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The pathogenesis of Acute Rheumatic Fever/Rheumatic Heart Disease (ARF/RHD) and

associated neurobehavioral complications including Sydenham’s chorea (SC) is complex.

Disease complications triggered by Group A streptococcal (GAS) infection are confined

to human and determining the early events leading to pathology requires a robust

animal model that reflects the hallmark features of the disease. However, modeling these

conditions in a laboratory animal, of a uniquely human disease is challenging. Animal

models including cattle, sheep, pig, dog, cat, guinea pigs rats and mice have been used

extensively to dissect molecular mechanisms of the autoimmune inflammatory responses

in ARF/RHD. Despite the characteristic limitations of some animal models, several

rodent models have significantly contributed to better understanding of the fundamental

mechanisms underpinning features of ARF/RHD. In the Lewis rat autoimmune valvulitis

model the development of myocarditis and valvulitis with the infiltration of mononuclear

cells along with generation of antibodies that cross-react with cardiac tissue proteins

following exposure to GAS antigens were found to be similar to ARF/RHD. We have

recently shown that Lewis rats injected with recombinant GAS antigens simultaneously

developed cardiac and neurobehavioral changes. Since ARF/RHD is multifactorial in

origin, an animal model which exhibit the characteristics of several of the cardinal

diagnostic criteria observed in ARF/RHD, would be advantageous to determine the early

immune responses to facilitate biomarker discovery as well as provide a suitable model

to evaluate treatment options, safety and efficacy of vaccine candidates. This review

focuses on some of the common small animals and their advantages and limitations.

Keywords: animal model, acute rheumatic fever, rheumatic heart disease, sydenham chorea, lewis rats,

autoimmunity, Group A streptococcus
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INTRODUCTION

The concept of comparative medicine developed based on
the theory that animal species share physiological, anatomical
and behavioral characteristics similar to human (1). This
concept led to the use of different model organisms in all
fields of biomedical research (2) and they continue to play
a vital role in translational research for the advancement
of human and animal health. The use of animal models to
investigate human disease has its origins over 2,400 years
ago. By the beginning of the twentieth century the use
of animal models became more experimental rather than
observational (1). Animals have contributed immensely in
elucidating the disease mechanisms and the development
of therapeutics including vaccines. An animal model, in
which the immunopathological mechanisms or outcome of
disease resembles those that occur in humans, is a logical
adjunct to investigate human diseases. Thus, in this review we
summarize the current animal models available to investigate
the pathogenesis of Acute Rheumatic Fever (ARF), Rheumatic
Heart Disease (RHD) and associated post-streptococcal
autoimmune complications.

Post-streptococcal autoimmune disorders are complex
immune mediated disease mostly affecting children and young
adults following exposure to Group A streptococcal (GAS)
infection. These includes ARF, RHD, Sydenham Chorea (SC)
and possibly, pediatric autoimmune neuropsychiatric disorders
associated with streptococcal infections (PANDAS) (3–5). After
1–3 weeks of an untreated GAS infection, ∼1–3% of individuals
develop non-suppurative post streptococcal complications
including ARF, which may lead to RHD and cardiac failure
(6). ARF affects multiple organs and primarily involve the
joints, skin, brain and the heart. Except for cardiac damage
most other manifestations are transient. After the initial or
repeated episodes of ARF, about 30–45% of patients develop
RHD (5) which poses an important public health problems
in low to middle-income countries, and First Nation Peoples
of high-income countries. Indigenous Australians (Aboriginal
and Torres Strait Islander people) and New Zealanders (Māori
and Pacific Islander populations) have among the highest rates
of ARF in the developed countries (5, 7). RHD is the most
common acquired cause of cardiac damage (8) affecting children
between the ages of 5 and 15 years old (9). A gender propensity
for ARF has not been widely observed although some studies
have found RHD to be prevalent among females (10). The
epidemiology of ARF/RHD is highly diverse and is relatively
rare where access to modern medical care is readily available.
However, it has not been completely eradicated with annual
incidence of ARF varying from <0.5/100,000 in developed
countries to >100/100,000 in developing countries (11). It
is estimated that annually, approximately half a million new
ARF cases are diagnosed globally (11). On the other hand, the
overall prevalence of RHD is highest in sub-Saharan Africa,
South Asia and Oceania. In 2015, 33.4 million people were
reported to be have RHD with ∼297,300–337,300 deaths in
RHD endemic regions. In non-endemic regions it was 221,600
cases (12).

Variety of host, bacterial, socioeconomic and environmental
factors contribute to the prevalence and incidence of ARF/RHD
(5). Environmental factors includes climatic factors, sanitation,
poor hygiene, overcrowding and house hold conditions (5).
In addition better living conditions led to decrease in the
incidence of ARF/RHD (13, 14). Malnutrition and poverty are
two other important factor among children contributing to
repeated exposure to streptococcal and the spread of infection
(13, 15). Poor healthcare system due to low socioeconomic status
and inadequate awareness of the disease in the community leads
to misdiagnosis or late diagnosis and treatment of GAS infection
and ARF/RHD (5, 14, 16). In addition, a strong predisposition of
genetic factors including genetic polymorphisms in many human
leukocyte antigen (HLA) class II alleles in the development of
ARF/RHD have also been described (17).

PATHOGENESIS OF ARF/RHD

The pathophysiology of post-streptococcal complication is not
fully understood, however antigenic mimicry between GAS
antigens and host proteins is partly considered as factor that
triggers autoimmunity. It may also be affected by several
environmental, genetic and socioeconomic factors. Although an
autoimmune process has long been considered to be responsible
for the initiation of ARF/RHD, it is only in the last few
decades that the mechanisms involved in the pathogenesis of
this post streptococcal conditions have been unraveled partly
due to experimentation on animal models. Studies have shown
that molecular mimicry of streptococcal antigens enable the
generation of antibodies that bind to both GAS antigens
and cross-react with host tissue proteins including cardiac
myosin, collagen I and IV, tropomycin, laminin, vimentin, and
keratin (18).

Further studies have demonstrated that human collagen IV,
one of the major components of the basal membrane, a layer
of extracellular matrix secreted by epithelial cells, can also
be involved in the pathogenesis of ARF/RHD by acting as
an autoantigen after forming a complex with GAS antigens
(19). Several studies have demonstrated that GAS strains are
capable of binding and aggregating to human collagen (6, 20–
22). Collagen IV binds to cells and other molecules via an N-
terminal Cyanogen Bromide fragment 3 (CB3) (19). GAS binds
to CB3 of collagen via the octapeptide (AXYLZZLN) epitope
of M protein and aggregate to form an antigenic complex with
human collagen IV (19). The octapeptide region of M protein,
which interact with collagen, is designated as PARF (peptide
associated with rheumatic fever). The autoantigenicity of the M
protein-collagen complex induces ARF/RHD. Higher levels of
anti-collagen antibodies were found in the sera of ARF patients
than healthy controls (22). In addition studies showed that
injection of mice with GAS proteins also induce a collagen
autoantibody response. However, these antibodies did not cross-
react with the respective M protein. This observation leads
to the understanding that the collagen autoimmunity caused
by PARF motif of M protein does not depend on molecular
mimicry (22).
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ANIMAL MODELS OF ARF/RHD

Post streptococcal autoimmune complications including
ARF/RHD is uniquely a human condition and humans
are the only host and reservoir for GAS. Thus, modeling
post-streptococcal autoimmune complications in animal is
challenging. However, animals are the only experimental models
used to investigate the characteristic signs, pathogenesis and
pathophysiology specific to ARF/RHD. Animals including
guinea pigs, rabbits, pigs, sheep, goats, cattle, cats, dogs, and
non-human primates have been used as experimental model
to understand the disease mechanism of ARF/RHD and to
investigate the rheumatogenic potential of GAS M proteins (23–
36). In the last two decades these animals were replaced by mice
and rats due to lower costs, ease of handling and observation of
pathological, immunological and functional changes comparable
to ARF/RHD patients (Table 1).

The early experiments on rheumatic myocarditis were carried
out in rabbits based on the hypothesis that ARF/RHDwas caused
either by direct streptococcal infection or by direct damage
to heart tissues by streptococcal toxins. However, none of the
rabbits showed similar pathology to rheumatic myocarditis in
these studies (23). A study by Gross et al. as early as in 1929
examined the development of rheumatic myocarditis induced by
live and killed streptococci isolated from patients with ARF/RHD
in seven different animals including rabbits, guinea pigs, dogs,
cats, swine, sheep, and calves. These studies failed to induce
myocarditis in any of these animals (23). However, some rabbits
showed accumulation of lymphocytes and mononuclear cells
in their myocardium, low-grade pericarditis with mononuclear
cells, acute focal interstitial myocarditis and large, irregular,
thrombotic mass on the posterior cusp of the mitral valve.
Similarly, guinea pigs showed focal interstitial accumulations of
lymphocytes and large mononuclear cells in the myocardium,
whereas dogs and cats had no gross or microscopic pathological
cardiac lesions. Only one of the pigs in the study developed
transient arthritis which disappeared after only a few days. The
only positive pathological finding in sheep was a few interstitial
foci of lymphocytes and mononuclear cells in the myocardium of
the left ventricle (23).

To investigate the role of cellular immune response in
RHD, Yang et al. (25) injected Guinea pigs with heat
killed GAS and/or GAS M protein. Animals developed
valvulitis and myocarditis with infiltration of T and B
cells, macrophages and fibroblast into the myocardium and
mitral valve (25). Myocardial and endothelial damage due
to infiltration of granulocytes, macrophage and lymphocytes
were observed in New Zealand White Rabbits injected with
GAS M proteins (28, 29, 37) (Table 1). In addition, GAS
pharyngeal spray on non-human primate (rhesus monkey,
Macaca mulatta) induced typical RHD lesions as well as
evidence of myocarditis and valvulitis along with infiltration
of lymphocytes, histiocytes, Anitshkow cells, and plasma
cells (38). Later, subcutaneous injection of GAS membrane
antigens to rhesus monkeys’ showed similar histological
changes with endocardial and sub endocardial infiltration
of mononuclear cells (39). Despite numerous attempts,

relevant animal model for ARF/RHD still remains elusive
(Table 1).

RODENT MODELS OF ARF/RHD

Rodent models due to ease of handling, small body size, large
litter sigs, short life span and cost are considered ideal for
biomedical research (1). The Swiss-Webster mice were the
first rodent model of ARF/RHD (32). These mice developed
cardiac lesions similar to ARF when infected with GAS cell wall
fragments. MRL+/+ mice injected with N-terminal peptides
of GAS M5 protein developed myocarditis (40). Moreover,
myocarditis and CD4+ lymphocyte infiltration was detected in
BALB/c (41, 42), Swiss mice (43), A/J mouse (44) and DBA/2
(45)mouse strains following the injection of GAS antigens and/or
cardiac myosin. A more robust animal model for ARF/RHD was
developed by immunizing Lewis rats with GAS M protein (26,
46). Upon injection of GAS antigens, or cardiac myosin, animals
developed myocarditis and/or valvulitis similar to patients with
ARF/RHD with antibody and T-cell responses that cross-reacted
with host cardiac proteins.

RAT AUTOIMMUNE VALVULITIS MODEL
OF ARF/RHD

Lewis rats were used to scrutinize myocarditis by injection
of cardiac myosin. Marked cellular infiltration consisting of
mononuclear cells, neutrophils, fibroblasts, and multinucleated
giant cells were observed in the experimental allergic myocarditis
(EAM) (47). Quinn et al. in 2001 developed the Lewis
rat autoimmune valvulitis (RAV) model following exposure
to streptococcal antigens to investigate the pathogenesis of
ARF/RHD (26). This Lewis rat model has become the dominant
animal model used to investigate the pathogenesis of ARF/RHD
and to determine the safety of experimental GAS vaccine
candidates (27, 30, 33–36).

Lewis rats immunized with recombinant M6 (rM6) protein
demonstrated valvulitis and focal myocarditis, which were
histologically similar to pathological lesions observed in patients
with RHD (26). Later studies by Gorton et al. (30) reported
valvulitis and myocarditis with infiltration of CD4+ cells,
CD68+ macrophages and Anitschkow cells in the myocardium
and mitral, aortic and tricuspid valves of Lewis rats following
injection with recombinant M5 proteins (Table 1). Antibody
and T cell responses to recombinant GAS M protein and
the subsequent interactions with cardiac tissue have been
predominantly investigated using a RAV model (Figure 1B)
(30–34, 48). Furthermore, studies on Lewis rats indicated the
role of infiltrating CD4+ cells and macrophages in the disease
process. In addition to these histological changes, Lewis rats
also demonstrated electrocardiographic and echocardiographic
changes following exposure to killed GAS and recombinant GAS
M proteins induce cardiac functional abnormalities comparable
to patients with ARF (Figure 1D) (35, 36).

The hallmark features of ARF/RHD includes lesions in
myocardium and valves (Figure 1E). In Lewis rats repeat
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TABLE 1 | Immunopathological changes in small animals and rodents investigated as experimental model for post streptococcal complications.

Antigens (route

of injection)

Histological

changes

Antibody

response

T-cell and

cytokine

response

Tissue cross

reactivity

References

Cardiac pathology

Mice Cell wall fragments

of GAS (i.p.)

Myocarditis,

valvulitis

MNCs, anitschkow

cell, PMNCs

Anti-GAS IgG

collagen IV

reactive IgG

N/A Basement

membrane

collagen

(20, 43)

Recombinant

proteins/peptides

of GAS (f.p., s.c.)

Myocarditis,

valvulitis

Anti-GAS IgG CD4+ (M) Myosin (77)

Lewis rats Whole GAS and/or

SDSE (f.p., s.c.)

Myocarditis,

valvulitis

monocyte,

fibroblast, aschoff

like cell

lymphocyte, macrophages

Anti-streptococcal

IgG

Anti-myocardial

IgG,

antistreptolysin O

CD3+ (M), CD68+

(M), IFN-γ K (B),

IL-17A K (B), IL-4 K

(B)

Myocardial

protein, valvular

protein, cardiac

myosin, collagen

(31, 32, 35, 36)

Recombinant

proteins/peptides

of GAS and/or

SDSE (f.p., s.c.)

Myocarditis,

valvulitis

T-cell, MNCs,

PMNCs,

anitschkow cell

Anti-myosin IgG

Anti- collagen IgG

CD3+ (M), CD4+

(M), CD8+ (M),

CD68+ (M), IFN-γ
K, IL-17A K, IL-4 K

Myosin, valvular

protein, collagen

(26, 27, 30, 34–36)

Serum from GAS

exposed rats (s.c.)

Myocarditis,

valvulitis

T-cell, MNCs,

PMNCs,

anitschkow cell

Anti-myosin IgG CD4+ (M) Myosin, valvular

protein, collagen

(36)

Guinea pig Whole GAS (s.c.,

f.p., i.m., i.v.)

Myocarditis,

valvulitis

B-cell,

macrophages,

MNCs, fibroblast,

cytotoxic lymphocytes

Anti-streptococcal

IgG

N/A Cardiac myofibre,

sarcolemma

(23, 25)

Cell wall fragments

of GAS (s.c., f.p.,

i.m.)

Myocarditis,

valvulitis

B-cell,

macrophages,

fibroblast,

cytotoxic lymphocytes

Anti-streptococcal

IgG

N/A Cardiac myofibre,

sarcolemma

(25)

Rabbit Whole GAS (s.c.,

f.p., i.m., i.v., i.d.,

i.p.)

Myocarditis,

valvulitis

lymphocyte,

MNCs, leukocyte,

aschoff bodies,

fibroblast,

fibrin, collagen

N/A N/A Skeletal

muscle

(23–25)

Cell wall fragments

of GAS (s.c., f.p.,

i.m., i.v., i.d.)

Myofibrosis with

degeneration of

sarcoplasm,

lymphocyte,

macrophages,

granulocyte

Anti-myosin IgG,

Anti-sarcolemmal

Ig

T-cell, IL-6 K, C3

(CV)

Sarcolemmal

membrane

protein, myosin

(25, 28, 29, 78)

Neurobehavioral changes

Mice Whole GAS (s.c.,

i.n)

Antibody

deposition

deep cerebellar

nuclei globus

pallidum,

thalamus,

periventricular areas

Anti-GAS IgG CD4+,

CD68+Iba1+ Th1
K, Th17 K, IL-17A
K, IFN-γ K(B)

N/A (57, 61, 62, 67)

(Continued)
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TABLE 1 | Continued

Antigens (route

of injection)

Histological

changes

Antibody

response

T-cell and

cytokine

response

Tissue cross

reactivity

References

Serum from GAS

exposed mice

(s.c.)

Antibody

deposition

hippocampus

periventricular area

Anti-GAS IgG1 IL-4 K (B) N/A (58)

Lewis rats Whole GAS (s.c.) Antibody

deposition

striatum,

thalamus, and

frontal cortex

Anti-GAS IgG

Anti-dopamine IgG

N/A Dopamine D1R

and D2L receptors

(59)

Serum from GAS

exposed rats (s.c.)

Antibody

deposition

striatum

Anti-GAS IgG N/A Dopamine D1R

and D2L,

serotonin

transporter

(60)

f.p., foot pad; i.v., intra venous; i.m., intra muscular; i.d., intra dermal; s.c., sub cutaneous; i.p., intra peritoneal; CV, Cardiac Valve; C, Complement; B, Blood; GAS, Group A streptococci;

IFN, Interferon; IgG, Immunoglobulin G; IL, Interleukin; MNC, Mononuclear Cell; M, Myocardium; SDSE, Streptococcus dysgalactiae subspecies equisimilis; PMNC, Polymorphonuclear

cells; Th, helper T-cell; TNF, Tumor necrosis factor; K, Elevated; N/A, Not Assessed.

FIGURE 1 | Procedures for the induction of carditis and neurobehavioral changes in Lewis rats. (A) Carditis, valvulitis and neurobehavioral changes can be induced by

injection of Lewis rats with GAS antigens followed by Bordetella pertussis toxin injection and booster injection of GAS antigens. (B) Antibody and T cell response can

be assessed in brain, heart and knee joints following injection of GAS antigens. (C) Standard behavioral tests to assess neurobehavioral changes following exposure

to GAS antigens. (D) ECG and ECHO changes will demonstrate impairment cardiac function. (E) Characteristic mononuclear cell infiltration in the myocardium and

valvular tissue (arrows) can be demonstrated in the histological sections of cardiac tissue from rats injected with GAS antigens. (F) IgG deposition can be

demonstrated in sections of brain following incubation with sera from rats exposed to GAS antigens. CFA, Complete Freund’s Adjuvant; IFA, Complete Freund’s

Adjuvant; PBS, Phosphate Buffered Saline; GAS rM5, Recombinant M5 protein of Group A streptococcus; ELISA, Enzyme Linked Immunosorbent Assay; Th, Helper

T-cell; TNF, Tumor Necrosis Factor; IFN, Interferon; IgG, immunoglobulin G; IL, interleukin; MNC, Mononuclear Cell.

injection with whole-killed GAS or recombinant GASM proteins
induced tissue cross-reactive antibodies and T cells (26, 27, 30,
31, 33, 34, 46, 48). Moreover, the involvement of Th-17 cells and

associated regulators observed in the pathological process may
potentially be considered as biomarkers for RHD (Figure 1B)
(49, 50). In a separate experiment, in response to different
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streptococcal antigens, including both GAS and Streptococcus
dysgalactiae subsp. equisimilis (SDSE/GGS), Lewis rats developed
typical histological lesions with infiltration of inflammatory
cells into cardiac tissue providing experimental evidence that
streptococci other than GAS could trigger and/or exacerbate
post-streptococcal carditis (Table 1). Lewis rats were also used
to assess the preclinical immunogenicity and safety of a GAS M
protein-based vaccine candidate (51, 52). Therefore, the Lewis rat
model is not only useful in elucidating the pathophysiological
mechanisms in ARF/RHD, but also provides an opportunity to
identify, validate streptococcal epitopes that are truly pathogenic
to ARF/RHD. It also enables the assessment of safety and efficacy
of GAS antigen based prototype vaccine candidates (51, 52).

ANIMAL MODELS OF NEUROBEHAVIORAL
COMPLICATIONS ASSOCIATED WITH
STREPTOCOCCAL INFECTION

The two major neurobehavioral complications associated with
post GAS infections are Sydenham chorea (SC) and pediatric
autoimmune neuropsychiatric disorders associated with
streptococcus (PANDAS) (53). SC is a neurological movement
disorder described in ARF and is one of the major criterions for
the diagnosis ARF (18). PANDAS is a sudden onset of obsessive-
compulsive disorder (OCD) associated with GAS infection
and not known to be clinically associated with ARF (54).
The complex immunopathological mechanisms that mediated
immune damage following GAS infections that leads to SC and
PANDAS remain unclear (55). However, it has been shown
that antibodies against GAS cross-react with neurotransmitter
receptors (D1 and D2 dopamine receptors), signaling kinases
and ion channels, located primarily in the basal ganglia of the
brain in susceptible hosts due to molecular mimicry (56).

In the past many studies have been carried out to develop
an animal model to investigate the post streptococcal
neurobehavioral disorders (Table 1) (57–62). Initial experiments
were carried out by infusion of serum from patients with
suspected streptococcal related neuropsychiatric disorders
directly in to the striatum of rats. However, not all such
studies succeeded in modeling these stereotypic behaviors in
mice and rats (63–66). In 2004, Hoffman et al. (57) injected
female SJL/J mice with purified GAS M6 protein along with
Freund’s adjuvant and observed that a group of mice developed
motor and behavioral problem. These investigators conducted
another study by the passive transfer of sera from mice
injected with GAS to naïve mice, which also developed in
similar neurological and behavioral changes (58). In both these
studies immunological analysis of the brain tissue showed
anti streptococcal antibody deposition in deep cerebella nuclei
and hippocampus.

A recent study by Brimberg et al. (59) observed
neurobehavioral and immunological changes akin to SC
and PANDAS in male Lewis rats following exposure to
GAS antigens. Behavioral changes included impairment in
handling food, traversing the narrow beam and obsessive-
compulsive behavior (Figure 1C) (59). Lewis rats developed

behavioral and neurological conditions similar to SC and
PANDAS after passive transfer of serum from rats exposed to
GAS infection (60). These studies showed elevated levels of
antibodies against GAS M protein and cross-reactive antibodies
against brain in the peripheral blood and brain, similar to
antibodies present in SC and PANDAS patients (59, 60).
Antibodies derived from GAS exposed animals have shown
strong reactivity with D1 and D2 dopamine receptors and
activated calcium/calmodulin-dependent protein kinase II
signaling in brain tissue (59, 60). Similarly, in vitro studies
demonstrated that monoclonal antibodies against N-acetyl-β-
D-glucosamine and lysoganglioside GM1 induced the activity
of calcium/calmodulin-dependent protein kinase II, which is
potentially implicated as an important mediator of learning
and behavior (56). Recent studies in C57BL/6, C57BL/6J, or
SJL/J female mice following intranasal GAS challenge have
demonstrated a breakdown in the Blood Brain Barrier (BBB)
enabling the migration of GAS specific Th17 cells from nasal-
associated lymphoid tissue to the brain, with the microglial
activation and IgG deposition in the striatum (62, 67). Elevated
levels of pro inflammatory cytokines including IL17A+ IFN-
γ+ due to GAS autoimmunity disrupts the BBB to allow
circulating autoantibodies and Th17 and Th1 cells to enter
the brain, which targets neurons and trigger neurobehavioral
changes (Table 1) (67, 68). In addition genetically modified
mice lacking Th17 lymphocytes (SJL/J, RORγ t+/GFP and
RORγ tGFP/GFP mice) have shown reduced BBB leakage,
microglial activation, and antibody infiltration into the brain
following intranasal challenge with GAS (Figure 1B). This
demonstrates the importance of Th17 lymphocytes in BBB
leakage and infiltration of autoantibodies into the brain tissue
(67). Thus, rodent models are very useful for assessing the
disease mechanisms associated with central nervous system
to precisely determine sequential events following infection
with GAS.

NEED FOR AN ANIMAL MODEL TO
INVESTIGATE MULTIPLE COMPLICATIONS
ASSOCIATED WITH ARF/RHD

Post streptococcal autoimmune sequelae is a multisystem
disorder affecting multiple organs including heart, brain, joints,
connective tissues and skin (5). The immunopathology due
to autoimmune response defers between organs. In the heart
it is due to the pathological process initiated by the cross-
reactive anti-GAS antibodies and T cells against host proteins
(69). In the brain the disease is associated with IgG deposition
(Figure 1F) (70). Whereas, in joints the pathogenesis is due to
the immune complexes that bind to the synovial membrane
and/or collagen in joints (5), and erythema marginatum might
be due to cross-reactivity of anti-GAS antibody with keratin
(71) and subcutaneous nodules might be due to a delayed
hypersensitivity against GAS antigens (5). ARF patients can
develop a combination of clinical symptoms that can lead
to serious consequences. Approximately 30% of the patients
with ARF can suffer from both cardiac and neurobehavioral
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complications (3). Moreover, due to the heterogeneity of
ARF/RHD, an animal model might reflect a specific phenotype
of the diverse complications from those observed in human
disease. Therefore, an animal model which can reflect both
cardiac and neurobehavioral conditions would be a remarkable
advancement in ARF/RHD research, not only to investigate the
pathophysiology but also to assess the safety and efficacy of
vaccine candidates and treatment modalities. Furthermore, in
compliance with more stringent animal welfare considerations
(e.g., 3Rs rules’, for replacement, reduction and refinement)
determining different aspects of a disease in a single animal will
minimize the number of animals needed for research (Figure 1).
Recently we have achieved this goal by modeling both cardiac
and neurobehavioral changes in Lewis rats and rats injected with
GAS shown impairments in fine motor control, gait and balance
and obsessive-compulsive behavior similar to SC and PANDAS
together with functional and immunological changes previously
observed in the RAV model (72). Moreover, post-streptococcal
complications including RHD and neurobehavioral changes such
as SC are prominent in females (10, 73–75), thus most of the
studies on RHD have been conducted in female mice or rats.
However, neurobehavioral studies described in the literature have
either been conducted on male or female mice but solely on
male rats. Our recent observations demonstrated that there were
no significant difference in using both genders of Lewis rats
to simultaneously model carditis and neurobehavioral changes
(72). To further validate multiple complications associated
with ARF/RHD, more studies are warranted on the Lewis
rat model.

LIMITATIONS OF ARF/RHD ANIMAL
MODELS

While significant advances in animal models of ARF/RHD
have been made in the last decade, there is still a paucity
in pre-clinical studies on other complications associated with
ARF/RHD including neurobehavioral changes, arthritis and skin
manifestations. Arthritis is observed in ∼50–70% of patients
with ARF and is a major Jones Criterion for the diagnosis of
ARF. However, none of the animal studies have investigated GAS

induced autoimmune process in subcutaneous tissue and joint
tissue in any of these models.

CONCLUSION

Laboratory models are important to determine the early
events leading to chronic disease. In particular when clinical
studies are not possible during the early stages. In a credible
animal model symptoms of physiological, anatomical and
behavioral conditions must be comparable to those observed
in human disease. In addition, an animal model should be
reliable and the changes observed must be reproducible across
laboratories. An animal model of ARF/RHD and associated
neurobehavioral complications should possess functional and
pathological changes encompassing motor deficits as well as
compulsive and stereotyped behaviors similar to SC. Since
genotypes, sex and age difference affects the development of
autoimmune complication; selection of an appropriate animal
model is important to investigate the pathogenesis of ARF/RHD
and associated complications. Several animal models have been
tested to investigate the onset, and progression of ARF/RHD. The
Lewis rat model characterized by us and others, is a reliablemodel
to investigate early events that lead to cardiac valvular pathology.
Together with advances in novel imaging technologies and
integrated computational approaches our model will provide the
means to address these challenges (76). Importantly, comparison
of experimental results with clinical observations to extrapolate
the sequential event that follow infection with GAS leading to
autoimmune complications requires prudence and caution.
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