Phenotypic & Phylogenetic Analyses of New and Established Antarctic yeast

Sharon Patricia Guffogg

BSc (Biomed. Sci.), BSc 1st Class Honours (Microbiology) University of New England Armidale, Australia

A thesis submitted for the degree of Doctor of Philosophy from the University of New England, Armidale, Australia

2005

"The smaller the organism, the broader the frontier and the deeper the unmapped terrain."

Edward O Wilson in The Diversity of Life

Acknowledgements

The final scene is set, let the credits role.....

Firstly, I would like to thank my supervisor, Prof. Ken Watson. You have taught me so much more than the results show in this thesis. You are truly a teacher in every sense of the word. You provided the framework for the research, then allowed me to grow within that framework developing the skills to analyse and question, often being forced to think outside the square, and finally, to have the confidence to draw conclusions. I'll never be able to thank you enough....

I have been fortunate during my candidature to become part of a family here at UNE. My time here has been fulfilling not only academically, but spiritually.

From the amazing support team of Ros, Sharon, Craig and Ruth, whose ability to make the daily mountains turn into the smallest of molehills are enviable skills. You are certainly the backbone of this department. My deepest gratitude to you all.

The academic staff who were always there to listen and offer advice, thank you.

The administration staff, Annette, Frank and Chris, thank you for paying the bills...

My fellow students, past and present; Skye, Shanchita, Visala, Jonathon. Thank you for making the lab a happy place to be. Linda Agnew, fellow student, colleague, and most importantly, friend. I could never have asked for a better roomy. I'll miss our daily vents but I know that we will be friends forever.

This work would not have been possible if it wasn't for the Antarctic CRC team at the University of Tasmania. Thank you to Drs David Nichols and Kevin Sanderson for allowing not only access to the Antarctic samples, but full use of their lab. Also, thanks to Drs Paul Holloway and John Bowman for sequencing of the Antarctic yeasts. Both of my trips to Hobart were wonderful experiences thanks to the generosity of these researchers.

I was fortunate during my candidature to spend two weeks at the Australian Institute of Marine Science in Townsville, Qld. The hospitality of my host, Dr Walter Dunlap was unsurpassed. The opportunity to work in such a place was certainly rewarding.

A special thank you to a special friend – Victoria Dunne. Your enthusiasm and interest [real or otherwise] meant that I always had someone on the outside I could bounce ideas off. You often had more faith in my abilities than I did. For your unconditional support I will be forever grateful.

My beautiful daughters, Jenna, Chloe and Alle – many sacrifices were made that affected you though no fault of yours. missed concerts, reading time, picnics...... I only hope that you will come to realise that my desire to succeed stemmed from wanting to provide you with what I never had. We have all grown together, and I hope that you can see that you can do what-ever you want to do if you want it bad enough.

Finally, I would like to thank my husband Simon. There is so much that I would like to say about you but I don't know where to begin. You are my love, my life, my friend. Your love cushioned every failure, celebrated every success. I treasure our memories and await the adventures yet to come.....

Far better it is to dare mighty things, to win glorious triumphs even though checkered by failure, than to rank with those poor spirits who neither enjoy nor suffer much because they live in the gray twilight that knows neither victory nor defeat.

Theodore Roosevelt (1858 - 1919)

Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

..... Sharon Patricia Guffogg

Abstract

Yeasts isolated from the extreme environment of Antarctica, offer a unique opportunity to exploit characteristics not found in other microorganisms. The focus of this study was sixty yeast samples originating from the Vestfold Hills area located near the Australian Davis Base, Antarctica. Functional studies of these extremophiles using a combination of classical and molecular techniques provided a correlation analysis to be achieved verifying the placement of new species against positions of existing species. Isolates were screened using one-dimensional-sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D-SDS-PAGE) of whole cell proteins and yeasts grouped together according to their protein profiles. This analysis reduced the study group to 39. Phylogenetic analysis of the sequences of the D1/D2 region and the internal transcribed spacers of the 26S ribosomal DNA determined relatedness among known yeast isolates. Sequence data revealed 2 unique species and a further 3 species that were closely related, but not identical, to established yeast species. Two isolates, shown to be indistinguishable through rDNA sequencing and protein analysis by 1D-SDS-PAGE, were described as Cryptococcus *watticus* sp. nov. [type culture = CBS 9496^T, NRRL Y-27556]. Sequence analyses of the D1/D2 region [26S] ribosomal DNA placed Cr. watticus in the Hymenomycetous yeasts in a cluster with Holtermannia corniformis and Cr. nyarrowii. This species has been allocated to the genus Cryptococcus on the basis of physiological and morphological characteristics. Sequence analyses placed five psychrophilic isolates (UNE116c designated type strain) in the Archiascomycete clade with Leuconeurospora pulcherrima and *Oosporidium* margaritiferum. Preliminary sequencing results using the 18S (small ribosomal subunit) region indicated that strain UNE116c was 99.8% similar with a black, Aureobasidium-like strain. This was highly unusual as UNE116c was orange in colour and did not produce any black meristematic cells at any stage. There were also 29 isolates that were identified as previously established basidiomycetous yeast species (Cr. victoriae, Cr. nyarrowii, Cr. gilvescens, Cr. gastricus, Cr. sp. KCTC 17063, Leucosporidium antarcticum, Rhodotorula mucilaginosa, R. laryngis, R. minuta) and ascomycetous yeast species (Candida norvegica, C. parapsilosis, Debaryomyces hansenii). Some of these yeasts have not previously been

isolated from Antarctica. The number of yeasts isolated from the Vestfold Hills thus far represented the most comprehensive biodiversity data available for Antarctic yeasts.

R. mucilaginosa, a highly pigmented red yeast, was shown to be extremely UVAresistant and exhibited the classic heat shock response of acquired thermotolerance. Increased expression of hsp70 or hsp90 was not observed following a heat shock as determined by 1D-SDS-PAGE, however, increased expression of a smaller hsp at ~ 30 kDa was observed following UVA exposure. The coenzyme Q₈ ratio (CoQH₂/CoQH₂ + CoQ), a sensitive measure of cellular redox potential and oxidative stress, was measured during exposure of *R. mucilaginosa* cells to UVA. Preliminary results indicated a reductive response in cellular CoQ balance with increasing CoQH₂/total CoQ ratio on exposure to UVA radiation. The regulation of these processes to maintain high levels of the reduced form of coenzyme Q was a novel cellular response to UVA photooxidative stress not observed in any other Antarctic or mesophilic yeasts. As far as one was aware, this was the first report in eukaryotes of high levels of reduced CoQ in response to UVA-radiation.

The positive effects of coenzyme Q_{10} (Co Q_{10}) in compromised individuals with various forms of cardiovascular disease has been documented. The aim of the present study was to evaluate the effect of oral administration of Co Q_{10} (100 mg/day for fourteen days) in twelve healthy individuals (34 to 61 years) by measuring the expression of heat shock protein 70 (hsp70) in lymphocytes, and a number of oxidative stress parameters in plasma and erythrocytes. Expression of hsp70 in lymphocytes and total plasma antioxidant status did not alter following supplementation. Malondialdehyde (MDA), as a measure of lipid peroxidation, decreased following supplementation as did protein oxidation, as measured by protein carbonyl formation. Supplementation resulted in an increase in the rate of erythrocyte haemolysis when challenged with the free radical generator AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride). The results from this small-scale clinical trial indicated an improvement in plasma antioxidant defences in healthy individuals but a prooxidative effect against free radical induced erythrocyte haemolysis following oral supplementation with CoQ₁₀.

Publications arising from this thesis

S. Guffogg, S. Thomas-Hall, P. Holloway & K. Watson (2004). A novel psychrotolerant member of the hymenomycetous yeasts from Antarctica: *Cryptococcus watticus* sp. nov. *International Journal of Systematic and Evolutionary Microbiology* 54: 275-277

Tsimako M, Guffogg S, Thomas-Hall S, Watson K. (2002). **Resistance to UVB radiation in Antarctic yeasts.** *Redox Report* 7(5): 312-4

Guffogg, S. Khan. S, Bowman. J, Dunlap, W & Watson, K (2005). *Rhodotorula mucilaginosa* isolated from Antarctica is highly resistant to UVA-inducible redox response. In preparation.

Guffogg, S. Thomas-Hall, S & Watson, K (2005). The biodiversity of Antarctic yeast. In preparation.

Guffogg, S. Agnew, L. Oliver, C & Watson, K (2005). Dietary intake of ubiquinone (CoQ10) does not protect erythrocytes from oxidative damage in *in vivo* studies. In preparation.

Khan, S. Guffogg, S & Watson, K (2005). Yeasts isolated from Antarctica exhibit high resistance to UVA, UVB & UVC radiation. In preparation.

Copy of papers appear in appendix III

Aspects of thesis presented at conference proceedings

<u>Guffogg, S.</u> Khan, S. Dunlap, W. and Watson, K. Antarctic yeast: How to stay cool when the heat is on. Presented at the *Canadian Society for Microbiology Annual Scientific Meeting*, Edmonton Alberta, Canada, 20 – 23 June 2004. Poster.

<u>Guffogg, S.</u> Khan, S. Dunlap, W. and Watson, K. Stress response in Novel Antarctic Yeasts. Presented at the *Yeasts: Products and Discovery Conference*, Barossa Valley SA, 4 – 6 April 2004. Poster and presentation.

<u>Guffogg, S.</u> Thomas-Hall, S. Tsimago, M. Holloway, P and Watson, K. Antarctic yeasts: phenotypic and phylogenetic analysis. Presented at the *Australian Society for Microbiology Annual Scientific Meeting*, Melbourne, 29 September – 3 October 2002. Poster.

Khan, S. Guffogg, S. Tsimako, M. and Watson, K. UVB sensitivity of mesophilic yeasts and psychrophilic Antarctic yeasts at different stages of growth: effects of pigmentation and glutathione. Presented at the *Yeast: Products and Discovery Conference*, Melbourne, 27 – 29 November 2002. Poster.

Tsimako, M. <u>Guffogg, S</u>. Thomas-Hall, S. and Watson, K. Resistance to UVB-irradiation in Antarctic yeasts. Presented at the 9th Annual Meeting of the Society for Free Radical Research [Australia & Japan], Redox Processes in Chemistry, Biology & Medicine. Sydney, 30 November – 4 December 2001. poster.

Thomas-Hall, S. <u>Guffogg, S.</u> Fell, J. and Watson, K. A comprehensive molecular study of the basidiomycetes incorporating new Antarctic yeasts. Presented at the *Yeast: Products and Discovery Conference*, South Stradbroke Island, 29 June – 1 July 2000. Poster.

Copy of posters and abstracts appear in appendix II

Abbreviations

1-D	One dimensional
AAPH	2,2'-azobis-(2-amidinopropane) dihydrochloride
AMPS	Ammonium peroxidisulphate
bisacrylamide	N,N'-methylenebisacrylamide
bp	Base pairs
CBS	Centraalbureau voor Schimmelcultures
CHD	Chronic heart disease
CoQ	Coenzyme Q
CRC	Cooperative Research Centre
DBB	Diazonium Blue B
DNA	Deoxyribonucleic acid
DNPH	2,4-dinitrophenylhydrazine
DTT	Dithiothreitol
EDTA	Ethylene diamine tetraacetic acid
hsp	Heat shock protein
kDa	Kilodaltons
IGS	Intragenic spacer
ITS	Internal transcribed spacer
MAAs	Micosporine-like amino acids
MDA	Malondialdehyde
NQR	NAD(P)H: quinone oxidoreductase
nt	Nucleotide
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline
PBS-T	PBS-Tween 20
PCR	Polymerase chain reaction
PMSF	Phenyl methyl sulphonyl floride
PUFA	Polyunsaturated fatty acids
rDNA	Ribosomal deoxyribonucleic acid

RAPD	Randomly amplified polymorphic DNA
RFLP	Restriction fragment length polymorphism
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
SDS	Sodium dodecyl sulphate
TBARS	Thiobarbituric acid reactive substances
TEMED	N,N,N',N'-tetramethylene diamine
TCA	Trichloroacetic acid
Tris	Tris-[hydroxymethyl] aminomethane
UV	Ultraviolet
UVA	Ultraviolet A
UVB	Ultraviolet B
UVC	Ultraviolet C
UVR	Ultraviolet radiation
YEP	Yeast extract peptone
YNB	Yeast nitrogen base

Table of Contents

DECLARATION

ABSTRACT	2
PUBLICATIONS ARISING FROM THIS THESIS	4
ASPECTS OF THESIS PRESENTED AT CONFERENCE PROCEEDINGS	5
ABBREVIATIONS	6
TABLE OF CONTENTS	8
LIST OF FIGURES	
LIST OF TABLES	

<u>CHAPTER 1:</u> INTRODUCTION	
THE ORIGINS OF TAXONOMY	16
Kingdom Fungi	
Definition and classification of Fungi	
Ascomycota	
Basidiomycota	21
Yeasts	
Fungal Taxonomy	
Nomenclature	
Identification & classification methods	
Morphology	
Physiological and biochemical techniques	
Fatty acid composition	
Cell wall composition	
Protein composition	
Coenzyme Q systems	
Molecular techniques	
Ribosomal complex	
5S rDNA	
18S rDNA	
26S rDNA	
Phylogenetic analysis	
ANTARCTICA	
The Vestfold Hills	
Ultraviolet light	41
Free radical damage	
Antioxidants	

Effect of UVR on Antarctic organisms	
Carotenoids and UV	
Heat shock response	
Heat shock response to UV	
THESIS AIMS	

CHAPTER 2: MATERIALS AND METHODS	53
MATERIALS	
Chemicals	
Media	
General	
Solutions	
Methods	
Yeast maintenance	57
Yeast cultures	
Protein Analysis	
Protein extraction	
Protein assay	
³⁵ S-methionine labelling of proteins in yeast	
SDS-polyacrylamide gel electrophoresis	
SDS-polyacrylamide gel silver staining	
SDS-polyacrylamide gel Fast Blue staining	
Polyacrylamide gel drying	
Autoradiography	
Fatty acid analysis	
Fatty acid extraction	
Fatty acid Analysis – Gas chromatography	
rDNA Sequencing	
DNA extraction	
Phylogenetic analysis	
Assimilation Tests	
Procedure	
Diazonium Blue B (DBB) test	
Colony photographs and micrographs	
Ubiquinone analysis	
Ubiquinone extraction	
Ubiquinone analysis – High performance liquid chromatography (HPLC)	
NAD(P)H: quinone oxidoreductase activity	
Stress response	
Thermotolerance	
UV-irradiation	
Statistical analysis	

CHAPTER 3: THE BASIDIOMYCETES	
INTRODUCTION	
Urediniomycetes	
Ustilaginomycetes	
Hymenomycetes	
CRYPTOCOCCUS SPECIES	
Cryptococcus watticus sp. nov	
Cryptococcus nyarrowii	
Cryptococcus gilvescens & Cr. gastricus	
Cryptococcus victoriae	
RHODOTORULA SPECIES	
Rhodotorula mucilaginosa	

CHAPTER 4: THE ASCOMYCETES	
INTRODUCTION	
Archiascomycetes	
Euascomycetes	
Hemiascomycetes	
CANDIDA SPECIES	
Candida parapsilosis	
Candida norvegica	
Debaryomyces hansenii	
UNE116c	

INTRODUCTION	
THE ANTARCTIC NICHE	
SIGNIFICANCE OF MICROBIAL DIVERSITY	
Biodiversity as a bioresource	
YEASTS IN THE ANTARCTIC	
Yeast biodiversity in the Vestfold Hills	
Environmental impact on yeast biodiversity	
CONCLUSION	

CHAPTER 6: STRESS RESPONSE OF RHODOTORULA MUCILAGINOSA

MUCILAGINOSA	
INTRODUCTION	
LIFE UNDER STRESS	
Heat shock proteins & thermotolerance	
Ubiquinone	

Fatty acid composition	
RESULTS	
Molecular & physiological analyses	148
Stress tolerance	
DISCUSSION	
Phylogenetic & physiological analysis	
Lipid analysis	
Expression of hsps following heat and UVA stress	
UVR response	
Coenzyme Q redox balance following UVA	

<u>CHAPTER 7:</u> EFFECTS OF DIETARY INTAKE OF COENZYME Q₁₀ ON HEALTHY INDIVIDUALS

ON HEALTHY INDIVIDUALS	
INTRODUCTION	
The role of Coenzyme Q	
Methods	
Study population	
Lymphocyte extraction	
³⁵ S-methionine labelling of proteins	
Stress response	
Protein extraction.	
Protein assay	
SDS-polyacrylamide gel electrophoresis	
Autoradiography	
Western immunoblot	
Detection of antibody	
Enzyme-linked immunosorbent assay [ELISA]	
Erythrocyte haemolysis	
Protein carbonyl assay	
Lipid peroxidation	
Total antioxidant status	
RESULTS	
Erythrocyte haemolysis and CoQ_{10} supplementation	
Heat shock protein synthesis in lymphocytes	
Western immunoblot	
The effect of CoQ_{10} on oxidative stress parameters in plasma	
DISCUSSION	
The effect of CoQ_{10} supplementation on erythrocyte haemolysis	
Expression of heat shock protein synthesis in lymphocytes	

CHAPTER 8: SUMMARY & FUTURE DIRECTIONS	
Yeast Taxonomy	
Potential commercial applications of Antarctic yeasts	
Yeast biodiversity	

Rhodotorula mucilaginosa	199
COENZYME Q	200

References	
Appendix I	
APPENDIX II	
APPENDIX III	
	······································

List of Figures

FIGURE 1.1	Phylogenetic tree showing evolutionary distances among the three domains, Archaea,
	<i>a</i> and <i>Eucarya</i>
FIGURE 1.2	Unrooted phylogenetic tree showing the relative positions of fungal clades17
FIGURE 1.3	Diagrammatic representation of coenzyme Q (ubiquinone) where $n =$ number of side
	oprenoid
FIGURE 1.4	Arrangement of ribosomal genes in yeast
FIGURE 1.5	Map of Antarctica
FIGURE 1.6	Scheme showing penetration of the ozone layer by UVR40
FIGURE 1.7	Schematic overview of cellular oxidative stress
FIGURE 1.8	Chemical structures of astaxanthin, lycopene, zeaxanthin and β -carotene45
FIGURE 3.1	Classification of the Basidiomycetes
FIGURE 3.2	Cryptococcus watticus consensus tree of the D1/D2 region80
FIGURE 3.3	Cryptococcus watticus consensus tree of the ITS region
FIGURE 3.4	Fatty acid profiles for <i>Cr. watticus</i> strains
FIGURE 3.5	Colony and cell formation of <i>Cr. watticus</i>
FIGURE 3.6	1D-SDS-PAGE of Basidiomycetous yeast isolates
FIGURE 3.7	1D-SDS-PAGE of Basidiomycetous yeast isolates
FIGURE 3.8	Colony formation of <i>Cr. nyarrowii</i>
FIGURE 3.9	Fatty acid profiles for <i>Cr. nyarrowii</i> strains
FIGURE 3.10	<i>Cr. gilvescens</i> and <i>Cr. gastricus</i> consensus tree of the D1/D2 region90
FIGURE 3.11	<i>Cr. gilvescens</i> and <i>Cr. gastricus</i> consensus tree of the ITS region
FIGURE 3.12	Fatty acid profiles for <i>Cr. gilvescens</i> and <i>Cr. gastricus</i>
FIGURE 3.13	Colony formation of <i>Cr. gilvescens</i>
FIGURE 3.14	Fatty acid profiles for <i>Cr. victoriae</i>
FIGURE 3.15	Colony formation of <i>Cr. victoriae</i>
FIGURE 3.16 FIGURE 3.17	<i>Cryptococcus victoriae</i> consensus tree of the D1/D2 region
FIGURE 3.17 FIGURE 3.18	<i>Cryptococcus victoriae</i> consensus tree of the ITS region
FIGURE 3.19	<i>Rhodotorula mucilaginosa</i> consensus tree of the DT/D2 region
FIGURE 4.1	Classification of the Ascomycetes
FIGURE 4.1	Colony and cell formation of <i>Candida parapsilosis</i>
FIGURE 4.2	Fatty acid profiles for <i>C. parapsilosis</i>
FIGURE 4.4	Fatty acid profile for <i>C. norvegica</i>
FIGURE 4.5	<i>Candida parapsilosis</i> consensus tree of the D1/D2 region
FIGURE 4.6	<i>Candida norvegica</i> consensus tree of the D1/D2 region
FIGURE 4.7	1D-SDS-PAGE of Ascomycetous yeast isolates
FIGURE 4.8	Fatty acid profile for <i>Debaryomyces hansenii</i> 113
FIGURE 4.9	Colony formation of <i>D. hansenii</i>
FIGURE 4.10	D. hansenii consensus tree of the D1/D2 region
FIGURE 4.11	Fatty acid profile for UNE116c 116
FIGURE 4.12	Colony and cell formation of UNE116c 116
FIGURE 4.13	UNE116c consensus tree of the D1/D2 region 117
FIGURE 5.1	Species diversity
FIGURE 5.2	Colony formation of various species on agar
FIGURE 5.3	Map of territorial claims of Antarctica
FIGURE 5.4	Map of the Vestfold Hills, Davis Base, Antarctica
FIGURE 6.1	Physiological factors that activate hsp70 within a cell141

FIGURE 6.2	Ubiquinone to ubiquinol chemical reaction
FIGURE 6.3	Structure of saturated, monosaturated and polyunsaturated fatty acids
FIGURE 6.4	Rhodotorula mucilaginosa consensus tree of the D1/D2 region
FIGURE 6.5	Fatty acid profile of <i>R. mucilaginosa</i> 149
FIGURE 6.6	Induced thermotolerance of <i>R. mucilaginosa</i>
FIGURE 6.7	Colonies of <i>R. mucilaginosa</i> following UVC radiation151
FIGURE 6.8a	Colonies of <i>R. mucilaginosa</i> following UVA radiation
FIGURE 6.8b	Colonies of S. cerevisiae following UVA radiation
FIGURE 6.9	Cytochrome difference spectra of <i>R. mucilaginosa</i> following UVR152
FIGURE 6.10	Cytochrome difference spectra of <i>S. cerevisiae</i> following UVR152
FIGURE 6.11	Autoradiograph of labelled proteins following UVA153
FIGURE 6.12	Autoradiograph of labelled proteins following heat shock154
FIGURE 6.13	CoQ redox balance in <i>R. mucilaginosa</i> during UVA
FIGURE 6.14	CoQ ₈ analysis of <i>Mrakia gelida</i> 158
FIGURE 6.15	CoQ ₉ analysis of <i>Cr. nyarrowii</i> (UNE180e)158
FIGURE 6.16	CoQ ₁₀ analysis of <i>Cr. nyarrowii</i> (UNE64a)159
FIGURE 6.17	CoQ analysis of UNE116c 159
FIGURE 6.18	Reductive response in cellular CoQ balance in R. mucilaginosa during UVA 160
FIGURE 6.19	NAD(P)H: quinone oxidoreductase reaction in R. mucilaginosa during UVA160
FIGURE 7.1	Chemical structure of coenzyme Q167
FIGURE 7.2	Location of coenzyme Q in the inner mitochondrial membrane
FIGURE 7.3	Principle of the Calbiochem Total Antioxidant Status Assay
FIGURE 7.4	Mean erythrocyte haemolysis in males following CoQ ₁₀ 177
FIGURE 7.5	Mean erythrocyte haemolysis in females following CoQ ₁₀ 177
FIGURE 7.6	Effect of heat shock on induction of hsps in lymphocytes - females, baseline 178
FIGURE 7.7	Effect of heat shock on induction of hsps in lymphocytes - females, supplemented
FIGURE 7.8	Effect of heat shock on induction of hsps in lymphocytes - females, wash-out180
FIGURE 7.9	Effect of heat shock on induction of hsps in lymphocytes - males, baseline 181
FIGURE 7.10	Effect of heat shock on induction of hsps in lymphocytes - males, supplemented. 182
FIGURE 7.11	Effect of heat shock on induction of hsps in lymphocytes - males, wash-out 183
FIGURE 7.12	Western immunoblot for hsp70 - male and females, baseline and supplemented 184
FIGURE 7.13	Malondialdehyde concentration in males - baseline, supplemented and wash-out.187
FIGURE 7.14	Malondialdehyde concentration in females - baseline, supplemented and wash-out
FIGURE 7.17	Reduction of ubiquinone to ubiquinol via a free radical intermediate 191

List of Tables

TABLE 1.1	Comparison of classification schemes	.17
TABLE 1.2	Classification of Fungi	.24
TABLE 1.3	Conditions that induce heat shock proteins	48
TABLE 2.1	Bio-Rad molecular weight protein standards	.58
TABLE 2.2	Biochemical tests used in yeast classification	62
TABLE 3.1	Basidiomycetous yeasts phylogenetically analysed	75
TABLE 3.2	UNE Basidiomyctous yeast isolates phylogenetically analysed	.76
TABLE 4.1	Ascomycetous yeasts phylogenetically analysed	.104
TABLE 5.1	Indigenous Antarctic yeast species	134
TABLE 5.2	Antarctic yeast species found in other locations	135
TABLE 6.1	Location and function of representative yeast hsps	142
TABLE 6.2	Ubiquinol/ubiquinone redox status in Antarctic yeast	156
TABLE 7.1	Fold increase of hsp70 Western blot following CoQ ₁₀ supplementation	185
TABLE 7.2	Oxidative stress parameters following CoQ ₁₀ supplementation	.185