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Several studies have evaluated computational methods that infer the haplotypes from
population genotype data in European cattle populations. However, little is known
about how well they perform in African indigenous and crossbred populations. This
study investigates: (1) global and local ancestry inference; (2) heterozygosity proportion
estimation; and (3) genotype imputation in West African indigenous and crossbred
cattle populations. Principal component analysis (PCA), ADMIXTURE, and LAMP-LD
were used to analyse a medium-density single nucleotide polymorphism (SNP) dataset
from Senegalese crossbred cattle. Reference SNP data of East and West African
indigenous and crossbred cattle populations were used to investigate the accuracy
of imputation from low to medium-density and from medium to high-density SNP
datasets using Minimac v3. The first two principal components differentiated Bos indicus
from European Bos taurus and African Bos taurus from other breeds. Irrespective
of assuming two or three ancestral breeds for the Senegalese crossbreds, breed
proportion estimates from ADMIXTURE and LAMP-LD showed a high correlation
(r ≥ 0.981). The observed ancestral origin heterozygosity proportion in putative F1
crosses was close to the expected value of 1.0, and clearly differentiated F1 from all
other crosses. The imputation accuracies (estimated as correlation) between imputed
and the real data in crossbred animals ranged from 0.142 to 0.717 when imputing
from low to medium-density, and from 0.478 to 0.899 for imputation from medium to
high-density. The imputation accuracy was generally higher when the reference data
came from the same geographical region as the target population, and when crossbred
reference data was used to impute crossbred genotypes. The lowest imputation
accuracies were observed for indigenous breed genotypes. This study shows that
ancestral origin heterozygosity can be estimated with high accuracy and will be far
superior to the use of observed individual heterozygosity for estimating heterosis in
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African crossbred populations. It was not possible to achieve high imputation accuracy
in West African crossbred or indigenous populations based on reference data sets
from East Africa, and population-specific genotyping with high-density SNP assays is
required to improve imputation.

Keywords: ADMIXTURE, African cattle, global ancestry, Minimac, LAMP-LD, local ancestry, PCA, SNPs

INTRODUCTION

Indigenous cattle in Africa are an important genetic resource
for diverse human communities, providing products and
by-products, such as food, wealth, and economic security
(Okomo-Adhiambo, 2002). Genetic improvement programs
using artificial selection within the local population are one
method to improve productivity (Effa et al., 2009; Tegegne et al.,
2010). Crossbreeding of locally adapted cattle with high-yielding
European dairy breeds is an alternative strategy to improve
productivity and improve the livelihoods of African smallholder
farmers in a relatively short period (Wuletaw, 2004; Tegegne
et al., 2010). Crossbreeding can increase dairy cattle production
by creating new combinations of genotypes of different breeds
to optimize the additive and heterotic genetic expression and
achieve the desired balance of productivity and adaptation trait
expression (Gregory and Cundiff, 1980; Simm, 1998).

The level of extra heterosis in crossbreds compared to
purebreds is a function of the degree of heterozygosity for the
origin of alleles from the ancestral populations, referred to as
ancestral origin heterozygosity in this study. In a homogeneous
crossbred population that results entirely from inter-se crossing,
the level of ancestral origin heterozygosity is a function of
the breed composition. In other crossbred populations, the
level of ancestral origin heterozygosity depends on the breed
composition of the parents of an individual (McAllister, 2002).
For example, an F1 cross has an ancestral origin heterozygosity of
1.0, which is twice the ancestral origin heterozygosity and hence
twice the expected heterosis of an F2 cross, even though they
have identical breed composition. In order to estimate the level of
heterosis in crossbred populations, one needs to have an estimate
of the ancestral origin heterozygosity for each individual that
is recorded and available for genomic evaluation. An estimate
of breed composition and ancestral origin heterozygosity can
be obtained from complete pedigree information, but pedigree
information is unavailable in most smallholder crossbred dairy
populations (Rege, 2001). An alternative is to genotype animals
for large numbers of SNPs and use this information to estimate
breed composition and heterozygosity.

Molecular genetic markers, most recently SNPs, can be used to
estimate the genetic ancestry of individuals. Methods embedded
in software such as ADMIXTURE (Alexander et al., 2009) or
STRUCTURE (Pritchard et al., 2000; Falush et al., 2003) estimate
global ancestry, i.e., the ancestral breed proportions averaged
across the whole genome. These software programs do not
provide estimates of ancestral origin heterozygosity. Methods
such as Lanc-CSV (Brown and Pasaniuc, 2014), LAMP-LD
(Pasaniuc et al., 2009; Baran et al., 2012), and MULTIMIX

(Churchhouse and Marchini, 2013) provide estimates of local
ancestry, i.e., the breed origin of haplotypes, and hence breed
proportion at every point in the genome. This allows ancestral
origin heterozygosity to be estimated at every point in the genome
and hence also the average ancestral origin heterozygosity
of an individual.

Local ancestry mapping, using the LAMP software
(Sankararaman et al., 2008), was employed in African cattle
populations by Flori et al. (2014) and Bahbahani et al. (2015) to
examine whether their SNP-based signatures of selection showed
a bias to either of the two assumed ancestral populations. The
LAMP software was also used by Khayatzadeh et al. (2018) to
assign ancestral origin of SNP genotypes in a European admixed
cattle population, allowing SNP dominance effects and epistatic
loss to be estimated. The African populations we study here
evolved from one or two (African Bos taurus and African zebu,
respectively) or three (crossbred dairy populations) principal
ancestral populations. We used LAMP-LD, which performs
better than LAMP when there are more than two ancestral
populations (Baran et al., 2012) to estimate global and local
ancestry in these populations.

Crossbreeding and selection are important synergic
approaches to improve production in the long-term. In the
absence of pedigree recording in most indigenous and crossbred
dairy populations, high-density SNP genotypes can be used to
generate a genomic relationship matrix (GRM), enabling genetic
improvement to be rapidly implemented (VanRaden, 2008).
However, genomic selection requires the routine genotyping of a
large number of recorded individuals and selection candidates,
which can be expensive. A strategy to increase genotypic
information while reducing testing costs is to genotype a large
number of individuals with a lower-density assay and impute to
higher density genotypes (Khatkar et al., 2012; Wiggans et al.,
2012; Berry et al., 2014).

Several software programs have been developed for
SNP imputation. These are mainly based either on linkage
disequilibrium (LD) information such as Beagle (Browning and
Browning, 2007), IMPUTE2 (Howie et al., 2009), MaCH (Li et al.,
2010), Minimac (Howie et al., 2012); or on a combination of LD
and family or pedigree information such as Dagphase (Druet and
Georges, 2010), FImpute (Sargolzaei et al., 2011), AlphaImpute
(Hickey et al., 2012), and FindHap (VanRaden et al., 2011).

Recently, Aliloo et al. (2018) assessed the genotype imputation
accuracy in 3,083 East African crossbred cattle genotyped with
the Illumina 777k SNP assay, using FImpute v2.2 (Sargolzaei
et al., 2014), Beagle v4.1 (Browning and Browning, 2016), and
Minimac v3 (Das et al., 2016) and found that Minimac v3 and
a reference set that combines crossbred and ancestral purebred
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animals generally gave the highest accuracy of imputations. But
this study provided no information about whether data from East
African crossbreds would be useful in the imputation of other
crossbred populations in Africa or for indigenous populations.
The accuracy of genotype imputation across populations is
highly affected by the LD and persistence of the LD phase
between populations, which has not been assessed for African
indigenous or crossbred populations. Berry and Kearney (2011)
have documented that the degree of relationship between
validation and reference populations is one of the factors affecting
imputation accuracy. Therefore, it is necessary to estimate
the ancestral background of the indigenous and crossbred
populations to make an informed decision about which animals
and breeds to best use as reference populations.

The overall objective of the current study was to assess the
ability to infer genotypes and genotype ancestry in African
populations based on diverse and local information as enablers
of a range of genetic improvement applications. The study
investigates: (1) Inference of global and local ancestry in West
African crossbreds to obtain substantially more information
on their genetic history. ADMIXTURE and PC analyses were
performed to estimate the global ancestry, while LAMP-LD was
used for local ancestry inference with different approaches in
West African crossbreds. We then compared the performance
of global and local ancestry inference methods; (2) Estimation
of ancestral origin and individual heterozygosity proportions
in West African crossbreds. The ancestral origin heterozygosity
proportion was calculated from the local ancestry inferences
obtained from LAMP-LD, while the individual heterozygosity
was calculated across all loci which are heterozygous; (3)
Accuracy of genotype imputation in African indigenous and
West African crossbred cattle populations when imputing from
low and medium-density to high-density SNP panels, using East
and West African reference populations separately or combined.
This is the first imputation study considering African indigenous
and West African crossbred populations.

MATERIALS AND METHODS

Animals
SNP genotype data of 4,291 animals representing European Bos
taurus dairy breeds, East and West African indigenous and
crossbred dairy cattle sampled from different countries were used
for this study (Table 1). These data were obtained from several
public-domain databases, plus projects run by the International
Livestock Research Institute (ILRI) and collaborators (Marshall
et al., 2017, 2020; Ema et al., 2018), and the Genomics Reference
Resource for African Cattle (GRRFAC) supported by the Centre
for Tropical Livestock Genetics and Health (CTLGH), and the
Dairy Genetics East Africa project (DGEA; Strucken et al., 2017).
The breed classifications of the West African crossbred animals
were based on farmers’ and enumerators’ assumptions as well
as, where available, recorded sire and dam information. These
crossbred animals were classified as undefined crossbreds or as
crosses between the local breed Gobra with Holstein-Friesian,
Montbéliarde, or Normande.

Genotyping and Quality Control
The samples were genotyped on either the Illumina BovineSNP50
BeadChip array (Illumina Inc., San Diego, CA, USA) comprising
54,609 SNPs or the Illumina BovineHD Beadchip (Illumina Inc.,
San Diego, CA, USA) containing 777,962 SNPs, as presented in
Table 1. Data from the Bovine HapMap Consortium et al. (2009)
and the 50k data from Decker et al. (2014) were obtained post
quality control. Genotypes from the DGEA project and Scotland’s
Rural College (SRUC) data were filtered using “SNPQC” an R
pipeline (Gondro et al., 2014), retaining SNPs that had a median
GC score >0.6 and a call rate >90%. The data from Senegal
smallholder farms (Marshall et al., 2017, 2020; Ema et al., 2018)
were processed for quality control using the GenABEL package
(Aulchenko et al., 2007) in R Core Team (2018), retaining SNPs
and animals with call rates >90%. Data from CTLGH and
GRRFAC were quality controlled, including a median GC score
>0.6 and a call rate >0.90%. In all datasets, only autosomal SNPs
were included in this study.

The datasets were merged, keeping only common SNPs
(37,632 SNPs) between the reference (detailed below) and West
African crossbred populations for inference of global and local
ancestry and estimates of heterozygosity proportions (dataset
1). For the genotype imputation, SNPs that had a minor allele
frequency (MAF) lower than 0.01 were removed from medium
and high-density datasets. FImpute V 2.2 (Sargolzaei et al.,
2014) was used to impute the sporadically missing genotypes of
individuals to have complete datasets for all animals at all loci.
The number of SNPs retained was 28,649 from medium-density
(dataset 2), and 621,309 SNPs from high-density panels (dataset
3) across 29 B. taurus autosomes based on UMD 3.1 genome
assembley (Zimin et al., 2009).

Global Ancestry Inference of West
African Crossbred Animals
The global ancestry inference is important to estimate the fraction
of ancestry contributed by each ancestral population as averaged
across the entire genome. In this study, the global ancestry
inference was undertaken using Senegalese (West African)
crossbred populations. The reference populations were African
B. taurus breeds (N’Dama, N’Dama1, Lagune, Baoule, and
Lagunaire, N = 87), European B. taurus dairy breeds (Guernsey,
Holstein, Jersey, Friesian, and Montbéliarde, N = 105), and a
pooled Bos indicus population (N = 105). The pooled Bos indicus
sample included 12 Bos indicus breeds from India, selected from
525 indigenous samples such that within breed relationships were
minimal (Aliloo et al., 2020). The pooled indigenous reference
population was from Senegal (Gobra, Maure, Djakore, hybrid
animals between Gobra and Maure, and Gobra and Guzerat,
N = 105), and the number of indigenous animals were reduced
to make similar population size with other reference groups (also
used in heterozygosity estimation). The African B. taurus, Bos
indicus, and indigenous reference animals are those with zero
European B. taurus breed proportion as determined by prior
ADMIXTURE and PC analyses (Gebrehiwot, 2020; Gebrehiwot
et al., 2020).
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TABLE 1 | Animal populations, numbers, and sources.

Breed Population group Origin/country Number of animals Array (Illumina) Genotype source

Friesian EuB.t United Kingdom 25 BovineHD SRUC

Guernsey EuB.t United States and
United Kingdom

20 BovineHD Bovine HapMap Consortium et al., 2009

Holstein EuB.t United States and NZ 20 BovineHD Bovine HapMap Consortium et al., 2009

Jersey EuB.t United States and NZ 20 BovineHD Bovine HapMap Consortium et al., 2009

Montbéliarde EuB.t France 20 BovineSNP50 Decker et al., 2014

Pooled Bos indicus B.i India 105 BovineHD Strucken et al., 2019

N’Dama WAI Guinea 20 BovineHD Bovine HapMap Consortium et al., 2009

N’Dama WAI Senegal 14 BovineHD GRRFAC

N’Dama1 WAI Cote d’Ivoire 20 BovineSNP50 Decker et al., 2014

N’Dama2 WAI Southeast Burkina Faso 14 BovineSNP50 Decker et al., 2014

N’Dama3 WAI Southwest Burkina
Faso

17 BovineSNP50 Decker et al., 2014

Lagune WAI Benin 20 BovineSNP50 Decker et al., 2014

Lagunaire WAI West Africa 5 BovineHD Bovine HapMap Consortium et al., 2009

Somba WAI Togo 20 BovineSNP50 Decker et al., 2014

Baoule WAI Burkina Faso 20 BovineSNP50 Decker et al., 2014

Baoule WAI Burkina Faso 19 BovineHD GRRFAC

Djakore* WAI Senegal 7 BovineSNP50 Marshall et al., 2020

Gobra* WAI Senegal 118 BovineSNP50 Marshall et al., 2020

Gobra* WAI Senegal 14 BovineHD GRRFAC

Maure* WAI Senegal 12 BovineSNP50 Marshall et al., 2020

Maure* WAI Senegal 15 BovineHD GRRFAC

Gobara × Maure* WAI Senegal 10 BovineSNP50 Marshall et al., 2020

Gobara × Guzerat* WAI Senegal 31 BovineSNP50 Marshall et al., 2020

Bororo WAI Chad 20 BovineSNP50 Decker et al., 2014

Fulani WAI Benin 20 BovineSNP50 Decker et al., 2014

Kuri WAI Chad 20 BovineSNP50 Decker et al., 2014

Borgou WAI Benin 20 BovineSNP50 Decker et al., 2014

Undefined indigenous WAI Senegal 66 BovineSNP50 Marshall et al., 2020

Ankole EAI Uganda 35 BovineHD DGEA

SEAZ EAI Kenya 21 BovineHD DGEA

Boran EAI Kenya 28 BovineHD DGEA

Danakil-Harar EAI Ethiopia 30 BovineHD DGEA

Begait-Barka EAI Ethiopia 30 BovineHD DGEA

Boran EAI Ethiopia 28 BovineHD DGEA

Iringa-Red EAI Tanzania 13 BovineHD DGEA

Singida-White EAI Tanzania 22 BovineHD DGEA

Sheko EAI Ethiopia 18 BovineHD Bovine HapMap Consortium et al., 2009

Kenyan crossbred EXX Kenya 1,378 BovineHD DGEA

Uganda crossbred EXX Uganda 555 BovineHD DGEA

Ethiopia crossbred EXX Ethiopia 545 BovineHD DGEA

Tanzania crossbred EXX Tanzania 462 BovineHD DGEA

Senegal crossbreed WXX Senegal 253 BovineSNP50 Marshall et al., 2020

Senegal crossbreed WXX Senegal 141 BovineHD CTLGH

Total 4,291

*Senegalese indigenous populations used in the pooled indigenous population (N = 105), EuB.t = European Bos taurus, B.i = Bos indicus, WAI = West African indigenous,
EAI = East African indigenous, WXX = West African crossbreds, EXX = East African crossbreds, USA = United States of America, UK = United Kingdom, NZ = New Zealand,
SRUC = Scottish Rural University College, CDN = Canadian Dairy Network.

A maximum likelihood model, as implemented in the
software ADMIXTURE 1.23 (Alexander et al., 2009), was
used to estimate the global ancestry proportions of crossbred
animals. ADMIXTURE was used in two alternatives supervised

analyses where the ancestral reference populations were a
pooled sample of European B. taurus and a pooled sample
of indigenous breeds from Senegal (two-way admixture) (1),
and African B. taurus populations, Bos indicus, and European
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B. taurus dairy breeds (three-way admixture) (2). These reference
populations were chosen based on the ancestral information of
Senegalese crossbreds as detailed by Gebrehiwot et al. (2020)
and Gebrehiwot (2020).

The principal component analysis (PCA) was performed to
explore and visualize the genetic variation between West African
indigenous and crossbred animals and the reference populations.
The PCA was based on a GRM constructed from SNP data
according to the first method of VanRaden (2008) and calculated
as:

GRM = ZZ′/d

where the scaling parameter d was:

d = 2 ∗
∑

(pi ∗
(
1− pi

)
)

The centered genotype matrix (Z) was constructed by
subtracting the P matrix from the genotype matrix M, where
P = 2 ∗ (pi − 0.5), and pi is the allele frequency at locus i.

Local Ancestry Estimation in West
African Crossbred Animals
The genome of admixed individuals resembles a mosaic
of chromosomal regions originating from different ancestral
populations. Finding the regional ancestry at each genomic
location provides more information than the usual estimation
of global ancestry alone (Padhukasahasram, 2014). Here, LAMP-
LD software (Pasaniuc et al., 2009; Baran et al., 2012) was
used to estimate the locus-specific ancestry of West African
crossbreds in two scenarios of ancestry mapping. The two
scenarios were two-way and three-way admixtures, using the
same ancestral populations as for the global ancestry inference
(see above). To infer the local ancestry, the dataset was
first phased using Eagle v2.3.5 (Loh et al., 2016). The local
ancestries of admixed animals were obtained from LAMP-
LD with a window size of 12 SNPs and 15 as the number
of states. LAMP-LD infers the ancestry in each window
based on a likelihood model to trace the origins of admixed
populations based on the haplotype patterns in ancestral
reference populations.

Estimation of Heterozygosity Proportion
Estimation of heterozygosity proportion in West African
crossbred populations was undertaken using two approaches.
Individual heterozygosity was calculated across all loci,
scored as “1” if an individual was heterozygous at a locus
and “0” for each homozygous locus; the mean across all
loci was then recorded. The ancestral origin heterozygosity
proportion was calculated from the local ancestry inferences
obtained from LAMP-LD. Each haplotype of a given crossbred
individual was scored as “1” if it was a heterozygous state
of European B. taurus and indigenous ancestry (two-
way), or African B. taurus or Bos indicus versus European
B. taurus ancestry (three-way), and scored “0” otherwise.
The sum of these scores was divided by the number of
loci to obtain the average ancestral origin heterozygosity
across the genome.

Upper and Lower Limits of
Heterozygosity
In crosses between two populations, the ancestral origin
heterozygosity has upper and lower bounds that depend on
the breed proportions of the crossbred animal and the breed
proportions of its parents. The expectations can be obtained
as the expected frequency of heterozygotes at a single locus,
if the two ancestral parents are fixed for opposite alleles at
that locus. For example, the ancestral origin heterozygosity
of the two parental populations is zero. That for an F1
is exactly 1, which is the upper bound of heterozygosity,
while that of an F2, resulting from the mating of two F1
animals is expected to be 0.5, which is the lower bound of
heterozygosity for animals with 50% ancestry from each parent.
The upper bound of the expected heterozygosity applies to
all crossbreds that have at least one parent being a purebred
ancestor. The lower bound applies to all inter-se matings
between crossbred parents that have identical ancestral breed
composition. The expected ancestral heterozygosity of all other
crosses between crossbred parents lies between the upper and
lower bounds of ancestral origin heterozygosity for animals of
that breed composition.

Analogous bounds can be obtained for individual
heterozygosity when it is assumed that all the animals of a
given ancestral pure breed have the same heterozygosity. In this
case expected heterozygosity can be considered as a trait whose
expectation is the sum of additive genetic and heterosis effects.
If H1 and H2 are the heterozygosity of parent breeds 1 and 2,
respectively, and pi is the breed proportion of parent breed 2 and
ai is the expected ancestral origin heterozygosity of crossbred
animal i, then the expected heterozygosity of that animal, Hi, is:

Hi = H1 + pi(H2 − H1) + aix

where x = HF1 – H1 if p < 0.5 and x = HF1 – H2 if
p > 0.5, and HF1 is the average individual heterozygosity of
F1 animals. The upper and lower bounds for ancestral and
individual heterozygosity are used in the results to illustrate the
utility of ancestral versus individual heterozygosity as a useful
metric in the estimation of genetic parameters of performance in
crossbred populations.

Genotype Imputation in West African
Cattle Populations
Imputation was undertaken using a population-based algorithm,
Minimac v3 (Das et al., 2016) with pre-phased data from Eagle
v2.3.5 (Loh et al., 2016). Minimac v3 was chosen for genotype
imputation because it provided the highest imputation accuracy
in East Africa crossbred populations compared to FImpute and
Beagle (Aliloo et al., 2018).

SNP Information for Imputation
The SNPs in common between the medium-density genotypes
(dataset 2) and the commercially available Illumina BovineLD v2
SNP array (containing 7,931 SNPs) were retained to create the
low-density dataset. There were 5,043, 28,649, and 621,309 SNPs
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in low-density, medium-density (dataset 2) and high-density
(dataset 3) datasets, respectively.

Genotype Imputation Scenarios
Imputation was undertaken within and across geographical
regions focussing mainly on West Africa using East African
populations as a reference. As detailed in Table 2, a total of 36
imputation scenarios were considered to impute West African
indigenous and crossbred populations, while four scenarios
were used to impute East African indigenous and crossbred
populations. Half of the imputation scenarios (18) were designed
to investigate the imputation accuracies from low-density to
medium-density SNP panels, and the other half was used
for the imputation from medium-density to high-density SNP
panels (Table 2). Based on the geographical regions where the
reference populations were sampled from, the 36 imputation
scenarios could be classified into three major groups based on
the reference sets: using East African indigenous and crossbred
individuals combined or separately (Scenario 1), using West
African indigenous and crossbred individuals combined or
separately (Scenario 2), and using a combination of East and West
African indigenous and crossbred individuals (Scenario 3).

To assess the imputation accuracy, direct imputation was
performed for Scenario 1 and five-fold cross-validation for
Scenarios 2 and 3. The target individuals for Scenarios 2 and 3
were randomly divided into five groups, and each group was used
as a validation set, while the four remaining groups were used as
a reference population.

Imputation accuracy was determined with two different
criteria: (1) the allelic correlation of imputed versus real
genotypes, and (2) the concordance rate computed as the ratio
between the number of correctly imputed alleles versus the total
number of imputed alleles.

RESULTS AND DISCUSSION

Global and Local Ancestry Inferences in
West African Crossbreds
Estimates of global and local ancestry for the two-way
admixture generated by ADMIXTURE and LAMP-LD, are
shown in Figure 1. Each vertical bar represents an individual
with the proportion of each ancestry depicted in a different
color. The average European B. taurus and indigenous breed
proportions estimated from ADMIXTURE (Figure 1A) were
0.481 (SD = 0.201) and 0.519 (SD = 0.201), respectively, and
from LAMP-LD (Figure 1B) 0.491 (SD = 0.199), and 0.509
(SD = 0.199), respectively. The correlation between the breed
proportion estimates obtained from the two algorithms was
0.995, showing that they have a strong association.

Estimates of global and local ancestry from the three-way
admixture using ADMIXTURE and LAMP-LD are shown in
Figure 2. The average European B. taurus, African B. taurus, and
Bos indicus breed proportions from ADMIXTURE (Figure 2A)
were 0.515 (SD = 0.199), 0.185 (SD = 0.091), and 0.300
(SD = 0.146), respectively. The average estimates of ancestral

TABLE 2 | Scenarios and the number of animals used in the reference and validation sets to assess imputation accuracy.

Scenario Population in reference Population in validation LD-MD MD-HD

Number in reference Number in validation Number in reference Number in validation

Scenario 1

1A EAI WAI 228 485 228 87

1B EXX WXX 2,982 394 2,982 141

1C EAI + EXX WAI 228 + 2,982 485 228 + 2,982 87

1D EAI + EXX WXX 229 + 2,982 394 229 + 2,982 141

1E EAI EAI 182 46 182 46

1F EXX EXX 2,385 597 2,385 597

Scenario 2

2A WAI WAI 388 97 69 18

2B WAI WXX 388 79 69 29

2C WXX WAI 315 97 112 18

2D WXX WXX 315 79 112 29

2E WAI + WXX WAI 388 + 315 97 69 + 112 18

2F WAI + WXX WXX 388 + 315 79 69 + 112 29

Scenario 3

3A WAI + EAI WAI 388 + 228 97 69 + 228 18

3B WAI + EAI WXX 388 + 228 79 69 + 228 29

3C WXX + EXX WAI 315 + 2,982 97 112 + 2,982 18

3D WXX + EXX WXX 315 + 2,982 79 112 + 2,982 29

3E WAI + EAI + WXX + EXX WAI 388 + 228 + 315 + 2,982 97 69 + 228 + 112 + 2,982 18

3F WAI + EAI + WXX + EXX WXX 388 + 228 + 315 + 2,982 79 69 + 228 + 112 + 2,982 29

WAI = West African indigenous, EAI = East African indigenous, WXX = West African crossbreds, EXX = East African crossbred.
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breed proportions from LAMP-LD (Figure 2B) were 0.501
(SD = 0.194), 0.181 (SD = 0.088) and 0.319 (SD = 0.143),
respectively. The correlation between the estimates of the
three breed proportions obtained from ADMIXTURE versus
LAMP-LD were 0.994, 0.981, and 0.994, respectively. This
correlation was consistent with previous results by Chen et al.
(2014), who found that the LAMP-LD estimates showed a
correlation of 0.989 with a supervised ADMIXTURE analysis
in human populations. The estimates of average European
breed proportion from ADMIXTURE and LAMP-LD for
the three-way scenario were slightly higher (3.4 and 1%,
respectively) than results for two-way admixture. Gebrehiwot
et al. (2020) and Gebrehiwot (2020) found an average exotic dairy
proportion of 0.503 (SD = 0.187) using twelve ancestral reference
populations in a supervised ADMIXTURE analysis of West
African crossbreds with overlapping data, which is consistent
with the estimates here.

The PCA found that the first two PCs accounted for 77.24 and
13.48% of the total genetic variation in the GRM, differentiating
Bos indicus from B. taurus and African B. taurus from other
groups (Figure 3). This is consistent with the patterns found
by several studies (Hanotte et al., 2002; Gautier et al., 2009;
Kim et al., 2017; Verdugo et al., 2019; Gebrehiwot et al.,
2020), analyzing various combinations of African indigenous and
crossbred data along with the three reference groups. The Bos
indicus reference populations clustered tightly together, showing

that they are a pure Bos indicus population, while the African
B. taurus populations clustered together with a few Baoule
individuals appearing to be admixed with Bos indicus. The
crosses between European dairy breeds and African indigenous
breeds were distributed between the European and indigenous
populations. A substantial number of Gobra×Holstein-Friesian,
Gobra × Montbéliarde, Gobra × Normande, and undefined
crossbreds clustered in an intermediate position between the
indigenous and European breeds (Figure 3). The history of
this crossbred population suggests that these animals are likely
F1 crosses but PCA cannot differentiate an F1 from any other
cross resulting in approximately 50% indigenous ancestry. Maure
and Djakore clustered in an intermediate position between Bos
indicus and African B. taurus ancestral populations, while Gobra,
the Gobra×Maure cross, and the Gobra× Guzerat cross spread
between these two ancestral populations, showing a wide genetic
diversity among individuals.

Estimation of Heterozygosity
Individual Heterozygosity in the Reference
Populations
The average individual heterozygosity values for European
B. taurus, African B. taurus, Indian Bos indicus, and indigenous
reference populations as well as West African crossbred
populations are presented in Table 3. Friesian and Jersey

FIGURE 1 | Estimates of breed proportion of West African crossbreds using two-way admixture from (A) ADMIXTURE and (B) LAMP-LD.
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FIGURE 2 | Estimates of breed proportion of West African crossbreds using three-way admixture from (A) ADMIXTURE and (B) LAMP-LD.

cattle populations showed the highest and lowest average
heterozygosity of the European dairy breeds with 0.331
(SD = 0.013) and 0.261 (SD = 0.014), respectively. These
results are consistent with previous estimates; for example,
Mbole-Kariuki et al. (2014) found heterozygosities of 0.33
(SD = 0.01) and 0.25 (SD = 0.03) for Holstein-Friesians and
Jersey, respectively.

As expected, the average heterozygosity proportion in
crossbred animals was higher (0.3277, SD = 0.030) than in the
pooled pure reference and indigenous populations (Table 3).
However, the average heterozygosity proportion in crossbreds
were lower than in Friesian, which is due to the outlier animal in
the crossbred group that showed a low heterozygosity proportion
(0.166). The mean heterozygosity of the crossbreds without
the outlier is 0.328. This is still somewhat lower than the
Friesian heterozygosity, however, the crossbreds have a larger
SD (0.029 vs. 0.013) and the median for the crossbreds is
slightly higher (0.339) than the mean, indicating somewhat a
skewed distribution. Moreover, the maximum heterozygosity of
the crossbreds is higher than any of the other populations. The
pooled European B. taurus and African B. taurus populations
had an average heterozygosity of 0.295 (SD = 0.030) and
0.198 (SD = 0.015), respectively. Bos indicus had a low average

heterozygosity of 0.158 (SD = 0.014), which is even lower
than in other studies (Kasarapu et al., 2017; Utsunomiya
et al., 2019); however, most other studies did not use Bos
indicus breeds from India but breeds that are known to
have a complex breeding history including introgression of
B. taurus breeds such as Brahman, Nelore, or Gyr. The low
heterozygosity level in Bos indicus populations is likely due to
ascertainment bias of the SNPs on the assay, which seems to
be even more pronounced in Bos indicus breeds from India.
The pooled indigenous animals had an average heterozygosity
of 0.238 (SD = 0.023), consistent with the extra heterozygosity
expected in admixtures between the African B. taurus and
Bos indicus ancestral populations. Including heterozygosity
proportion in the model for genetic evaluation increases the
prediction accuracy of traits and it also has the potential to
be used in mate selection in order to maximize heterozygosity
in the offspring (De Cara et al., 2011; Iversen et al., 2019).
A previous study by Mbole-Kariuki et al. (2014) using a
medium-density (50k SNPs) dataset reported a lower average
heterozygosity level for N’Dama 0.17 (SD = 0.08) than the pooled
African B. taurus, and a higher average heterozygosity level for
Sheko 0.26 (SD = 0.003) compared to the pooled indigenous
animals in our study.
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FIGURE 3 | Plots of PC1 vs. PC2 for Bos indicus, African and European Bos
taurus, West African indigenous and crossbred populations.

Ancestral Origin Heterozygosity in West African
Crossbreds
The ancestral origin heterozygosity proportions estimated by
LAMP-LD are plotted against the estimated European breed
proportion from either ADMIXTURE or LAMP-LD for the two-
way (Figure 4) and three-way admixture (Figure 5). Animals
with low heterozygosity and low (<2% based on the two-way
ancestry analysis) European breed proportion are interpreted to
be pure indigenous, and animals with low heterozygosity, but
high (>98%) European breed proportion are assumed to be pure
European dairy breeds. Estimation of European breed proportion
using LAMP-LD (Figures 4B, 5B) showed a clearer cluster
than the result obtained from ADMIXTURE (Figures 4A, 5A).
However, animals that showed up as pure indigenous in all other
analyses were estimated by a three-way admixture with LAMP-
LD to have a small proportion of European B. taurus ancestry.
This appears to be due to the model allocating a proportion of
the African B. taurus ancestry to be European B. taurus ancestry.

Theoretically, all crossbreds must sit within the bounds set
by the straight lines between F1 animals, with a European breed
proportion of 0.5 and ancestral origin heterozygosity of 1.0, and
the pure indigenous and European breeds that have European
breed proportion of zero and 1.0, respectively, and an ancestral
origin heterozygosity of zero. Animals that sit on the outer
boundaries are crosses where at least one parent is purebred,
whereas animals inside the boundaries result from a mating of
two crossbred parents. Based on this assumption, Figure 4B fits
the model almost exactly. The plots based on ADMIXTURE
estimates of breed proportion (Figures 4A, 5A) fit the model
least well because the method of estimating global ancestry
by ADMIXTURE differs from that used by LAMP-LD, leading
to inconsistencies between the estimate of breed composition
(global ancestry).

Although it cannot be seen because of over-position of data
points, in Figures 4B, 5B, a high proportion of crossbred
animals with almost exactly 50% European breed proportion had

TABLE 3 | Average heterozygosities of reference and West African
crossbred populations.

Breed Number of
animals

Mean SD Minimum Maximum

Friesian 25 0.331 0.013 0.303 0.360

Guernsey 20 0.268 0.014 0.234 0.291

Holstein 20 0.311 0.015 0.276 0.343

Jersey 20 0.261 0.014 0.227 0.286

Montbéliarde 20 0.295 0.008 0.279 0.303

Pooled populations

European Bos taurus 125 0.295 0.030 0.227 0.360

African Bos taurus 87 0.198 0.015 0.141 0.218

Bos indicus 105 0.158 0.014 0.110 0.181

Indigenous 105 0.238 0.023 0.129 0.261

Crossbreds* 394 0.328 0.030 0.166 0.370

*Crosses between the local breed Gobra with Holstein-Friesian, Montbéliarde,
Normande, and undefined crossbreds.

ancestral origin heterozygosity of almost exactly 1.0 (Figure 4B)
or very close to 1.0 (Figure 5B), which is the heterozygosity
expected for F1 crosses. This is visible in Supplementary
Figures 1A (two-way admixture) and 1B (three-way admixture),
where the number of data points within a particular area of the
plot is counted and presented by a color gradient to show how
many animals occur at each position on the plot. Comparing
Figures 4, 5, and Supplementary Figure 1 shows that the
three-way ancestry model leads to more variable estimates of
European breed proportion by both ADMIXTURE and LAMP-
LD, and more variable estimates of ancestral heterozygosity by
LAMP-LD. Most notably, the LAMP-LD estimates of ancestral
heterozygosity for the putative F1 animals are all almost exactly
equal to the expected value of 1.0 when using the two-
way ancestry model, whereas the estimates from the three-
way ancestry model, while mostly still close to 1.0, include
estimates as low as 0.9.

Supplementary Figure 1 shows that there are clusters of
animals on the outer boundaries around 25 and 75% European
breed proportions, respectively. These are most likely backcrosses
of F1 animals to pure indigenous or pure European animals,
which are expected to have European breed proportions that vary
around 25 and 75%, and heterozygosities that vary around 0.5
because of a random sampling of gametes from the parents. As
most clearly seen in Figure 4B, the majority of animals sit on the
boundary lines indicating that in this crossbred population, the
majority of animals result from a mating involving at least one
purebred parent rather than inter-se matings among crossbred
animals. This is consistent with the fact that these crossbred dairy
populations are relatively recently established and are expanding
(K. Marshall, personal communication).

To further clarify the genetic structure of the crossbred
animals clustered in the intermediate position of the PC
plot in Figure 3, we color-coded the individuals based on
ancestral origin heterozygosity (Figure 6). This confirms that
the majority of animals in the two bands in the middle of
the plot are F1 animals with an ancestral origin heterozygosity
of 1.0. The majority of Gobra x Holstein-Friesian crosses
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FIGURE 4 | Ancestral origin heterozygosity in West African crossbreds plotted against European breed proportion estimated from a two-way admixture using
(A) ADMIXTURE and (B) LAMP-LD.

FIGURE 5 | Ancestral origin heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using
(A) ADMIXTURE and (B) LAMP-LD.

were clustered in the first band (between PC1 = −0.025 to
0.000 and PC2 = −0.02 to −0.01), while the majority of
Gobra × Montbéliarde and Gobra × Normande crosses were
clustered in the other band. A substantial number of undefined
crossbred animals were clustered in one or the other of the
two bands with ancestral origin heterozygosities close to 1.0,
showing that they are Gobra x Holstein-Friesian and Gobra x
Montbéliarde F1 crosses.

Individual Heterozygosity in West African Crossbreds
The plot of individual heterozygosity against European
breed proportion for the West African crossbred cattle
obtained from ADMIXTURE and LAMP-LD using the three-
way admixture is shown in Figures 7A, 8A, respectively.
For completeness, Supplementary Figure 2 shows the
individual heterozygosity against European breed proportion
obtained from ADMIXTURE and LAMP-LD using two-
way admixture. To avoid duplication, only the results of

the three-way admixture are discussed here. The animals
in red color in the Figures 7A, 8A have ≥90% of their
European breed proportion being Holstein-Friesian, while
the animals shown in blue color in Figures 7B, 8B are those
having ≥90% of their European breed proportion being
Montbéliarde.

Across all animals, the individual heterozygosity ranged from
0.166 to 0.37, and the European breed proportion ranged
from 0 to 1. There are evident clusters of animals that have
high heterozygosity proportions (>32%) and are close to 50%
European breed proportion. Virtually all of these animals
are those shown to be F1 crosses in the ancestral origin
heterozygosity results.

The black lines are the expected heterozygosity proportions
for the progeny of crosses involving an average Holstein-
Friesian parent (Figures 7A, 8A) or an average Montbéliarde
parent (Figures 7B, 8B). The green lines are the expected
heterozygosity proportions for the progeny of inter-se matings
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FIGURE 6 | Plots of PC1 vs. PC2 for all West African crossbred animals showing their ancestral origin heterozygosity as color code from red (heterozygosity = 1) to
blue (heterozygosity = 0).

FIGURE 7 | Individual heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using
ADMIXTURE. The black and green lines are upper and lower boundaries of expected heterozygosity for (A) Holstein-Friesian and (B) Montbéliarde crosses.

between crossbred animals of identical breed composition.
The black lines form a theoretical upper boundary of
heterozygosity of crossbred animals, while the green lines
are the theoretical lower boundary. Holstein, Friesian and
Montbeliarde reference samples were used to obtain the
average heterozygosity proportion of the pure Holstein-Friesian

and Montbéliarde parental populations, respectively, and
then used in obtaining the upper and lower boundaries of
the expected heterozygosity. The average heterozygosity of
indigenous animals was obtained as the average heterozygosity
of animals with <2% European breed proportion based on
a two-way ancestry analysis. The average heterozygosity of
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F1 Holstein-Friesian versus F1 Montbéliarde crossbreds was
obtained by identifying F1 animals from the ancestral origin
heterozygosity analyses, and matching these to animals whose
European breed proportion was ≥90% Holstein Friesian or
≥90% Montbéliarde.

The average individual heterozygosity proportions for the
parental indigenous, Holstein-Friesian, and Montbéliarde
populations were 0.241 (ranged from 0.166 to 0.258), 0.311
(ranged from 0.276 to 0.343), and 0.295 (ranged from 0.279
to 0.303), respectively. The mean and range of indigenous
animals include a single outlier with very low heterozygosity,
which the PC plots and admixture analyses indicated was a
pure Bos indicus animal; most likely one of the pure Guzerat
animals known to have been imported into the sample area
from Brazil. This outlier was assigned as crossbred in our
data using farmers’ assessment of breed composition based
on the external appearance of the animal, however, our
genomic breed composition prediction methods showed the
opposite. Previously, Weerasinghe (2014) tested the extent
of farmers knowledge on the ability to identify the breed
composition of the East African crossbreds and concluded that
farmers have a poor understanding of the breed composition
of their animals.

The Holstein-Friesian crosses showed a higher average
heterozygosity proportion than the Montbéliarde crosses, and
this leads to higher upper and lower boundaries of heterozygosity
of Holstein-Friesian crossbreds. The fit to the data is clearly
better in Figure 8 than Figure 7, due largely to LAMP-LD
providing more accurate estimates of European breed proportion
than ADMIXTURE. However, the fit to the data, in general, is
very poor in both figures, with a high proportion of animals
sitting outside the upper and lower boundaries of heterozygosity.
This is due primarily to the large variation in heterozygosity
among purebred ancestors. This variation can be expected among
ancestors in any crossbred population. Thus, in marked contras
to ancestral origin heterozygosity, individual heterozygosity
will provide a very poor measure of heterozygosity caused by
crossbreeding and hence very poor estimates of heterosis of
performance when used in analyses of additive and heterosis
effects in this, and by extrapolation other crossbred populations.
An additional factor in the current population is the small
proportion of crosses resulting from pure Guzerat or Guzerat
x indigenous ancestors. These can be seen in Figures 7, 8 as
animals appearing well below the green line. They are also
evident in Figure 2 as animals with zero or well below expected
African B. taurus ancestry, and in the PC plot (Figure 3)
as animals well below the distribution of points for most
crossbreds. A few animals that are scattered well below the
expected lower boundaries, such as an animal with European
breed proportion around 65% and Holstein-Friesian proportion
≥90%, might be a cross among close relatives resulting in
high inbreeding.

Overall the results on ancestral origin versus individual
heterozygosity show the clear superiority of ancestral mapping
heterozygosity to infer ancestry of individual animals and
as an estimate that can be used to obtain estimates of
additive and heterosis effects in crossbred populations. The

ancestral haplotype inference from LAMP-LD also produced
estimates of European breed proportion that were more
consistent with expectations than ADMIXTURE, which showed
an upwards bias of estimates of European breed proportion
for animals with very low European breed proportions when
using a three-way analysis. Although not tested here, it
is possible that this bias in estimates of European breed
proportion could be corrected by rescaling the Admixture
estimates. But deriving the rescaling method would require
that either the true ancestral bred proportions were known,
which will never be the case, or that better estimates are
available such as those obtained from LAMP-LD. So, in
most cases it seems preferable to simply use the LAMP-LD
estimates directly.

Accuracy of Genotype Imputation in
West African Cattle Populations
Genotype Imputation From Low-Density to
Medium-Density
The concordance and correlation of imputation from low to
medium density under various scenarios are shown in Figure 9.
As expected, for all scenarios the concordance was higher and
much less varying than the correlation. Several authors report
both the correlation and concordance rate to compare the
accuracy of imputation in cattle populations (Dassonneville et al.,
2012; Berry et al., 2014; Aliloo et al., 2018). However, using the
concordance rate as the best measure of imputation accuracy
may be misleading because it was found to inflate accuracy for
rare and low-frequency variants due to chance concordance or
chance agreement (Hickey et al., 2012). To illustrate the effects
of MAF on imputation accuracy, the value of correlation and
concordance of imputed SNPs for the 2F_LD-MD scenario were
plotted against the MAF (Supplementary Figure 3). A higher
concordance value was achieved for SNPs with low MAF and the
value declined as MAF increased, while the correlation value was
not influenced by MAF. This is due to a high chance of correctly
assigning rare alleles based on the allele frequencies of the
population by transferring the major allele as the missing allele.

In this study, the concordance was included for comparison
with published literature but is not further discussed here as it
represents a poor measure of the accuracy of imputation. From
this point onwards, the estimate of the accuracy of imputation
is the correlation of imputed versus true SNP genotypes. A total
of 23,606 SNPs were imputed from low to high-density dataset.
The imputation accuracies from low to medium-density were
very low for all scenarios, ranging from 0.142 to 0.717. The
best-case scenario (1F_LD-MD; r = 0.717), has an r2 of only
0.514; i.e., only 51.4% of the variation in SNP genotypes is
accounted for imputation. Low accuracy of imputation may
not be a major problem for some applications. Figure 9 also
shows the correlation of the off-diagonal elements to the GRM
built with imputed versus true genotypes, and these range from
0.894 to 0.992. This suggests that genomic estimated breeding
values (GEBV) resulting from imputed versus real genotypes
should be very highly correlated in many cases (Wu et al., 2016;
Aliloo et al., 2018).
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FIGURE 8 | Individual heterozygosity in West African crossbreds plotted against European breed proportion estimated from a three-way admixture using LAMP-LD.
The black and green lines are upper and lower boundaries of expected heterozygosity for (A) Holstein-Friesian and (B) Montbéliarde crosses.

FIGURE 9 | Genotype imputation accuracy and GRM correlation between real and imputed genotypes for imputation from low to medium-density.

The imputation accuracies for the crossbreds were relatively
higher when crossbreds or a combination of indigenous and
crossbred populations were used as the reference sets. For
Scenario 1, where East African populations were used as a
reference, the accuracy was higher within the East African
crossbred populations (Scenario 1F_LD-MD), while it was very
low for imputation of West African indigenous populations
(Scenario 1A_LD-MD and Scenario 1C_LD-MD). The accuracy
improved when the imputation was performed within the
West African indigenous (Scenario 2A_LD-MD) and crossbreds

(Scenario 2D_LD-MD). The inclusion of East African indigenous
to West African indigenous reference set did not improve
the imputation accuracy (Scenario 2A_LD-MD versus Scenario
3A_LD-MD), while adding East African crossbreds to the West
African crossbred reference set (Scenario 3D_LD-MD) resulted
in a slight decrease in imputation accuracy.

Imputation accuracies are generally expected to be reasonably
high for European dairy breeds, given that the SNP assays
were in part designed for use in European B. taurus breeds
and that training of imputation is often based on large
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sample sizes. Several authors reported an imputation accuracy
(correlation) greater than 0.9 in European dairy breeds
(Dassonneville et al., 2012; Mulder et al., 2012; Berry et al., 2014).
This allows their widespread use for imputation and then the
application to generate genomic EBVs, allowing lower cost and
wider application of genotyping in genetic improvement. The
accuracy in our African crossbred populations never approaches
that found in European dairy breeds, even where the reference
data involves many thousand animals sampled from the same
population, as in the use of East African data to impute East
African crossbred genotypes. We, therefore, infer that a new
assay will need to be designed if low-density assays are to
be reliable for use in genetic analyses of African crossbred
dairy cattle. Although we have much less data on indigenous
breeds than crossbreds, and hence cannot clearly differentiate
the impact of low sample size versus poor assay design, it
is reasonable to infer that newly designed assays will also be
required for use in African indigenous breeds. Another reason
could be the higher genetic diversity in African indigenous
breeds compared to European dairy breeds (Gebrehiwot, 2020;
Gebrehiwot et al., 2020), which might complicate imputation and
reduces accuracy.

Genotype Imputation From Medium-Density to
High-Density
The imputation concordance and correlation and the
correlation of off-diagonal elements of the GRM for
imputation from medium to high density are shown in
Figure 10. A total of 592,660 SNPs were imputed from
medium to high-density dataset. As expected given the
substantially larger number of SNPs involved and hence
smaller distance between adjacent SNPs, the imputation

accuracy was always higher than when imputing from low
to medium density.

In general, the accuracy was higher when imputation
was performed within the geographical region than across
geographical regions. This observation was also made in
European dairy breeds, were a Holstein reference population
yielded a lower imputation accuracy in German Black Pied
cattle, despite providing a larger reference, compared to using
a reference population of the same breed (Korkuæ et al., 2019).
The accuracy was the highest (correlation = 0.899) when East
African crossbreds were used as a reference set to impute East
African crossbreds (Scenario 1F_MD_HD). This was because of
the larger size of the reference set, and the reference set being
sampled from the same population as the target set. Recently,
Aliloo et al. (2018) reported a slightly higher imputation accuracy
(correlation = 0.927) using a combined data of East African
crossbred cows and bulls compared to the accuracy obtained in
our study, which the data used here is a subset of the populations
used by these authors. The slightly higher accuracy is likely
due to the higher number of SNPs in their medium-density
(dataset (42k SNPs) compared to the number available in our
study (29k SNPs).

In West African populations, the accuracy of imputation
was higher for crossbreds than the indigenous populations.
This is in concordance with (Rowan et al., 2019) who
reported that a multi-breed composite reference significantly
increased imputation accuracy compared to a within-breed
reference population. The highest correlation (0.702) for West
African indigenous animals was found when a West African
indigenous reference population was used (Scenario 2A_MD-
HD), while the lowest correlation (0.478) was found when
an East African indigenous reference population was used

FIGURE 10 | Genotype imputation accuracy and GRM correlation between real and imputed genotypes for imputation from medium to high-density.
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(Scenario 1C_MD-HD). The lower imputation accuracy for
the indigenous populations compared to that of crossbreds is
likely due to a combination of the smaller reference population
size and the relatively high effective population sizes (Ne)
and high genetic diversity in the African indigenous breeds
(Gebrehiwot, 2020; Gebrehiwot et al., 2020). The accuracy of
imputation for the indigenous populations would likely have
been improved if the imputation had been performed within
indigenous breeds, hence maximizing the shared LD between
SNPs, rather than pooling all the indigenous data together; but
sample sizes were too small here to test that hypothesis. The
research here does not directly identify a target number to be
genotyped but by extrapolation from imputation in the East
African crossbred populations (Aliloo et al., 2018) at least 1,000
animals will be needed.

The addition of East African indigenous data to the
West African indigenous reference data (Scenario 3A_MD-
HD) and the addition of the East African crossbred data
to the West African crossbred reference data (Scenario
3D_MD-HD) decreased the accuracies of prediction of West
African indigenous and West African crossbreds by 4 and
1%, respectively. Brøndum et al. (2012) reported a similar
reduction of imputation accuracy in a Holstein population
when Danish, Swedish and Finnish Red cattle populations
were added to the Holstein-Friesian reference set. This is
likely due to a lack of consistent LD phase between these
populations. In all scenarios, adding indigenous and crossbred
reference data to impute crossbreds or adding crossbred data
to indigenous data to impute in indigenous animals either
decreased accuracies or increased only slightly (<3%) compared
to use of crossbred or indigenous reference data alone. These
small changes in accuracy, even when a large amount of
data was added (e.g., Scenario 1C_MD-HD and 1D_MD-HD
versus Scenario 1A_MD-HD and 1B_MD-HD, respectively),
indicate that the additional data had little or no shared LD
phase with the target population. Taken together, the results
show that in order to obtain reasonably high accuracy of
imputation within African indigenous or crossbred populations
substantial reference data will need to be collected for the target
populations because reference data from indigenous or crossbred
populations from other regions of Africa generally provide poor
accuracy of imputation.

The correlations of the off-diagonal elements of the GRMs
constructed using real versus imputed genotypes (Figure 10)
were all above 0.985. This is consistent with previous findings
that even with a high error rate in genotype imputation, the
genomic prediction accuracy still can be high (Wu et al., 2016;
Aliloo et al., 2018). Our study further assessed the correlations
of off-diagonal elements of the GRMs constructed using the
real low-density versus medium-density and medium-density
versus high-density genotypes for East African indigenous and
crossbred populations and obtained correlation of 0.958 and
0.990 and 0.938 and 0.987, respectively. The high correlations
among off-diagonal elements of GRMs from different density
panels implies that the loss in genetic gain to implement
genomic prediction using low or medium-density datasets
compared to high-density genotypes is small in the East

African cattle populations. Previously, Habier et al. (2009)
and Cleveland et al. (2010) supported the feasibility of
undertaking genomic prediction based on low-density genotypes
for practical implementation, and the cost-efficiency of low-
density genotypes allows a much larger proportion of the
population to be included in the genomic evaluation procedure
(Wiggans et al., 2012).

Overall, genomic information from high-density genotypes
provides the opportunity to increase the rate of genetic progress
in breeding programs (Hayes and Goddard, 2001). Though the
price of high-density marker arrays is continually reducing,
genotyping cost still is one of the main limiting factors for
cost-efficient genomic applications. This high cost could be an
issue in developing countries in Africa, where financial resources
are very limited for the key stakeholders, such as smallholder
dairy farmers. Therefore, a strategy that is used to overcome
the cost limitations is to genotype a sufficiently large number of
reference individuals from a given population with higher density
or fully sequenced while the majority will be genotyped with
lower density. This cost-effective strategy provides reliabilities of
GEBVs that are similar to those obtained if selection candidates
were genotyped with the higher-density chip (Khatkar et al., 2012;
Mulder et al., 2012).

CONCLUSION

This study shows that ancestral heterozygosity can be estimated
with high accuracy in African crossbred populations and will
be far superior to the use of observed individual heterozygosity
for estimating heterosis in such crossbred populations. The
population-based imputation results highlighted the effects of
different reference populations, SNP density, and sample size
on imputation accuracy. It has been hoped by research groups
working in Africa that high imputation accuracy might be
achieved in African populations by using large-scale imputation
information from other populations to impute in populations
in which there is limited high-density genotype information,
as has often been found to be possible for different breeds
in developed countries. Unfortunately, the results show clearly
that it was not possible to achieve high imputation accuracy
in West African crossbred or indigenous populations based
on large reference data sets from East Africa, and so larger
population-specific genotype samples, especially considering
the larger genetic diversity of African indigenous cattle, will
be required to achieve high accuracy. This study provides a
strong foundation to integrate genotype imputation into routine
genomic evaluation pipelines for African cattle populations
as a cost-effective way to boost the power of genomic-based
genetic improvement.
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