EVALUATION OF BRAHMANS AND TROPICALLY ADAPTED CROSSBREDS AND COMPOSITES FOR ECONOMICALLY IMPORTANT BEEF CATTLE TRAITS

Karen Maree Schutt BAppSc RurTech (Hons) (UQG) GradCert RurSc (UNE)

A thesis submitted for the degree of Doctor of Philosophy of the University of New England.

April 2007

Acknowledgements

I wish to acknowledge my supervisors Heather Burrow, John Henshall, Julius van der Werf and Brian Kinghorn for their guidance and support. In particular, Heather, who appreciated my rural background and desire to do a PhD on highly relevant issues faced by the northern Australian beef industry. Also, thank you all for your patience. My change from full time candidature in the lab to part time at home in isolation on the family cattle station raised far more challenges that I'd ever envisioned.

I thank all those scientists and technicians who gave their time to guide me through making sense of the datasets and providing feedback on the data analysis models and output, particularly my supervisors and John Thompson, Diana Perry, David Johnston and Paul Arthur.

I wish to acknowledge CSIRO who provided me with my PhD stipend, and the Beef CRC who provided me with access to two of the best datasets in the world on tropically adapted beef cattle research, being the Northern Crossbreeding Program and Project 2.3.

I wish to acknowledge the University of New England and Meat and Livestock Australia who gave me the opportunity to study reproductive physiology at Ohio State University in 2003 through a Dame Bridget Ogilvie Research and Travelling Scholarship and an MLA Postgraduate Study Award. I wish to thank staff and students in the OSU Animal Science department, particularly Jim Kinder, Mike Day and Mike Davis who allowed me to work on ongoing research projects. I also wish to personally thank Jim and Denva Kinder and family who took me under their wing and made my stay in Columbus so much more than a study trip.

Finally, I wish to thank my family for their support and encouragement. Without them I would have quit long ago. Thanks to Grandma and Mum for countless hours of babysitting and domestic help. Thanks to Dad for putting up with me diverting Scott away from property work to do 'daddy day care' many times over the past few years. Most importantly, I wish to thank my husband Scott for his enduring patience and support. He saw me at my best and worst during this ordeal! Also, I owe a world of thanks to my three little girls, Emma, Olivia and Isabelle. Hopefully they won't have to endure a pre-occupied and frustrated 'grumpy mummy' any more.

Abstract

This thesis compared straightbred Brahmans to tropically adapted composites for carcass quality, objective and sensory meat quality, feed efficiency, feeding behaviour and reproductive performance under tropical and subtropical conditions in northern Australian using typical commercial beef production practices. Straightbred Brahmans had carcasses up to 16% lighter than Continental (Charolais, Limousin) and British (Angus, Hereford, Shorthorn) sired crosses by Brahman dams (P<0.001), intermediate subcutaneous fat cover, retail beef yields and kilograms of retail primals, and low marbling. British and Belmont Red sired crossbreds had the highest marbling, while British and Santa Gertrudis sired crossbreds had the fattest carcasses. Continental crossbreds had the leanest, highest yielding carcasses with intermediate marbling. There was little difference between sire breeds for most objective and sensory meat quality traits. The exception was straightbred Brahmans with the highest LT shear force (5.39±0.07; P<0.001), LT instron compression (1.89±0.02; P<0.05) and LT and ST cooking loss (P<0.05). Straightbred Brahmans were the only breed that failed to meet minimum MSA (sensory) grading (CMQ4 = 38.3; P<0.001). Crossbreds with up to 75% Brahman content had acceptably tender beef (shear force < 5.0 kg, instron compression < 2.2 kg, CMQ4 score > 46.5). All measures of instron compression were below 2.2 kg indicating connective tissue toughness was not important in these animals slaughtered by an average of 24 months of age. There was little evidence of breed \times finish and breed \times market interactions. Straightbred Brahmans did not differ from Brahman crossbreds for residual feed intake (RFI). However, straightbred Brahmans had the lowest feed intake (P<0.001) and lowest average daily gain (P<0.001) overall. Angus × Brahman crosses were the least efficient feeders, consuming 35% and 13% (P<0.001) more feed than straightbred Brahmans and Charolais \times Brahman crosses respectively. Charolais, Hereford, Limousin and Santa Gertrudis sired crosses were the most feed efficient (low RFI). Brahman females had lower pregnancy rates than composites when mated by AI (83.4% versus 76.9%; P=0.05), but breeds did not differ when joined by natural mating. Into mating weight, scanned subcutaneous rib fat depth and P8 fat depth significantly affected pregnancy rates and days to calving. Use of Brahmans crossbreds and tropically adapted composites would allow retention of adaptation and survival traits synonymous with the Brahman breed, coupled with improved carcass and meat quality, feed efficiency, and to some extent reproductive success, to ensure economic efficiency and profitability of beef production in northern Australia.

Certification

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Karen Sch Signature [.....

Table of Contents

CHAPTER 1 General Introduction	1
CHAPTER ? Literature Review	5
CHAPTER 2 Literature Review	

2.1	INTRODUCTION	5
2.2	BEEF QUALITY	5
2.3	FEED EFFICIENCY	16
2.4	Female fertility	24
2.5	SUMMARY	40

<u>CHAPTER 3</u>	<u>Carcass quality</u>	of Brahman and first-cross	<u>s cattle grown on</u>
pasture and g	rain in subtropic	al and temperate Australia	41

3.1	INTRODUCTION	42
3.2	MATERIALS AND METHODS	45
3.2.1	Experimental design and animals	45
3.2.2	Treatments	49
3.2.3	Slaughter protocols and carcass measurements	51
3.2.4	Statistical analyses	52
3.3	RESULTS	58
3.3.1	Sire breed effects	58
3.3.2	Pasture versus feedlot finishing	62
3.3.3	Subtropical versus temperate finishing environments	62
3.3.4	Market endpoint effects	65
3.3.5	Sex effects	66
3.3.6	Herd of origin effects	66
3.3.7	Year effects	67
3.3.8	Interactions	67
3.4	DISCUSSION	71
3.4.1	Sire breed effects	71
3.4.2	Pasture versus feedlot finishing	73
3.4.3	Subtropical versus temperate finishing environments	74
3.4.4	Market endpoint effects	76
3.5	IMPLICATIONS FOR INDUSTRY BREEDING PROGRAMS	77

<u>CHAPTER 4</u> Meat quality and palatability of Brahman and first-cross cattle grown on pasture and grain in subtropical and temperate Australia 80

4.1	INTRODUCTION	81
4.2	MATERIALS AND METHODS	84
4.2.1	Experimental design and animals	84
4.2.2	Treatments	85
4.2.3	Slaughter protocols and meat quality measurements	86
4.2.4	Statistical analyses	88
4.3	RESULTS	92
4.3.1	Sire breed effects	92
4.3.2	Pasture versus feedlot finishing	96
4.3.3	Subtropical versus temperate finishing environments	97
4.3.4	Market endpoint effects	101
4.3.5	Sex effects	102
4.3.6	Herd of origin effects	102
4.3.7	Year effects	102
4.3.8	HGP effects	103
4.3.9	Interactions	103
4.4	DISCUSSION	106
4.4.1	Sire breed effects	106
4.4.2	Pasture versus feedlot finishing	109
4.4.3	Subtropical versus temperate finishing environments	111
4.4.4	Market effects	112
4.4.5	Sex effects	113
4.5	IMPLICATIONS FOR INDUSTRY BREEDING PROGRAMS	113

CHAPTER 5Sire breed differences for feed efficiency and feeding behaviour offeedlot finished Brahman crossbreds116

INTRODUCTION	117
MATERIALS AND METHODS	120
Experimental design and animals	120
Data edits	121
Statistical analyses	124
RESULTS	129
DISCUSSION	133
Sire breed differences for feed efficiency	133
Sire breed differences for feeding behaviour	136
Mechanisms affecting variation in feed efficiency	136
Limitations of study	138
IMPLICATIONS TO BREED SELECTION FOR FEED EFFICIENCY	138
	MATERIALS AND METHODSExperimental design and animalsData editsStatistical analysesRESULTSDISCUSSIONSire breed differences for feed efficiencySire breed differences for feeding behaviourMechanisms affecting variation in feed efficiencyLimitations of study

<u>CHAPTER 6</u> Subcutaneous fat depth and liveweight can be used to predict female reproductive performance in tropically adapted beef breeds 140

6.1	INTRODUCTION	141
6.2	MATERIALS AND METHODS	144
6.2.1	Experimental design and animals	144
6.2.2	Data edits	146
6.2.3	Statistical analyses	147
6.3	RESULTS	149
6.3.1	Pregnancy rate: main effects and interactions	149
6.3.2	Predicting the probability of pregnancy success	152
6.3.3	Days to calving: main effects and interactions	157
6.3.4	Predicting days to calving	162
6.4	DISCUSSION	170
6.4.1	Breed differences for fertility	170
6.4.2	Previous lactation status effects on fertility	171
6.4.3	Mating method effects on fertility	172
6.4.4	Liveweight effects on fertility	173
6.4.5	Fatness effects on fertility	174
6.4.6	Year and nutritional effects on fertility	175
6.5	IMPLICATIONS FOR THE BEEF INDUSTRY	176

CHAPTER 7 General Discussion

178

7.1	BREED SELECTION FOR CARCASS AND MEAT QUALITY	178
7.2	ENVIRONMENTAL FACTORS AFFECTING CARCASS AND MEAT QUALITY	183
7.3	BREED SELECTION FOR FEED EFFICIENCY	185
7.4	BREED SELECTION FOR REPRODUCTIVE SUCCESS	187
7.5	FATNESS AND WEIGHT EFFECTS ON REPRODUCTIVE SUCCESS	188
7.6	IMPLICATIONS FOR BREED SELECTION IN NORTHERN AUSTRALIA	191

References	193

Appendices

List of Abbreviations and Acronyms

ABS	Australian Bureau of Statistics
ADG	Average daily gain by regression
AGE	Age at slaughter
AI	Artificial insemination
BCS	Body condition score
Beef CRC	Cooperative Research Centre for Beef Genetic Technologies
BREED	Breed
CLLT	Cooking loss percent of the LT muscle
CLST	Cooking loss percent of the ST muscle
CMQ4	MSA clipped meat quality score of 4 attributes
CWT	Hot standard carcass weight
DTC	Days to calving from first exposure to mating
EBV	Estimated breeding value
ENDWT	Liveweight at the end of the feed intake test period
expFI	Expected feed intake
FCR	Feed conversion ratio
FI	Daily feed intake adjusted to 12 MJ ME/kg DM
GLM	Generalised linear model
HGP	Hormonal growth promotant
HOTP8	Subcutaneous fat depth at the P8 rump site recorded on the hot carcass
HS	Hereford × Shorthorn

ICLT	Instron compression of the LT muscle
ICST	Instron compression of the ST muscle
IMF	Intramuscular chemical fat percentage of the LT muscle
IMWT	Into mating weight
KR	Kleiber ratio
LT	M. longissimus thoracis et lumborum muscle
MARC	Meat Animal Research Centre
ME	Metabolisable energy
MLA	Meat and Livestock Australia
MM	Mating method (AI, natural mating)
MMWT	Metabolic mid-weight
MP	Mating period
MSA	Meat Standards Australia
MWT	Average test period liveweight
NFI	Net feed intake
NIR	Near infrared spectrophotometry (used to measure IMF)
NM	Natural mating
ORIGIN	Property of origin
OSSIF	USDA ossification score
P8FAT	Scanned subcutaneous fat depth at the P8 rump site
pcRTPM	Retail primals as a percentage of hot standard carcass weight
PHLT	Ultimate pH of the LT muscle
PHST	Ultimate pH of the ST muscle

PLS	Previous lactation status
PR	Pregnancy rate
QTL	Quantitative trait loci
RBY	Adjusted retail beef yield percentage
RFI	Residual feed intake
RGR	Relative growth rate
RIBFAT	Scanned subcutaneous fat depth at the 12/13 th rib site
RTPM	Weight of 17 boneless retail primals
SESS	Number of feeding sessions per day
SFLT	Warner-Bratzler shear force of the LT muscle
SFST	Warner-Bratzler shear force of the ST muscle
SMART	Sensory Market Analysis and Research Technology
ST	M. semitendinosus muscle
STAGE	Age at start of the feed intake test period
STWT	Liveweight at the start of the feed intake test period
TIME	Time spent eating per day
TIMEkg	Time taken to eat 1 kg feed
USDA	United States Department of Agriculture
YEAR	Year of birth (carcass quality, meat quality, feed efficiency)
	or year of mating (fertility)