failure notification, without crashing, only if the required product is not in stock in the
desired quantity.

Algorithm 4 Overview of Percept Builder-CRM Heuristics.

1: procedure REQUEST-ANALYSER-CRM
2: Initiate BeliefBuilder()
3: Initiate KnowledgeBuilder()
4: PlacementPlan[]← KnowledgeThreadPlan[]
5: request← ACLmessageReceiver()
6: P← request.requiredProduct
7: Q← request.requiredQuantity
8: C[]← Extract-Characteristics(P)
9: if request is from CRM then

10: if (P with Q inStock) then
11: PossibleLocations[]← RetrieveLocation(C[], PlacementPlan[])
12: FewestAvailable[]← FindFewest(PossibleLocations[])
13: NearestAvailable← FindNearest(FewestAvailable[])
14: ExtractPlacement(P, Q, NearestAvailable)
15: UpdateBeliefBuilder()
16: UpdateKnowledgeBuilder()
17: NotificationGenerator(SUCCESS, CRM)
18: else
19: NotificationGenerator(FAILURE, CRM)
20: end if
21: end if
22: CheckUpdates
23: end procedure

Every location in an AOSR 2.0 recommended warehouse is given a unique name so
that it can be easily identified and managed without any ambiguities. Every location has
a placement code that is comprised of rack number, rack level, and characteristics (e.g.,
finished or raw, fast or slow, and hazardous or not). These configurations can be varied
depending on the business need. An overview of Placement Generator() is highlighted in
Algorithm 5, which first identifies the available space using the heuristics of SearchRack()
and then extracts all details from the Knowledge Base.
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Algorithm 5 Overview of Actuator-PlacementGen Heuristics.

1: procedure ACTUATOR-PLACEMENTGEN
2: AvailableRack← SearchRack()
3: if matched in KnowledgeBase then
4: RackNo ← KnowledgeThreadRackNo(AvailableRack)
5: RackLevel ← KnowledgeThreadRackLevel(AvailableRack)
6: end if
7: Characteristics← ExtractCharac(Belie f Threads(P.Charac))
8: Location← GenerateLocation(Characteristics, RackLevel, RackNo)
9: return Location

10: end procedure

For testing purposes, we have explored the design mechanisms provided by several
available tools but the features provided by JADE [32] were determined to be most suitable
for the AOSR 2.0 strategy, e.g., JADE provides simple and flexible options for designing
multi-agent scenarios with the ability to monitor overall agents’ interactions via the sniffer
agent module. Constraint-based experimentation has been applied to AOSR 2.0 in JADE to
acquire results in comparison with some standard WMS approaches.

3. Results and Discussion

The prototype developed in JADE to validate the AOSR 2.0 strategy utilises a com-
prehensive dataset to represent large-scale applicability as discussed in Section 2, which
includes thorough variation of different product classifications, SKUs, and time-bound
situations related to product delivery and shipment. The AOSR 2.0 strategy attempts to
more proactively cater to baseline warehousing issues, such as unavailability or inaccuracy
of current stock values [23], mismanagement in EAs/RAs [24], mismanaged capacity in
defined storage areas [4] and inappropriate product placement or retrieval strategies [42].

The test cases to validate the performance of AOSR 2.0 are segregated in two different
states of the system: Initial Static State (System State (0) and Regular Dynamic State (System
State (1)). System State (0) is a preliminary state where there are no products in the ware-
house when shipment notices start to arrive for products to be shipped to the warehouse.
System State (1) is a normal running-system state where there are already some products
stored in the warehouse and both the ASNs and ADNs are being received for products to
be shipped and delivered within the same time interval. All these test cases are examined
in the following subsections.

3.1. Scenario of Products in Racks

Figure 2 represents the results taken from System State 0. The results reflect the
difference between the tested approaches for the applied test dataset for a full routine day.
The number of transactions and iterations are divided into hours (represented on the x-axis)
and the number of products being shipped or delivered to the warehouse (represented
on the y-axis). The graph reflects that there is no major difference in the two standard
warehousing logics, zoning with FIFO logic and zoning with fewest logic. Although the
results generated by AOSR 2.0 represent almost the same pattern, the situation is 10–15%
better than the other two approaches as it stores more products in the racks than either
of the other two strategies, which is considered a high-performance efficiency metric in a
warehouse environment [33]. Nonetheless, all three curves move down after the 6th hour
because they reach capacity in the constrained environment. AOSR 2.0, in this scenario,
follows the same trend as the other techniques (with better performance than the others
because it follows the strategy to keep the minimum possible number of products at the
product receiving area) as it utilises its hybrid logic and is not offered a situation where its
re-slotting strategy can be utilised since no delivery operations are performed. In System
State (1) the performance improvement of AOSR 2.0 over the other techniques is more
easily noticed, i.e., in Figure 3.
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Figure 2. Comparison of Multiple Logics with AOSR 2.0 for Products in Racks in State 0.

Figure 3. Comparison of Multiple Logics with AOSR 2.0 for Products in Racks State 1.

Figure 3 provides a comparison of the two standard approaches with the hybrid
strategy of AOSR 2.0. As can be seen from the graph, for the first 4 hours, both zoning
with FIFO logic and zoning with fewest logic have only marginal differences because
both of the approaches follow the same pattern of leaving one-quarter of the products
in a RA. The main reason for this is because these standard approaches use a manual
method of sorting the received products and hence identifying the proper location takes
more time [33]. However, the AOSR 2.0 strategy is based on the enterprise integration
concepts of the AOSF framework and considers the ASNs or ADNs prior to the arrival
of products. Hence, the proactive nature of the AOSR 2.0 strategy already reduces the
time taken to identify and place products. After the fourth hour, the performance gap
and difference between the AOSR 2.0 strategy and the standard approaches can easily be
noticed as AOSR 2.0 utilises its hybrid strategy for product re-slotting to organise space and
increase availability for new products. This allows AOSR 2.0 to maintain almost 60% more
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products in racks than the other approaches. For the fifth hour, a difference can be seen
between the two standard approaches; zoning with fewest logic performed comparatively
better than zoning with FIFO logic because it tried to consolidate the space to make more
availability for new products to be stored within racks. As the AOSR 2.0 strategy utilises a
combination of these approaches, it is more successful and yields better results than the
other two individually. A clear performance difference can be seen during the sixth hour,
which ultimately reduces for the seventh and eighth hour as the number of total products
is reduced in upcoming shipment and delivery notices.

3.2. Scenario of Products in RA

In a standard SC warehouse, a manual method of sorting the received products and
identifying the proper location takes almost one-quarter of the total time and operational
effort to store products [33]. The case of products in RA is different when utilising the AOSF
framework and the 6-Feature Strategy of AOSR, which recommends business process re-
engineering (BPR) based on a proactive approach of sensing ASNs and ADNs, to maintain
a minimum possible number of products in the RA by utilising the prior knowledge of
upcoming products. The results are shown in Figures 4 and 5 for System State 0 and System
State 1, respectively.

Figure 4. Comparison of Multiple Logics with AOSR 2.0 for Products in RA State 0.

Figure 5. Comparison of Multiple Logics with AOSR 2.0 for Products in RA in State 1.
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A difference between the two standard approaches is slightly noticeable in Figure 4,
particularly after the third hour, because the zoning with fewest logic has taken more time
than the zoning with FIFO logic to sort and identify a proper space for the products, and
has, thus, detained more products in the RA. In the case of the AOSR 2.0 strategy, there
are very few or no products in the RA because of its proactive approach that allows the
AOSR planner agent to make plans before products arrive to ensure the RA is clear for the
auto-identification of upcoming products [26].

The difference between the two standard approaches remains unnoticeable in System
State 1, as shown in Figure 5, up until the fifth hour. Before then, there is more space
available in the warehouse, so both approaches take less time and effort to optimise the
available space. Therefore, there is almost the same number of products in RA in both
cases. However, when the same products start repeating themselves in upcoming ASNs
and ADNs after the fifth hour, the zoning with fewest logic takes more products to RA to
identify the available space than the zoning with FIFO logic. In this scenario, the AOSR 2.0
recommended strategy takes the lead and provides up to a 148% decrease in the number
of products in RA by incorporating its cognitive and integrative approach to support
warehouse activities with its proactive utilisation of its slotting and re-slotting capabilities.

3.2.1. Scenario of Products in EA

For the results acquired in the scenario of products in the EA, there is a very slight
difference in the scenarios of System State 0 and System State 1, but they yield considerably
different results. The results shown in Figure 6 represent almost no difference in both of
the standard logic approaches and the AOSR 2.0 Hybrid Logic as, in System State 0, there
are no ADNs, which means products are only received at the warehouse with no product
being delivered.

Figure 6. Comparison of Multiple Logics with AOSR 2.0 for Products in EA in State 0.

In this case, the AOSR 2.0 planner algorithm has no opportunity to utilise its re-slotting
strategy and shows almost the same pattern as the standard logics. From hours 1 through
3, as there are no products in the racks, all three strategies can easily find the capacity
to store products within racks, and the extra products that exceed the total capacity are
placed in EA. The difference can be noticed after the third hour, as from the fourth hour
onwards, other than at the fifth hour, the zoning with FIFO logic has placed more products
in EA because of its failure to incorporate consolidation logic like the zoning with fewest
and AOSR 2.0’s Hybrid Logic. In the fifth hour, the products appearing in ASNs have
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different categories than those already stored in the racks, so the same number of products
are placed in EA by each of the three strategies.

The results in System State 1, as represented in Figure 7, clearly demonstrate the
performance gap between the approaches. Because both the ASNs and ADNs are being
received, AOSR 2.0 can utilise its re-slotting strategy when needed. In the first two hours,
there is plenty of space and almost all products are easily stored within the racks, so the
number of products in the EA is the same for all of the three strategies. However, after the
second hour (and especially in the fourth hour), when the number of products is higher
than capacity and when products with the same characteristics appear in upcoming ASNs
and ADNs, the difference between AOSR 2.0 and standard strategies is quite visible. The
AOSR 2.0 strategy manages to maintain a comparatively lower number of products in the
EA throughout the random test scenarios, which can help reduce the issues of wandering
or lost items and unmanaged inventory.

Figure 7. Comparison of Multiple Logics with AOSR 2.0 for Products in EA.

The preference in the Belief Base of the planner agent is to place a maximum number of
products within the racks. However, when many similar products arrive, so that the total
is greater than the maximum capacity of the warehouse for that particular product, the
planner agent temporarily places some of the products in the EA. In parallel, it continuously
checks with its Knowledge Base for any updates about products to be shipped so that it can
place the new products into racks rather than the EA and re-slot the products that will soon
be needed in the EA from the racks. Then, when the delivery date arrives for the re-slotted
products, they can be picked from the EA and space can be cleared for future possibilities.
This can be observed during the third and fourth hours in Figure 7, when AOSR 2.0 places
products in EA because the number of products in ASNs is much larger than the maximum
capacity for that product batch, and it then re-slots the products from racks to the EA and
places the newly arriving products into racks so that they do not need to be moved later
and inventory can be managed more effectively. Additionally, in the sixth hour, when
products with the same characteristics arrive in ASNs, both of the standard logics have
placed a very high number of products in the EA, while AOSR 2.0 has placed the products
from ADNs in the EA instead allowing the upcoming products to be placed in the racks.
This is how AOSR 2.0’s re-slotting strategy helps to maintain up to 107% fewer products
in EA than the standard approaches. Our previous work [28] also supports the AOSR’s
performance efficiency overall.
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Other than the validation of this system in JADE, we have also validated this system
using real data. For this purpose, we implemented the AOSR 2.0 strategy in an industrial
simulation tool, Demo3D [43]. Demo3D is a product of RockWell Automation [44], which is
a US-based firm providing industrial automation solutions. We created a 3D visualisation
of a warehouse with the AOSR 2.0 strategy and achieved comparable results to those
discussed in this paper. These results are not included as part of this paper because of
privacy concerns of the organisation whose data were used for this implementation.

4. Conclusions and Future Work

This article presented the extended heuristics and performance-based validation of
AOSF’s associated AOSR strategy in an SME-oriented warehouse environment. The applied
test scenarios were discussed in comparison with standard warehousing strategies (Zoning
with FIFO logic and zoning with fewest logic), particularly for managing the number of
products in key warehouse areas, such as racks, RA, and EA, with different corresponding
system states (with or without possible conflicts). The results from different scenarios
demonstrate that the AOSR algorithm performs better in comparison with standard WMS
strategies, especially in System State (1), which is a normal running state of a warehouse.
However, it is impossible for a single solution to be universally applicable, so the presented
system also has some limitations. For example, performance has only been tested in a
prototype, not in a real-time distributed cloud architecture, where results may vary slightly.
Furthermore, this system does not include in-built cloud server security, which is another
rich area of research. Although the AOSR strategy can cater to requests coming from
smart-devices, connecting manual industrial hardware components to this system may
raise some more areas of optimisation.

For large-scale distributed enterprise setups, the AOSR’s parent architecture of the
AOSF framework can be utilised for inter-enterprise integration as it includes OLAP based
systems and server architectures on the cloud layer. The AOSF framework provides a
high-level guide for manufacturing industrial management for SMEs, but could be de-
veloped further to cater for concerns related to privacy and security. For AOSR, there
could be some more dimensions to work upon in the future, such as movement of prod-
ucts within the warehouse shop floor using forklift trucks, utilising collapsible racks or
small-scale drones (as some industries offer a high-tech robo-oriented solution such as
GrayOrange [45] and Unleashed [46]). These solutions provide nice cutting-edge features
but come with an additional infrastructure cost. Similarly, information systems based on
cloud-based cognition, Big Data-driven and Deep Learning-assisted process planning and
decision-making [47,48] could be implemented for large industrial environments. The
moderate level, semi-autonomous, low-cost solution provided by AOSR can also be used
for incremental improvements in the future. For example, the system is flexible enough
that conveyor belts and picking machines or Big Data support could be added to the system
if needed. Additionally, as we have implemented the AOSR strategy in Demo3D [43] in
liaison with a local industry which offers consulting services to diverse industrial clients
from Australia, South East Asia, and North America, we are in the process of getting more
involved in offering this solution to a range of their clients.
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