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Understanding the genetic structure of adaptation and productivity in challenging

environments is necessary for designing breeding programs that suit such conditions.

Crossbred dairy cattle in East Africa resulting from over 60 years of crossing exotic

dairy breeds with indigenous cattle plus inter se matings form a highly variable admixed

population. This population has been subject to natural selection in response to

environmental stresses, such as harsh climate, low-quality feeds, poor management,

and strong disease challenge. Here, we combine two complementary sets of analyses,

genome-wide association (GWA) and signatures of selection (SoS), to identify genomic

regions that contribute to variation in milk yield and/or contribute to adaptation in

admixed dairy cattle of Kenya. Our GWA separates SNP effects due to ancestral

origin of alleles from effects due to within-population linkage disequilibrium. The results

indicate that many genomic regions contributed to the high milk production potential

of modern dairy breeds with no region having an exceptional effect. For SoS, we used

two haplotype-based tests to compare haplotype length variation within admixed and

between admixed and East African Shorthorn Zebu cattle populations. The integrated

haplotype score (iHS) analysis identified 16 candidate regions for positive selection in the

admixed cattle while the between population Rsb test detected 24 divergently selected

regions in the admixed cattle compared to East African Shorthorn Zebu. We compare

the results from GWA and SoS in an attempt to validate the most significant SoS results.

Only four candidate regions for SoS intersect with GWA regions using a low stringency

test. The identified SoS candidate regions harbored genes in several enriched annotation

clusters and overlapped with previously found QTLs and associations for different traits

in cattle. If validated, the GWA and SoS results indicate potential for SNP-based genomic

selection for genetic improvement of smallholder crossbred cattle.
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INTRODUCTION

Exotic dairy breeds have been extensively imported to Kenya
since the 1950s for use in crossbreeding aimed to improve
the productivity of indigenous cattle by combining the
environmental adaptation features of the latter with the high
milk yield potential of the former. This has resulted in a
large population of admixed cattle that, for several decades,
have been subject to natural selection in response to different
environmental stresses, such as harsh climate, low-quality feeds,
poor management, and strong disease challenge. Smallholder
farmers retain the admixed cattle typically in herds of size
one to five cows and breed them mainly through natural
mating to local bulls. A small proportion of matings (∼10%)
are made by AI to imported and locally produced purebred
dairy bulls. There is no record of pedigree or performance of
smallholder cattle and no current genetic improvement program
for crossbred cattle. Genomic technologies can aid smallholder
dairy farmers to develop genetically improved animals when
the genetic improvement by traditional breeding schemes is
impossible (Mrode et al., 2018; Marshall et al., 2019; Ojango et al.,
2019).

With high-density SNP markers, it is possible to identify
genomic regions that may be useful in future selection. This
can be done through genome-wide association (GWA) analysis,
which relies on linkage disequilibrium (LD) between SNPs and
causal variants and requires phenotype plus genotype data, and
by detection of signatures of selection, which only requires
genotypic information. In admixed populations, the LD between
SNP markers and causal variants can arise from the LD that
existed in the parental populations that contributed to the
admixed population and from de novo LD that was created
when crossing populations (Cole and Silva, 2016). Performing
a standard GWA in an admixed population doesn’t have the
same power as that in a purebred population. This is because
the within-population LD is not expected to be the same in all
the ancestral populations, and the ancestral within-population
LD differs from the de novo LD that is created by the crossing
process. However, it is possible to separately map the within-
breed LD with causal variants from the between-breed LD with
causal variants that are fixed or are at very high frequencies for
different alleles in different ancestral populations (the variants
that contribute to the phenotype differences between ancestral
breeds) if alleles in the admixed population can be correctly
assigned to their ancestral origin. The latter can be done through
methods that infer the ancestry of haplotypes, such as LAMP-
LD (Baran et al., 2012). Detecting the presence of causative loci
that differentiate ancestral populations is of particular interest in
crosses between Bos taurus dairy breeds and African indigenous
breeds given their huge (up to 10-fold) difference in milk
production potential.

When a beneficial allele increases in frequency by natural or

artificial selection, the allele frequencies of neighboring loci in LD

are also altered, and this creates extended blocks of haplotypes

with increased LD and reduced variation. The changes in allele
frequencies, LD, and genetic variation accumulate over time and
generate unique patterns at specific regions of genome, which

are referred to as signatures of selection (Walsh and Lynch,
2018). The identification of signatures of selection in modern
livestock populations can help to uncover genes and biological
mechanisms involved in the domestication process, breed
formation, and artificial selection for economically important
traits as well as local adaptation to new environments. Several
genome scans aimed to detect recent and past selection have
been implemented for purebred (e.g., Qanbari et al., 2014)
and composite (e.g., Goszczynski et al., 2018) breeds as well
as admixed livestock populations (Gautier and Naves, 2011;
Bahbahani et al., 2018; Cheruiyot et al., 2018).

In admixed populations generated by crossing genetically
differentiated ancestral breeds, the first generation of crosses
retains intact haplotypes from parental breeds. Recombination
in subsequent generations of within-population matings breaks
down the parental haplotypes and forms mosaicism that expands
as the admixed population ages. The fragmentation of ancestral
haplotypes across generations can be assessed through the
ancestrymapping of closely linkedmarkers to obtain information
about the history of the admixed population (Freeman et al.,
2006). Since a recent admixture can mimic the patterns of
variation left by selection around a selected site and introduce
noise in detection of selection signatures (Lohmueller et al.,
2010), it is necessary to take the admixture process into account
before searching for any post-admixture selection signal in
admixed populations.

Several statistical methods have been developed for detection
of genomic footprints of selection that essentially compare the
patterns of genetic variation within or between populations
and decide on whether one should accept or reject the null
hypothesis of “no selection” and interpret the test statistics as
evidence for selection or not (see review by Vitti et al., 2013).
Among the different approaches designed to identify positive
selection, the haplotype-based methods are more powerful
because they combine information from patterns of allele
frequencies and persistence of LD. The extended haplotype
homozygosity (EHH) statistic developed by Sabeti et al. (2002)
measures the probability of being identical by descent for any two
randomly chosen chromosomes within a population carrying a
core genomic region surrounding a presumably selected allele.
Voight et al. (2006) proposed a within-population variation of
EHH based on the contrast between the integral of the EHH for
derived (selected) and ancestral (control) alleles called integrated
haplotype score (iHS). The iHS test is especially powerful in
detection of recent selection that has swept the selected allele
to moderate frequencies, but the selected allele has not yet been
fixed. A complementary method for iHS to detect sweeps near
fixation is the between-population Rsb test proposed by Tang
et al. (2007). The Rsb statistic compares the integrated EHH
profiles between pairs of populations and searches for alleles that
have been targeted by selection and swept toward fixation in one
population but not in the other. There are several examples of
application of iHS and Rsb statistics for detecting both recent
and ancient positive selections in different livestock population
(Bahbahani et al., 2015; Cheruiyot et al., 2018).

Here, we use 521,362 autosomal SNPs and scan the genome
of 1,475 admixed cattle from Kenya in (1) a GWA analysis
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that separates breed origin SNP effects from effects due to
within-population LD to find SNPs associated with milk yield
and (2) a signature of selection (SoS) analysis to detect signals
of post-admixture selection. The GWA and SoS analyses are
complementary because in relatively young populations, SoS are
not expected to have led to fixation of alleles, and therefore, the
results from one can be used as partial validation of the other.

MATERIALS AND METHODS

Genotypes
The genotypic data included 1,475 admixed and 19 East African
Shorthorn Zebu (EASZ) cattle sampled in Kenya between
2010 and 2014 and genotyped for 777,962 SNP markers using
Illumina BovineHD BeadChip (Illumina, San Diego, CA). More
information on collection of samples can be found in Aliloo
et al. (2018). We retained the autosomal SNPs for analysis. The
genotype calls with a GC score < 0.6 were set as missing, and
then, SNPs with a call rate > 0.95 were kept. A reference set of
high-density genotypes of 105 pure Bos indicus animals (IND)
from 12 Indian breeds were obtained by stratified sampling of
the larger data set analyzed by Strucken et al. (2019). Reference
genotypes were also obtained for six different cattle populations
representing the two other major ancestral groups in East Africa,
i.e., (i) African taurine (AFT) ancestors of indigenous cattle:
NDama (ND, n= 24) and (ii) European taurine (EUT) ancestors
of admixed cattle: Holstein (HO, n = 71), Jersey (JE, n = 46),
Guernsey (GU, n = 21), British Friesian (BF, n = 26), and
Ayrshire (AY, n = 519). All genotypes except BF and AY, which
were provided by the Scottish Rural University College (SRUC)
and CanadianDairy Network (CDN), respectively, were obtained
from the Bovine HapMap Consortium (http://bovinegenome.
org). These genotypes were obtained post-quality control, so
only the common SNPs between them and African and Indian
genotypes were extracted. We sampled an equal number of 21
animals from each EUT breed and considered the five EUT
breeds as recent ancestors of Kenyan admixed dairy cattle. SNPs
with aMAF less than 0.01 across the whole sample were excluded.
Animals were also required to have genotypes for more than
90% of SNPs. These controls resulted to 521,362 SNPs on 1,475
admixed, 19 EASZ, 105 IND, 24 AFT, and 105 EUT animals
distributed over 29 autosomes based on the UMD3.1 bovine
reference genome. Details of the cattle populations in this study
are presented in Table 1.

Phenotypes
Milk yield deviations (MYD) were obtained for the individual
test-days of 1,034 (out of 1,475) Kenyan admixed cows in
smallholder farms from the analyses of Brown et al. (2016).
In their analyses, test-day milk yields (TDMY) were analyzed
using a model that included fixed effects for parity and Legendre
polynomial of order 4 fitted for each of five dairy breed classes.
The dairy breed classes were assigned based on admixture
(Alexander et al., 2009) estimates of total dairy breed proportion
for each animal using SNP genotypes (Ojango et al., 2019).
Random effects were included for contemporary management
group-year-season, animal permanent environment, and animal

TABLE 1 | Details of the different cattle populations used in this study.

Breed group Source Original

population

size

Sample

size

Ancestral

group*

Kenyan

crossbred

Kenya 1,475 1,475 –

East African

Shorthorn

Zebu

Kenya 19 19 –

Dangi India 65 13 IND

Gavlao India 19 4 IND

Gir India 118 24 IND

Hallikar India 27 5 IND

Haryana India 11 2 IND

Khilar India 24 5 IND

Krishnavalley India 17 3 IND

Lalkandhari India 35 7 IND

Malinar Gidda India 14 3 IND

Ongole India 46 9 IND

Sahiwal India 104 21 IND

Tharparkar India 45 9 IND

NDama HapMap 24 24 AFT

Holstein HapMap 71 21 EUT

Jersey HapMap 46 21 EUT

Guernsey HapMap 21 21 EUT

British

Friesian

UK 26 21 EUT

Ayrshire Canada 519 21 EUT

*IND, Bos indicus; AFT, African Bos taurus; and EUT, European Bos taurus.

additive genetic effects, using a genomic relationship matrix
based on VanRaden (2008). The MYD were obtained by
correcting the TDMY for fixed effects plus the random
management group effect (Brown et al., 2016).

Population Structure Analysis
To investigate the population structure of admixed cattle in
relation to the ancestral breeds, a principal component analysis
(PCA) based on all SNP genotypes after quality control (521,362)
was implemented. The PCA was applied to a (co)variance
matrix between all animals’ genotypes (G) constructed using
the VanRaden (2008) method. The first and second principal
component were plotted to visualize the distribution of admixed
cattle across the different ancestral breeds.

Local Ancestry Estimation of Admixed
Sample
To infer the local ancestry of admixed cattle at individual SNPs,
we used LAMP-LD software (Baran et al., 2012) with three groups
of ancestral haplotypes, i.e., IND, AFT, and combined EUT.
The admixed population being analyzed results from crosses
between local indigenous cattle, i.e., the EASZ and EUT breeds.
The indigenous cattle are known to be old, probably ancient,
admixtures of Bos indicus and African Bos taurus cattle (Strucken
et al., 2017). Thus, in the absence of a large sample of the
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indigenous EASZ population, we used IND andAFT as proxies to
track the indigenous haplotypes. The genotypes of all individuals,
i.e., ancestors and admixed animals, were phased together using
Eagle v2.4 (Loh et al., 2016) to provide haplotypes for local
ancestry inference and also for calculation of test statistics for
detection of selection signatures across the admixed genome.
LAMP-LD uses hidden Markov models of haplotype diversity
of ancestral populations within a window-based framework to
trace the origin of alleles in the admixed population (Baran et al.,
2012). We used the default input parameters, i.e., a 300-SNP
window size and 15 as the number of states, to run LAMP-LD
and obtained the local ancestries of admixed animals.

Crossover Events Across the Admixed
Genome
The local ancestry inferences obtained above were used to
calculate the average number of crossover events across the
admixed genome. We defined a recent crossover as the transition
from either IND or AFT ancestry to EUT ancestry and vice
versa. For each haplotype of a given admixed individual, we
counted the number of recent crossovers and standardized it by
chromosome length to obtain the number of crossover events per
Morgan. For this calculation we assumed a recombination rate of
1 Morgan = 100 Mbp. Then we ranked the two haplotypes of
each admixed individual within each chromosome from lowest
to highest number of crossovers. Finally, the average (across all
chromosomes) frequency of crossovers in haplotypes with lowest
number of crossovers was used to rank the admixed animals.

Genome-Wide Association Mapping
A mixed linear model was used to test for associations between
genome-wide SNPs and MYD of the admixed cattle. A single
SNP regression model (fitting one SNP at a time) simultaneously
estimated the effect of the ancestral origin (exotic vs. indigenous)
of the SNP and the residual effects of SNP alleles after accounting
for the ancestral origin. The local ancestry inferences obtained
above were used to assign the ancestral origin of SNP alleles with
ancestral origin coded as 0, 1, and 2 for no copies, one copy,
or two copies coming from the EUT ancestor, respectively. The
GWAmodel was as follows:

y = 1nµ + Xβ +Wu+Wpe+ e,

where y is the vector of MYD of size n, 1n is a vector of ones,
µ is the population mean term, β is a 2 × 1 vector containing
the ancestral origin of allele effect and residual SNP effect, u
contains polygenic effects assumed to be distributed as u ∼

N(0, Gσ 2
g ) with G being the genomic relationship matrix based

on all SNP genotypes except the SNPs on the chromosome of
the marker for which the association is tested (VanRaden, 2008),
pe is the vector of random permanent environment effects with
pe ∼ N(0, Iσ 2

pe), and e is the vector of random residual deviates

assumed to be distributed as e ∼ N(0, Iσ 2
e ). X is an n × 2

design matrix allocating genotypes to ancestral origin of allele
effect and residual marker effect, and W is the incidence matrix
for the random animal and permanent environmental effects. σ 2

g ,

σ 2
pe, and σ 2

e are polygenic additive, permanent environment, and
residual variances, respectively.

The above model was fitted by WOMBAT (Meyer, 2007). The
SNP effects obtained from WOMBAT were tested using a Wald
test and then the associated p-values were supplied to the q-
value package (Storey and Tibshirani, 2003) in R to account for
multiple testing and to generate the corresponding q values (i.e.,
the SNP false discovery rate, FDR) and FDR thresholds.

Detection of Selection Signatures
We used two complementary haplotype-based methods to scan
the genome of the admixed cattle for candidate regions under
selection. The integrated haplotype score (iHS) is an intra-
population measure of the extent of haplotype homozygosity
(Voight et al., 2006), and the Rsb test compares haplotype
homozygosity length between populations (Tang et al., 2007).

iHS
The iHS values were calculated within each chromosome of
admixed genome according to Voight et al. (2006) using the rehh
package (Gautier et al., 2017) for R software. At each locus with
an MAF >0.05, we calculated the integrated extended haplotype
homozygosity for the ancestral (iHHa) and the derived (iHHd)
alleles, and then, the iHS was calculated as iHS = ln ( iHHa

iHHd
).

The iHH was defined as the area under the extended haplotype
homozygosity (EHH) curve at a core allele within a chromosome
using a homozygosity decay threshold of 0.05. The EHH for each
core allele was calculated based on Sabeti et al. (2002) as

EHHas ,t =
1

nas (1− nas )

Kas ,t
∑

k=1

nk(nk − 1),

where Kas,t is the number of distinct haplotypes from the core
SNP s to SNP t carrying the core allele as, nk is the number of
times the kth haplotype is observed, and nas is the total number

of haplotypes carrying as and is calculated as
∑Kas ,t

k=1
nk. The iHS

values were standardized to have a mean of 0 and a standard
deviation of 1 according to the allele frequency bins to which
they belonged. The frequency bins were determined by varying
the frequency of the derived allele with a step of size 0.025. Then,
the iHS values were transformed into p-values of “no selection”
hypothesis according to Gautier and Naves (2011):

piHS = − log [1− 2|8(iHS) − 0.5|],

where Φ(iHS) represents the Gaussian cumulative distribution
function of iHS values. To define the ancestral allele for each
locus, we calculated allele frequencies in the entire data set and
assigned the most common allele as the ancestral allele.

Rsb
The Rsb values between admixed and EASZ cattle populations
were calculated within each chromosome according to Tang
et al. (2007) using the R software rehh package (Gautier et al.,
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2017). The site-specific extended haplotype homozygosity was
calculated for admixed and EASZ cattle populations separately:

EHHSs,t =
1− hs,t

1− hs
,

hs,t =
ns

ns − 1



1−
1

n2s

Kas ,t
∑

k=1

n2as



, and

hs =
ns

ns − 1



1−
1

n2s

2
∑

as=1

n2as



 ,

where ns is the total number of haplotypes carrying as and is
calculated as

∑2
as=1 nas for ancestral (as = 1) and derived (as

= 2) alleles, and Kas,t is the number of distinct haplotypes from
the core SNP s to SNP t carrying the core allele as. The iES was
defined as the area under the EHHS curve at a core allele within
a chromosome using a homozygosity decay threshold of 0.05.
The Rsb score between admixed and EASZ cattle populations
was defined as Rsb = ln (

iESadmixed
iESEASZ

) for each focal SNP and then

standardized as

Rsb(s) =
Rsb− medRsb

σRsb
,

wheremedRsb and σRsb are the median and standard deviation of
Rsb across all SNPs within genome. The p-values for Rsb(s) were
calculated according to Gautier and Naves (2011):

pRsb(s) = − log [1− 2|8
(

Rsb
)

− 0.5|],

where Φ(Rsb(s)) represents the Gaussian cumulative distribution
function of Rsb(s) values. The qvalue package (Storey and
Tibshirani, 2003) in R software was used to correct p-values
for multiple testing in iHS and Rsb(s) by generating the
corresponding q-values and FDR thresholds.

We calculated measures of selection signatures in two
scenarios. In the first scenario, all the admixed samples were used
to obtain estimates of iHS. In the second scenario, admixed cattle
with less than three crossovers were removed prior to iHS and
Rsb analyses because they were deemed to be recently admixed
individuals in which selection has not had enough time to leave a
signature on their genome.

Annotation and Tracking of Candidate
Regions
A candidate region detected by the SoS analyses was defined by
first identifying SNPs with a q value < 0.1 and then searching
within the 500-Kbp interval downstream and upstream (1 Mbp
window) of the identified SNP for SNPs with q value < 0.5 and q
value < 0.25 for iHS and Rsb analyses, respectively. We extended
the detected region (with a 500-Kbp step size) until there was no
SNP with a q value less than the suggestive thresholds within the
500-Kbp interval from the last identified SNP. The boundaries
of the candidate region were determined based on the base pair
positions of the last-identified SNP in each direction. The same
procedure was used for iHS and Rsb analyses. Where GWA

results were used for partial validation of SoS analyses (see
below), we used a suggestive p-value threshold of 10−3 to define
the candidate regions from GWA, and to define the boundaries
of each candidate region, we searched the 500-Kbp upstream
and downstream intervals for SNPs whose p-values were smaller
than 10−3 and extended the region until there was no SNP p-
value less than our suggestive threshold. The candidate regions
designated by iHS and Rsb analyses were then annotated using
the Ensemble Biomart 94 based on the UMD v3.1 bovine genome
assembly for the underlying genes, and the biological functions
of the discovered genes were evaluated and compared to the
existing literature. We also calculated the ancestral allele dosages
for the identified candidate regions in order to track the candidate
regions under selection to each of the ancestral populations
described above. In an attempt to validate SoS regions in the
admixed cattle, we looked for overlap between the candidate
regions identified in each of the SoS analyses, i.e., iHS or Rsb, and
those identified by GWA.

The QTL and SNP association data mapped on the
UMD3.1 bovine reference genome were obtained from the cattle
QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/
BT/index) on July 8, 2019, and was used to compare the results of
the present study with the reported QTL regions in the literature.
We compared the genes within our identified candidate regions
for selection from iHS and Rsb analyses to the whole bovine
genome background using functional annotation clustering by
DAVID online bioinformatics resource v 6.8 (Huang et al., 2009)
to find the pathways that are significantly overrepresented.

RESULTS

Genetic Structure of Admixed and
Ancestral Cattle Populations
The PCA revealed a complex population structure for the
admixed cattle in relation to their ancestral breeds (Figure 1).
The Kenyan admixed cattle was found to be an unstabilized
population with very high genetic diversity. Samples ranged
along the axis from pure exotic dairy breeds through to pure
indigenous EASZ. The EASZ animals formed a tight cluster on
the axis between IND and AFT reference samples consistent
with EASZ being an old or ancient admixture of IND and AFT
ancestors that has a higher proportion of IND than AFT. The
three ancestral breeds, i.e., EUT, AFT, and IND, were separated
by the first PC explaining around 90% of the total variation
between all genotypes. The second PC only explained around
1.6% of the variation and separated AFT fromEUT. The locations
of crossbred animals in Figure 1 suggest that most animals
were of Ayrshire, Holstein, and/or British Friesian ancestry with
little contribution from Jersey and Guernsey, consistent with the
previous findings of Strucken et al. (2017).

Local Ancestry of Admixed Cattle
The ancestral haplotypes from the three groups (i.e., IND, AFT,
and EUT) were used to infer the local ancestries of the admixed
cattle at the individual loci level. The majority of haplotypes
in the admixed cattle were found to be originated from EUT
ancestor (≈0.73), and IND and AFT ancestral populations
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FIGURE 1 | The first two principal components showing the distribution of admixed cattle in relation to their ancestral breeds. IND, Bos indicus; AFT, African Bos

taurus; AY, Ayrshire; HO, Holstein; BF, British Friesian; GU, Guernsey; JE, Jersey; EASZ, East African Shorthorn Zebu; and XX, Admixed cattle.

FIGURE 2 | The genome-wide average ancestries of the admixed cattle contributed by the three ancestral groups. IND, Bos indicus; AFT, African Bos taurus; and

EUT, European Bos taurus.

contributed smaller proportions of admixed haplotypes (≈0.24
and ≈0.03, respectively). The genome-wide average ancestries
of the three ancestral populations for each crossbred animal are
shown in Figure 2. This confirms the wide range of admixture
inferred from Figure 1. The distribution of local ancestries
across different chromosomes of the admixed cattle (Figure S1)
were, in general, agreement with genome-wide average ancestries
showing that the admixture was relatively uniform across
all chromosomes.

The distribution of number of recent crossovers on haplotypes
with the lowest number of crossovers in different chromosomes
is shown in Figure S2, and the corresponding distribution of
genome average number of crossovers is shown in Figure 3A.
For the majority of the admixed cattle, the number of recent
crossovers was calculated to be small (<2 per Morgan) on almost
all chromosomes. Only 55 animals passed a threshold of three
or more crossovers per Morgan. The distribution of the number
of recent crossovers on haplotypes carrying the highest number
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FIGURE 3 | The distribution of genome-wide average number of crossovers per Morgan on the admixed cattle haplotypes carrying the lowest (A) and highest (B)

number of crossovers.

of crossovers across different chromosomes and the distribution
of corresponding genome average number of crossovers are
shown in Figure S3 and Figure 3B, respectively. The animals
with very low numbers of crossovers (<2 per Morgan) in
Figure 3B are predominantly animals with high EUT ancestral
proportion, in which most of the genome is homozygous
EUT. However, most haplotypes presented a high number of
recent crossovers (Figure 3B) with some individual chromosome
haplotypes showing more than 20 crossovers (Figure S3).

The distribution patterns for the average local ancestries of
admixed cattle with three or more recent crossovers per Morgan
in haplotypes carrying the lowest number of crossovers are shown
in Figure 4. The average contributions (calculated as average
breed proportions) from IND + AFT (i.e., indigenous) vs. EUT
ancestors were 0.52 and 0.48, respectively. This reflects that the
ability to detect recombination events is highest in animals with
∼50% EUT vs. indigenous ancestry because, in animals with
a high proportion of either indigenous or EUT ancestry, most
historical crossover events occur within the dominant ancestral
genome and, thus, are not detectable.

Genome-Wide Associations for SNP Allele
and Ancestral Origin of SNP Allele
The Manhattan plots of SNP allele effects and ancestral origin
effects for MYD are presented in Figures 5A,B, respectively. No
SNP passed an FDR threshold of <0.1 for these effects. For SNP
allele effects, six SNP had the minimum observed FDR of 0.112
although, for ancestral origin effects, 518 SNP had the minimum
observed FDR of 0.229. With an FDR threshold of <0.35, a
total of 35 and 918 SNP passed the threshold for SNP allele
effects and ancestral origin effects, respectively. The distribution
of the estimated effects of SNP alleles and ancestral origin with
a FDR < 0.35 are shown in Figures S4A,B, respectively. The
estimated effects of SNP alleles on milk yield (Figure S4A)
were approximately equally distributed on either side of zero
as expected in GWA when the allele assignment is random.

The estimated effects of ancestral origin in Figure S4B were
predominantly positive, indicating that the alleles coming from
the EUT ancestor had a positive effect on milk yield.

Detection of Signals of Positive Selection
Within Population
The Manhattan plots of p-values for genome-wide iHS scores
calculated using all samples of admixed cattle as well as when
using only the admixed cattle with three or more crossovers per
Morgan on the chromosomes with lowest frequency of crossovers
are given in Figures 6A,B, respectively. Although including all
admixed cattle for calculation of iHS scores was not successful
in detection of any candidate region at an FDR threshold of 0.1
(Figure 6A), removing admixed cattle with a genomic average
crossover of less than three per Morgan identified 16 candidate
regions across seven autosomes (Figure 6B). The size of these
candidate regions ranged from only 112.25 Kbp on BTA 12 up
to 0.68 Mbp on BTA 7 and together encompassed 106 genes. The
details of the identified candidate regions from the iHS analysis of
the filtered admixed cattle are in Table 2. BTA 7 had the highest
number of candidate regions for selection (five regions), and BTA
3 contained 43 genes, which was the highest among all BTAs.
Across all candidate regions, 10 genes were deemed as candidate
genes for selection because there was at least 1 SNP with a FDR
< 0.1 located within them. The ancestry of all candidate regions
in BTA 3 was dominated by EUT, and for other chromosomes
with more than one candidate region, the dominant ancestry was
either IND or EUT.

Between Populations
The distribution of p-values from Rsb analysis between the
admixed cattle with a minimum number of three crossovers on
the haplotype carrying the lowest number of crossovers across
their genome and the EASZ population is shown in Figure 7.
At FDR < 0.1, we identified 24 candidate regions for divergent
selection between the admixed cattle and EASZ, indicating active
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FIGURE 4 | Average local ancestries of the admixed cattle with three or more crossovers per Morgan in the haplotype carrying the lowest number of crossovers. The

gray, yellow, and blue lines represent Bos indicus, African Bos Taurus, and European Bos taurus ancestry, respectively.

selection in the admixed population on 15 autosomes. These
regions together harbored 15 candidate genes. BTA 23 contained
the shortest candidate region with only 1 SNP, and the longest

candidate region of 0.81 Mbp was found on BTA 6 (93 SNPs).
The strongest selection signature with smallest SNP q value

and highest peak in the Manhattan plot of Figure 7 was on

BTA 3, followed closely by another candidate region on the

same chromosome. The strongest candidate region for selection
on BTA 3 also encompassed the highest number of candidate
genes (a total of four) among all BTAs, whereas there was no
candidate genes found in BTAs 2, 6, 9, 12, 13, 16, 21, and
29 (Table 3). The dominant ancestry of all candidate regions
was EUT except four regions with IND ancestry on BTAs 3, 8,
21, and 29.

Validation of Candidate Regions for
Selection With GWA
Because the SoS showed lower FDR than the results from the
GWA analysis, for the purpose of investigating possible candidate
genes, we chose to cross-validate the SoS that passed FDR <

0.1 with the GWA results. We used only the estimates of SNP
allele effects because the confidence intervals for ancestral origin
effects were very large. Four candidate regions from GWA, on
BTAs 1, 7, and 20, overlapped with four candidate regions for
selection obtained from iHS and Rsb analyses (shown in red
boxes in Figure 5A). A candidate region for GWA on BTA 7
spanning from 44.12 to 44.96 Mbp covered around 0.04 Mbp
of a selection signature discovered from iHS analysis (Table 2).
In addition, two candidate regions for selection identified by
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FIGURE 5 | (A) The Manhattan plot of p-values for SNP allele effects and (B) the Manhattan plot of p-values for ancestral origin effects. The red boxes in (A) are the

candidate regions for selection signatures that overlap with GWA regions. The colored horizontal lines are false discovery rate thresholds at 0.112 [−log10(p-value) =

5.88] and 0.35 [−log10(p-value) = 4.53] in (A), and at 0.229 [−log10(p-value) = 3.55] and 0.35 [−log10(p-value) = 3.11] in (B), from top to bottom, respectively. The

dashed line in (A) is the suggestive p-value threshold of 10−3.

Rsb on BTA 1 and distributed from 19.76 to 10.27 Mbp and
from 58.74 to 59.22 Mbp overlapped with a candidate regions
for GWA spanned from 20.09 to 20.60 Mbp and 1 SNP on
58.96 Mbp, respectively. Another candidate region identified
by Rsb on BTA 20 also intersected with a candidate region
from GWA that covered between 31.32 and 31.87 Mbp of the
chromosome (Table 3).

Functional Characterization of Candidate
Regions for Selection
A total of 106 genes from iHSmethod (Table S1) are grouped into
13 annotation clusters, of which five are significantly enriched
(enrichment score > 1.3 in Table S2). The enriched annotation
terms from iHS analysis are associated with different biological
functions, namely olfactory receptor activity, potassium ion
transport, immunoglobulin molecules structure, SPRY domain,
and innate immunity. The 119 genes within the candidate
regions detected by Rsb analysis (Table S1) are categorized into
12 annotation clusters, of which two clusters are significantly
enriched (Table S2). The significantly enriched annotation
clusters from Rsb are involved in potassium ion transport and
ephrin receptor signaling pathway.

The 16 and 24 candidate regions for selection identified by
iHS and Rsb intersect with 208 and 373 QTLs or associations

for different traits among which are reproduction, health,
conformation, and meat and milk traits (Table S3).

DISCUSSION

The distribution of admixed individuals in relation to the
purebred ancestral breeds and the estimated ancestral breed
proportions of the admixed cattle (Figures 1, 2) confirms the
previously reported findings that the Kenyan crossbred dairy
cattle form an unstabilized and highly diverse admixture of local
indigenous cattle and exotic dairy breeds (Strucken et al., 2017).
It has been shown in the same population that it is important
to take the variation in breed composition into account when
undertaking genetic evaluations of admixed individuals (Ojango
et al., 2019).

The method of assigning ancestry of admixed cattle at
individual loci using haplotypes from three reference breed
groups (i.e., IND, AFT, and EUT) appeared to work very
well, yielding similar levels of indigenous vs. exotic admixture
to previous Admixture analyses (Alexander et al., 2009) of
the same population (Weerasinghe, 2014; Strucken et al.,
2017). The number of available samples for AFT was limited,
and fewer samples were used compared to the other two
ancestral populations. This might have led to the observed
underestimation of AFT relative to IND when compared to
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FIGURE 6 | (A) The Manhattan plot of p-values for genome-wide iHS scores calculated using all samples and (B) the Manhattan plot of p-values for genome-wide iHS

scores calculated using only admixed cattle with three or more crossovers per Morgan. The red and blue horizontal lines are false discovery rate thresholds at 0.05

[−log10(p-value) = 6.25] and 0.10 [−log10(p-value) = 5.06], respectively. Green points are the SNPs within the candidate regions identified as being under selection.

whole-genome admixture analyses of the same population
(Weerasinghe, 2014; Strucken et al., 2017). When we compared
results of genome-wide admixture analyses (results not shown)
to the genome-wide average of local ancestries from LAMP-
LD, we observed a very high correlation (∼0.99) between
all components of ancestry inference from the two analyses,
notwithstanding that the estimated AFT ancestry was higher
from admixture compared to LAMP-LD (0.08 vs. 0.03). Of
the reduced AFT estimate, 0.03 appeared in the IND estimate
and 0.02 in the EUT estimate. The small proportion of
AFT ancestry that appears to have flowed into the EUT
estimate may have caused a small error in the assignment
of ancestral haplotypes and, hence, crossover events, in
these analyses.

The Manhattan plot of the GWA analysis of SNP effects
(Figure 5A) consisted of relatively sharp peaks that are typical
of a within-population GWA. Thirteen peaks passed an FDR
of 0.35, giving an expectation that 65% (i.e., approximately
eight) of these peaks are real effects. The Manhattan plot
of the GWA analysis of ancestral origin effects (Figure 5B)
consisted of very broad peaks. This is expected because mapping
ancestral origin effects is analogous to QTL mapping in crosses
between inbred lines, where the confidence interval for location
of a QTL effect is very large in early-generation crosses and
reduces as the number of recombination events between ancestral
haplotypes increases with increasing number of generations of

inter se crossing (Lynch and Walsh, 1998). The situation in
this crossbred cattle population is more complicated than inter
se mating in populations created from inbred lines because
the low frequency use of AI and the wide variation in breed
compositions cause the number of recombination events on
a given chromosome copy to vary from very few for recent
crosses to purebred or high-grade animals to very many
for chromosomes resulting from many generations of inter
se matings.

Depending on what is deemed to be a single peak vs.
multiple peaks, at FDR of 0.35, between 15 and 18 peaks for
ancestral effects were detected with an expectation that 65%
(i.e., 10 to 11) are real effects. The distribution of ancestral
origin effects (Figure S4B) showed that the vast majority of
positive effects on milk yield came from the exotic dairy breed
ancestors. These estimates should be independent of effects
of breed composition across the whole genome because the
data had been pre-corrected for breed composition classes, and
the statistical model used here included a GRM to account
for whole genome relationships, which would also account
for any residual additive effects on breed composition. The
present results, therefore, indicate that there are many genomic
regions that determine the high genetic milk potential of modern
dairy breeds and that no one region carries an exceptionally
large effect. The estimates of ancestral origin effects are allele-
substitution effects so that the estimates of homozygous exotic
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TABLE 2 | Candidate regions for selection obtained from iHS analyses in

admixed cattle.

BTA Region Top SNP Dominant Candidate

(Mbp) q-value ancestry* genes

2 5.46–6.00 0.0378 IND –

3 9.58–9.80 0.0995 EUT –

3 17.18–17.70 0.0861 EUT –

3 18.80–19.29 0.0578 EUT S100A10

3 22.07–22.71 0.0390 EUT ACP6, RF00100

6 4.91–5.29 0.0578 IND –

6 90.70–91.12 0.0861 EUT MTHFD2L

7 38.55–38.92 0.0861 IND –

7 41.40–42.00 0.0390 IND BTNL9, NLRP3

7 43.84–44.16 0.0861 EUT LYPD8

7 46.56–46.99 0.0006 EUT –

7 49.91–50.25 0.0390 IND –

11 36.81–37.13 0.0578 IND ACYP2,

ENSBTAG00000046563

12 28.64–29.05 0.0578 IND –

12 76.82–76.93 0.0390 EUT CLDN10

16 4.52–4.89 0.0995 IND –

*IND, Bos indicus; AFT, African Bos taurus; and EUT, European Bos taurus. Bold regions

overlap with regions identified in the genome-wide association analysis.

dairy vs. indigenous effects are mostly between 0.44 and 0.56 kg
milk per day. The average yield in this crossbred population,
which has a breed composition average of about 70% exotic
dairy, has been estimated around 5 kg milk per day (Ojango
et al., 2019). The milk yield of indigenous cattle is not known
but can reasonably be expected to be about 2 kg per day.
Although the estimates of ancestral genomic effects are subject
to ascertainment bias and need to be independently validated,
it is possible that, collectively, they could explain much of the
difference between exotic vs. indigenous cows in the smallholder
production environment.

The distribution of estimated SNP effects (Figure S4A) shows
the expected equal allocation of positive and negative SNP
effects but has a proportion of estimates substantially higher
in magnitude than those for ancestral origin effects. This likely
reflects that the power of estimating ancestral origin effects is
essentially uniform across the genome while that of estimating
SNP effects is highly dependent on the allele frequency of each
SNP so that some SNPs will be subject to substantially higher
ascertainment bias than other SNPs (Lynch and Walsh, 1998).

Work is currently underway to phenotype and genotypemuch
larger populations of crossbred dairy cows in East Africa. This
will provide a future opportunity to validate the GWA results
presented here. If some of these results are validated, it will be
possible to identify groups of SNPs that track genomic region
effects due either to within-population LD with causal variants
or to ancestral genomic effects. In the latter case, SNPs can
be chosen to provide a high accuracy of assigning ancestral
haplotype allocation to the relatively large confidence regions
encompassed by the ancestral QTL effects.

When mapping signatures of selection, the null hypothesis of
“no selection” typically implies a lack of statistical significance
in situations where there is no disturbance from common
demographic factors. Therefore, the ability to clearly distinguish
positive selection from neutral effects is a challenge given the high
sensitivity of the test statistics for detection of selection (Tang
et al., 2007). In this study, we employed a method based on the
decay of ancestral haplotypes to remove the impact of recent
admixture and continuous gene flow on detection of selection
signatures in Kenyan admixed cattle. Our method relies on the
fact that first-generation admixed individuals inherit two intact
haplotypes, one from each inputting founder populations, and as
mating happens within the admixed population, recombination
mixes these haplotypes and creates a mosaic genome in
subsequent generations.Wemeasure the degree of fragmentation
of ancestral haplotypes according to the distribution of crossover
events across the admixed genome. We consider a shift in local
ancestry of haplotypes carried by an admixed individual as a
recombination event where individuals from later generations
are expected to express higher numbers of recombination events
generating a more fragmented genome. Since the ancestral
populations of admixed cattle are highly diverged and show
significantly different allele frequencies, it is possible to assign
the ancestry to each allele of an admixed individual with high
confidence. This was tested in a cross-validation approach for
the local ancestry mapping of only ancestral breeds, and it
was found that LAMP-LD was able to assign the ancestry
origin of haplotypes with very high accuracies (results are
not shown).

Continuous admixture and gene flow can leave different
patterns of ancestry in the two haplotypes carried by an admixed
individual. Backcrossing to pure parents will produce progenies
with one copy of the mosaic genome and a copy of intact
chromosomes inherited from pure parents. We found evidence
for such patterns in our results when we observed very different
distributions for the number of recent crossovers across the
two haplotypes of admixed cattle (Figures S2, S3). One of the
admixed haplotypes showed less than one crossover for the
majority of individuals (Figure S2). This suggested that the
majority of admixed cattle in Kenya have at least one ancestor
that resulted from a recent cross with either an indigenous
or an exotic breed. The other copy of the admixed haplotype
showed higher number of crossovers (Figure S3) with an average
of around five (Figure 3B). This provided additional evidence
for the high rate of recent introgression of an exotic breed
genotype in the region and recurrent admixture between them
and the existing admixed cattle. Given this, we rank the two
haplotypes of admixed cattle across different chromosomes based
on the number of recent crossovers they incur and use the
haplotype carrying the lowest number of recombination to
quantify the degree of fragmentation of ancestral segments in
the sampled genome and to measure the age of admixture in
our samples.

Our results showed that the iHS analysis didn’t detect any
candidate region for positive selection at an FDR threshold of 0.1
when all admixed samples were included (Figure 6A). Using an
empirical threshold of at least three for the genome-wide average
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FIGURE 7 | The Manhattan plot of p-values for Rsb analysis between the admixed cattle with a minimum number of three crossovers per Morgan and the East

African Shorthorn Zebu population. The red and blue horizontal lines are false discovery rate thresholds at 0.05 [−log10(p-value) = 4.35] and 0.10 [−log10(p-value) =

3.80], respectively. Green points are the SNPs within the candidate regions identified as being under selection in the crossbred population.

number of recent crossovers per Morgan in haplotypes carrying
the lowest number of recombinations improved the detection of
signatures of selection by making the signals stronger. When we
excluded samples with less than three crossovers per Morgan,
the iHS method was successful in detecting 16 candidate regions
at the same FDR threshold (Figure 6B). Excluding individuals
with some recent admixture from the analysis ensures that
the sample analyzed has had sufficient time for selection to
act to produce detectable signatures, thus increasing the power
of the analysis. However, imposing more stringent thresholds
greatly reduces the number of animals available, leading to a
subsequent decrease in power. In such studies, there will be
a threshold for data selection that optimizes power, and that
threshold will be dependent on the size, structure, and history of
the population.

Cross-Validation of SoS With GWA
We employed a low-stringency criterion to define regions from
GWA that might overlap with SoS, and this resulted in four
overlapping regions. There was no overlap between the GWA
and SoS that are deemed to be significant, and the low-stringency
threshold we used for GWA regions in the cross-validation would
implicate a substantial proportion of the genome being involved
in genetic variation in milk yield. Thus, having just four regions
overlapping between GWA and SoS provides no more than
suggestive evidence that the same regions are involved.

The SoS and GWA regions are expected to overlap where
regions controlling genetic variation in milk yield have been
under selection and already yielded SoS while still segregating
in the population and, hence, detectable in GWA analysis. In
relatively young populations, it is likely that regions under
selection are still segregating and, hence, detectable as SoS and
GWA, but SoS are expected to result from selection on many
traits other than milk yield, and so even with large data sets and
very high power, only a proportion of SoS and GWA regions are
expected to overlap. Given the modest statistical power of the
current data set there could be many regions that do overlap but
are not detected in either or both of the SoS and GWAS analyses.

Functional Characterization of Candidate
Regions for Selection
In the context of localizing the identified candidate regions
under selection in Kenyan admixed cattle, we classify them into
two groups with related functions in (1) productivity and (2)
adaptation, recognizing that some regions might have pleiotropic
effects in both categories. In the following, we characterize the
functions of our identified regions in more detail.

Productivity
Several candidate regions from iHS and Rsb analyses intersected
with previously reported QTLs and associations for milk
and meat production traits in the literature. Milk and milk
composition encompassed the highest number of overlaps
among all traits for both methods. Given that there is no
genetic improvement program for milk yield in the population of
smallholder cows analyzed here, this might be due to phenotypic
selection by farmers who preferentially keep progeny from their
best yielding cows. However, it should be noted that the milk
production under these poor-quality environments relies on
other factors, such as the ability of cows to achieve acceptable
growth and reproductive performance with restricted feed and
in the presence of disease pathogens.

Bovine chromosome 20 has been associated with several milk
traits in dairy cattle (e.g., Nayeri et al., 2016). Our Rsb analysis
identified two regions of selection signature on this chromosome
by contrasting haplotype diversity between admixed and EASZ
cattle. The region spanning from 31.68 to 32.17 Mbp overlaps
with the growth hormone receptor (GHR) gene that has been
proved to play a central role in variation of milk production
in dairy cattle (Georges et al., 1995; Blott et al., 2003; Viitala
et al., 2006). The findings of several genome-wide association
studies (e.g., Pryce et al., 2010; Iso-Touru et al., 2016) as well
as a genome scan for selection signatures in dairy cattle (Flori
et al., 2009) strongly support the important function of GHR
gene for milk traits. Both selection signatures on BTA 20 show
an EUT ancestry, which supports the role of selection in favoring
the EUT haplotypes.
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TABLE 3 | Candidate regions for selection obtained from RSB analyses between

the admixed and East African Shorthorn Zebu cattle populations.

BTA Region Top SNP Dominant Candidate

(Mbp) q-value ancestry* genes

1 1.67–2.16 0.0805 EUT ENSBTAG00000047288

1 19.76–20.27 0.0665 EUT –

1 58.74–59.22 0.0463 EUT SIDT1

2 83.56–84.07 0.0657 EUT –

3 0.26–0.74 0.0369 EUT TBX19

3 9.45–9.76 0.0033 EUT COPA, PEX19,

ATP1A2, KCNJ10

3 15.38–15.96 0.0037 EUT GBA, MTX1

3 67.54–68.09 0.0387 EUT AK5

3 90.34–90.83 0.0921 IND –

6 77.36–78.17 0.0204 EUT –

8 79.64–79.99 0.0514 EUT NTRK2

8 108.09–108.64 0.0880 IND –

9 43.55–43.95 0.0521 EUT –

12 64.41–64.92 0.0556 EUT –

13 11.76–12.27 0.0103 EUT –

16 58.34–58.77 0.0070 EUT –

18 2.69–2.99 0.0881 EUT CFDP1

18 44.29–44.78 0.0324 EUT –

20 23.95–24.20 0.0053 EUT CDC20B

20 31.68–32.17 0.0472 EUT –

21 33.23–33.66 0.0297 IND –

23 39.00–39.00 0.0859 EUT RNF144B

28 33.40–33.87 0.0160 EUT KCNMA1

29 35.67–36.19 0.0072 IND –

*IND, Bos indicus; AFT, African Bos taurus; and EUT, European Bos taurus, Bold regions

overlap with regions identified in the genome-wide association analysis.

Chromosome 6 plays a major role in determining protein
composition of cow milk (Martin et al., 2002). The casein cluster
of four tightly linked genes mapped on BTA 6 at around 87
Mbp is close to an iHS candidate region (90.70–91.12 Mbp) and
lies within the scatter of points constituting the broader peak
within which the candidate region sits. Buitenhuis et al. (2016)
has reported several significant SNPs for variation inmilk protein
percentage of dairy cattle that lie within our candidate SoS region.
These authors inferred their significant SNPs as possibly being in
association with genes in the casein cluster. However, smallholder
farmers have no information about the milk protein content,
and there has been no genetic improvement program in this
population, so it is unclear why polymorphisms controlling milk
protein would have been under selection.

Four regions on BTA 7 identified by iHS, including the region
overlapping with the GWA region spanning from 43.84 to 44.16
Mbp, have been associated with several milk traits in dairy cattle
(Chamberlain et al., 2012; Marete et al., 2018). Some studies have
also reported the same regions for various beef traits (Akanno
et al., 2018).

The candidate regions on BTA 3, all from EUT ancestry,
overlap with regions for meat-related traits (e.g., Seabury et al.,

2017). The region spanning from 18.80 to 19.29 Mbp was
found to have an effect on maternal weaning weight of Angus
cattle (Saatchi et al., 2014). This region overlaps with several
important genes involved in cell growth and proliferation
(OAZ3), regulation of lipid metabolism (THEM5), and cell cycle
progression and differentiation (S100A10) where the latter gene
has also been reported as a candidate gene for residual feed intake
in Angus (Al-Husseini et al., 2014).

A candidate region for selection with IND origin was mapped
by iHS on BTA 2 extending from 5.46 to 6.00 Mbp. This region
overlaps with the HIBCH gene, which is involved in amino
acid metabolism in humans (Loupatty et al., 2007) and is in
close proximity to bovine myostatin gene (MSTN at around 6.28
Mbp). MSTN, also known as growth and differentiation factor-
8 (GDF-8), has an important role in muscle development in
cattle (Sharma et al., 1999). Given that feed efficiency, muscle
development, and growth are very important factors in low-
input smallholder production systems, it is reasonable that
these genes might have been the target of selection in the
African environment.

Adaptation
Genes with functional importance in immunity were identified
on BTAs 7 (SPOCK1, NLRP3) and 21 (CSPG4). A candidate
region on BTA 7 with a dominant IND ancestry extends from
41.40 to 42 Mbp and harbors the NLRP3 gene. This gene encodes
a protein that is involved in regulation of inflammation, immune
response, and apoptosis. It is also a candidate gene for Crohn’s
disease (Villani et al., 2009) and Johne’s disease (Scanu et al., 2007;
Mallikarjunappa et al., 2018) in human and livestock populations,
respectively. Other candidate regions originated from IND and
associated with health traits of Kenyan admixed cattle were
mapped on BTA 7 (49.91–50.25 Mbp) and 21 (33.23–33.66 Mbp)
from iHS and Rsb analyses, respectively. The region on BTA 7
overlaps with a previously reported region for Mycobacterium
paratuberculosis susceptibility in U.S. Holsteins (Settles et al.,
2009) and encompasses the SPOCK1 gene, which has been
shown to be associated with cancer in humans (Miao et al.,
2013). The region on BTA 21 has been associated with somatic
cell score in Norwegian Red cattle (Sodeland et al., 2011) and
contains the CSPG4 gene, which is also linked to cancer in
humans (Ilieva et al., 2017). Given that the selection sweeps
harboring these genes are of IND ancestry, it is possible that the
Bos indicus ancestors of admixed cattle may have contributed
versions of genes conferring resistance to environmental
disease challenges.

Evidence for EUT contribution to immunity of admixed cattle
in Kenya were found on BTAs 7, 23, and 28. In a candidate
region identified by iHS on chromosome 7 is the gene LYPD8,
which has been reported to be differentially expressed between
cows with vs. without subclinical mastitis (Song et al., 2016),
and it provides defense against Gram-negative bacteria in the
colon of non-ruminants. A candidate SNP on BTA 23 with EUT
origin was found to be located in the RNF144B gene, which is
involved in the innate immune system in humans (e.g., Ariffin
et al., 2016). Further evidence for the functional importance
of its surrounding region has been reported by Raphaka et al.
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(2017) who found several nearby SNPs with large effects on two
indicator traits for bovine tuberculosis susceptibility. Another
candidate region on BTA 28 from Rsb analysis overlaps with
the POLR3A gene, which provides instructions for making a
protein that acts as a sensor to detect foreign DNA and trigger an
innate immune response. The above regions are all of EUT origin,
suggesting possible EUT contribution to disease resistance in the
admixed population.

Heat stress can have adverse effects on reproductive
performance of cattle (Folman et al., 1983). Therefore, the
ability of animals to express enhanced reproduction under
heat stress conditions can be deemed as an adaptive feature
targeted by natural selection in the African environment. In
the present study, we found several overlaps between our
identified candidate regions for selection on BTAs 3, 7, 11,
12, 18, and 20 and genomic regions previously reported to
affect reproduction in cattle. Chromosome 3 had the largest
number of overlaps where four regions each from iHS and Rsb
analyses intersected with several genomic segments from the
literature. The iHS analysis identified a candidate region on this
chromosome spanning from 18.80 to 19.29 Mbp. This region
harbors several important genes (TDRKH, OAZ3, and CELF3)
that are involved in spermatogenesis and early embryonic
development in humans (Dasgupta and Ladd, 2012; Saxe et al.,
2013) and mice (e.g., Tokuhiro et al., 2009). The same region
also contains a significant peak in a large GWA on gestation
lengths of U.S. Holsteins (Maltecca et al., 2011). Another region
on the same chromosome (BTA 3; 9.45–9.76 Mbp) but identified
by Rsb has been shown to be associated with a number of
reproduction traits in Holstein cows (Cole et al., 2011). This
region also covers the IGSF8 gene, which produces a protein
with the same name that has been shown to be essential in
sperm-egg fusion in humans (Glazar and Evans, 2009). An iHS
identified region of IND origin on BTA 7 (41.40–42.00 Mbp)
overlaps with several regions reported for fertility-related traits
from the literature, including genomic scans of tropical beef
(Hawken et al., 2012) and Nelore (Irano et al., 2016) cattle.
The iHS analysis also identified two regions of IND genetic
background on BTAs 11 and 12 being important for reproduction
traits of dairy cattle (Cole et al., 2011; Suchocki and Szyda,
2015; Parker Gaddis et al., 2016). The region on chromosome 12
(28.64–29.05) encompassed two genes that are especially active
in ovaries (BRCA1 and ZAR1L) and regulate some important
functions for reproduction. These findings suggest an advantage
for inheriting genes of IND origin for fertility under heat
stress conditions.

The admixed cattle may have benefited from haplotypes
descended from EUT ancestors on BTA 18. Chromosome 18
has been identified as an influential chromosome for fertility
traits in dairy cows (e.g., Muller et al., 2017). We found two
regions on this chromosome based on Rsb analysis both showing
an EUT origin. The region spanning from 44.29 to 44.78 Mbp
overlaps with previously reported regions for cow fertility (Parker
Gaddis et al., 2016; Muller et al., 2017) and encompasses the
CHST8 gene. This gene, which ismainly expressed in the pituitary
gland, encodes a protein that is involved in production of
sex hormones.

CONCLUSIONS

By explicitly mapping the regions that differentiate the exotic
dairy from indigenous breeds, our GWA results, for the first
time, indicate that the evolution of modern dairy breeds
likely involved many genomic regions with no single region
having an exceptional effect on milk production, at least under
smallholder production conditions. Although clearly requiring
to be validated, the results suggest that there are many regions
involved in genetic variation within and between ancestral
populations that might be used in genomic selection in future.
The signatures of selection results provide evidence that the
genome of Kenyan admixed dairy cattle has been shaped by
adaptive selection in response to the low-input environment in
which they exist. Exploration of genes in the candidate regions
revealed a number of genes of possible functional importance.
Our results also indicate that different ancestral backgrounds
(indigenous vs. exotic breed genotypes) are advantageous in
different regions of the genome. If confirmed, it may be
possible to use beneficial haplotypes in genetic improvement of
crossbred performance.
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