AVIAN ANTI-PREDATOR STRATEGIES

Specificity of Mobbing and Predator Inspection in the Australian Magpie
(Gymnorhina tibicen) and the Zebra Finch
(Taeniopygia guttata)

Adam Stephen Koboroff, BSc (Hons).

A thesis submitted for the Degree of Doctor of Philosophy of the
University of New England

July, 2008
Photograph of an Australian magpie (*Gymnorhina tibicen tibicen*). Australian magpies are large passerines of the family Artamidae. Males weigh 260-385g and females 255-270g (Schodde and Mason, 1999). They occur throughout Australia. *Gymnorhina tibicen tibicen* is found along the eastern seaboard of Australia from the New South Wales/Victorian border to Brisbane (Schodde and Mason, 1999). The diet of magpies consists primarily of invertebrates (Baker and Vestjens, 1984) but they are generalist feeders (Kaplan, 2004). They forage by walking on the ground and listen for slight vibrations caused by worms or scarab beetle larvae beneath the surface and then strike at the ground with their beaks (Floyd and Woodland, 1981). Magpies are a territorial species (Carrick, 1972).

Photograph of a zebra finch (*Taeniopygia guttata*). Zebra finches are small passerines. Male zebra finches weigh 10.0-15.2g and females 9.4-16.2g depending on location (Zann, 1996). Zebra finches are found throughout arid Australia (Zann, 1996). While zebra finches eat a large range of seeds (Zann, 1996), they tend to specialise on certain locally abundant seeds (Morton and Davies, 1983). Zebra finches are semi-nomadic and occupy home ranges (Zann, 1996).
ACKNOWLEDGEMENTS

I would first like to extend my sincere thanks to my supervisor Prof. Gisela Kaplan. I am very grateful for her guidance, encouragement and support that she has provided me throughout my candidature. I have gained a further appreciation of knowledge and enthusiasm for science as a result of her supervision. Perhaps, the most important knowledge that she has passed on to me is the appreciation and respect for birds, and animals in general, and for this I am extremely grateful. I also thank my co-supervisor Prof. Lesley Rogers for her valuable advice and numerous discussions. I am, indeed, honoured to have had two supervisors who were willing to share their experience and knowledge with me.

I also thank the past and present member of the Centre of Neuroscience and Animal Behaviour for their support and friendship. I would especially like to thank Nicole Austin, Dr. Nick Branson, Michael Chen, Dr. Elena Clara, Dianne Gordon, Dr. Gayle Johnson, Kelly O’Shea and Leanne Stewart.
PAPERS PUBLISHED DURING CANDIDATURE

Refereed papers

Published Abstracts

Conference Abstracts

ABSTRACT

Many species have developed anti-predator defences beyond a flight and avoidance response. Some species approach predators (i.e. to mob or inspect) despite the fact that this behaviour might increase risk of capture. At the very least, it seems a counter-intuitive behaviour that requires explanation, even if some advantages may partially counteract the risks. While there have been quite detailed studies of mobbing in birds, predator inspection has only had scant mention and has been based on a study by Kruuk (1976) that, to my mind, rather described mobbing. My research was particularly interested in investigating closely the similarities and differences between mobbing and of predator inspection, having to find more evidence of the latter in birds. The thesis addresses the problem of function in both major forms of approach behaviour and it was my aim to place these questions in an ecological, developmental and territorial context. These questions were tested experimentally in the field using Australian magpies (*Gymnorhina tibicen*) and in the laboratory using zebra finches (*Taeniopygia guttata*) by presenting groups of both species with models of predators. Five experiments were conducted between September 2005 to February 2008. The results showed that juvenile dependency had little influence on mobbing/inspection of magpies but the species of predator did produce significant differences in all categories. The magpies discriminated between the aerial and ground predators and altered their response accordingly. The results strongly suggest that mobbing and predator inspection are not behaviours that are closely related, even though some overlap occurs, and are, in fact, functionally different: For instance, eye preference to view a model predator was analysed and it was found that predominantly the left eye (the right hemisphere of the brain) was used during inspection-only approaches while no bias was found during mobbing behaviour. To conclude, my results show, for the first time, that mobbing and predator inspection are functionally different and that predator inspection is functionally different from general exploration behaviour.
CERTIFICATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>i</td>
</tr>
<tr>
<td>Papers published during candidature</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Certification</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1 GENERAL INTRODUCTION

1.1 Introduction

1.2 Anti-predator strategies

1.3 Predatory sequence leading to approach behaviour
 1.3.1 Predator recognition
 1.3.2 Vigilance

1.4 Approach behaviour
 1.4.1 Mobbing behaviour
 1.4.1.1 Function(s) of mobbing behaviour
 1.4.1.1.1 Hypotheses about deterring a predator
 1.4.1.1.2 Other hypotheses
 1.4.2 Exploration
 1.4.3 Predator inspection
 1.4.3.1 Function(s) of predator inspection

1.5 Selection of study species

1.6 Aims of the study

CHAPTER 2 GENERAL METHOD:
FIELD EXPERIMENTS (AUSTRALIAN MAGPIES)

2.1 Introduction

2.2 Study sites
 2.2.1 Selection of magpie groups
 2.2.2 Location of groups
 2.2.3 Identifying groups
 2.2.3.1 Identification of individuals and number of magpies per group
 2.2.3.2 Seasons
 2.2.3.3 Territorial boundaries

2.3 Experiments
 2.3.1 Stimuli
 2.3.2 Determining stimulus presentation area
 2.3.3 Experimental procedure
 2.3.4 Methods of scoring behaviour
 2.3.4.1 Focal sampling
CHAPTER 3 ETHOGRAM OF ANTI-PREDATOR BEHAVIOUR

3.1 Introduction

3.2 Methods

3.3 Results

3.3.1 Behaviour observed

3.3.2 Aerial behaviour

3.3.2.1 Swooping

3.3.3 Ground based behaviour

3.3.3.1 Pecking

3.3.3.2 Jumping

3.3.3.3 Walking around the stimulus (Circling)

3.3.3.4 Stationary viewing

3.3.4 Physical contact

3.3.5 Postural changes

3.3.6 Alarm calls

3.3.7 Types of behaviour elicited by the various model predators

3.4 Discussion

CHAPTER 4 MOBBING BEHAVIOUR OF AUSTRALIAN MAGPIES

4.1 Introduction

4.2 Methods

4.3 Results

4.3.1 Results for each testing period across each juvenile developmental stage

4.3.2 Detailed analysis of test period during Stage 1

4.3.2.1 Aerial behaviour (Swooping)

4.3.2.2 Ground based behaviour

4.3.3 Response by magpies to each predator across all three stages

4.4 Discussion

CHAPTER 5 PREDATOR INSPECTION OF THE MONITOR LIZARD

5.1 Introduction

5.2 Methods

5.2.1 Behaviours scored

5.2.2 Statistical analyses

5.3 Results

5.3.1 Position of magpies near the lizard
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>104</td>
</tr>
<tr>
<td>6.</td>
<td>Introduction</td>
<td>106</td>
</tr>
<tr>
<td>6.</td>
<td>Method</td>
<td>108</td>
</tr>
<tr>
<td>6.</td>
<td>Results</td>
<td>112</td>
</tr>
<tr>
<td>6.</td>
<td>Discussion</td>
<td>113</td>
</tr>
<tr>
<td>7.</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>7.</td>
<td>Methods</td>
<td>123</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Testing response to unnatural posture</td>
<td>123</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Presentation of a model predator in a different context</td>
<td>126</td>
</tr>
<tr>
<td>7.3</td>
<td>Results</td>
<td>128</td>
</tr>
<tr>
<td>7.3.1</td>
<td>The Presentation of little eagle and monitor lizard presented in two postures</td>
<td>128</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Responses to a predator seen with a dead conspecific (replicating Kruuk’s experiment)</td>
<td>130</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>132</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Effects of changed postures on magpies response</td>
<td>132</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Effects of presentation of dead magpie together with a predator</td>
<td>134</td>
</tr>
<tr>
<td>8.</td>
<td>Introduction</td>
<td>136</td>
</tr>
<tr>
<td>8.2</td>
<td>General Method</td>
<td>140</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Subjects</td>
<td>140</td>
</tr>
<tr>
<td>8.2.1.1</td>
<td>Identifying individual finches</td>
<td>140</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Housing</td>
<td>143</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>Home room</td>
<td>143</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>Testing room</td>
<td>144</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Husbandry</td>
<td>145</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Experiments</td>
<td>145</td>
</tr>
<tr>
<td>8.2.4.1</td>
<td>Stimuli</td>
<td>146</td>
</tr>
<tr>
<td>8.2.4.2</td>
<td>Method of pilot study</td>
<td>146</td>
</tr>
<tr>
<td>8.2.4.3</td>
<td>Outcome of pilot study</td>
<td>147</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Statistical analyses</td>
<td>148</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Testing exploration versus predator inspection</td>
<td>148</td>
</tr>
<tr>
<td>8.2.6.1</td>
<td>Sample size</td>
<td>149</td>
</tr>
<tr>
<td>8.2.6.2</td>
<td>Stimuli</td>
<td>150</td>
</tr>
<tr>
<td>8.2.6.3</td>
<td>Testing aviary</td>
<td>151</td>
</tr>
<tr>
<td>8.2.6.4</td>
<td>Trial period</td>
<td>153</td>
</tr>
<tr>
<td>8.2.6.5</td>
<td>Presentation of stimuli</td>
<td>153</td>
</tr>
<tr>
<td>8.2.6.6</td>
<td>Scoring method</td>
<td>153</td>
</tr>
<tr>
<td>8.2.6.6.1</td>
<td>Location</td>
<td>153</td>
</tr>
</tbody>
</table>
LIST OF APPENDENCIES

APPENDIX I 210
APPENDIX II 213

LIST OF FIGURES

Figure 2.1. Typical magpie territory. 33
Figure 2.2. Map of Armidale showing the location of all groups. 35
Figure 2.3. Photographs of an adult magpie and a juvenile magpie. 37
Figure 2.4. Photographs of wing marking of two individuals. 38
Figure 2.5. Satellite pictures of each groups’ territory. 42
Figure 2.6. Wedge-tailed eagle (Aquila audax). 45
Figure 2.7. Little eagle (Hieraetus morphnoides). 45
Figure 2.8 Brown goshawk (Accipter fasciatus). 46
Figure 2.9. Lace monitor lizard (Varinus varnus). 46
Figure 2.10. Model snake. 47
Figure 2.11. Stimulus presentation area taken from the experimenter’s location. 48
Figure 2.12. Correlation of the number of swoops scored for the focal animal and the number of swoops scored for the group adjusted for the number of birds. 52

Figure 3.1. Diagrammatic description of swooping flight patterns. 60
Figure 3.2. Diagrammatic description of a pecking event. 61
Figure 3.3. Diagrammatic description of a jumping event. 62
Figure 3.4. Diagrammatical description of a circling event. 63
Figure 3.5. Sequence of video footage showing a stationary viewing bout. 64
Figure 3.6. Relaxed and vigilance postures adopted by the magpies. 65
Figure 3.7. Sonogram of magpie alarm calls elicited by model predators. 66

Figure 4.1. Results for test periods (little eagle). 78
Figure 4.2. Results for the test periods (wedge-tailed eagle). 79
Figure 4.3. Results for the test periods (brown goshawk). 80
Figure 4.4. Results for the test periods (monitor lizard). 81
Figure 4.5. The number of swoops during Stage 1. 83
Figure 4.6. Swooping flight patterns elicited by the aerial predators during Stage 1 of juvenile development. 84
Figure 4.7. The number of circling events during Stage 1. 85
Figure 4.8. The number of stationary viewing events during Stage 1. 86
Figure 4.9. Group response to the little eagle and wedge-tailed eagle across the three developmental stages. 88
Figure 4.10. Group response to the brown goshawk and monitor lizard across the three Stages. 89
Figure 5.1. Sections around the lizard used for scoring the orientation of the magpies towards the lizard.

Figure 5.2. Video footage of a presentation of the monitor lizard.

Figure 5.3. Comparisons between single and group responses

Figure 5.4. Percent duration of time (s) spent in each section around the lizard when only one magpie approached it.

Figure 5.5. Percent duration of time (s) spent in each section around the lizard when more than one magpie approached it.

Figure 6.1. Video footage showing eye use prior to an approach towards the monitor lizard.

Figure 6.2. Scoring monocular fixations.

Figure 6.3. Monocular fixation, on this occasion with the left eye, during stationary viewing.

Figure 6.4. Percentage eye bias.

Figure 7.1. Results for the presentation of the little eagle.

Figure 7.2. Results for the presentation of the monitor lizard.

Figure 7.3. The response of the magpies to the model predators in different postures.

Figure 7.4. The response of magpies to the dead magpie and little eagle in all four treatments.

Figure 8.1. Identifying individual female zebra finches from distinctive plumage markings.

Figure 8.2. Identifying individual male zebra finches from distinctive plumage markings.

Figure 8.3. Furnishing of the home room.

Figure 8.4. Novel object (a) and monitor lizard (b).

Figure 8.5. Testing aviary during Experiment 4.

Figure 8.6. Sequence of video footage showing inspection of the novel object.

Figure 8.7. Stimuli presented in Experiment 5.

Figure 8.8. Testing aviary during Experiment 5.

Figure 8.9. Time spent within Section A across the pre-test, test and post-test.

Figure 8.10. Number of visits to Section A across the pre-test, test and post-test.

Figure 8.11. Latency (s) to approach the novel object or the monitor lizard.

Figure 8.12. Inspection of novel object and of monitor lizard across the four testing days.

Figure 8.13. The number of inspection events across each testing day.

Figure 8.14. Time that the naïve finches spent in visual contact with the stimulus presentation area.
Figure 8.15. Time that the experienced finches spent in visual contact with the stimulus presentation area. 169

Figure 8.16. Duration of inspection behaviour by experienced and naïve zebra finches 171
Figure 8.17. Number of inspection events by experienced and naïve zebra finches 172
Figure 8.18. Activity level of the finches. 176
Figure 8.19. Duration of inspection behaviour in the post test 177

Figure 9.1. Model of the process required to decide appropriate defences. 184
Figure 9.2. Perceived level of threat from the model predators 189
LIST OF TABLES

Table 2.1. Number of adult and juvenile magpies per group across all study periods. 40

Table 3.1. Description of some of the types of behaviour described by Brown and Veltman (1987). 56

Table 3.2. Description of the types of behaviour scored in this study compared to Brown and Veltman’s (1987) description. 58

Table 3.3. Types of behaviour observed. 59

Table 3.4. Observation of behaviour during presentation of the model predators. 67

Table 4.1. Sample size for each stage of testing. 75

Table 6.1. Summary of previous findings and new findings from this thesis. 117

Table 8.1. Dimensions (in mm) of aviaries in the home room and the testing aviary. 143

Table 8.2. Eye used to view the stimuli. 166