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Simple Summary: We used to think of brains as symmetrical, functioning in the same way on the
left and right sides, but we now know that this is not so. From the small brains of insects to variously
sized brains of vertebrates, including humans, the left and right sides process information differently
and control different patterns of behaviour. This is known as lateralization. Lateralized brains can
carry out different functions simultaneously on the left and right sides (e.g., monitoring for predators
while searching for food). Avoiding duplication in this way increases cognitive capacity. This paper
considers the cognitive advantages of two kinds of lateralization. The first, known as individual
lateralization, means that most individuals in a species are lateralized, roughly half in one direction
and the other half in the other direction. The second type of lateralization, known as directional
or population lateralization, means that most individuals have the same direction of lateralization.
Directional lateralization is important for social behaviour but, as this paper argues, it may not
increase cognitive capacity any more than does individual lateralization. Strength of lateralization is
discussed and so is the communication between the left and right sides of the brain.

Abstract: One way to increase cognitive capacity is to avoid duplication of functions on the left and
right sides of the brain. There is a convincing body of evidence showing that such asymmetry, or
lateralization, occurs in a wide range of both vertebrate and invertebrate species. Each hemisphere of
the brain can attend to different types of stimuli or to different aspects of the same stimulus and each
hemisphere analyses information using different neural processes. A brain can engage in more than
one task at the same time, as in monitoring for predators (right hemisphere) while searching for food
(left hemisphere). Increased cognitive capacity is achieved if individuals are lateralized in one direc-
tion or the other. The advantages and disadvantages of individual lateralization are discussed. This
paper argues that directional, or population-level, lateralization, which occurs when most individuals
in a species have the same direction of lateralization, provides no additional increase in cognitive
capacity compared to individual lateralization although directional lateralization is advantageous
in social interactions. Strength of lateralization is considered, including the disadvantage of being
very strongly lateralized. The role of brain commissures is also discussed with consideration of
cognitive capacity.

Keywords: individual lateralization; directional lateralization; cognitive capacity; parallel processing;
social behaviour; visual attention; vertebrates; invertebrates; commissures; strength of lateralization

1. Introduction

The left and right sides of the brain are specialised to attend to different informa-
tion, to process sensory inputs in different ways and to control different types of motor
behaviour. This is referred to as hemispheric specialization or simply as brain lateralization.
Such division of function between the hemispheres has long been known in humans and
considered to increase ‘neural space’ [1] or cognitive capacity [2]. Additionally, in humans,
there are clear structural differences between the hemispheres (summarised in [3]). Using
functional magnetic resonance imaging of human brains, Gotts et al. [2] provided evidence
that the left hemisphere has stronger interaction within itself (intrahemispheric), whereas
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processing by the right hemisphere involves greater involvement of both hemispheres
(interhemispheric) [2].

Lateralization has now been well-documented across species, ranging from the small
brains of insects [4] to early vertebrates, birds and mammals [5–7]. This ubiquity of brain
lateralization suggests that, regardless of the absolute size of the brain, its capacity and
efficiency may be increased by not duplicating all functions on the left and right sides. By
avoiding duplication of information processing on the left and right sides of the brain,
more “cognitive space” is available to carry out different types of processing. In other
words, lateralization of brain function should be able to increase cognitive capacity without
the more costly process of increasing brain size.

From studies on a variety of species and using a range of techniques, a general pat-
tern of lateralization has been constructed. As conceptualized by Andrew [8], the left
hemisphere controls sustained response to targets, whereas the right hemisphere is spe-
cialized for response to potent releasers of innate responses. The left hemisphere directs
attention to specific categories of stimuli, often learned categories, and controls feeding
responses [9–13]. The right hemisphere has broad attention to a wider variety of stimuli
and especially to novel stimuli [14] and to predators (shown in toads [15]; a lizard [16]; a
marsupial [17]; and in dogs [18,19]. The right hemisphere is also specialized for expressing
intense emotion [18,20,21], for handling geometric information [22] and for dealing with
social interactions [23–25]. In line with the latter, and as shown in chicks, attack and copu-
latory behaviour are functions of the right hemisphere and they can be elicited readily once
inhibition of the right hemisphere by the left hemisphere is suppressed or removed [9,26].
Similar right hemisphere activation of attack has been shown also in toads [27,28], frogs [12],
lizards [29], penguins [30,31], Australian magpies [32], horses [33] and gelada baboons [34].
It appears, therefore, that these lateralized expressions of behaviour are common to a wide
range of vertebrate species.

The first evidence of brain lateralization in non-human species was discovered in
avian species; by inhibiting protein synthesis in the left or right forebrain hemisphere of
chicks (Gallus gallus domesticus) at critical stages of development and then investigating
the longer-term effects on behaviour [35], summarised in [36], and by lesioning specific
regions of the left or right hemisphere of songbirds and assessing the effects on song
production [37]. Then, in rats, it was shown by assessing the effects on behaviour of
ablation of the left or right hemisphere [38].

Later, lateralization was revealed simply by testing animals monocularly [39] and this
has become a standard method to investigate lateralized behaviour. In species with eyes
positioned on the sides of their head, and thus with little overlap of the visual fields, visual
information goes mainly to the contralateral side of the brain (discussed further in Section
7). Hence, lateralized differences can be revealed by applying an eye-patch and comparing
the performance elicited when the left versus the right eye is seeing [39,40]. The eye-
system of the open (seeing) eye, comprising the visual inputs mainly to the contralateral
hemisphere, has predominant control of behaviour. Laterality revealed by monocular
testing is evident even in small sample sizes, indicating that it must have a significant role
in biologically relevant situations.

Within a species, the strength of lateralized responses can vary. Some individuals
exhibit strong laterality, while others have weaker laterality or no significant laterality.
However, weak or absent laterality expressed in motor behaviour (e.g., hand or limb
preference) may not mean that the brain is itself less lateralized for cognitive processing. It
is rather a matter of whether one hemisphere alone controls a particular behaviour, as is
the case in strong laterality, or that the other hemisphere is involved to some degree.

What does this mean in terms of cognitive capacity? Even when both hemispheres
participate in the control of behaviour and interhemispheric control occurs, cognitive
capacity is increased as long as each hemisphere performs different computations of avail-
able information. Provided each hemisphere is processing information differently and
leading to different outcomes, cognitive capacity is increased. By contrast, if both hemi-
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spheres are processing information in the same way, and hence duplication is occurring,
there is no enhancement of cognitive capacity. In short, more lateralization means greater
cognitive capacity.

2. Advantage of Having a Lateralized Brain

Since lateralization is widespread across animal species, it follows that there must be
situations in which having a lateralized brain confers an advantage and enhances survival.
Logically, this should apply to situations in which the animal has to use both hemispheres
in parallel to carry out different functions.

This was shown first in domestic chicks by presenting a silhouette of a predator
approaching the chick from its left or right side while the chick was pecking, with focused
attention, at a patch of grain and mealworms [41]. Two groups of chicks were tested
with both eyes seeing: one group with lateralized visual behaviour, ensured by exposing
the eggs to light before hatching [9,42], and the other group lacking visual lateralization,
achieved by incubating the eggs in the dark [43]. As discussed above, light-exposed chicks
are lateralized for use of the left hemisphere (right eye) in searching for food and for use
of the right hemisphere (left eye) to respond to predators. Latency to detect the predator
was scored as the time between presentation of the ‘predator’ and the time when the chick
stopped pecking, giving a startle call and, usually, twitching its head. In lateralized chicks,
the latency was shorter when the predator’s image approached on the chick’s left side than
when it did so on the right side. The latency of non-lateralized chicks was the same on both
sides and not different from the latency of the lateralized chicks on their poorer, right side.
The longer time taken by the non-lateralized chicks to detect the predator was not due to
reduced levels of fear. In fact, after catching sight of the predator, the non-lateralized chicks
were more disturbed by its presence than were the lateralized chicks, as shown by the fact
that they produced more distress calls, and continued to do so even after the predator was
no longer present [41].

To investigate this difference between lateralized and non-lateralized chicks further,
they were tested on a dual task requiring search for grains against a distracting background
of pebbles, and at the same time they were presented with a silhouette of a predator moving
overhead. Chicks with lateralization of visual function performed both aspects of this task
better than chicks lacking lateralization [44]. The lateralized chicks learnt to find grain
scattered amongst pebbles, whereas the non-lateralized ones were unable to do so, and
the lateralized chicks detected the predator sooner than the non-lateralized chicks. Once
they had detected the predator, the non-lateralized chicks were more disturbed by it, as
shown by distress calling and being less able to ignore it in order to continue pecking for
food [20,44]. Similar results were found also when the lateralized and non-lateralized chicks
were tested in groups [45]. Clearly, the lateralized chicks had the capacity to detect the
predator while feeding and then to monitor it as they continued to feed. They achieved this
increased cognitive capacity by using the different processing abilities of each hemisphere
simultaneously; the left hemisphere to discriminate grains from pebbles and the right
hemisphere to detect and respond to the predator.

Similar results have been found in both fish and a primate species tested on dual
tasks. Topminnow fish, Girardinus falcatus, had to feed on shrimps in the presence of
an on-looking predatory fish. Topminnow fish with stronger lateralization, assessed by
turning bias in a runway, were faster at catching the shrimps than were the fish with no
lateralization [46]. Similarly, lateralized female topminnows are able to find food efficiently
while avoiding a male attempting to mate with them, whereas non-lateralized females are
less able to do so [47].

In marmosets, Callithrix jacchus, strength of hand preference for simple reaching was
used as an indication of the degree of lateralized use of the hemispheres (i.e., not the
pattern of brain lateralization per se but its expression in motor behaviour). The marmosets
were tested on a dual task in which a model predator was introduced to the testing
room when the marmoset was performing a discrimination search-task for a favourite
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food, mealworms [48]. For two types of model predator, a stuffed bird moved overhead
or a snake-like model moved on the floor below the marmoset, there was a significant,
negative correlation between strength of hand preference and latency to detect the predator.
Marmosets with stronger hand preferences detected the presence of the model predator
sooner than did marmosets with weaker hand preferences [48]. No difference in latency to
detect the predator was found when the marmosets had to perform only one aspect of the
task: viz., detection of the predator when they were not feeding at the same time. Hence,
the relationship between strength of hand preference and latency to detect the predator
emerged only when increased cognitive capacity was needed in the dual task.

A cognitive advantage of being lateralized has even been shown in the invertebrate,
larval antlion, Myrmeleon bore [49]. Compared to antlions without side-biases, antlions
that have significant side-biases in the righting response have enhanced ability to learn to
associate a vibrational cue with disappearance of prey. Although motor laterality may not
be an accurate measure of brain lateralization, as I have discussed previously for vertebrate
species, it is also worth noting a study showing that desert locusts (Schistocerca gregaria)
with stronger lateralization of forelimb use to reach across a gap perform fewer errors of
reaching than do locusts with weaker lateralization [50].

These examples provide evidence that lateralization of the brain increases cognitive
capacity, in the sense that it increases the brain’s ability to handle more information at
any given time. Apparently, this works only for temporarily paired stimuli demanding
simultaneous use of the separate specialisations of the hemispheres. If both stimuli needed
to be processed within the same hemisphere, interference may occur and cognitive capacity
would be reduced. Indeed, when tested in the dual task of pecking at grain while a
predator was moved overhead (discussed previously), the behaviour of chicks without
visual lateralization indicated that they became increasingly confused, or disturbed, by the
dual task since their ability to find food grains scattered among the pebbles deteriorated
as the task continued [44]. It appears that the chicks’ ability to function well in the dual
task was compromised by an inability to separate the required functions into different
hemispheres, as Gotts et al. [2] found in a study of humans.

Since animals in the natural environment must be vigilant for predators at the same
time as they are feeding, these findings indicate enhanced survival of lateralized animals.
A study of larval coral reef fish, Acanthurus triostegus, supports this; when exposed to a
predatory fish, survival was highest in those larvae that used their left eye to monitor the
predator compared to larvae with no eye preference or right eye preference [51].

There is more evidence showing that lateralization influences performance in ways
that might be advantageous depending on the context. Cichlid fish, Geophagus brasiliensis,
for example, are said to be bolder if they are lateralized, as indicated by shorter latency
to emerge into an unfamiliar environment [52], and lateralized fish show shorter latency
to escape when stimulated by dropping a cylinder into their holding tank [53]. Hence,
lateralized fish are not only more exploratory than are non-lateralized fish but they are also
faster to respond to danger. Another study on a fish, the convict cichlid, Archocentrus nigro-
fasciatus, showed an association between aggression and strength of laterality: aggression
was higher in more strongly lateralized males but the reverse was so in females [54].

Other evidence shows the advantage of having a lateralized brain. Pigeons with
stronger laterality, measured as strength of eye preference, learn to find grains among
pebbles better than non-lateralized pigeons and there is a linear association between these
two factors [55]. Sailfish with stronger laterality for attacking prey are more successful
in prey capture [56]. Budgerigars with stronger side bias in preening display enhanced
discrimination performance [57]. The latter result has some similarity to that found in
cats: testing cats on novel tasks requiring them to open a lid and reach inside to obtain
a reward, Isparta et al. [58] found that those using a single preferred paw were better at
solving the problems.

Degree of laterality is also associated with behaviour in tasks other than those directly
testing cognitive ability. For example, in several tests, including tonic immobility and time
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to emerge from a box, lateralized chicks are found to be less fearful than non-lateralized
chicks [59] and dogs exposed to the sounds of a thunderstorm are less reactive if they have
a stronger paw-preference [60]. Across species of parrots, those species with stronger foot
preferences for holding food are better able to discriminate seed from pebbles and they
also perform better in a string-pulling task [61]. Note that this measure of performance,
as a score comparing species, differs from the other studies discussed so far, which have
compared variation in laterality within a species. Furthermore, parrot species with stronger
foot preferences have larger brains [62], which may be the reason for their better cognitive
performance rather than having a lateralized brain per se, although both factors could
contribute to better cognitive ability.

Strength of lateralization also affects other cognitive abilities. Lateralized fish, for
example, have better numerical abilities than non-lateralized fish [63,64]. As another
example, lateralized chicks tested on the dual task mentioned above retained a memory
of discrimination between pebbles and grain on the next day, whereas the non-lateralized
chicks retained no memory of the task [44]. However, the inability of non-lateralized
chicks to remember may have resulted from inability to attend to the pebble-grain task
in the presence of the predator (on the previous day of testing) rather than being a direct
association between lateralization and memory formation.

In summary, all of these studies show the advantage of being lateralized in such a
way that one hemisphere can take charge of performing a particular task while, at the same
time, the other hemisphere takes charge of performing another task. This is evidence that
lateralization increases cognitive capacity.

3. Tasks Performed Better When Lateralization Is Weak or Absent

Since not all individuals within a species have the same strength of brain lateralization,
there may be some contexts in which being less lateralized is an advantage. In contrast to
the study on cichlid fish, which reported greater boldness in lateralized fish (see above),
Brown and Bilbost [65] found, in rainbow fish, Melanotaenia nigrans, that non-lateralized
fish are bolder than lateralized fish. As the researchers suggest, boldness is influenced
by past experience with predators and may be modulated by fear. Consistent with this,
reactivity to stress co-varies with laterality. For example, lateralized sharks react more
strongly to stress than do non-lateralized sharks [66] and the same applies to the reac-
tion of lambs to stress [67]. In fact, from research on humans, it seems likely that stress
alters interhemispheric integration [68], thereby altering strength of lateralization and
cognitive capacity.

These findings indicate that the increased cognitive capacity gained by having a
lateralized brain may be associated with heightened stress responses, depending on context.
In fact, in the dual task on which lateralized chicks performed better than non-lateralized
chicks, it was the non-lateralized ones that were more distressed. Whether this distress
translates to higher levels of physiological stress has yet to be determined.

As already mentioned, attack behaviour is a function of the right hemisphere [9]. Nev-
ertheless, as shown in deer, non-lateralized individuals are more likely to engage in success-
ful fights with conspecifics [69]. Additionally, testing damselfish, Pomacentrus amboinesis,
Chivers et al. [70] found that lateralized individuals were less likely than non-lateralized
ones to attack conspecifics when competing for shelter, even though they showed stronger
responses to a predator. This result led the researchers to consider that there are costs
and benefits of being lateralized. When an animal must attend equally to both sides, they
suggest, it would be a disadvantage to be lateralized. In fact, as Dadda et al. [71] showed,
in topminnow fish, non-lateralized individuals have an advantage over lateralized individ-
uals in tasks requiring attention to both sides of their body, and hence, requiring the same
use of both hemispheres.
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4. Balance between Being Lateralized or Not Lateralized

Depending on the type of task and its cognitive demands, performance may be better
in individuals with no lateralization or, conversely, better in individuals with lateralization.
Overall, however, across and within species, lateralization is more common than non-
lateralization. Nevertheless, very strongly lateralized individuals may be at a disadvantage.
As an example, pheasants with strong foot-preference have a lower rate of survival than
pheasants with a weaker strength of foot-preference [72]. In humans, stronger lateralization
provides advantages in some but not all tasks [73]. This illustrates the important point that
lateralization is largely specific for each different function. While it may be advantageous
for some functions, it may confer no advantage or even a disadvantage for other functions.

As Corballis [74] suggests, there may be a trade-off between symmetry and asymmetry
of function, but where the balance point lies depends on the behaviour considered (for
research on this issue in humans see [75]), the species, sex, stress levels and possibly other
factors, as well as genetic. Within a population the strength of bias is maintained as an
evolutionary stable strategy [6,21].

This raises a different question: where does the balance between lateralization and
non-lateralization lie within any group of animals? Using game theory analysis of a
predator–prey model, Ghirlanda and Vallortigara [76] arrived at the conclusion that most
but not all individuals in a group or population are lateralized (see also [77] for a similar
result using the analysis of a competition-coordination model). As predicted by game
theory, and found in studies of animal populations, the proportion of lateralized individuals
in a species ranges from 65 to 90% and such biases in populations are stable, meaning the
natural selection restores the proportion of left versus right biased individuals whenever
there are slight deviations from the species-typical equilibrium point [78]. Although there
are examples of published data in which the group bias is greater than 90% (e.g., footedness
in some species of cockatoo [61,62]), the sample size tested needs to be considered.

5. Population Versus Individual Lateralization

The increased cognitive capacity of brains that carry out different computational or
neural processes on each side could be achieved regardless of the direction of the laterality.
Despite this, most examples of lateralization discussed so far in this paper are directional,
meaning that the direction of the laterality is the same in the majority of individuals in the
group or species. In other words, lateralization is not only present at the individual level
but also at the level of the population.

There may be ontogenetic reasons for this situation. For example, in the final stages of
incubation before hatching, the chick embryo is oriented within the egg so that its right eye
is next to the shell and the left eye is occluded by the chick’s body. This posture determines
the direction of structural differences in developing visual pathways as a consequence of
light stimulation of the right eye only [79]. Hence, light exposure at this critical stage of
development leads to a population bias for asymmetry of visual behaviour [9,42].

Whatever the reason for individuals having the same direction of asymmetry, because
it is widespread across species, the advantage that it confers must over-ride any potential
disadvantages. Population lateralization to detect and respond more readily to predators
on the left seems to be disadvantageous since predators are just as likely to approach on
the right or the left, unless the predators themselves have population-level lateralization
that predisposes them to approach prey from behind and capture them on the predator’s
right side. There are examples of such right-side bias in predatory response: the cane
toad, for example, strikes at prey once the prey has moved into the toad’s right visual
field, whereas prey items are ignored when they are in the toad’s left visual field [11]. A
similar result has been found in the music frog [80]. Such preferential use of the right eye
in feeding, or predation, originally shown in chicks [35], has also been reported to occur in
humpback whales [81] and blue whales [82]. A right-side preference for prey capture by
wild stilts has also been reported [83]. Other predators, however, may attack prey to their
left or right (individual bias but no population bias), as found to be the case in sailfish [56].
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Interestingly, although individual sailfish showed more success in prey capture on their
preferred side and those with stronger laterality were more successful, the population
showed no side-difference in success of capturing prey, which also implies that the prey
were not better at escaping when attacked from their left side, although this has been found
in some tests of amphibians [15], a species of marsupial [17] and another species of fish [84].

If population-level lateralization, also called directional lateralization, does have cer-
tain disadvantages, these must be less important than the advantages which it bestows.
From the evidence discussed so far, it seems that the advantage of population-level lateral-
ization must have something to do with social behaviour because it is in social interactions
that it is manifested, as discussed next.

6. Social Cognition

The first evidence that directional lateralization is associated with social behaviour
came from the study of social hierarchies in groups of chicks with lateralized brains for
visual function compared to groups of chicks without this lateralization [85]. Quite rapidly,
groups of chicks with population-level lateralization established stable social hierarchies,
measured by scoring access to a limited food source, whereas those without laterality failed
to form stable hierarchies. In fish also, being lateralized at the population level is associated
with social group formation and maintenance. Bisazza et al. [86] tested 16 species of fish,
some known to form shoals and others not so. They measured turning behaviour of
each fish individually and determined whether each species had individual lateralization
or directional lateralization. All of the species that displayed shoaling behaviour were
lateralized at the population level, whereas this occurred in less than half of the species
that did not shoal [86]. Clearly, a shoal is maintained if individual fish turn together in
the same direction. The directional lateralization is essential for this particular aspect of
social behaviour.

With particular relevance to lateralized chicks forming stable social hierarchies, young
chicks have a quality called transitive inference, a cognitive ability that permits a chick
to infer the social rank of another chick by observing it rather than interacting directly
with it [87]. Using transitive inference, the animal is able to predict its position in the
social group and thereby avoid fights and, as found by Daisley et al. [88], they can make
such inferences when they use their left eye but not when they use their right eye. These
examples demonstrate that the right hemisphere is specialised for functions essential to
social behaviour.

The ability recognise familiar from unfamiliar conspecifics is a function of the left eye
and right hemisphere, as shown in chicks [23,89] and fish [90]. Chicks have been shown to
respond consistently to social signals when using their left eye [87,88] and, provided they
are using their left eye, they can learn to avoid pecking a distasteful bead by observation of
the behaviour of a conspecific [91]. These are aspects of social cognition and they involve
specialisations of the right hemisphere.

Specialisation of the right hemisphere to assess and respond in social situations is seen
also in mammals. Sheep can recognise faces of other sheep using the right but not the left
hemisphere [92] and they also respond to the emotional expression of those faces using the
right hemisphere [93]. Considered from the other perspective, the right hemisphere has
a dominant role in producing expressions of fear, as shown in rhesus monkeys [94] and
marmosets [95]. Moreover, in a wide range of mammalian species, including bats, walruses,
whales, dolphins, horses, kangaroos, sheep, deer and bison, maternal animals position
their offspring on their left side [96–98], meaning that the maternal animal uses her right
hemisphere to monitor the offspring. A similar left-side/right-hemisphere preference has
been shown in gorillas and chimpanzees for monitoring conspecifics [99]. These examples
show that directional bias is a widespread characteristic of social behaviour.

One way to investigate the association between directional lateralization and social
behaviour is to compare laterality in social and non-social species. Comparison of different
lateralities in several species of bee has provided some information on this topic. The
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hypothesis tested was that social species should show directional laterality, whereas asocial
species should not, although they may show individual laterality. This line of research
began with the discovery of directional lateralization in the honeybee, Apis mellifera, a
highly social species [100]. It has long been known that honeybees can be conditioned
to associate a specific odour (e.g., lemon or vanilla) with a food reward (sugar solution).
They detect the odour with receptors on their antennae and respond by extending the
proboscis. Letzkus et al. [100] discovered that honeybees can learn this task when they use
their right antenna but not when they are forced to use their left antenna. Not surprisingly,
they can recall memory of the task when the odour is presented to the right, but not the
left, antenna, at least, in the short-term, up to an hour after learning [101]. When tested for
recall of the memory 6 h or more after learning, they can do so using their left but not their
right antenna [101]. Hence, short-term and long-term memory is laid down in different
sites, and likely on different sides, of the brain and accessed by the right or left antenna,
respectively. These are directional lateralities of olfactory learning and memory recall.

The population bias for olfactory learning is also present in three species of Australian
stingless bees [102], all of which are social species, but not in the largely asocial mason
bee, Osmia sp. [103]. However, what about asymmetry in mason bees when they do
happen to interact socially? Discovery of directional lateralization of agonistic responses in
honeybees [104] suggested a way to test this since mason bees do interact with each other
when they fight. In aggressive encounters, which are particularly intense between females,
mason bees do show directional lateralization: both males and females interact more
aggressively when they use the left antenna but not when they use the right antenna [105].
Hence, aggressive interaction, which is an aspect of social behaviour, is directionally
lateralized. This does not imply anything about a role of lateralization in an individual’s
likelihood of success in aggressive interactions, examples of which are discussed below.

This finding supports the hypothesis that population or directional lateralization
evolves, or develops, in social interactions and it is, of course, evident in a wider range
of behaviour in social species than it is in species that are largely solitary. Even social
species may show individual but not population lateralization in behaviour that does not
involve social interaction. As an example, Ong et al. [106] found that this is so for direction
choice when honeybees are flying through holes in a barrier and, since the bees were tested
without other bees being nearby, they were not interacting socially while they made a
choice. Individual bees were found to have lateral preferences but about half preferred the
right side and the other half preferred the left side. Overall, therefore, population-level
asymmetry is present only in social behaviour.

During evolution, social interaction could have selected for alignment of laterality in
most individuals. Could this lead to any increase in cognitive capacity? It has long been
hypothesised that social interaction contributes to the evolution of increased brain size
and cognitive capacity in primates [107] and this hypothesis is supported by evidence that
neocortical size correlates with social group size in primates [108] and also in insectivores
and carnivores [109]. It is not obvious, however, that aligning the direction of laterality
(i.e., directional lateralization) in social animals provides any further increase in cognitive
capacity than already gained by having individual lateralization.

In fact, it seems that individual-level lateralization almost certainly evolved first and
there was selection for it because it enhanced cognitive ability. Then, as sociality evolved,
directional lateralization did so along with it, not because it further enhanced cognitive
ability but because it conferred an advantage in social interactions.

Returning to the original research addressing this question, we can see one reason for
aligning laterality within a population: in groups of chicks, it pays to be lateralized at the
population level because it stabilises the social hierarchy, as discussed above [85]. It also
maintains the coherency of a shoal of fish, as also mentioned above [86], and as reported
recently, more strongly lateralized fish (measured as eye preference) are more likely to
be in the safest, less exposed position in the shoal [110]. In many mammalian species
left-side preference for positioning of the young next to the mother, presumably, ensures
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optimum interaction between mother and young [96,97]. These are social advantages but
not necessarily cognitive advantages. In other words, there can be social advantages for
aligning direction of laterality [78], without evidence of any cognitive advantage.

In some species directional laterality increases success in aggressive interactions (e.g.,
in flies [111]) and in other species it decreases the likelihood of success (in deer [69]). As
another example of the latter, Schnell et al. [112] found that the majority of giant Australian
cuttlefish have a preference to use their left eye during escalated fighting but the minority
with a right-eye preference have more success in the outcomes of these fights. However,
in mating, most male cuttlefish use their left eye as they approach the female on her right
side and it is these males that achieve higher mating success [112], which illustrates that
there must be a selective balance between advantage in one behaviour and disadvantage
in another. In sage-grouse also, males lateralized with a left-eye preference in aggressive
encounters are more successful in mating [113].

Again, these are examples of social advantage of population lateralization but not
of superior cognitive capacity. Nevertheless, success in aggressive interactions depends
on tactical decisions, and the same may apply to success in mating, and this could reflect
higher cognitive capacity. Whether or not this is so must depend on the degree of sensory
processing needed to make these decisions and we do not yet know this.

7. Interaction between the Hemispheres

So far, I have discussed lateralization revealed by testing animals monocularly and
followed the general interpretation, common to most papers in this area of research,
that behaviour performed when using the right eye reflects specialisations of the left
hemisphere and vice versa. Although this is largely correct, the situation is a little more
complex than that.

In species with small binocular fields, visual inputs from one eye are, indeed, pro-
cessed primarily in the contralateral hemisphere. However, this is does not mean the
contralateral hemisphere is used exclusively, although that is often assumed to be the
case because it is the parsimonious way to interpret results from monocular tests. This
interpretation ignores the fact that some visual inputs go to the ipsilateral hemisphere
too, even though these inputs are much less than the visual inputs to the contralateral
hemisphere. Additionally, brains have interhemispheric commissures and this is the case
in almost all vertebrate species, even though these commissures are considerably smaller
than the major interhemispheric commissure, the corpus callosum, in humans [114,115].

The avian brain, for example, has an interhemispheric commissure, the anterior
commissure, and two commissures in the thalamus, the tectal and posterior commissures.
In addition, each eye sends at least some inputs that recross the midline (decussate) to
the ipsilateral hemisphere. Although we tend to interpret the behavioural differences
expressed when the left eye or the right eye is used as reflecting the specialisation of the
right or left hemisphere, respectively, in each case the other hemisphere is not without some
input and, potentially, has some role in processing sensory information, albeit less than the
hemisphere contralateral to the seeing eye. It follows, therefore, that lateralization not only
enhances the brain’s cognitive capacity by allocating different processing of information to
each hemisphere but also by utilising at the same time, and to some degree, the differing
cognitive abilities of each hemisphere. This means that, even though one hemisphere may
take a dominant role in processing and controlling response, the other hemisphere is not
“silent” and may provide some important contrasting analysis of inputs.

Recent research in Xiao and Güntürkün [116] has studied the role of the anterior
commissure in the pigeon tested on a colour-discrimination task. This commissure connects
the arcopallial regions of the left and right hemispheres. The researchers blocked the activity
of the arcopallium of one hemisphere temporarily and recorded the activity patterns of the
neurons in the acrcopallium of the other hemisphere while the bird performed the colour
discrimination task. A clear asymmetric effect was found: blocking the activity of the left
arcopallium had a greater effect on recordings obtained from the right acropallial neurones



Animals 2021, 11, 1996 10 of 15

than vice versa. Hence, interhemispheric transfer via the anterior commissure is greater
from the left to the right than from the right to the left. As Xiao and Güntürkün [116] argue,
the neurones in this commissure are largely excitatory and, hence, the left side should step
up activity of the right side, thereby acting as a balance against the dominant role of the left
hemisphere in colour discrimination. To understand this more completely, it is necessary
to know that, in pigeons, the left hemisphere receives visual inputs from both eyes (the
tectofugal visual system), whereas the right hemisphere receives inputs mostly from the
left eye [117,118]. In domestic chicks, it is the other visual system (the thalamofugal system)
that is lateralized: in this visual system, the Wulst region of the right hemisphere receives
strong inputs from both eyes, whereas the left Wulst receives input mainly from the right
eye [79]. A recent study [119] has shown lateralized integration of visual information in
the Wulst regions of the chick brain.

Returning to the study on pigeons [116], although the left hemisphere of the pigeon
has a dominant role in colour discrimination, the anterior commissure may provide some
tempering of this asymmetry before the animal makes a response. Further research is
needed to confirm this interpretation.

The tectal commissure, connecting the optic tectum on one side to its counterpart on
the other side, and the posterior commissure may have similar tempering roles on the input
of visual information, at least in the chick. When the tectal and posterior commissures of
the chick are sectioned, asymmetry of behaviour emerges [120]. Presented with a small red
bead, chicks with the commissures sectioned pecked much more when they were using
their right eye than when they were using their left eye. In fact, when using their right eye,
the chicks pecked more and more each time the red bead was presented to them. No such
asymmetry was seen in sham operated chicks or unoperated controls. Hence, without the
commissures the brain functions asymmetrically and with the commissures this asymmetry
is not seen, presumably because the left hemisphere suppresses the right via the tectal or
posterior commissure. That release from control and expression of asymmetry occurs also
for attack and copulation behaviour in chicks. Both attack and copulation responses are
controlled by the right hemisphere and released from inhibition by the left hemisphere
following treatment of the left hemisphere with cycloheximide [9] or when the right, but
not the left, eye is occluded [121].

These studies suggest that, although the hemispheres have different ways of process-
ing information and, indeed, each handles a different package of information, the brain can
make some adjustments for these differences via the commissures. These adjustments may
go some of the way in explaining why individuals vary in the strength of lateralization. It
could be these commissures which set the balance discussed above in Section 4.

We know that this balance changes during early development [122] and it is altered
by stress [66–68,123,124]. More research will, hopefully, elucidate the mechanism(s) by
which one hemisphere can assume dominant control of a particular behaviour (strong
lateralization) or, as Reddon and Hurd [125] explain it, there is a “consensus of action of
the two hemispheres” (weak lateralization). Reddon and Hurd [125] suggest an alternative
route by which one hemisphere may override the other and so assume dominance, or fail to
do so, as the case may be, and that route involves the habenula nuclei of the epithalamus.

The point relevant to discussion of cognitive capacity is that different sensory inputs
to each side of the brain, followed by different types of neural processing are mechanisms
of achieving increased cognitive capacity, and interhemispheric and other commissures
play a role in balancing or coordinating these left-right differences.

8. Conclusions

Cognitive capacity is increased when each hemisphere can be used independently, at
the same time. Examples of this ability in different species have been discussed. Other
research on rhesus macaques has led to the conclusion that the two hemispheres have
independent capacities, which are limited by competition for sensory encoding rather than
by a failure of memory formation or recall [126].
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Strength of lateralization varies between individuals, as does cognitive capacity. This
variation must depend on the task considered and a range of factors play a role, in-
cluding developmental processes and the selective advantage/disadvantage of having a
lateralized brain.

There is a need to investigate a broad range of lateralities within individuals to see
what functions are associated in terms of lateralization and what functions are lateralized
independently. I realise that this is being studied in humans [127–129] and there are some
studies of it in non-human species, discussed in this paper, but more examples are needed.
Furthermore, cognitive capacity related to laterality in sensory modalities other than vision
needs to be investigated, as well as potential interaction between laterality in the different
sensory modalities.

Whereas being lateralized confers cognitive advantage to individuals, aligning the
direction of lateralization in the majority of individuals of a population, or species, seems
unlikely to enhance cognitive capacity to any greater degree than does individual lat-
eralization. Hence, selection for directional (population) lateralization is dependent on
social interactions, and not enhancement of cognitive processing. While social behaviour
might increase cognitive capacity of species via evolution of increased brain size, occur-
ring with larger group size, as hypothesised by Dunbar [107–109], or by the possibility of
group-consensus decisions [130], it does not do so by brain lateralization per se.
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