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ABSTRACT

This study aimed to estimate genetic parameters of 
the linear trait genetic residual feed intake (RFI) and the 
ratio traits feed conversion ratio (FCR) and feed con-
version efficiency (FCE) along with dry matter intake 
(DMI) and energy sink traits such as energy-corrected 
milk (ECM), body weight (BW), body condition score 
(BCS), and BW change (BWC) across different weeks 
in the first lactation of Danish Holstein cows. A second 
objective was to conduct a Bayesian analysis of direct 
and correlated superiority of the selected group when 
selecting on genetic RFI, FCR, or FCE. Feed intake and 
energy sink traits were recorded during wk 1 to 44 of 
lactation on 847 primiparous Danish Holstein cows. A 
Bayesian multivariate random regression animal model 
was used to analyze DMI, ECM, BW, and BCS in dif-
ferent weeks of lactation. Genetic RFI was obtained by 
conditioning DMI on ECM, BW, BCS, and BWC using 
genetic partial regression coefficients. The posterior 
distribution of the breeding values for FCR and FCE 
was derived from the posterior distribution of functions 
of “fixed” environmental effects and random additive 
genetic effects on DMI and ECM. Genetic superiority 
of the selected group was defined as the difference in 
additive genetic mean of the selected top individuals 
expected to be potential parents, and the total popula-
tion after integrating genetic trends out of the posterior 
distribution of selection responses. Posterior means of 
heritability of genetic RFI ranged from 0.10 to 0.15, 
genetic variance of FCR and FCE ranged from 2.13 × 
10−3 to 3.2 × 10−3 (kg2 DMI/kg2 ECM) and 6.11 × 10−3 
to 2.4 × 10−2 (kg2 ECM/kg2 DMI), respectively. Selec-
tion against RFI showed a direct response of −1.01 to 
−2.23 kg/d RFI and correlated responses of −0.031 
to −0.056 kg/kg for FCR, 0.104 to 0.160 kg/kg for 
FCE, and −0.316 to −1.057 kg/d for DMI in differ-
ent weeks of lactation. Selection against RFI had no 

significant effect on production traits but selection for 
ratio traits reduced BW and BCS. Posterior means of 
genetic correlation between DMI and ratio traits were 
low. In conclusion, the Bayesian procedure allowed us 
to estimate genetic RFI without the need for separate 
multiple regression analysis and considered the non-
normal posterior distribution of ratio traits. Selection 
against genetic RFI might be an effective means to 
improve feed efficiency compared with ratio traits for 
feed efficiency in dairy cattle.
Key words: dairy cattle, feed efficiency, genetic 
variance, lactation period, response to selection

INTRODUCTION

Improvements in feed efficiency could reduce land 
use as well as other resources used for feed production 
and may help to reduce unwanted greenhouse gas emis-
sions (Løvendahl et al., 2018). Additionally, reductions 
in feed usage could result in economic benefits for dairy 
producers (Hardie et al., 2017); therefore, feed efficiency 
is an important part of the potential breeding objective 
for dairy cattle. Although direct selection for feed ef-
ficiency is a commonly used breeding objective in pigs 
and poultry (Emmerson, 1997; Shirali et al., 2018), it is 
still not widely used in dairy cattle breeding programs 
(Hurley et al., 2017). In addition, there is no consensus 
on a definition of feed efficiency for lactating animals, 
and the main barrier for not including feed efficiency 
in dairy cattle breeding programs is the unavailability 
of sufficient records of individual feed intake for the 
estimation of net feed efficiency on commercial farms. 
Recording individual feed intake is currently restricted 
to research farms and nucleus breeding herds, where 
the amount of available data is limited. However, feed 
intake is reported to be genetically heritable (Berry 
et al., 2014) although high accuracy in prediction of 
breeding values for feed intake of individual animal 
remains difficult to achieve because of limited data size.

Feed efficiency can be defined as a linear or as a ratio 
trait (Shirali et al., 2018). One of these traits is residual 
feed intake (RFI), which is a linear trait originally pro-
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posed by Koch et al. (1963). Classically, RFI refers to 
actual feed intake minus expected feed intake based on 
production traits. Ratio traits such as feed conversion 
ratio (FCR) in dairy cattle is defined as input (net 
energy feed intake) over output (ECM). In addition 
to FCR, the most commonly used ratio trait measure 
of feed efficiency in dairy cattle is feed conversion ef-
ficiency (FCE), which is the inverse of FCR. Coleman 
et al. (2010) defined FCE as milk production per kilo-
gram of BW in dairy cattle. This ratio trait has some 
limitations in dairy cattle breeding because dairy cows 
experience body tissue mobilization and catabolism 
along the lactation curve, which is not accounted for 
in this definition (Berry and Crowley, 2013). Another 
limitation is that ratio traits depend on the joint distri-
bution of 2 component traits. Moreover, direct selection 
on ratio traits might result in unexpected genetic gain 
in the component traits (Gunsett, 1984). To address 
the limitations of ratio traits such as their non-normal 
distribution, Shirali et al. (2018) derived an alternative 
Bayesian expression for FCR, accounting for inaccu-
racy in parameter estimation and for the non-normal 
distribution of ratio traits while estimating direct and 
correlated responses to selection.

Koch et al. (1963) computed 4 partial regressions to 
adjust feed consumption for differences in gain followed 
by another step for genetic analysis to derive a linear 
trait of feed efficiency in beef cattle. Alternatively, 
breeding values and the posterior distributions of RFI 
could be derived following the Bayesian framework by 
conditioning breeding values of feed intake on energy 
sink traits. In this way, it is unnecessary to obtain re-
gression coefficients from separate multiple regression 
analysis to derive RFI. Additionally, phenotypic and 
genetic RFI can be derived using partial phenotypic 
and genetic regression coefficients, respectively (Shirali 
et al., 2018).

The aims of this study were (1) to estimate genetic 
parameters of linear trait of genetic RFI and ratio 
traits of FCR and FCE, along with DMI and energy 
sink traits such as ECM, BW, BCS, and BW change 
(BWC) across different weeks in the first lactation 
of Danish Holstein cows; and (2) to estimate the ge-
netic superiority of the selected group when performing 
single-trait selection on genetic RFI, FCR, or DMI.

MATERIALS AND METHODS

Data Recording

Data on Danish Holstein cows were obtained from 
the herd located at the Danish Cattle Research Center 
(Foulum, Denmark). Raw data included information 
on 896 Holstein cows in their first, second, and third 

parities that were born between 1997 and 2016. Only 
data from 847 cows in the first parity were used for the 
present study. A detailed description of the data set 
and animal management is available in Li et al. (2016, 
2017) and Løvendahl and Chagunda (2011). Briefly, 
from 1 to 44 wk of lactation, all cows were fed a TMR, 
and individual feed intakes were recorded electronically 
(RIC system, Insentec, Marknesse, the Netherlands). A 
maximum of 3 kg of concentrate per cow per day was 
given to each cow at milking in the automatic milking 
system. The actual amount of concentrates given dur-
ing milking depended on the hours since last milking, 
and the supply of concentrates was controlled by the 
VMS management software (DeLaval International, 
Tumba, Sweden). Leftovers of concentrates during each 
milking were recorded by the automatic milking sys-
tem. The DMI per cow was expressed as the average 
of weekly sums of feed intake records for each week in 
lactation. Individual milk yield was recorded by the 
automatic milking system at each milking but milk 
yield was expressed as the average of daily yield over 
7 d. Milk composition was obtained by analyzing 4 to 
8 milk samples collected over a continuous 48-h period 
each week. Milk components were also expressed as 
weekly measurements. Body weight was recorded au-
tomatically at each milking and expressed as a weekly 
average, and BCS was assessed every 2 wk by trained 
observers on a scale of 1 to 5.

Data Editing

Energy-corrected milk per cow for each lactation 
week was calculated from milk yield and milk composi-
tion using the formula by Sjaunja et al. (1990):

	 ECM (kg) = milk yield (kg) 	  

× {[38.30 × fat content (g/kg) + 24.20  

× protein content (g/kg) + 16.54  

× lactose content (g/kg) + 20.7]/3,140}.

The studied traits were DMI, EMC, BW, and BCS. 
The age at first calving ranged from 653 to 1,099 d 
(Table 1). Pedigree information was extracted from the 
Nordic cattle genetic evaluation (NAV, Skejby, Den-
mark) and traced back for at least 4 generations; the 
total pedigree included 3,456 animals.

Statistical Analysis

Multivariate random regression analysis was per-
formed for DMI, ECM, BW, and BCS in the first lacta-
tion using the following multivariate model:
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	 y = Xb + Za + Wpe + e,	 [1]

where y is the vector of phenotypic records containing 
sub-vectors for DMI, ECM, and BW in each week of 
first lactation and BCS at 2- to 3-wk intervals of first 
lactation; b is the fixed effects of week of lactation (1 
to 44 wk of lactation) with a sub-vector for each trait. 
Fixed for all traits were year by season of recording (4 
seasons were defined: March to May, June to August, 
September to November, December to February) and 
the coefficient of a linear regression on calving age; a is 
the vector of random regressions for random additive 
genetic effect, and pe is the vector of random regres-
sions for random permanent environmental effect of the 
cows. Both a and pe contained sub-vectors for each of 
the traits DMI, ECM, BW, and BCS. Weekly means of 
DMI, ECM, and BCS per cow across the 44 wk of lacta-
tion were modeled by first-order Legendre polynomials; 
weekly means of BW were modeled by second-order 
Legendre polynomials for random additive genetic ef-
fect, and first-order Legendre polynomials were used to 
model random permanent environmental effect. Order 
of fit was same for both a and pe for the traits of DMI, 
ECM, and BCS. e is the vector of random residual 
effects containing sub-vectors for DMI, ECM, BW, and 
BCS, respectively. X is the corresponding design matrix 
for fixed effects, and Z and W are the corresponding 
covariable matrices containing Legendre polynomial co-
efficients corresponding to week of lactation. All design 
matrices (X, Z, and W) can be subdivided correspond-
ing to each trait in the model.

In the present study, a full Bayesian analysis was ac-
complished and, therefore, priors were specified for all 
parameters. Prior distributions for all random vectors 
were multivariate normal distributions with a mean of 
zero, and
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where the second subscript of R0,i corresponds to week 
of lactation (i = 1 to 44) so that the residual covariance 
matrix was different in each week of lactation.
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where A is the additive genetic relationship matrix, 
G0 is a 9 × 9 matrix of additive genetic (co)variances 
for DMI, ECM, BW, and BCS, and ⊗ is the Kronecker 
product. The genetic covariance matrices have order 
9 because of random intercepts and linear regressions 
on week of lactation for DMI, DCM, and BCS, and 
intercept, linear, and quadratic regressions for BW.

For the permanent environmental (co)variance ma-
trix, all sub-models contained random intercept and 
linear regression on week of lactation:
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where Pe0 is an 8 × 8 matrix of permanent environ-
mental (co)variances. The random effects of a, pe, 
and e were considered independent of each other. Flat 
priors were assumed for fixed effects in b and for all 
dispersion parameters R0,i, G0, and Pe0. See Eq. [2] in 
the following, where the diagonals of the matrices are 
the variances (i, l, and q are the intercept, linear, and 
quadratic effects in the Legendre polynomials, respec-
tively) and the off-diagonals are the covariances.

Bayesian analysis via Gibbs sampling was used to 
obtain posterior distributions for all parameters that 
were included in the multivariate model [1], including 
the matrices of variances and covariances. The Gibbs 
sampler was run for 1.1 million rounds, with the first 
100,000 rounds considered as burn-in; after the burn-
in, every 500th sample of all location and dispersion 
parameters was saved for posterior analysis. The RJMC 
module in the DMU software package by Madsen and 
Jensen (2013) was used for the analysis.

Analysis of Posterior Distributions

A total of 2,000 samples from the joint posterior dis-
tribution of all location and (co)variance parameters 
from the multivariate model [1] were saved for post-
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Table 1. Descriptive statistics of DMI (kg/d), ECM (kg/d), BW (kg), 
and BCS across 44 lactation weeks of primiparous Holstein cows

Trait Mean SD
No. of 
records

No. of 
animals

DMI 19.39 3.13 28,718 846
ECM 30.17 5.90 26,305 830
BW 611.72 65.85 28,147 845
BCS 3.19 0.28 12,590 828
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Gibbs analysis. The BOA package (Smith, 2007) in R 
(https:​/​/​www​.R​-project​.org/​) was used for convergence 
diagnostics through statistical and graphical analysis 
of the posterior distributions of the (co)variances, lo-
cation, and derived parameters investigated. We also 
looked at the effective sample size, which was >100 for 
all parameters in our study.

Derivation of (Co)variances for BWC for Each  
Week of Lactation

The (co)variance components of BWC in each lacta-
tion week were obtained from the slope of the fitted 
BW curve of each cow using first differences. First, 
a matrix containing Legendre polynomial coefficients 
from 1 to 44 wk of lactation for DMI, ECM, BW, and 
BCS was defined. Legendre polynomial coefficients for 
BWC were estimated using the first differences in 2 

consecutive weeks from Legendre polynomial coeffi-
cients for BW. The matrix (Φ1) containing coefficients 
of Legendre polynomial for the first week of lactation 
for DMI, ECM, BW, BCS, and BWC was made as in 
Eq. [3], where LPi is the intercept of Legendre poly-
nomial, LPl(1) is the linear effect for the coefficient of 
Legendre polynomial in the first week, LPl(2) is the 
linear effect for the coefficient of Legendre polynomial 
in the second week, LPq(1) is the quadratic effect for 
the coefficient of Legendre polynomial in first week, 
and LPq(2) is the quadratic effect for the coefficient of 
Legendre polynomial the second week. The first 4 rows 
in matrix (Φ1) are for the traits of DMI, ECM, BW, 
and BCS, respectively. The fifth row of Φ1 is to derive 
the coefficient of Legendre polynomial for BWC. The 
coefficient of Legendre polynomial for BWC at wk 44 of 
lactation was same as that of wk 43 of lactation. Thus, 
the dimension of matrix Φ was 220 × 9.

Islam et al.: SELECTION FOR FEED EFFICIENCY TRAITS IN CATTLE
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The G matrix was obtained as follows: G = ΦG0Φ′. 
The final G matrix contained the genetic (co)variances 
of DMI, ECM, BW, BCS, and BWC, and the G matrix 
was 5 × 5 in each of 44 wk of lactation; that is, in total, 
a matrix of dimension 220 × 220.

Likewise, the Pe matrix contained permanent envi-
ronmental (co)variances and was obtained as follows: 
Pe = ΦPe0Φ′, where the dimension of Φ was 220 × 8, 
because the permanent environmental variance of BW 
was modeled by first-order Legendre polynomial. The 
dimension of the Pe matrix was also 220 × 220. R was 
a block diagonal matrix, where each block contained 
residual (co)variances for DMI, ECM, BW, BCS, and 
BWC at each lactation week, resulting in a matrix of 
220 × 220.

The transformation matrix to convert the R0,i matrix 
into the final R matrix was made as follows:

	 t1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
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where t1 is the transformation matrix for the first week 
of lactation to derive residual variance for BWC, the 
first 4 rows of t1 indicate residual variances for DMI, 
ECM, BW, and BCS, respectively, and the fifth row 
was added to derive the residual variance for BWC. 
R0,12 was the block diagonal matrix for the first and 
second weeks of lactation, having the dimension of 8 
× 8.

The residual matrix for the first week of lactation, 
R(1), was obtained as follows:

	 R(1) = t1R0,12t1′,	

where the dimension of R(1) matrix is 5 × 5. Thus, we 
obtained a final R matrix having a dimension of 220 × 
220. The phenotypic (co)variance matrix was defined 
as P = G + Pe + R.

Posterior Distribution of Genetic RFI

Statistical analysis for genetic parameter estimation 
and prediction of breeding values for RFI, FCR, and 
FCE as measurements of feed efficiency were done as in 
Shirali et al. (2018). Residual feed intake was defined 
as genetic RFI, obtained by correcting breeding values 
of DMI on breeding values of ECM, BW, BCS, and 
BWC using partial genetic regression coefficients, mak-
ing sure that genetic (co)variances between RFI and 
production traits (ECM, BW, BCS, and BWC) were 

zero. Body weight was used in Eq. [5] as an indicator 
of maintenance requirement of the cows. Here, the deri-
vation of variance parameters and breeding values for 
RFI was shown, and RFI was derived as linear combi-
nations of the energy sink traits in the analysis. These 
derivations were used on all samples obtained from the 
Gibbs sampler to obtain the posterior distributions of 
(co)variances and breeding values for RFI definition. 
For RFI, the partial genetic regression coefficients (bG) 
for ECM, BW, BCS, and BWC on a weekly basis were 
computed from the corresponding diagonal sub-genetic 
(co)variance matrices (G). The partial phenotypic re-
gression coefficients (bP) were also computed weekly 
from the corresponding diagonal sub-phenotypic (co)
variance matrices (P).

Bayesian estimations of partial phenotypic (bP) and 
genetic (bG) regression coefficients in each lactation 
week were obtained as follows:

	 b P P G GbP P PG and = =− −1 1
p DMI p DMI, , , 	 [4]

which are 4 × 1 vector-valued functions in each lacta-
tion week that are obtained in each sample of the Gibbs 
output. GP is 4 × 4 matrix of genetic (co)variance for 
the production traits of ECM, BW, BCS, and BWC at 
each lactation week from G. Matrix Gp,DMI represents 
the genetic covariances of the production traits ECM, 
BW, BCS, and BWC with DMI at each lactation week.

For partial phenotypic regression coefficients (bP), 
PP is 4 × 4 matrix of phenotypic (co)variance at each 
lactation week for the production traits ECM, BW, 
BCS, and BWC from P. Matrix Pp,DMI is the pheno-
typic covariances of the production traits ECM, BW, 
BCS, and BWC with DMI in each lactation week.

Prediction of breeding values for RFI can be obtained 
simultaneously for all animals by the distributions of 
breeding values for DMI (aDMI), conditional on breed-
ing values for ECM (aECM), BW (aBW), BCS (aBCS), and 
BWC (aBWC) using the genetic (bG) partial regression 
coefficients. A sample from the posterior distribution of 
breeding values for genetic RFI is as follows:

	 aRFI = aDMI – [aECM aBW aBCS aBWC] bG.	 [5]

The corresponding variances and covariances can be 
obtained in each lactation week using the following 
equations:
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where BGB′ represents the genetic (co)variances; and

	 B =
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where bG,ECM, bG,BW, bG,BCS, and bG,BWC are genetic re-
gression coefficients from bG for ECM, BW, BCS, and 
BWC, respectively, in each lactation week.

Posterior Distribution of FCR and FCE

Feed conversion ratio is defined as the ratio of in-
put (DMI) over output (ECM), and FCE is defined 
as the inverse of FCR. Therefore, the distribution of 
FCR and FCE depends on means of the 2 normally 
distributed DMI and ECM and their (co)variance. As a 
result, the breeding value for FCR depends on “fixed” 
location parameters, because it depends on the mean of 
DMI (µDMI) and ECM (µECM). Breeding values for FCR 
(aFCR) and FCE (aFCE) can be calculated from underly-
ing parameters using the following equations (Shirali et 
al., 2018):

	 a
a
aFCR
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ECM ECM

DMI

ECM
=

+
+

−
µ
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µ
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, 	 [6]
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a
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=
+
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−
µ
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µ
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, 	 [7]

where the estimate of µDMI and µECM can be computed 
from Eq. [1] for DMI and ECM, respectively, as the 
sum of the fixed effect and in addition to fixed regres-
sions for covariable calving age, which were set to the 
population average.

Superiority of the Selected Group

Genetic trends are defined as change in mean breed-
ing values over years. The difference between the mean 
of the breeding values of selected animals and the mean 
of the breeding values of all animals corrected for the 
genetic trend is the Bayesian estimate of the superiority 
of the selected group. Genetic trends were estimated 
according to Shirali et al. (2018) as the yearly means of 
breeding values.

The mean of the selected group for trait j when se-
lecting on trait j' can be computed as

	 a
n

a a ajj
s

s
ij

i

n

ij n js′
−

=
′ ′= >( )∑1

1

* * * ,I 	 [8]

where aij
*  is the breeding value for trait j of animal i, 

corrected for the genetic trend; n is the total number of 
animals; and an js ′

*  is the trend-corrected breeding value 

for the individual ranked ns when ordering animals 
based on trend-corrected breeding values for trait j′; 
that is, the cut-off point for selection. If j = j′, it indi-
cates a direct response to selection for the trait j, and if 
j ≠ j′, it indicates a correlated response to selection in 
trait j while selecting for trait j′. In this study, direct 
and correlated responses to selection for feed efficiency 
traits in dairy cattle such as genetic RFI, FCR, and 
DMI are presented. The number of individuals ranked 
for analysis was decided based on truncation selection 
of the top 5 to 30% of animals. We present the results 
of truncation selection of the top 10% because results 
were consistent across all truncation points. Feed effi-
ciency traits were selected downward.

RESULTS

Genetic Parameters of Feed Efficiency Traits

Posterior means and standard deviations of heri-
tability and genetic variances of genetic RFI and its 
component traits are shown in Figures 1, 2, 3, 4, and 
5. Almost stable posterior means of genetic variances 
for RFI across the 44 wk of lactation were observed 
but we found upward trends of posterior means of 
DMI and ECM from 20 wk of lactation onward. We 
observed that posterior means of genetic variances for 
BW decreased slightly in the first 8 wk of lactation 
and then remained almost stable in mid lactation. We 
found very low genetic variances for BWC in mid lacta-
tion compared with early and late lactation. Posterior 
means of heritability for RFI followed the same trend 
as observed in posterior means of genetic variances. We 
found substantial heritability (posterior means) rang-
ing from 10 to 15% for genetic RFI across the 44 wk of 
lactation. Posterior means of heritability for production 
traits were 60% for BW, 30% for BCS, and 40% for 
ECM across different weeks of lactation.

Posterior means of genetic and phenotypic correla-
tions between genetic RFI and DMI across different 
weeks of lactation are shown in Figure 6. We found that 
RFI was genetically uncorrelated with its component 
traits as RFI was estimated using partial genetic re-
gression coefficients, but weak phenotypic correlations 
were found between RFI and production traits (results 
not shown). A moderate to low positive genetic correla-
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tion was found between RFI and DMI across weeks of 
lactation but the trend was decreasing in the later parts 
of lactation. Also, a slightly negative genetic correlation 
was observed between RFI and DMI in the later part of 
lactation. Posterior means of available genetic variance 
for FCR and FCE and the genetic correlations of ratio 
traits with other traits are shown in Table 2. Because 
FCR and FCE are ratio traits, the genetic variance 
for these traits cannot be computed from other vari-
ance components without resorting to approximations 
due to unknown distributional properties of the ratio 
traits. Here, we applied a Bayesian procedure to es-
timate genetic variances of ratio traits that accounts 
for non-normal distributional properties of ratio traits. 
As expected, FCR and FCE were almost completely 
negatively genetically correlated due to the definitions 
of the traits. The posterior means of genetic correlation 
were moderate and positive between FCR and RFI but 
moderate and negative between FCE and RFI. Mod-
erate to high posterior means of genetic correlations 
were found between ratio traits and ECM, and weak 
correlations were found between ratio traits and DMI. 
Because we found genetic correlations between FCR 

and FCE close to −1, we observed same values of ge-
netic correlations but in the opposite direction between 
FCR and production traits and FCE and production 
traits (results not shown).

Effect of DMI on Energy Sinks in Different  
Weeks of Lactation

Posterior means of partial genetic and phenotypic 
regression coefficients of DMI on energy sinks in differ-
ent weeks of lactation are shown in Figure 7 and Figure 
8, respectively. We found an upward trend of partial 
phenotypic and genetic regression coefficients of DMI 
on ECM across different weeks of lactation, indicating 
that more DMI is needed to produce 1 kg of ECM as 
cows move toward late lactation and late pregnancy. 
Regression coefficients for BW and ECM cannot be 
compared because these 2 traits have different scale.

Genetic Superiority of the Selected Group

The posterior means of the direct and correlated 
superiority of the selected groups for different feed ef-

Islam et al.: SELECTION FOR FEED EFFICIENCY TRAITS IN CATTLE

Figure 1. Posterior means (±SD) of heritabilities of genetic residual feed intake (RFI, kg/d), DMI (kg/d), ECM (kg/d), BW (kg), BCS, and 
BW change (BWC) of 847 Danish Holstein cows during their first lactation.
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ficiency traits are shown in Tables 3, 4, and 5. Direct 
selection on RFI resulted in a reduction in DMI with 
no significant change in production traits, although 
we observed changes in BWC; correlated responses on 
DMI varied across weeks of lactation. The expected 
selection response for both FCR and RFI should be 
negative because the objective is to reduce the feed 
intake proportion that does not affect maintenance and 
production. In contrast, the expected selection response 
for FCE should be positive because the objective is to 
increase milk yield per unit of DMI. Direct selection for 
FCR and FCE had a small effect on genetic RFI but 
we found a significant reduction in BW and BCS due 
to direct selection on ratio traits. We did not show the 
results of the response to selection for FCE because 
they were similar to those found for FCR but in the 
opposite direction.

DISCUSSION

Derivation of RFI

In this study, we used a Bayesian approach to derive 
genetic RFI obtained by conditioning breeding values 
of DMI on breeding values of production traits (ECM, 
BW, BCS, and BWC) using partial genetic regression 
coefficients. We did not compute BWC as a separate 
trait; instead, we derived it from the random regression 
model using first differences. This Bayesian approach 
considers the uncertainty of all unknown parameters in 

the model. In addition, this approach did not require 
separate multiple regression analyses to derive RFI. 
In the current study, we used a multivariate random 
regression animal model to analyze the data across the 
different weeks of lactation. Tempelman et al. (2015) 
derived a 2-stage model for genetic analysis of RFI. In 
the first stage, linear regression analysis was done to 
define RFI; then, in the second stage, genetic analysis 
was done for RFI using pedigree (Tempelman et al., 
2015). All the parameters in our one-step model were 
considered jointly and a 2-step model may not lead to 
optimal estimates. The one-step model was also derived 
for RFI in some studies by combining an energy sink 
model and genetic model (Tempelman et al., 2015; Li et 
al., 2017). Connor et al. (2013) derived RFI after sub-
tracting predicted energy intake from actual energy in-
take, where predicted energy intake was obtained from 
regression analysis. Because we used a multivariate 
random regression model, we easily obtained BWC in 
each lactation week from the first derivative of the fit-
ted BW curve of each animal (Li et al., 2017). However, 
BWC between successive weeks in the current method 
may increase inevitable errors associated with each 
weekly observation. Additionally, a random regression 
animal model is useful to genetically change the lacta-
tion profile (Hurley et al., 2017). The model derived in 
this study did not include all the potential energy sinks 
such as growth in pregnancy (foster growth), activity, 
and response to ambient temperature, among others. 
Furthermore, we had the feed intake record as overall 
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Figure 2. Posterior means (±SD) of genetic variances of genetic residual feed intake (RFI, kg/d) and DMI (kg/d) across 44 wk of the first 
lactation of 847 Danish Holstein cows.
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DMI. Therefore, we did not investigate the specific 
feed composition, and as we had a very small data 
set for feed efficiency analysis, we could not design a 
season-specific study. However, it will be important to 
investigate this further using larger data sets. Interna-
tional collation of feed intake data is a potential way to 
increase the volume of data for feed efficiency analysis. 
Future research is needed to derive statistical models 
and include more of the measurable energy sinks to 
derive genetic RFI.

Derivation of FCR and FCE

In this study, FCR was derived as the ratio of input 
(DMI) to output (ECM) using a Bayesian approach, 
and FCE was estimated as the inverse of FCR. Coleman 
et al. (2010) defined FCE as a ratio of total DMI to ki-
lograms of BW. Commonly, FCE has been analyzed as 
a ratio trait of feed efficiency in lactating cows such as 
milk production per unit intake or milk production per 
kilogram of BW (Berry and Crowley, 2013). However, 
these definitions do not consider the fixed and environ-
mental effects affecting the component traits. Shirali et 
al. (2018) derived a Bayesian approach accounting for 
the uncertainties of the fixed effects and handling the 
non-normal distributional properties of the ratio trait. 
This Bayesian approach was followed to define FCR 
and FCE in the current study.

Genetic Background of RFI

Considerable amounts of genetic variance in genetic 
RFI were found in this study, which suggests that 
genetic RFI can be used in dairy cattle breeding to 
improve feed efficiency. Relatively low posterior means 
of heritability were found for genetic RFI compared 
with values of heritability for phenotypic RFI found 
in different studies (Tempelman et al., 2015; Li et al., 
2017). We found 10 to 15% posterior means of heri-
tability for RFI, which is similar to values reported 
by Lu et al. (2018) for the heritability of RFI (16%). 
Lu et al. (2018) also defined RFI using partial geno-
typic regression coefficients that made RFI genetically 
independent of production traits. Li et al. (2017) es-
timated heritability for phenotypic RFI ranging from 
0.10 to 0.29, considering partial phenotypic regression 
coefficients across the periods of lactation. However, 
when they considered period-specific partial regression 
coefficients, heritability was found ranging from 0.10 
to 0.23. Tempelman et al. (2015) found around 10% 
heritability for phenotypic RFI using 2-step model in 
US Holstein cows, which agrees with the results of the 
present study. In contrast, Tempelman et al. (2015) 
found higher heritability ranging from 15 to 25% in 
Dutch Holstein cows. Vallimont et al. (2011) found a 
low heritability (0.01) for phenotypic RFI, which is 
much lower than the current study.

Islam et al.: SELECTION FOR FEED EFFICIENCY TRAITS IN CATTLE

Figure 3. Posterior means (±SD) of genetic variances of ECM (kg/d) across 44 wk of the first lactation of 847 Danish Holstein cows.
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Heritability of genetic RFI depends on the genetic 
parameters of feed intake and production traits. The 
heritability of genetic RFI is expected to be lower than 
the heritability of phenotypic RFI, although with some 
exceptions. This is because the genetic variance of 
genetic RFI is not affected by the residual covariance 
between production and feed intake, and because the 
residual covariance between feed intake and the produc-
tion traits affects the phenotypic RFI, finally resulting 
in higher heritability of phenotypic RFI than genetic 
RFI (Kennedy et al., 1993). We observed considerably 
higher genetic variance for DMI than for genetic RFI. 
Most of the genetic variance in DMI is determined by 
the production traits, yet considerable genetic variance 
in DMI is explained by genetic RFI. For example, 15 
to 40% of genetic variation in DMI was determined by 
genetic RFI in different weeks of lactation in our study. 
Shirali et al. (2018) found that genetic RFI explained 
26% of genetic variance in feed intake in pigs.

Genetic Background of DMI and Production Traits

Posterior means of heritability for DMI was found to 
be lower in early periods of lactation than previously 
reported by Li et al. (2016) for Holstein cows from Den-
mark and Sweden. However, the heritabilities found in 
mid and late lactation for DMI were in the upper range 
of values (0.32 to 0.49) reported by Byskov et al. (2017) 

and Manzanilla Pech et al. (2014) for Holstein cows. 
Posterior means of genetic variance for DMI showed 
increasing trend across weeks of lactation, which agrees 
with the results found by Li et al. (2018). During early 
lactation, posterior means of heritability for ECM were 
found to be higher in this study than the value found 
by Li et al. (2018), but with a similar stable pattern 
over the trajectory. In contrast, Manzanilla Pech et al. 
(2014) found the opposite pattern for heritability such 
that values increased from low to high from early to 
late lactation in Dutch Holstein cows. The posterior 
means of heritability for BW were lower than the values 
found by Manzanilla Pech et al. (2014) but were in 
the upper range of values (0.49 to 0.63) reported by Li 
et al. (2018). Posterior means of heritability for BCS 
across different periods of lactation in the current study 
showed a pattern similar to that found by Berry et al. 
(2003).

Genetic Correlation Between Feed Efficiency  
and Production Traits

In this study, we found zero correlation estimates 
between genetic RFI and production traits, as expected 
because of the RFI definition used. Following the study 
of Kennedy et al. (1993), partial genetic regression co-
efficients were used to derive genetic RFI, and partial 
genetic regression coefficients must be obtained from 
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Figure 4. Posterior means (±SD) of genetic variances of BW (kg) across 44 wk of the first lactation of 847 Danish Holstein cows.



Journal of Dairy Science Vol. 103 No. 10, 2020

9160

genetic variance and covariance components so that 
genetic RFI is independent of the production traits. 
However, there would be some phenotypic covariance 
between genetic RFI and production traits due to en-
vironmental covariance, as explained by Kennedy et al. 
(1993).

We also derived a Bayesian estimate of the genetic 
variance for the ratio traits (i.e., FCR and FCE), as 
genetic parameters of ratio traits cannot be estimated 
directly because of the non-normal distributional prop-
erties (Shirali et al., 2018). We found comparatively 
higher genetic variance for FCE than for FCR. Valli-
mont et al. (2011) reported that the genetic variance of 
feed efficiency (defined as 305-d FCM over 305-d DMI) 
was 0.006, which is lower than the value of FCE (0.049) 
and higher than the value of FCR (0.005) observed 
in our study. We observed moderate to high posterior 
means of genetic correlations between the ratio traits 
and the production traits, which agrees with the results 
reported by Vallimont et al. (2011). Feed conversion 
ratio and FCE were genetically correlated with produc-
tion traits, as expected because of the property of the 
ratio traits (Berry, 2009). It might be expected that the 
genetic correlation between DMI and FCE would be 
negative because DMI is the denominator in the ratio, 
but we found a positive genetic correlation between DMI 
and FCE, which could be because of the high genetic 
correlation between DMI (denominator) and ECM (nu-
merator) for FCE. This high genetic correlation might 
neutralize the negative genetic correlation between FCE 

and DMI in this study and generate a positive genetic 
correlation (Vallimont et al., 2011). The correlation of 
FCR with BW and BCS varied between early and later 
periods of lactation in this study, perhaps because FCR 
is the ratio of 2 performance traits having different 
variance components and means across the lactation 
trajectory (Hurley et al., 2017). Generally, it is difficult 
to derive an appropriate measure of feed efficiency in 
lactating animals with the ratio trait because lactating 
cows lose body reserve by rapid catabolism in early lac-
tation and then gain weight by anabolism to replenish 
the body reserves in later lactation. These physiologi-
cal changes must be accounted for in the definition of 
feed efficiency but are not accounted for in ratio traits 
(Berry and Crowley, 2013).

Bayesian Estimation of Genetic Superiority  
of the Selected Group

In our study, we derived the genetic superiority of the 
selected group using a Bayesian approach to investigate 
effects of using different feed efficiency traits, either 
linear (genetic RFI) or ratio (FCR and FCE) traits, in 
dairy cattle breeding. Sorensen et al. (1994) explained 
that the Bayesian approach provides the marginal 
posterior distribution of a measure of response to se-
lection that can be described as a weighted average 
of an infinite number of conditional distributions. The 
Bayesian approach can also take care of uncertainty in 
the unknown parameters in the model. Sorensen et al. 
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Figure 5. Posterior means of genetic variances of BW change (BWC) across 44 wk of the first lactation of 847 Danish Holstein cows.
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(1994) estimated response to selection in selection ex-
periments over several generations. Here, we estimated 
the superiority of the selected group within a single 
generation by conditioning on the genetic trend.

We defined genetic RFI in a way that ensures genetic 
independence of the production traits, following Ken-
nedy et al. (1993). We then investigated the direct and 
correlated response to selection for genetic RFI. It is 
expected that selection for genetic RFI is free of cor-
related response in production traits and our results 
confirmed that expectation. Correlated response in feed 
intake due to selection on genetic RFI was very similar 
to the direct response to selection on genetic RFI. This 
agrees with Kennedy et al. (1993), who showed that 
direct response in genetic RFI is equal to the correlated 
response in feed intake when selection is performed 
based on genetic RFI. Moreover, response to selection on 
genetic RFI depends on the heritability of feed intake, 

but it also depends on the environmental correlation 
between feed intake and production traits. Response 
to selection on genetic RFI increases when heritability 
of feed intake increases and when the environmental 
correlation between feed intake and production traits 
increases. In contrast, response to selection on genetic 
RFI decreases when heritability of production traits 
increases and genetic correlation between feed intake 
and production traits increases. In our study, we found 
lower heritability of DMI than of BW and ECM only in 
first period of lactation.

Zetouni et al. (2017) compared selection on a linear 
multi-trait index or a ratio trait (CH4/kg of milk) in 
a dairy cattle population in a simulation study. They 
found that the multi-trait index was a better way to 
improve the ratio’s component traits than selecting 
directly for the ratio trait. That confirmed the earlier 
findings of Gunsett (1984), who showed that there is 
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Figure 6. Posterior means (±SD) of phenotypic and genetic correlations between DMI (kg/d) and genetic residual feed intake (RFI, kg/d) 
across 44 wk of the first lactation of 847 Danish Holstein cows.

Table 2. Posterior means of available genetic variance for feed conversion ratio (FCR, kg/kg) and genetic correlations of FCR with genetic 
residual feed intake (RFI, kg/d), feed conversion efficiency (FCE), DMI (kg/d), ECM (kg/d), BW (kg), BCS, and change in BW (BWC, kg) 
across weeks of first lactation of 847 Danish Holstein cows (by row)

Lactation 
week

Genetic 
variance for 
FCR (×10−3)

Genetic correlation (posterior SD)

RFI FCE DMI ECM BW BCS BWC

1 3.21 (1.1) 0.63 (0.08) −0.98 (0.02) 0.26 (0.10) −0.85 (0.03) −0.30 (0.07) 0.33 (0.08) −0.01 (0.02)
5 3.20 (1.1) 0.64 (0.08) −0.98 (0.02) 0.21 (0.10) −0.85 (0.03) −0.17 (0.07) 0.37 (0.08) −0.01 (0.02)
10 3.30 (1.1) 0.64 (0.08) −0.99 (0.02) 0.16 (0.10) −0.85 (0.03) −0.05 (0.07) 0.40 (0.08) −0.01 (0.02)
15 3.21 (1.1) 0.64 (0.08) −0.99 (0.02) 0.09 (0.11) −0.84 (0.03) 0.06 (0.08) 0.43 (0.07) −0.01 (0.02)
20 2.31 (1.2) 0.64 (0.10) −0.99 (0.01) −0.15 (0.10) −0.81 (0.03) 0.36 (0.08) 0.53 (0.07) 0.01 (0.02)
25 2.14 (1.1) 0.62 (0.11) −0.99 (0.01) −0.26 (0.10) −0.78 (0.04) 0.43 (0.08) 0.55 (0.07) 0.02 (0.03)
30 2.13 (1.1) 0.61 (0.10) −0.99 (0.01) −0.22 (0.11) −0.67 (0.08) 0.44 (0.09) 0.38 (0.10) 0.01 (0.02)
35 2.13 (1.1) 0.66 (0.09) −0.99 (0.01) −0.12 (0.14) −0.60 (0.09) 0.45 (0.10) 0.23 (0.11) 0.01 (0.02)
40 2.13 (1.1) 0.68 (0.09) −0.99 (0.01) −0.12 (0.14) −0.55 (0.10) 0.49 (0.10) 0.09 (0.01) 0.01 (0.02)
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Figure 7. Partial genetic regression coefficients (±SD) of DMI (kg/d) on ECM (kg/d), BW (kg) and BW change (BWC) of 847 Danish 
Holstein cows in their first lactation.

Figure 8. Partial phenotypic regression coefficients (±SD) of DMI (kg/d) on ECM (kg/d), BW (kg), and BW change (BWC) of 847 Danish 
Holstein cows in their first lactation.
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uncertainty about how selection pressure will be dis-
tributed on the component traits, depending on the 
heritability of the traits. As a result, it is difficult to 
improve the component traits of FCR and FCE by 
directly selecting on FCR or FCE in dairy cattle. In 
addition, we found low genetic correlations of DMI 
with both FCE and FCR. That suggests that reduction 
of DMI would not be possible by selecting directly on 
ratio traits. In FCR, the objective is to reduce DMI 
(numerator) in relation to ECM, whereas, in FCE, the 
objective is to increase ECM (numerator) in relation to 
DMI; we found that FCR and FCE are strongly geneti-
cally correlated. Accordingly, we observed very similar 
responses to selection for either FCR or FCE. Gunsett 
(1984) studied linear index selection to improve traits 
defined as ratios. The author reported that response 
to selection is a function of selection intensity of the 
component traits when selection is done directly on the 
ratio trait, resulting in problems in predicting genetic 
gain. Furthermore, response to selection depends on the 
heritability of the component traits. Direct selection on 
a ratio trait would be less effective if the heritability 
of the numerator were less than the heritability of the 
denominator (Gunsett, 1984).

Selection for RFI Versus Ratio Traits of Feed 
Efficiency in Lactating Dairy Cattle

Lactating dairy cows undergo extensive physiological 
changes throughout lactation such as catabolism im-
mediately after calving and anabolism of body tissue 
in the later part of the pregnancy (Roche et al., 2009). 
Therefore, any measure of feed efficiency in lactating 
dairy cattle must consider the physiological changes 
during the lactation period (Berry and Crowley, 2013). 
There is considerable interest in including feed effi-
ciency traits in the breeding goal. However, there is 
no consensus about the most appropriate definition of 
feed efficiency (Berry, 2009). Although FCR is widely 
used in swine and poultry and is easy to calculate, 
FCR cannot account for body tissue mobilization in 
lactating cows. Feed conversion ratio is correlated with 
component traits and depends on the joint distribution 
of 2 variables, which results in difficulties in predicting 
response to selection. The disadvantages of FCR can 
be overcome with the linear trait RFI, because genetic 
RFI is genetically independent of the production traits 
included in the statistical model. Therefore, selection 
for genetic RFI could produce superior genetics in terms 
of feed efficiency without affecting production traits. 
Furthermore, selection for genetic RFI could be useful 
for studying the biological basis of feed efficiency and 
feed intake independent of production traits. However, 
direct and correlated responses to selection on RFI 
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depend on the knowledge of genetic and phenotypic 
parameters of the component traits (Kennedy et al., 
1993).

CONCLUSIONS

We estimated genetic variance for feed efficiency traits 
and response to selection for linear or ratio efficiency 
traits in dairy cattle using a Bayesian procedure. We 
defined feed efficiency as a linear trait (RFI) using par-
tial genetic regression coefficients so that RFI became 
genetically independent of the production traits. We 
also derived the breeding values of FCR and FCE with 
the Bayesian method, without resorting to approxima-
tions. We found weak genetic correlations between 
ratio traits and DMI, indicating that direct selection 
for ratio traits would not be effective for reducing feed 
intake in dairy cattle without affecting body condition. 
We found that direct selection for genetic RFI did not 
result in significant change in production traits. Direct 
selection for ratio traits resulted in the reduction of BW 
and body condition. Reduction of body condition could 
have a negative effect on animal health. In comparing 
genetic RFI and DMI, we can easily communicate with 
farmers to reduce RFI instead of DMI because DMI is 
highly genetically correlated with production traits.
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