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Abstract: The nature of depth distribution of soil organic carbon (SOC) was examined in 85 soils
across New South Wales with the working hypothesis that the depth distribution of SOC is controlled
by processes that vary with depth in the profile. Mathematical functions were fitted to 85 profiles of
SOC with SOC values at depth intervals typically of 0–5, 5–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70,
70–80, 80–90 and 90–100 cm. The functions fitted included exponential functions of the form SOC = A
exp (Bz); SOC = A + B exp (Cz) as well as two phase exponential functions of the form SOC = A + B exp
(Cz) + D exp (Ez). Other functions fitted included functions where the depth was a power exponent
or an inverse term in a function. The universally best-fitting function was the exponential function
SOC = A + B exp (Cz). When fitted, the most successful function was the two-phase exponential,
but in several cases this function could not be fitted because of the large number of terms in the
function. Semi-log plots of log values of the SOC against soil depth were also fitted to detect changes
in the mathematical relationships between SOC and soil depth. These were hypothesized to represent
changes in dominant soil processes at various depths. The success of the exponential function with
an added constant, the two-phase exponential functions, and the demonstration of different phases
within the semi-log plots confirmed our hypothesis that different processes were operating at different
depths to control the depth distributions of SOC, there being a surface component, and deeper soil
component. Several SOC profiles demonstrated specific features that are potentially important for
the management of SOC profiles in soils. Woodland and to lesser extent pasture soils had a definite
near surface zone within the SOC profile, indicating the addition of surface materials and high rates
of fine root turnover. This zone was much less evident under cropping.

Keywords: soil organic carbon; depth distribution; mathematical functions; processes;
land management

1. Introduction

Soil organic carbon (SOC) comprises 50 to 58% of soil organic matter (SOM) [1] and is an indicator
of soil health and soil condition, with improvements in these typically being associated with increased
amounts of SOC. Increasing SOC is also a method for removing carbon from the atmosphere to mitigate
climate change and potentially to be a component in carbon trading schemes [2–6]. There are therefore
two fundamental reasons for managing SOC: improving soil health and soil condition and the removal
of CO2 from the atmosphere.
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Soil carbon accounting is usually focused on the surface soil horizons to 30 cm depth, and the
International Panel on Climate Change (IPCC) has indicated that:

“For mineral soils, only the top 30 cm are considered, which typically has the highest concentration
of carbon and the greatest response to changes in management and land use. In most soils, management
effects on soil carbon at depth are minimal compared to changes that occur in the topsoil [7] and
consequently most information on soil carbon responses to different management practices are limited
to the upper soil horizons [0–30 cm depth].” [8].

Research to quantify and model SOC storage in these near surface layers is therefore extensive.
However, predictions of SOC in deeper layers are less common. Estimation and prediction of SOC
down the soil profile is increasingly important, as greenhouse gas (GHG) reductions and carbon trading
schemes become more likely. Understanding the depth distribution of SOC across the landscape can
assist in monitoring, managing and developing policy for SOC.

Depth distribution prediction and modelling is of particular use for a several reasons. Firstly,
it can help identify the processes that lead to SOC sequestration, the depths at which these are most
effective and can inform the selection and adoption of management practices that are most effective in
sequestering carbon to different soil depths. Secondly, where data relating to the whole profile are
unavailable, incomplete or unattainable (as in the case of broad-scale modelling), predictions can be
made about SOC through the whole profile. Depth distribution functions have also been employed
to express carbon density data as equivalent mass [9,10], which is now required for estimating SOC
stocks in Australia [3]. Reliable depth functions may also be useful to reduce the cost of measuring or
estimating SOC stores in soils which is considered one of the major limitations to the inclusion of SOC
in trading schemes. Accurate, appropriate and widely applicable depth functions are therefore required
across a range of soil types, environments and land-use types. The strength of such a modelling
approach is that a simple integral can be applied across selected depths to mathematically estimate soil
carbon distribution.

1.1. Mathematical Depth Functions

Depth functions have been investigated by a range of authors. For example, Russel and Moore [11],
Kirkby [12], Dalal and Chan [13], Kempen et al. [14], Meersmans et al. [15] and Wiese et al. [16]
determined that soil organic concentration declined with depth following simple exponential functions.
Kirby [12] used a mass balance approach based on the inputs of organic materials from the soil surface
and from plant roots along with the expected rates of decomposition and vertical mixing to determine
depth distribution of SOC following an exponential distribution:

yi =
∑

i ai exp (−λi

1
2 z) (1)

where yi is the organic matter content of each fraction of organic matter [carbohydrates, lignin and
amino acids] and z is the soil depth.

The actual depth distribution of SOC will be determined by the input and decomposition at each
depth. Dalal and Chan [13] estimated SOC at a given soil depth using the following exponential
function:

SOMt = SOM0 exp (−kt) + A/k (1−exp (−kt)) (2)

where SOM0 and SOMt are the SOM contents initially [t = 0], and at a given time, t, A [mass of SOM
per unit area] is the rate at which organic matter is added to the soil at this depth increment and k
[reciprocal of time] is the rate of loss of SOM or the rate of decomposition. The value of k will vary
with the nature of the organic matter and the amount of soil carbon in each of the carbon pools or
fractions. The values SOM0, k and A will vary with depth.

At the soil surface, organic carbon input will include above ground plant litter as well as organic
material from plant roots but for many soils over a wide range of depths, the root systems of plants
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will be the major input of organic carbon [17,18]. The rate of decomposition of SOM can be expected
to decrease with depth because the soil environment is likely to have limited oxygen, less available
water, lower concentrations of readily available nutrients (especially N) [19] and organic matter that is
isolated from decomposers [20,21].

Minasny et al. [22] concluded that there are cases where the depth function of SOC may not follow
a mathematical function, including soils under cultivation where the top layers have a uniform SOC
content because of mixing by tillage [15,23] or where buried soils occur as is the case for paleosols [24].
Wong et al. [25] also observed the effect on the SOC depth distribution of a buried soil in a valley flat,
where the SOC content bulged at a depth of 60 cm from 0.2% to 2.0%. The dark colour and nature
of the soil indicated that this was a surface soil that had been buried by sediment from the actively
eroding gully in the catchment above.

More recently, Hobley and Wilson [26] investigated the application of a separate exponential
function to a set of data:

SOC[d] = SOCInf + (SOC0−SOCInf) × exp (−d × k) (3)

where SOC[d] is the mass concentration (%) of SOC as a function of depth below the soil surface,
SOCInf is the mass concentration (%) of residual SOC in an “infinitely” deep soil, SOC0 is the mass
concentration (%) of SOC at the soil surface, d is the depth below the soil surface, k is the depletion
constant [m−1]. Equation (3) may be re-expressed using λ as the length scale of depletion in SOC
concentration with depth [m], where λ = 1/k; this gives the equation:

SOC(d) = SOCInf + (SOC0 − SOCInf) × exp (−d/λ) (4)

They fitted the two equations [Equations (3) and (4)] separately to the data sets and so k and λ were
determined independently from the data sets, even though they should be inversely related. A range
of soil types were included in the data set, Luvisols, Lixisols, Solonetz, Vertisols and Nitosols based on
WRB [27]. Soil samples were collected to 1.0 m depth with 6 to 12 samples per profile. In fitting these
exponential models of SOC to soil depth, Hobley and Wilson [26] found adequate fits [based upon
R2 of fit and visual assessment of fitted function versus measured values] for 91 of the 100 profiles,
mostly with a “good” to “excellent” model fit. The remaining nine soils had a much less reliable fit.
This outcome is generally consistent with the conclusions from Minasny et al. [22], in that the depth
distribution of SOC generally follows the root distribution which approximates an exponential decay
function. Hobley and Wilson [26] investigated the most important factors that affected the value of
the terms λ and k that determined the rate of decline of SOC with depth. They found that in general,
land management factors were the most important, accounting for 52 to 67% of the variation in these
variables, whether the land use was grazing, cropping or native vegetation. Other factors affecting
these variables were temperature, amount of surface clay, ratio of surface to subsoil for silt, water
holding capacity, nitrogen content and cation exchange capacity.

Traditionally, exponential functions have been used to describe the depth distribution of
roots [28–31]. However, in an extensive international meta-analysis, Jobbagy and Jackson [32] found
no direct relationship between the depth distribution of SOC and that of the root distribution of plants.
Roots are generally distributed to more shallow depths than SOC, and SOC is typically distributed
deeper in the soil than the proposed biomass source. Possible explanations given by Jobbagy and
Jackson [32] included: (i) decreasing SOC turnover with depth, resulting in higher SOC accumulations
per unit of C input in deep soil layers; (ii) increasing root turnover with depth, causing higher C inputs
per unit of standing root biomass in deep soil layers; (iii) SOC translocation from upper to lower layers
as dissolved organic carbon [33,34]; (iv) vertical mixing by soil organisms.

Given the complications often present in profile data of SOC, Bishop et al. [35] in [22] and
Bonfetti et al. [10] proposed the use of equal-area quadratic smoothing splines to fit depth functions
to SOC depth data instead of a single exponential function or other relatively simple mathematical
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function. While this process enables virtually any depth distribution to be fitted by a mathematical
function and is good for data fitting and data prediction, this process does have the disadvantage of
being largely a data fitting exercise, but does not account for any of the processes that control the depth
distribution of SOC in the profile. Where spodic horizons occur in the subsoil, the depth distribution
can show a peak type depth function [22], where the illuviated SOC accumulates in the spodic horizon
below the soil surface [27].

A range of other approaches and functions have been employed to model and predict the
distribution of SOC with depth. A list of the possible functions is shown in Table 1. One of the most
commonly used [36–39] is the negative exponential functions of the form:

Y = B exp (Cz) (5)

and:
Y = A + B exp (Cz) (6)

where Y is the SOC concentration in g/100 g of soil and z is the soil depth in cm, and A, B and C are
model parameters to be estimated.

Table 1. Predictive depth functions applied to the soil organic profiles from New South Wales. Equation
numbers relate to descriptions in the text.

Equation Name Mathematical Form

5 Exponential SOC = B exp (Cz)
6 Exponential SOC = A + B exp (Cz)
7 Two phase exponential SOC = B exp (Cz) + D exp (Ez)
8 Two phase exponential SOC = A + B exp (Cz) + D exp (Ez)
9 Power function SOC = BzC

10 Power function SOC = A + BzC

11 Inverse SOC = B/(1 + BCz)
12 Inverse SOC = A + B/(1 + BCz)

A justification for such an approach is that exponential decay functions can be readily explained
by invoking common ecological and soil processes. For example, Cook and Kelliher [40] and Fang and
Moncrieff [41] observed exponential decline in root mass and microbial biomass with depth in soil.

More complex exponential models have been applied with two distinct components (a ‘fast’ and
a ‘slow’ component) to account for the step-wise but additive change rate processes that are often
observed through space and time (e.g., [42,43]). These take the general form [with or without a defined
SOC∞ factor]:

Y = B exp (Cz) + D exp (Ez) (7)

and:
Y = A + B exp (Cz) + D exp (Ez) (8)

Such an approach was applied successfully by Meersmans et al. [15] to model depth distribution
of SOC across a range of land-uses in Belgium. However, this approach implies that simple single
exponential functions are insufficient to account for the complexity of the processes taking place. In
the case of SOC distribution, single exponential functions tend to be applied and fit well to soils with a
‘symmetrical’ constant decay rate curve form in soils with limited surface SOC accumulation. However,
more complex models might be required where large accumulations of SOC are concentrated in the
near surface layers and depth distribution has a strong depth asymmetry [10].

Other forms of function that have been applied to SOC depth distribution include a range of
power functions of the form:

Y = BzC (9)
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and:
Y = A + BzC (10)

Such functions can often be fitted very precisely to specific data sets [22]. However, these functions
have typically been generated and fitted to datasets that represent either a limited range of soil types
and environments, a limited range of land-uses or both. Their specific and empirical nature also limits
their application beyond the data from which they are derived. Many such functions are also often
limited by the lack of a definite ‘intercept’ but rather asymptote to very large Y values at low values of
z. This behaviour seems intuitively flawed with respect to SOC distribution. It is also difficult to derive
a rationale or theoretical explanation for the reason the SOC depth distribution should fit a power
function. However, as power functions can frequently describe natural systems, it was considered
potentially useful to include this set of functions in the range of models tested.

The use of inverse functions to describe physical processes where there is a decay or diminished
value with time or depth has also been used in the past. Therefore, we also investigated the use of this
function to predict depth functions of SOC.

Y = B/(1 + BCz) (11)

and:
Y = A + B/(1 + BCz) (12)

More recently, Minasny et al. [44] have employed spline curve fitting to non-continuous data to
estimate SOC down the profile, where, for example, soil profiles rather than depth intervals have been
sampled and hence continuous data are not available. This approach has been successfully applied to
mapping exercises, but the broad application of the functions derived has not yet been demonstrated.
The spline function approach also has no theoretical or conceptual basis for its application and is
largely a data fitting exercise.

1.2. Conceptual Basis for Different Depth Zones in the Depth Distribution of Soil Organic Carbon

Soil organic carbon concentration in Australian soils is typically largest in the near surface
soil layers declining rapidly with depth in the soil profile. The distribution of SOC is significantly
affected by land-use and changes in SOC content of soils resulting from land-use change tend to occur
preferentially in these surface layers [45]. Therefore, the net result of land-use change is to modify
the depth distribution of soil down the profile. However, the distribution pattern of SOC with depth
differs considerably between soil types and land-uses and understanding the depth distribution of
SOC requires consideration of a number of interacting processes.

The depth distribution can be attributed to several sources [17] including: above ground plant
litter input at the surface; below ground plant litter input within the soil, root litter, rhizodeposition,
which includes organic carbon released by living roots into the rhizosphere [46,47], organic carbon
from animals, organic carbon inputs from microbial sources including fungal and bacterial sources and
translocation of organic carbon inputs by diffusion of water soluble organic carbon, mixing by soil
fauna and land management effects especially tillage. The amount and type of additions of organic
carbon will depend on the biomass production of plants and root distributions, climate, soil type and
land management practices.

Once organic materials are added to soils, they are subjected to decomposition and the rate
of decomposition will vary depending on its source and the local environment, including soil
depth [19,48,49].

A conceptual model of SOC dynamics proposed by Eyles et al. [50] identifies several different zones
in the soil where SOC cycling is governed by different interacting above-ground and below-ground
processes. Adapting the model from Eyles et al. [50], we propose that the following zones can
potentially be identified in soil where there are differences in the SOC dynamics [see Figure 1]:
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1.2.1. Phase A—Surface Soil

Close to the surface, SOC is largely added by surface accumulation of biomass from plant litter at
or near the surface [52]. Undecomposed residue from plants and some animal products are added to
the soil surface, which contribute to the formation of humus for soil organic matter [53]. In the case of
cropping, the depth of this layer can be affected by cultivation, with tillage tending to produce a uniform
SOC distribution with depth through the disturbed layer [15,54–58]. However, this does depend on
the depth of tillage and the implements used, as shallow cultivation (<10 cm) under cropping may not
result in a surface layer with a uniform SOC [56,59]. Soil fauna such as can earthworms and ants can
translocate some organic carbon from the surface [60–62], but this is typically limited to about 30 cm.
Turnover of organic matter in this zone can be expected to take in the order of years or less.

1.2.2. Phase B—Subsurface, Upper Subsoil

At moderate depth, where organic carbon is added to the soil largely from root activity, especially
fine or lateral root activity, exudates or rhizodeposition [17,18,63–66]. It also includes a minor component
of translocation of surface organic materials as soluble carbon or particulate organic carbon. Microbial
activity, especially fungal growth can also add organic carbon to this layer. Cereals and grasses are
especially effective in adding soil organic matter with these processes because of their fibrous root
systems that have a large volume of fine roots [17,66]. Turnover of organic matter in this zone can be
expected to be in the order of 10 s of years [67].

1.2.3. Phase C—Subsoil

Deeper in the soil, where the root activity has diminished, especially fine root activity, root density
is much reduced and influences a much smaller volume of soil. In this zone, there is less rhizodeposition
and a much slower turnover of fine roots. Coarse soil structure can influence the root architecture
and the flow patterns in the soil and so the distribution of dissolved SOM. As a consequence, some
SOC can be concentrated in biopores, preferential flow paths or on the outside of peds and in cracks
between peds as preferred paths for root growth [47,58,68]. As a consequence, the spatial variability in
SOC is higher in subsoils than in the surface soils [58]. Translocation by water soluble SOC and POC
from the surface can occur in this zone. Decomposition rates are slower in the deeper subsoil because
of reduced oxygen, nutrients and moisture availability [19] and the relative isolation of organic matter
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from decomposer organisms [20,21]. SOC is often much older in this zone [67] and turnover can be
expected to take 100 s of years.

1.2.4. Phase D—Deep Subsoil

This zone is largely below the level of root activity and the concentration of SOC falls substantially
as there are few additions of fresh organic carbon. At this depth, much of the SOC is in the residual or
passive pool and turnover can be expected in the 1000’s of years.

The distribution of soil SOC with depth can be complicated by the input of organic carbon from
above ground plant litter and root growth from previous plant growth cycles. The organic carbon in
the soil can be decomposing organic materials from plants that were grown in the soil from previous
years. The depth distributions of soil organic matter may therefore represent successions of inputs and
decomposition cycles of organic materials. Microorganisms can also affect the decomposition rates
of organic materials firstly by being the agents that decompose the organic matter, but they can also
control the types of end products that are produced. Some microorganisms can produce some of the
more resistant organic compounds such as aliphatic carbon compounds, chitin and glomalin [17].

The depth distribution of SOC as determined at one point in time will reflect the net result of a
range of processes, several of which can be operating at different rates and at different stages. This has
implications for the mathematical description of the depth distributions of SOC, as discussed below.

1.3. Aims

Here, we sought to evaluate the suitability of a range of potential SOC distribution functions
across a range of soils and land-uses in NSW, Australia. We first considered some of the factors
influencing the distribution of SOC with depth, evaluated some observed distributions and then
tested the applicability of four main approaches to depth distribution modelling, namely; negative
exponential, power, reciprocal and two-phase negative exponential. For each function we tested an
approach with and without a defined “intercept”, giving eight functions in all. We applied these
potential functions to 85 soil profiles sourced from a range of sites, soil types and land-uses across
NSW. Profiles of SOC are also investigated in detail based on the hypothesis that in any one soil profile,
several processes are likely to be determining the depth distribution of SOC. Our objective was to
attempt to fit different mathematical functions to the SOC depth profiles to gain insights into the
characteristics and possible biophysical features of the SOC profiles.

2. Methods

2.1. Site Descriptions

A total of 85 soil profiles were examined, sourced from a range of locations, soil types and
land-uses across NSW. Summary data relating to each of these sites and profiles is provided in Table 2
and their locations in Figure 2. The range of climates is indicated in Figure 3, showing the temperatures
and average annual rainfall. The range of climates covers those commonly occurring in the inland
tablelands, slopes and plains of south-eastern Australia [69]. The profiles of SOC were chosen such
that the SOC data extended often to a depth of 100 cm, but least to 70 cm, and with at least eight
measurements within the profile [see Table 2]. Further criteria were that the topsoil had data for at least
the depth intervals of 0 to 5 cm, 5 to 10 cm, 10 to 20 cm and 20 to 30 cm. Soils in the study included Red
and Yellow Chromosols, Red Kandosols, Dermosols, Ferrosols and Grey Vertosols [70]. The equivalent
soils in the World Reference Base are Red and Yellow Luvisols, Red and Yellow Lixisols, Nitosols,
Ferralsols and Grey Vertisols [27].
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Table 2. Site details. GO is Australian Greenhouse Office set of profiles. LR is Little River set of profiles.
MAR is mean annual rainfall. MAT is mean annual temperature.

Parent Material Location Grid
Reference Soil Type Land Use

Sampling
Depth
[cm]

MAR
[mm] MAT C Site

Number

New England Tablelands

Bingara
Metasediments

BM

Yeral/pinetrees −29.79, 150.70 Red Chromosol Woodland 100 745 18.2 BM1
Yeral/pinetrees −29.79, 150.70 Red Chromosol Pasture 100 745 18.2 BM1
Yeral/pinetrees −29.79, 150.70 Red Chromosol Cropping 100 745 18.2 BM1

Dingwall −29.82, 150.45 Red Chromosol Woodland 100 745 18.2 BM2
Dingwall −29.82, 150.45 Red Chromosol Pasture 100 745 18.2 BM2
Dingwall −29.82, 150.45 Red Chromosol Cropping 100 745 18.2 BM2

Rockvale
Metasediments

RM

Rockvale −30.48, 151.69 Yellow
Chromosol Woodland 80 792 13.7 RM-W1

to W5

Rockvale −30.48, 151.69 Yellow
Chromosol Pasture 80 792 13.7 RM-P1 to

P5

Tulimba
Metasediments

TM

Tullimba −30.48, 151.19 Yellow
Chromosol Woodland 70 643 14.7 TM1

Tullimba −30.48, 151.19 Yellow
Chromosol Pasture 70 643 14.7 TM2

Guyra Basalt
Tertiary basalt

GB

Kirby −30.43, 151.63 Dermosol Woodland 85 792 13.7 GB1

Kirby −30.43, 151.63 Dermosol Native
pasture 85 792 13.7 GB1

Glendon −30.18, 151.62 Black Ferrosol Woodland 95 913 12.2 GB2

Glendon −30.18, 151.62 Black Ferrosol Native
pasture 95 913 12.2 GB2

Newby Park
basalt

Tertiary basalt
NPB

Armidale −30.51, 151.63 Brown Dermosol Woodland 100 792 13.7 NPB-W1
to W5

Armidale −30.51, 151.63 Brown Dermosol Native
pasture 100 792 13.7 NPB-P1

to P5

Camerons
Granite CG

Kingstown −30.57, 151.23 Yellow
Chromosol Woodland 100 640 14.3 CG1

Kingstown −30.57, 151.23 Yellow
Chromosol Pasture 100 640 14.3 CG1

Central West NSW, Australian Greenhouse Office [AGO]—land clearing

Granite
colluvium

Tallebung, NW
of Condobolin −32.91, 146.65 Red Kandodsol Woodland 100 407 17.3 AGO1

Granite
colluvium

Tallebung, NW
of Condobolin −32.91, 146.65 Red Kandosol

Cropping
[cleared 3

years]
100 407 17.3 AGO2

Granite
colluvium

Tallebung, NW
of Condobolin −32.85, 146.57 Red Kandosol Woodland 100 408 17.3 AGO3

Granite
colluvium

Tallebung, NW
of Condobolin −32.91, 146.65 Red Kandosol

Cropping
[cleared 3

years]
100 408 17.3 AGO4

Granite
colluvium

Tallebung, NW
of Condobolin −32.66, 146.64 Red Kandosol Woodland 100 416 17.1 AGO5

Granite
colluvium

Tallebung, NW
of Condobolin −32.66, 146.64 Red Kandosol Pasture 100 416 17.1 AGO6

Granite
colluvium

Tallebung, NW
of Condobolin −32.66, 146.64 Red Kandosol

Cropping
[cleared > 25

years]
100 416 17.1 AGO7

Central West NSW, Australian Greenhouse Office [AGO]—land clearing [Murphy et al. 2003]

Girilambone
Beds Tottenham −32.22; 147.33 Red Kandosol Woodland 100 475 mm 17.4 AGO8

Girilambone
Beds Tottenham −32.22; 147.33 Red Kandosol

Cropping
[cleared > 25

years]
100 475 mm 17.4 AGO9

Quaternary
Alluvium

Dandaloo/
Narromine −32.20; 147.56 Grey Vertosol Woodland 100 481 mm 17.3 AGO10

Quaternary
Alluvium

Dandaloo/
Narromine −32.20; 147.56 Grey Vertosol

Cropping
[cleared 20

years]
100 481 mm 17.3 AGO11

Girilambone
Beds Girilambone −31.24; 146.94 Red Kandosol Woodland 100 415 mm 18.3 AGO12

Girilambone
Beds Girilambone −31.24; 146.94 Red Kandosol

Cropping
[cleared 9

years]
100 415 mm 18.3 AGO13

Girilambone
Beds Nyngan −31.61; 147.11 Red Kandosol Woodland 100 437 mm 17.9 AGO14
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Table 2. Cont.

Parent Material Location Grid
Reference Soil Type Land Use

Sampling
Depth
[cm]

MAR
[mm] MAT C Site

Number

Girilambone
Beds Nyngan −31.61; 147.11 Red Kandosol

Cropping
[cleared 8

years]
100 437 17.9 AGO15

Quaternary
Alluvium Coonamble −31.17; 148.73 Grey Vertosol Woodland 100 541 17.4 AGO16

Quaternary
Alluvium Coonamble −31.17; 148.73 Grey Vertosol

Cropping
[cleared > 25

years]
100 541 17.4 AGO17

Quaternary
Alluvium Walgett −30.14; 148.09 Grey Vertosol Woodland 100 447 19.2 AGO18

Quaternary
Alluvium Walgett −30.14; 148.09 Grey Vertosol

Cropping
[cleared 6

years]
100 447 19.2 AGO19

Quaternary
Alluvium Walgett −30.14; 148.09 Grey Vertosol

Cropping
[cleared > 25

years]
100 447 19.2 AGO22

Quaternary
Alluvium Walgett −30.04; 147.85 Grey Vertosol

Cropping
[cleared 6

years]
100 436 19.3 ◦C AGO20

Quaternary
Alluvium Walgett −30.04; 147.85 Grey Vertosol

Cropping
[cleared 6

years]
100 436 19.3 AGO21

Central West NSW, Little River Hydrological Study [LR] [McKenzie 2002]

Cowra Trough
Metasediments

Yeoval 1;
Arthurville −32.35; 148.45 Brown Sodosol Pasture-lucerne 140 583 16.6 LR1

Yeoval 7;
Cumnock −32.89; 148.90 Red Dermosol Cropping 140 613 16.6 LR7

Yeoval Granite

Yeoval 2;
Yeoval −32.81; 148.61 Red Kandosol Pasture-lucerne 140 581 16.6 LR2

Yeoval 3;
Yeoval −32.76; 148.61 Red Chromosol Pasture 120 581 16.6 LR3

Yeoval 4;
Yeoval −32.79; 148.45 Rudosol/Tenosol Pasture 37 581 16.6 LR4

Yeoval 5;
Yeoval −32.79; 148.45 Yellow

Chromosol Pasture 130 581 16.6 LR5

Dulladerry
Rhyolite

Yeoval 6;
Cumnock −32.96; 148.62 Yellow

Chromosol Cropping 130 613 16.6 LR6

The SOC data were collected during the progress of several carbon projects. SOC profiles from the
New England Tablelands in Northern NSW were analysed and this study was part of the Australian Soil
Carbon Research Project (SCaRP) [71]. This study included sites on granite, basalt and metasediments
and across a range of land uses including woodlands, pasture and cropping [45,72–75]. Further SOC
profiles were taken from a survey of the impact of land clearing on SOC in central NSW [76] and
involved measurements on paired sites of cleared and uncleared native vegetation on Red Chromosols,
Red Kandosols and Grey Vertosols on the central west slopes and plains of New South Wales. A final
set of SOC profiles was taken from a study in the Little River Catchment of NSW [77], which is on the
central west slopes of New South Wales and included pasture and cropping sites.

The SOC data were collected using a standard methodology of extracting soil cores to the specified
depth, which were then sub-divided into selected depth intervals [78–80]. The wet weight of the
soil in the depth interval was recorded and then a sample taken so that the field moisture content at
the time of sampling could be determined. Using the diameter of the core, the depth interval and
the wet weight of soil and the field moisture content of the soil, the bulk density based on oven dry
soil was calculated for each depth interval. The SOC content was determined using a Leco furnace.
The methodology is provided in detail in Murphy et al. [76]. For the Australian Greenhouse Office
Project [76], the diameter of the core was 150 mm. For the Little River hydrological study, the diameter
of the core was 75 mm [77]. The collection of samples and analysis for the New England samples is
described in Wilson et al. [45,73]. Typically, 5–10 replicate soil cores per site were averaged at each
depth interval and used in these analyses.
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2.2. Statistical Analysis

2.2.1. Fitting Curves to Depth Distributions

Here, we attempted to fit eight potential mathematical functions as shown in Table 1. The curve
fitting process was undertaken using the Genstat Statistical package [81] and the specialist curve fitting
software TableCurve 2D [82]. For each SOC profile the goodness of fit of the models was judged using
the coefficient of determination [adjusted R2], the Standard Error of the Estimate (SEE), and the Akaike
Information Criterion (AIC). The adjusted R2 indicates the proportion of the regression mean square of
the dependent variable that is attributed to the predictor variable[s]. The SEE statistic is simply the
square root of the Error Mean Square term from the regression, and hence, it is an unbiased estimate
of the true variance about the regression [83]. The AIC statistic is a function of the residual deviance
penalised by adding twice the estimated parameters in the fitted model [84]. This penalty serves to
discourage against the overfitting of models. For each SOC profile, the aim was to give preference to
models with low levels of relative lack of fit (lower values for SEE and AIC are preferred), and higher
levels of relative adequacy of fit (higher values of adjusted R2 are preferred).

2.2.2. Evaluating SOC Distributions within Depth Segments Using Semi-Log Plots

Because many of the depth distributions still showed poor fitting to some portion of the depth
range, an investigatory approach using semi-log plots was considered potentially useful. If the
relationship between SOC and depth can be described by a simple exponential relationship, then a plot
of loge (SOC) with depth (z) should result in a straight line such that:

loge(SOC) = mz + b (13)

By back-transformation of the coefficient b from Equation [13], namely G = exp[b], the simple
exponential function of Equation [5] can be derived, namely SOC = G * exp(mz), where G estimates
the value of SOC at the soil surface where depth (z) = 0.

Conceptually, a semi-log plot of the SOC distribution with depth can be used to identify the zones
in which different processes dominate the SOC distribution with depth. As discussed in Section 3.2,
it is hypothesized that there are potentially three to four distinct zones at different depths within the
soil where different processes control the depth distribution of SOC. The zones were selected where
there was a straight line segment in the loge(SOC) v depth plots. The depth and occurrence of these
zones in particular soil can be expected to vary with the climate soil type and management history.

3. Results

3.1. Statistical Fitting of Functions

The summary of the goodness of fit of the different mathematical functions to the 85 SOC profiles
is shown on Table 3. The average goodness of fit was evaluated for each general land use, cropping,
pasture and woodland. The simple exponential functions (Equations (5) and (6)) consistently produced
the overall best fit for the depth distributions of SOC, and unlike the two-phase exponential functions
(Equations (7) and (8)), all SOC profiles could be fitted. For Equation (6), all adjusted R2 values were
more than 0.90 and had the lowest SEE. The inclusion of the A term (Equation (6)) in the function
improved the goodness of fit of the function to the SOC profiles.

The two-phase exponential functions (Equations (7) and (8)) fitted the SOC profiles well when
they could be fitted to the data. For Equation (7), the R2 values were always more than 0.90 and the SEE
was low. However, there were some difficulties in fitting some of the SOC profiles, and only 94% to 97%
of the profiles could be fitted to Equation (7), but with the inclusion of the A term (Equation (8)) only
69% to 88% of the profiles could be fitted to the function. On occasions, the A parameter was estimated
to be zero, thereby simplifying Equation [8] to an equivalent Equation (7). Other instances occurred
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where the A and B (or D) parameter was estimated to be zero, suggesting that the more succinct
Equations (5) or (6) were appropriate. In other cases, models simply failed to converge. The large
number of estimated parameters in the function (five) was probably a factor when the function could
not be fitted to some of the SOC profiles.

The simple power function (Equation (9)) performed well, but not as well as Equation (6) (simple
exponential with an A term). The power function with an A term (Equation (10)) performed poorly for
the soils under cropping. Many SOC profiles failed to fit the function, especially in the cropping land
use and the R2 values were low. Under pasture and woodland, Equation (10) performed slightly better
than the simple power function. The reason for the difference appears to be that for the sites under
cropping, the function overestimated the SOC at the surface, and therefore, this prevented the function
from converging to the measured data. The soils under cropping had low SOC at the soil surface.

The inverse functions (Equations (11) and (12)) performed reasonably well for the soils under
cropping and pasture, with all SOC profiles being fitted and the R2 and SEE values being comparable
to the simple exponential functions. However, the inverse functions failed to fit 8.3% (Equation (11)) to
11.1% (Equation (12)) of SOC profiles under woodlands.

The single-phase exponential function with an A term (Equation (6)) performed best overall,
but even these functions showed sections of the SOC profile where the function did not fit the data.
The two-phase exponential functions showed some potential to fit the SOC profile data very well,
particularly in soils and land-uses where there was a larger surface SOC concentration, but a substantial
number of SOC profiles failed to fit the function.
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Table 3. Mathematical models of the depth distribution of SOC for different land uses. Standard Error of Estimate (SEE) and adjusted R2 of fits of functions to 85 data
sets of SOC distributions to ≈100 cm from NSW Australia. Moreover, mean values for parameters of equations where the optimisation process converged and the
mathematical functions could be fitted to the data, are included. The symbol “–“ indicates that the parameter does not occur in the model.

Model
Equation
Number.

(See Table 1)

Land
Use

Number of
Profiles
Fitted

%
Profiles
Fitted

MeanSEE
Mean
adj R2

10th
Percentile

Adj R2

90th
Percentile

Adj R2

Term Values

A B C D E

1 Exponential 6 Cropping 16 100 0.120 0.90 0.68 0.99 – 1.660 −0.039 – –
SOC = B exp (Cz) Pasture 33 100 0.202 0.91 0.83 0.99 – 2.675 −0.080 – –

Woodland 36 100 0.329 0.91 0.77 0.99 – 4.881 −0.081 – –

2 Exponential 7 Cropping 15 94 0.073 0.98 0.94 0.99 0.150 1.729 −0.067 – –
SOC = A + B exp (Cz) Pasture 33 100 0.110 0.97 0.93 0.99 0.245 2.750 −0.125 – –

Woodland 36 100 0.155 0.97 0.77 0.99 0.402 5.108 −0.128 – –

3 Two-phase exponential 8 Cropping 15 94 0.056 0.99 0.96 0.99 – 1.880 −0.227 0.690 −0.016
SOC = B exp (Cz) + D exp (Ez) Pasture 31 94 0.090 0.98 0.91 0.99 – 2.815 −0.192 0.690 −0.013

Woodland 35 97 0.118 0.99 0.95 0.99 – 5.243 −0.200 0.934 −0.012

4 Two-phase exponential 9 Cropping 14 88 0.065 0.98 0.94 0.99 0.047 1.706 −0.273 0.937 −0.025
SOC = A + B exp (Cz) + D exp (Ez) Pasture 27 82 0.106 0.96 0.87 0.99 0.140 5.403 −0.427 0.861 −0.035

Woodland 25 69 0.159 0.97 0.90 0.99 0.082 5.496 −0.217 2.122 −0.024

5 Power 10 Cropping 16 100 0.151 0.87 0.62 0.96 – 2.578 −0.451 – –
SOC = B zC Pasture 33 100 0.161 0.94 0.84 0.99 – 4.024 −0.603 – –

Woodland 36 100 0.208 0.96 0.90 0.99 – 7.914 −0.661 – –

6 Power 11 Cropping 9 56 0.108 0.89 0.20 0.99 −1.550 4.273 −0.287 – –
SOC = A + B zC Pasture 31 94 0.114 0.97 0.90 0.99 −0.301 3.802 −0.424 – –

Woodland 34 94 0.179 0.99 0.91 0.99 −0.724 8.310 −0.534 – –

7 Inverse 12 Cropping 16 100 0.096 0.93 0.79 0.99 – 2.145 0.050 – –
SOC = B/(B + Cz) Pasture 33 100 0.123 0.96 0.93 0.99 – 4.115 0.071 – –

Woodland 33 92 0.176 0.97 0.91 0.99 – 6.147 0.048 – –

8 Inverse 13 Cropping 16 100 0.070 0.96 0.85 0.99 −0.233 2.835 0.058 – –
SOC = A + B/(B + Cz) Pasture 33 100 0.103 0.97 0.93 0.99 −0.038 4.504 0.081 – –

Woodland 32 89 0.152 0.98 0.93 0.99 −0.026 8.609 0.055 – –
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An example of how the functions fitted the measured data is shown in Table 4 and Figure 4 for a
woodland site (AGO 18) and a cropping site (AGO 19). This was a paired site on a Grey Vertosol on the
Darling Riverine Plain in north western NSW. The function that was closest to fitting all the measured
data points in the SOC profile was the two-phase exponential function (Equation (8)) for both the
woodland and the cropping sites. This is consistent with the fit of the single exponential phase function
substantially improving when a constant (A) was added to the function (Equation (6) in Table 4)],
which at least partially takes account of the two-phase nature of the SOC profiles. The functions
generally seem to fit better overall to the measured data in the SOC profile for the cropping site than
the woodland site.
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Figure 4. Demonstration of how the different mathematical functions (see Table 1) fit the measured
data of SOC with depth for a paired site on Grey Vertosols on the Darling Riverine Plain in north
Western NSW (Australian Greenhouse Office (AGO) sites 18 and 19).
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Table 4. Mathematical models of the depth [z cm] distribution of SOC for each of a set of paired sites
on Grey Vertosols on the Darling Riverine Plain in north Western NSW [AGO sites 18 and 19]. Example
of goodness of fit of functions and influence of land use [cropping versus woodland]. Graphs for these
are shown in Figure 4. “–“ indicates that the parameter does not occur in the model. Equation numbers
refer to Equations in text and Table 1.

Model Equation
See Text

Land
Use

SOC Profile
Number

SEE Adj R2 Estimated Model Parameters

A B C D E

5 Exponential 5 Cropping AGO 19 0.069 0.79 - 0.636 −0.0122 - -
SOC = B exp (Cz) Woodland AGO 18 0.213 0.71 - 1.290 −0.0244 - -

6 Exponential 6 Cropping AGO 19 0.012 0.99 0.282 0.518 −0.0629 - -
SOC = A + B exp (Cz) Woodland AGO 18 0.095 0.94 0.382 1.837 −0.1582 - -

7 Two-phase exponential 7 Cropping AGO 19 0.013 0.99 - 0.518 −0.0630 0.283 0.0000
SOC = B exp (Cz) + D

exp (Ez) Woodland AGO 18 0.017 0.99 - 2.069 −0.3040 0.695 −0.0102

8 Two-phase exponential 8 Cropping AGO 19 0.014 0.99 0.282 0.3255 −0.0624 0.1925 −0.0636
SOC = A + B exp (Cz) +

D exp (Ez) Woodland AGO 18 0.013 0.99 −1.243 2.047 −0.2836 1.8923 −0.0025

9 Power 9 Cropping AGO 19 0.033 0.95 - 0.969 −0.2789 - -
SOC = B zC Woodland AGO 18 0.052 0.98 - 2.494 −0.4821 - -

10 Power 10 Cropping AGO 19 0.032 0.96 −0.550 1.443 −0.1282 - -
SOC = A + B zC Woodland AGO 18 0.046 0.99 1.163 2.619 −0.6303 - -

11 Inverse 11 Cropping AGO 19 0.048 0.90 - 0.717 0.0343 - -
SOC = B/(1 + B * Cz) Woodland AGO 18 0.131 0.89 - 1.860 0.0510 - -

12 Inverse 12 Cropping AGO 19 0.021 0.98 0.196 0.650 0.1343 - -
SOC = A + B/(1 + B * Cz) Woodland AGO 18 0.055 0.98 0.270 3.293 0.1709 - -

3.2. Interpretation of the Two-Phase Exponential Function

The mean parameter values of the two-phase exponential function from Table 3 are shown in
Figure 5. The depth distributions clearly show the occurrence of at least two phases of “processes” in
the SOC profiles. The first was a shallow phase that appears to control the high amounts of SOC in
the surface soils and this decreases rapidly with depth. The second was a process controlling lower
amounts of SOC, but this extends for much deeper into the soil profile. The results for the two-phase
exponential function do provide evidence for the occurrence of different phases or sets of processes in
the SOC profiles as hypothesized in Section 1.2.
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summarised from data for all SOC profiles in Table 3.

3.3. Semi-Log Plots of SOC v’s Depth

Semi-log plots have often been used to detect relationships between variables, especially if
exponential relationships are expected. The results of some of the semi-log plots for the SOC profiles are
shown in Table 5 and Figure 6. Note that to detect the segmented relationships between SOC and depth,
loge(SOC) was plotted on the y-axis and the depth on the x-axis. The results of the semi-log plots show
that for SOC profiles examined, there were at least two distinct relationships between SOC and depth,
each relationship having different values for the terms in the exponential equation. This indicates
that it is unlikely that a single relationship can explain all the points of the SOC distribution, which is
consistent with the observation for most of the SOC profiles, that when using the functions in Tables 1
and 3, at least some observed values of SOC do not fit the fitted function. The R2 and SEE for the
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relationships derived using the semi-log plots are shown in Table 5 and show that it is possible to fit
the observed values better using the relationship derived from the semi-log plots.

Table 5. Relationships based on semi-log plots and two-phase exponential functions for several SOC
profiles with different paired land uses.

Semi Log Plot: Segments Fitted as loge(SOC) = b + mz;
Backtransformed as G = exp (b)

Two Phase: Fitted as SOC = A + B exp (Cz) + D
exp (Ez)

Phase Depth
[cm] G m SEE R2 Parameter Estimates SEE R2

AGO 18; Land use = woodland; n = 11. Paired site with AGO 19

a 0–7.5 2.278 −0.1302 0.013 0.99 B = 2.048 C = −0.2877 0.013 0.998
b 15–25 0.790 −0.0172 D = 1.892 E = −0.0025
c 35–95 0.781 −0.0120 A = -1.243

AGO 19; Land use = cropping; n = 11. Paired site with AGO 18

a 0–25 0.760 −0.0279 0.025 0.99 B = 0.325 C = −0.0624 0.014 0.99
b 35–95 0.356 −0.0027 D = 0.193 E = −0.0636

A = 0.282

AGO 14; Land use = woodland; n = 11. Paired site with AGO 15

a 0–7.5 3.667 −0.1742 0.032 0.99 B = 47.110 C = −1.4822 0.060 0.99
b 15–35 1.831 −0.0435 D = 1.252 E = −0.0319
c 45–75 0.806 −0.0180 A = 0.068
d 85–95 4.862 −0.0407 Front of added SOC

AGO 15; Land use = cropping; n = 11. Paired site with AGO 14

a 0–35 1.335 −0.0397 0.033 0.99 B = 1.134 C = −0.0509 0.024 0.99
b 35–95 0.615 −0.0176 D = 0.192 E = −0.0077

A = 0.025

Bingara–Yeral/Pinetrees–woodland; n = 9

a 0–7.5 6.416 −0.1695 0.328 0.70 B = 82.436 C = −1.4947 0.234 0.94
b 15–35 1.656 −0.0155 D = 1.715 E = −0.0687
c 45–55 0.506 0.0112 A = 0.789
d 65–75 70.142 −0.0654 Front of added SOC

Bingara–Yeral/Pinetrees–pasture; n = 11

a 0–7.5 2.756 −0.0904 0.346 0.84 B = 13.089 C = −1.2287 0.141 0.94
b 15–95 1.515 −0.0229 D = 1.694 E = −0.0244

A = −0.001

Bingara–Yeral/Pinetrees–cropping; n = 11

a 0–15 2.223 −0.0761 0.129 0.97 B = 1.715 C = −0.1113 0.059 0.98
b 25–55 0.895 −0.0205 D = 0.448 E = −0.0133
c 65–95 0.326 −0.0039 A = 0.088

Guyra Basalt–Woodland; n = 10

a 0–7.5 10.276 −0.1342 0.111 0.99 B =9.355 C=−0.3397 0.604 0.99
b 15–35 3.322 −0.0188 D=4.978 E =−0.0145
c 45–65 6.741 −0.0411 Front of added SOC A=−1.450
d 75–85 271.106 −0.0967 Front of added SOC

Guyra Basalt–Pasture; n = 10

a 0–7.5 6.329 −0.0628 0.111 0.99 B = 2.433 C =−0.1637 0.197 0.99
b 15–35 3.987 −0.0350 D = 4.248 E = −0.0400
c 45–85 2.276 −0.0318 A = −0.023

Guyra Basalt–Cropping; n = 10

a 0–7.5 4.821 −0.0747 0.237 0.95 B = 3.204 C = −0.1273 0.115 0.99
b 15–25 2.720 −0.0334 D = 1.877 E = −0.0226
c 35–85 2.049 −0.0285 A = −0.098

AGO Site 16–Woodland; n = 11

a 0–7.5 4.428 −0.1305 0.113 0.99 B = 3.972 C = −0.2904 0.192 0.96
b 15–45 1.340 −0.0135 D = 25.373 E = −0.0005
c 55–75 5.564 −0.0332 Front of added SOC A = −24.069
d 85–95 >>200 −0.1837 Front of added SOC

AGO Site 17–Cropping; n = 11

a 0–7.5 1.001 −0.0498 0.043 0.99 No fit
b 15–45 0.731 −0.0012 No fit
c 55–75 5.569 −0.0361 Front of added SOC No fit
d 85–95 >>200 −0.2680 Front of added SOC
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Figure 6. Examples of the sensitivity of semi-log plots to depth profiles of SOC. (a) fitted power
functions (SOC = B zC) to the paired sites AGO 18 and 19, showing differences in the exponential
response with depth. (b) AGO site 18 shows three potential phases as a result of the accumulation
of soil organic matter in the near surface soils. (c) This accumulation of soil organic matter in the
near surface soil is not apparent in the cropping site (AGO 19). Note the natural logarithmic scale for
graphs (b,c).

3.4. Comparison of Results from Two-Phase Exponential Functions and Semi-Log Plots

The analysis using the two-phase exponential functions and the semi-log plots showed a
relationship for the shallow soils (<10 to 20 cm) and relationship with different values for the
terms of the equations for deeper soils (>30 cm). A comparison of the functions derived from the SOC
profiles showed that there was some variation between those derived for the two-phase exponential and
those derived from the semi-log plots (Figure 7a,b). The shallow phase for the two-phase exponential
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functions was shallower and had higher decline values than those observed using the semi-log plots
(Table 5) and Figure 6. For example, the rate of decline with depth (C) for the woodland site AGO 18
was −0.300 compared to the rate measured using the semi-log plots of −0.1302. The values for the
terms in the two-phase exponential functions are based on an analysis of the whole profile, whereas the
surface soil functions derived using the semi-log plots are based on the surface data alone, thus, it is
difficult to compare the values. For the paired cropping site (AGO 19), the rate of decline with depth
(C) was −0.064 for the two-phase exponential and −0.028 for the semi-log plot. The distribution of
SOC at the surface reflects a relationship that is a composite of the near surface processes and possibly
some ”background” store of SOC. It is possible the two-phase exponential functions reflect the surface
processes more strongly, because it is based on data from the whole profile.Soil Syst. 2019, 3, x FOR PEER REVIEW 20 of 28 
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Figure 7. Comparison of two-phase exponential functions and semi-log functions for different land
uses. Two-phase function SOC = A + B exp (zC) + D exp (zE). Phases derived subjectively from
inspection of scatterplots for semi-log functions are labelled. Comparison for paired sites (a) AGO
18 woodland, (b) AGO 19 cropping, (c) observed data from Bingara metasediments woodland and
cropping, (d) semi-log plots for Bingara woodland and (e) Bingara cropping. Green line shows the
actual measured data.
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4. Discussion

4.1. General

The evidence from fitting the mathematical functions and the semi-log plots to the SOC profiles
strongly supports our hypothesis that there are several zones in the soil where different processes
are influencing the SOC profiles. Most of the SOC profiles show at least two clear phases in the SOC
profile. This is consistent with the model proposed by Gross and Harrison [47], who identified two
clear zones in the depth distribution of SOC, with a surface layer where shoot inputs > root inputs
and a deeper layer where root inputs > shoot inputs. Gross and Harrison suggested that shoot inputs
are commonly significant for the top 10 cm of soil, although this can be slightly deeper in forest soils.
They identified that the rhizosphere is an important source of organic carbon for SOC, and the organic
carbon in the rhizosphere is often modified by microbial processes, much more so than the organic
carbon from shoot materials. The dominant, overall effect is the exponential distribution with depth
which reflects the root distribution. However, this appears in many cases to show a stronger effect of
the roots on SOC in the upper profile [<40–50 cm] where fine root turnover and root exudates can
be expected to have a larger effect on SOC [50,64]. This is also the zone where soil fauna activity,
bioturbation and microbial activity are strongest [15,34,49]. Several SOC profiles showed a strong
near surface soil phase, especially the profiles from soils with higher surface SOC concentration under
woodland soils and some pasture soils. Below 50 cm, many SOC profiles show a “baseline” level of
SOC which indicates a deep soil level of SOC that remains perhaps more stable and where there is
a lower level of input from fine roots and root exudates. In some soil profiles, a layer deeper in the
soil [>80 cm] occurs where there are very low levels of SOC [<0.1%] and perhaps indicating that root
growth is very restricted in these layers. Advection or transport of dissolved SOC in liquid flow can
also add to SOC stocks in deeper soils [34].

The exponential functions that fitted most successfully to the SOC profiles were the simple
exponential with an A constant and the two-phase exponential functions. Sometimes, the two-phase
exponential function with an A constant could not be fitted or the A term was 0. However, the success
of these functions in fitting the SOC profiles supports the existence of at least two phases within
the SOC profiles. With the simple exponential function with the A constant, the exponential term
accounted for one phase, including the surface layer phase, and the A term the deeper “background”
phase (see Figures 5 and 6). However, the simple exponential function without the A constant generally
did not fit the SOC profiles a well as the other exponential functions. As this function can only account
for one phase in the SOC profile, this is evidence that the SOC profiles do show at least two phases in
their depth profiles.

In the two-phase exponential function, the first exponential term accounted for the surface soil
phase and the second exponential term the deeper soil phase. Semi-log plots clearly identified different
phases in the SOC profiles. This was particularly true where there was a more significant accumulation
of SOC in surface soil layers creating a non-symmetrical curve. However, where this surface SOC
accumulation diminished, the second exponent term tended to zero at which point a typical one phase
exponential function was adequate to describe the distribution. Some SOC profiles only had two
phases, some three, but some profiles had up to four for a range of reasons (see below for complex
profiles). Where three phases were detected, the two-phase exponential function with the A constant,
the A term accounted for the deeper soil “depth independent” or “background” SOC.

While the power functions and the Inverse functions were fitted to the SOC profiles with some
success, they did not fit as well as the exponential based functions. Additionally, the biophysical basis
for choosing these functions is lacking and does not have the strong case that applies to the exponential
functions. Therefore, these are no longer considered.

Some SOC profiles showed complex distributions that did not follow clear relationships and
the functions showed a poor fit or could not be fitted. Profiles AGO 16 and 17, adjacent soils from
a paired site, are examples (Figure 8). These SOC profiles maintained substantial amounts of SOC
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deep into the profile (to 50 cm) or showed substantial increases in SOC at 50 cm. The nature of the
native vegetation and land use history may have had an influence on these soils [76]. The native trees
are Myall [Acacia pendula], an N-fixing tree, with an above ground biomass of 85 to 90 Mg ha−1.
The understory consisted of plants from the Chenopodiaceae [saltbush] and various grasses including
curly windmill grass (Enteropogon acicularis) and Wallaby Grass (Austrodanthonia linkii). The understory
had a biomass of 12.7 Mg ha-1 when the samples were taken for the SOC profile. It is speculated that
this may have contributed to the non-standard nature of this SOC profile. A standard SOC profile has a
decreasing rate of decline in SOC with depth, which means a decreasing value of “m” in Equation (13).Soil Syst. 2019, 3, x FOR PEER REVIEW 22 of 28 
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Figure 8. SOC profiles with complex depth distributions. These do not follow clear relationships and
the functions showed a poor fit or could not be fitted to the mathematical functions. (a) Profiles AGO
16 and 17 are adjacent soils from a paired site, AGO 16 being a native vegetation site dominated by
Acacia pendula. (b) Double exponential models showing lack of fit. Phases derived subjectively from
inspection of scatterplots for semi-log functions are labelled in (c) for AGO16 Woodland and (d) AGO17
Cropping. Note the natural logarithmic scale for graphs (c,d).

The SOC profiles in AGO 16 and 17 had some features of the “wetting front” typology of depth
functions described by Minasny et al. [22], characterized by an increasing rate of decline in SOC with
depth or an increase in the value of “m” from Equation [13] with depth. Such SOC profile is consistent
with the accumulation and movement of SOM into the soil in association with root growth from active
grass species and Chenopod species, possibly supported by N fixation by the Acacia species.

The woodland sites in the Guyra basalt and Bingara metasediments also showed a similar “wetting
front” typology for the SOC profile, as can be seen by the very high G values for the deep phases of the
SOC profile derived using the semi-log plots [Table 5; Figures 7d and 8]. The implication is that both
these woodland sites have accumulating profiles of SOC.

4.2. Effects of Land Use

The nature of the SOC profiles for cropping, pasture and woodland showed some quite different
characteristics [see Figures 5 and 6]. The near surface phase of the SOC profile was much stronger or
pronounced in the soils under woodland with higher inputs of shoot material at the surface [45,52,76,85].
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Some of the woodland sites, particularly AGO 16 and that on the Bingara metasediments showed a
“wetting front” typology as defined by Minasny et al. [22], indicating an accumulation of SOC to depth
[>50 cm] and the SOC profile did not follow a standard decrease in the rate of decline in SOC with
depth. At the depth of accumulation there was a pronounced increase in the rate of decline of SOC
with depth, typical of a “wetting front” typology [see Figure 8]. The woodland sites showed a higher
amount of SOC to a depth generally more than 30 cm, which is the standard depth for estimating
SOC stocks.

Soils under cropping had simpler SOC profiles and generally could be fitted to functions more
easily than those under woodland or pasture land use. The near surface phase of the SOC profiles
was less pronounced and a pronounced near surface phase in the SOC profile may have been absent.
A general effect was that there was an underlying baseline of SOC deeper in the profile that had
an approximate common value for SOC, although this could vary somewhat. Soils under pasture
were intermediate between cropping and woodlands, showing some near surface phases, but not as
pronounced as the woodlands [45]. The overall conclusion was that land use clearly had an influence
on the processes controlling the SOC profiles at different depths. The occurrence of different processes
occurring at different depth phases within the SOC profiles of soils was largely supported by the SOC
profiles. The use of semi-log plots may provide a method to examine more closely some of the data on
specific cropping practices such as stubble retention and minimum tillage.

4.3. Modelling SOC Profiles

The best fit was usually the single-phase exponential function with an A term or the two-phase
exponential function where there was a significant SOC accumulation at the surface. The best fit was
found typically where it was possible to account for at least two phases in the SOC profile, either by
using a constant as in A, or as a two-phase exponential function. The limitation of using the two-phase
exponential function is its difficulty of computation and the common possibility of not being able to
find a fit because of the high number of terms in the equation relative to the potentially available data
points or degrees of freedom.

The best predictions were obtained using the development of the relationships from the semi-log
plots with R2 for the SOC profiles investigated of more than 0.98 [see Table 5] and square root of the
Error Mean Square (SEE) nearly always <0.1. Effectively, a similar process to fitting data using spline
functions, but potentially has a more meaningful biophysical basis.

While the R2 value for the relationships were often high and the RMSE is low for many SOC
profiles, in general, for some SOC profiles the mathematical functions were good approximations at
best to the actual SOC profiles (see Table 3 and Figure 4). As can be seen from Site 16 and 17 (Figure 8),
even though the R2 is 0.94 and the RMSE is 0.14, there are still a number of observations within the
SOC profile where the mathematical function did not precisely fit the observation.

However, there, functions tended to fail when the depth distribution of SOC does not show
simple rates of decrease in SOC with depth. The conclusion is that there are more complex processes
controlling the depth distribution of SOC. In these SOC profiles there are fronts of SOC accumulation
or indications of buried profiles and unusual accumulations of SOC at depth. Some of these profiles
are shown in Figure 8.

4.4. Implications for Management and Policy

The SOC profiles and their relationship to the mathematical functions have several implications
for the development of the understanding of the sequestration of SOC and the inputs of carbon into
the soil.

1. At least two phases and sets of processes operating at different depths in the soil, and these are
influenced by land use and soil type. A general implication of this is that it suggests a single
measurement of SOC over a depth of 30 cm is going to contain soil materials with a wide range of
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SOC concentrations. Effective homogenization of the bulked sample before subsampling is an
essential step in the measurement of SOC content and SOC stocks.

2. Surface input of carbon is important under some land uses, especially woodlands, but less
important under cropping, although stubble retention may provide limited amounts of biomass
to the surface soils. The apparent failure of many stubble retention trials with direct drilling to
increase SOC can be partially explained by the low level of shoot inputs provided by stubble
retention and the lack of mechanisms to transport organic materials deeper into the profile [86].
The use of semi-log plots and a finer scale of SOC measurements with depth may provide a better
understanding of the effects of direct drilling and stubble retention on the dynamics of SOC.

3. SOC deeper in the subsoil can be subject to several inputs, but roots are probably the major
source, even in Vertosols. Advection can transport dissolved SOC in liquid flow into the deeper
subsoil [34], but given the drier climate associated with many of the soils, the amount of flow into
the deeper soils is limited.

4. At least three phases have been identified in the SOC profiles, near surface, mid depth and deep
or baseline SOC. These have been identified by the nature of the SOC profiles [see Figures 5
and 6]. In promoting land management practices to sequester carbon, an understanding of these
phases is helpful. Woodland or native vegetation increases SOC in near surface layers, pasture in
subsurface layers and the baseline or deep carbon is more difficult to influence. Cropping does
not promote increases in SOC near surface. This is potentially a method to investigate the effects
of different land management practices on SOC profiles.

The terms in the functions can be used to identify the relative importance of different phases in
the SOC profiles [see Figures 6–8]. The functions can identify the amount of SOC associated with near
surface processes and the amount of SOC in the deeper profile. It can also identify the presence of SOC
fronts of accumulation [see Table 5] from semi-log plots.

5. Conclusions

Simple mathematical functions can be used to predict the SOC profiles for many soils. Of these
Equation 6 which is an exponential function with a constant is the most reliable. Two phase exponential
functions are also very effective to predict SOC profiles, particularly where larger quantities of surface
SOC are present, but have the limitation of sometimes being difficult to fit to more complex SOC
profiles. In these cases, the degrees of freedom or measurements become a limitation. The two-phase
exponential functions have four to five terms that need to be fitted to a data set which can limit their
application for many SOC profiles. The power and inverse functions, while useful, were generally
inferior to the exponential functions and have an uncertain biophysical basis.

The analysis of the SOC profiles confirmed that many SOC profiles demonstrate at least two and
sometimes up to four zones within the SOC profiles where different processes dominate. This was often
evident within the data and in applying the mathematical functions to the SOC profiles. The two-phase
exponential functions clearly demonstrated the occurrence of at least two and sometimes three phases
in the SOC profiles. An analysis using semi-log plots demonstrated the occurrence of zones within
the SOC profiles. The use of semi-log plots is a potential tool to identify the processes occurring in
the SOC profiles in soils and so potentially can be used to identify the effects of land management
practices on SOC sequestration and storage in more detail.

Several SOC profiles demonstrated specific features that are potentially important for the
management of SOC profiles in soils. Woodland and to lesser extent pasture soils had a definite near
surface zone within the SOC profile, indicating the addition of surface materials and high rates of
fine root turnover. This zone was much less evident under cropping. Several SOC profiles showed
evidence for a front of SOC accumulation moving down the profile and did not have the definite rate
of decline of SOC with depth that was more commonly observed. These were typically soils under a
woodland land use.
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