LINGUISTIC POINTERS TO STUDENTS’ UNDERSTANDING IN INTRODUCTORY ALGEBRA: A COGNITIVE APPROACH

Judith Louise Falle
M.Ed., (UNE); B.Sc., (UNSW); Teaching Certificate, (AMTC)

A Thesis submitted for the degree of Doctor of Philosophy of the University of New England

December 2008
I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Judith L. Falle
December 2008
Language is the dress of thought.
Samuel Johnson

Sermo hominum mores et celat et indicat idem.
Speech both conceals and reveals the thoughts of men.
Cato
ACKNOWLEDGMENTS

My thanks must go to the teachers and students who participated in the study by giving their time and acceptance of disruption to their normal routines. To the students an acknowledgement also of their willingness to talk about their thinking to a stranger. To them I owe many insights that I can only wish that I might have had as a classroom teacher.

My appreciation also to the many colleagues, friends, and of course family, who have supported me in so many ways, particularly through the times I had to wade through the slough of despond. I can only hope that in some small way this work stands as my thanks for their patience and understanding.
ABSTRACT

Teachers use “extremely subtle pragmatic interpretive judgements […] regularly in the course of mathematics teaching and learning…” (Pimm, 1987, p.167). The form of their discourse – the coherence, the structure and modality, characteristics of natural language in use – indicates the commitment of students to the truth-value of their statements. Hence, the listener might infer the extent of students’ confidence in their understanding.

In this study, linguistic features were identified that could be aligned with the conceptual growth of students in the context of introductory algebra. The aim was to devise a model that provided explicit, objective evidence to support the subtle, interpretive judgements made by teachers.

Secondary students in Years 8 and 9 (13-15 year olds) from three schools in a NSW regional centre (N=222) participated in the study. The study consisted of two phases of data collection. The first was the collection of quantitative data from students’ responses to a survey (test) of 40 algebra items drawn from the algebra syllabus for the first four years of secondary schooling in NSW.

Survey data provided information about algebra concepts, and conceptual development demonstrated by the students, through Rasch modelling of the responses and an analysis of errors. The Rasch model indicated items and students clustered around significantly different estimates of, respectively, difficulty and ability\(^1\).

Clustering indicated groups of items requiring similar levels of conceptual development to be addressed successfully, and the corresponding groups of students who demonstrated this development. End-points of clusters indicated where conceptual change was necessary for further success on items, and the students who could achieve this.

In the second phase of the study, the collection of qualitative data, students (n=31) were selected, on the basis of their survey results, for interview. Interviews were contingent – a pre-determined set of questions was followed, and these questions

\(^1\) Ability is the term used in the literature on Rasch measurement to describe student achievement on the test instrument.
supplemented by further questions where necessary. Interviews were audio-taped and transcribed for analysis. There were two purposes for the interview.

Data obtained from interviews were used to supplement the survey results. Accounts of their thinking provided insight into students’ content knowledge and perceptions, as well as their particular approach to survey items – enabling characterisation of stages in conceptual growth.

Interview data were also analysed for ways in which students structured their explanations (i.e., linguistic characteristics). Results of the analysis were mapped to item-difficulty and student-ability clusters identified from the Rasch model. Where students’ conceptual understanding was found to develop in complexity and depth, so too did their associated discourse increasingly adopt the register of the discipline. The resultant language-conceptual model demonstrates an association between algebraic understanding and linguistic features of student talk in a developmental hierarchy that uses the SOLO model as a theoretical framework.

The language-conceptual model resulting from this exploratory study focused on linguistic features that are important in a pragmatic analysis of language – pronoun use, response types, and modality indicators – but which constituted a relatively small part of interviews. Their low frequency of occurrence meant that statistical significance could not always be established. However, where patterns of change did emerge, these have been identified and discussed, recognising that further data from a larger sample would be needed.
TABLE OF CONTENTS

LIST OF FIGURES .. i

LIST OF TABLES .. ii

INTRODUCTION ... iii

CHAPTER 1: REVIEW OF THE LITERATURE ... 1

 Mathematics as Language ... 1
 Language and Mathematics: Cognitive connections .. 4
 Language in Mathematics: Discourse in the classroom .. 10
 Language for Mathematics: From natural language to mathematical language .. 17
 Language of Mathematics: The mathematics register .. 24
 Conclusion ... 29

CHAPTER 2: THEORETICAL PERSPECTIVES AND RESEARCH QUESTIONS .. 31

 Empirical Models Relating Students’ Language Use and Mathematical Understanding 32
 THE SOLO Model of Cognitive Development ... 40
 Algebra .. 58
 Research Questions .. 61

CHAPTER 3: METHODOLOGY ... 63

 Context of the Study ... 64
 Design of the Study ... 68
 Data Collection .. 70
 Quantitative Analysis of Research Data ... 77
 Qualitative Analysis of Data .. 82
 Statistical Analysis ... 86
 Evaluation of the Methodology .. 87
CHAPTER 4: RESULTS FROM THE SURVEY ... 95
 Overview of the Results .. 95
 Patterns of Item Difficulty ... 102
 Patterns of Student Responses .. 114
 conclusion .. 120

CHAPTER 5: QUALITATIVE ANALYSIS OF SURVEY RESPONSES 122
 Response Types .. 123
 Analysis of Errors ... 128
 Analysis of Item Clusters .. 140
 Items That Did Not Fit the Rasch Model .. 154
 Mathematical Thinking of Students in the Ability Groups 161
 Conclusion .. 169

CHAPTER 6: ANALYSIS OF LANGUAGE USED BY STUDENTS 172
 Ability Groups and Item Clusters ... 173
 Verbosity .. 176
 Use of pronouns ... 185
 Response Type .. 200
 Modality .. 221
 Tense ... 236
 Conclusion .. 237
LIST OF FIGURES

Figure 2.1: Modes, learning cycles, and forms of knowledge of the SOLO Taxonomy (Collis, 1992, p.370) ... 44
Figure 2.2: Learning Cycles (The structure from K-12) (Collis, 1994, p.346) ... 50
Figure 3.1: Schematic Overview of the Research Design... 69
Figure 3.2: Questions presented in the first 8 subsets of the interviews 76
Figure 4.1: Fraction of correct responses, items in descending order 97
Figure 4.2: Map of Item Fit. Items fit the Rasch model if they map between 0.77 and 1.30 logits 99
Figure 4.3: Map of student performance (by ability estimates) and item difficulty, 100
Figure 4.4: Survey items in descending order of difficulty estimates with r-values for intervals between clusters .. 101
Figure 4.5: Items in descending order of difficulty estimates, with t-values for intervals between clusters.. 104
Figure 4.6: Items (numbers in bold) arranged in categories of syllabus topics. (Expressions are to the left of each column, equations to the right. Individual students are designated with “x”, adapted from the Quest map) .. 106
Figure 4.7: Map of item difficulty and ability estimates, with students identified by years, quartiles and means (±1SD) marked.. 114
Figure 4.8: Grouped student abilities. High-ability from 1.0 to 5.0 logits; Average-ability from -1.17 to 1.0 logits; Low-ability from -5.0 to -1.17 logits... 116
Figure 4.9: Student ability groups mapped on to items arranged by difficulty and in categories. 118
Figure 5.1: Numbers of student responses to Items 3, 15 and 12 157
Figure 6.1: Numbers of words as standardised scores used by individual students ordered according to Rasch ability estimates .. 177
Figure 6.2: Verbosity of students in ability groups by item-sets in order of average difficulty 179
Figure 6.3: Frequency of I and you pronouns by each ability group responding to each item set 188
Figure 6.4: Comparison of the frequency of occurrence of the pronouns I, it and you with the number of correct responses by the interviewed students to items in Set 5 and Set 6, arranged in descending order of difficulty ... 195
Figure 6.5: Actual and expected frequencies of specific and general responses to Sets 1 to 7 204
Figure 6.6: Numbers of specific responses to single and multiple items in Sets 1 to 7 205
Figure 6.7: Numbers of general responses (descriptions, rules and explanations) to Sets 1 to 7 207
Figure 6.8: Average number of responses per student to items in Sets 1-7 by ability group 209
Figure 6.9: Actual and expected response types from the High ability group to Sets 1-7 210
Figure 6.10: Specific and general response patterns of the High-ability group to Sets 1 to 7 211
Figure 6.11: Actual and expected response types from the Average ability group to Sets 1-7 212
Figure 6.12: Single- and multiple-item responses by Average-ability students 213
Figure 6.13: Actual and expected response types from the Low ability group to Sets 1-7 215
Figure 6.14(a,b): Response patterns by Low-ability students to items in Sets 1 to 7 216
Figure 6.15: Actual and expected numbers of responses to items in Set 9 and Sets 1-7 by each of the ability groups ... 219
Figure 6.16: Average numbers of attribution shields per student in each ability group for each set ordered by increasing difficulty (Set 9 excepted) .. 223
Figure 6.17: Actual and expected proportions [as words uttered] of attribution shields made by each ability group by sets in order of set difficulty estimates 225
Figure 6.18: Frequency of occurrence of hedges in Sets 1 to 8 by all students 227
Figure 6.19: Actual and expected numbers of hedges uttered by ability groups in Sets 1 to 8 228
Figure 6.20: Hedges/response by ability groups for Sets 1 to 8 and Set 9 229
Figure 6.21: Scatter of the number of hedges per response by individual students in increasing order of ability estimates ... 230
Figure 6.22: Numbers of responses and numbers of actual and expected hedges by all students to Sets 1 to 9 ... 233
Figure 7.1: Language-conceptual model showing the association of language development and algebra understanding within the SOLO cognitive framework .. 267
LIST OF TABLES

Table 6.12: Average number of responses by type per student for each ability group ... 103
Table 6.13: Numbers of attribution shields by each ability group for each item ... 106
Table 6.14: Response types by Average ... 109
Table 6.15: Numbers of response types by Low ... 112
Table 6.16: Specific and general responses to items in Set 9 and Sets 1 .. 115
Table 6.17: Numbers of attribution shields by each ability group for each item ... 118
Table 6.18: Actual and Expected numbers of hedge words/phrases uttered by ability groups when talking about items in Sets 1 to 8 (Algebra) and Set 9 (background) ... 121
Table 6.19: Comparison of the numbers of hedges for each set of items .. 125
Table 6.20: Numbers of responses using present, past or conditional tenses ... 128
Table 7.1: Numbers of students who incorrectly conjoined terms in responses to items, by ability group and item number. The items are arranged in sets as presented in interviews ... 131