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Abstract: Homocysteine (Hcy) is a critical indicator of cardiovascular disease. High levels of Hcy have now been recognised 

as a risk factor for the development of a wide range of diseases. Hyperhomocysteinemia (Hhcy) can be induced by methionine or 

Hcy supplementation. On the other hand, Glutathione (GSH) is a major antioxidant in the body and also an important compound 

for oxidative defence. It is composed of 3 amino acids: cysteine, glutamate, and glycine. Interestingly, methionine is also a 

crucial compound in GSH synthesis. This study aims to assess the impact of 1% L-methionine feeding (10 or 30 weeks) on the 

body weight and serum Hcy and GSH levels of young adult (16 weeks) and middle-aged (36 weeks) Wistar rats of both sexes. 

Serum was analysed for Hcy and reduced GSH levels by liquid chromatography mass spectrometry (LCMS) in response to 1% 

L-methionine feeding. One percent L-methionine feeding decreased body weight in all conditions investigated, although this 

only reached significance in males after 10 weeks supplementation and females after 30 weeks supplementation. It also induced 

a significant increase in the serum Hcy levels of male Wistar rats, whilst having no significant effect on Hcy serum levels in 

female rats. Finally, we also observed a small increase in serum GSH levels in female Wistar rats but no change in serum GSH 

levels in the males. These results suggest that methionine feeding affects body weight homeostasis and alters by products of 

methionine catabolism. 

Keywords: Methionine, Homocysteine, Reduced Glutathione, Body Weight 

 

1. Introduction 

Elevated concentrations of serum homocysteine (Hcy) have 

recently been shown to be a high risk factor for cardiovascular 

diseases [1]. Normally Hcy is biosynthesised during 

methionine metabolism [2-3]. The harmful effect of a high 

methionine diet is due to the conversion of methionine into 

Hcy, which in turn induces endothelial and oxidative stress 

[4-5]. 

The correlation between Hcy and cardiovascular diseases 

has been known since the 1960s [6]. A disturbance in the 

Hcy metabolic pathway causes Hcy accumulation leading to 

Hyperhomocysteinemia (Hhcy) [7-9]. In addition, common 

causes for Hhcy are: renal disease [10], insufficiency of 

vitamins contributing to Hcy metabolism [11], excess amount 

of dietary methionine [12-13] and also deficit of enzymes 

involved in Hcy metabolism [3]. It has been reported that in 

atherosclerotic patients with high levels of cholesterol, there 

was a considerable elevation in plasma Hcy concentrations 

[14]. 

There is abundant evidence indicating that high levels of 

Hcy induce damage to the heart and blood vessels. Boushey 

et al. [15] found that an elevation of 5 µmol/L in total serum 

Hcy (tHcy) concentration increases the odds of developing 

coronary artery disease (CAD) by 1.6 in males and 1.8 in 
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females. They further state that 10% of the population’s risk 

of CAD is attributable to Hhcy [15]. Also a lack of one or 

more of the vitamins (B6, B12, folic acid) may disturb 

methionine metabolism, resulting in Hhcy [16]. Normally, 

Hcy is converted into two critically important compounds: 

S-adenosyl methionine (SAM) and glutathione (GSH). This 

pathway is vital to maintain low levels of Hcy [17]. Also 

three specific vitamins B6, B12 and folate as well as zinc and 

tri methyl glycine (TMG) are involved in the conversion of 

Hcy to SAM [18]. Vitamins B6 and B12 and zinc also 

contribute in the conversion of Hcy to GSH [19]. The 

concentration of Hcy in the blood increases when the body 

does not efficiently convert Hcy into SAM and GSH [3, 20- 

21]. It has been shown that, in the elderly, non-fasting tHcy 

levels are increased and contribute to the increasing rates of 

cardiovascular disease mortality [22]. 

GSH, a sulfhydryl (SH)-containing tripeptide, is composed 

of three amino acids (glutamate, glycine and cysteine) [23-24] 

and is found in all mammalian cells [25]. In particular, it acts 

as an antioxidant, detoxifying agent and a free radical 

scavenger. Our working hypothesis is that methionine 

feeding affects body weight and causes changes in serum 

Hcy and serum GSH levels. To test this hypothesis, body 

weight and serum Hcy and serum GSH concentrations of 

young adult (16 weeks) and middle-aged (36 weeks) (female 

and male) Wistar rats were measured in control and those fed 

with 1% L-methionine. 

2. Materials and Methods 

2.1. Chemicals 

Standards, Hcy, GSH, and dithiothreitol (DTT) were from 

Sigma-Aldrich (Sydney, NSW, Australia), formic acid was 

from Fluka, LC-MS grade acetonitrile and H2O were from 

Burdick and Jackson. 

2.2. Experimental Animals 

Young post-weaned Wistar rats (6 weeks old) (body 

weight, 130 - 190 gm) (n = 48) of both sexes were divided 

into 2 sets of four groups (n=6 in each group) according to 

sex and diet. The control groups routinely received standard 

rat chow and water ad libitum while the test groups received 

standard rat chow and water supplemented with 1% 

L-methionine [26] for 10 weeks for the first set and 30 weeks 

[27-28] for the second set of animals (rats fed for 10 weeks 

are called young adult and rats fed for 30 weeks are called 

middle-aged). Regular checks were made of the rats’ weight, 

general health and well-being. At the end of this time the rats 

were sacrificed by stunning and cervical dislocation. The rats 

were then decapitated and trunk blood samples collected into 

Eppendorf tubes according to guidelines from the National 

Centre for the Replacement, Refinement and Reduction of 

animals in Research (NC3R
S
). Blood specimens were left to 

coagulate at room temperature and then centrifuged for 10 

minutes at 4000 rpm using a tabletop centrifuge (Sigma, 

Mode No. 1-15, Germany). The serum was then removed and 

transferred into clean Eppendorf tubes and stored frozen at – 

80˚C until used. This study was approved by the Animal 

Ethics committee of the University of New England and 

followed international guidelines. 

2.3. Measurement of Serum Hcy with Liquid 

Chromatography Gas Spectrometry 

The samples were prepared according to Shimadzu 

Application News No. C92. The serum samples were thawed. 

100 µl of serum was put into a labelled Eppendorf tube and 

20 µl (1mg/ml) DTT added. The solution was vortexed on 

high and allowed to stand at room temperature for 10 minutes 

(2x). After that 300 µl of 0.2% (1:500 v/v) HCOOH-CH3CN 

(formic acid/acetonitrile) was added and the solution was 

vortexed on high. Then the solution was centrifuged (Sigma, 

Mode No. 1-15, Germany) at 12000 rpm (9659.52 g) for 2 

minutes and 150µl of supernatant transferred to a labelled 

vial. 

Serum Hcy concentrations were quantified in young adult 

rats (n=24) and middle-aged rats (n=24) of both sexes using 

high-performance liquid chromatography-triple quadrupole 

mass spectrometer (Shimadzu, LCMS-8050, Japan). Both 

control of instrumentation and data analysis were performed 

using standard Shimadzu software (Lab Solutions v.5.8). The 

MS parameters were set at – m/z 136.00>90.10 and 

136.00>56.10 for Hcy. Standard Hcy was made up into serial 

dilutions ranging from 62.5-2000 ng/ml in LC-MS grade 

water, analysed and plotted using Shimadzu Lab Solutions. 

2.4. Measurement of Serum GSH with Liquid 

Chromatography Mass Spectroscopy 

The serum GSH concentrations were measured on the 

same samples as the Hcy. The MS parameters were modified 

to m/z 308.00>179.10 in order to detect GSH. For 

quantification, a standard curve of GSH solutions ranging 

from 62.5-2000 ng/ml was determined. 

2.5. Data Analysis 

Statistical analyses were expressed as Mean (SD). Student 

T tests were used for significance of difference between 

control and treated groups. Statistical significance was 

considered at p<0.05. 

3. Results 

3.1. Determination of Body Weight 

Table 1. Effect of L-methionine feeding on growth in (young adult) male and 

female Wistar rats. Data are means ± SD body weight (n=6). *p<0.05 vs. 

control. 

Sex 
Body weight (g/10 weeks) Body weight (g/10 weeks) 

Control 1% Methionine 

Male 350.46±26.75 314.45±28.37* 

Female 154.90±20.30 141.98±14.15 

The weight gain from young adult male Wistar rats fed 1% 

L-methionine was found to be significantly less at 314.45 
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(28.37) grams mean (SD) (p<0.05) after 10 weeks than the 

control group at 350.45 (26.75) grams mean (SD). Although 

the same trend was observed for the young adult female 

Wistar rats, the difference did not reach significance (see 

Table 1). 

For the middle-aged rats, we observed a lower weight gain 

of 680.03 (64.34) grams mean (SD) in males fed 1% 

L-methionine during the 30 weeks when compared to 

controls which increased to 752.89 (62.08) grams mean (SD), 

however this change was not significant. On the other hand, 

there was a highly significant lower weight gain for the 

female rats with 257.88 (50.80) grams, mean (SD) (p<0.001) 

when compared to controls with 376.14 (15.50) grams (see 

Table 2). 
3.2. Measurement of Serum Hcy and Serum GSH 

Young adult and middle-aged data were merged together 

because there were no differences between the two 

population values. 

Serum Hcy and GSH levels for the female rats increased in 

1% L-methionine rats to 7.819 (2.91) µM [mean (SD)] and 

32.303 (10.83) µM when compared to control at 4.87 (1.497) 

µM and 21.38 (8.88) µM respectively, although they were 

not statistically significant (Figure 1). 

Serum Hcy levels of male Wistar rats were significantly 

higher in 1% L-methionine rats at 11.32 (7.05) µM [mean 

(SD)] p<0.05 when compared to control at 5.33 (1.26) µM. 

Table 2. Effect of L-methionine feeding on growth in (middle-aged adult) 

male and female Wistar rats. Data are means ± SD body weight (n=6). 

*p<0.001 vs. control. 

Sex 
Body weight (g/30 weeks) Body weight (g/30 weeks) 

Control 1% Methionine 

Male 752.89±62.08 680.03±64.34 

Female 376.14±15.50 257.88±50.80* 

Serum GSH levels were only slightly lower in 1% L- methionine rats at 

24.89 (7.56) µM when compared to control at 27.53 (7.84) µM (Figure 2). 

4. Discussion 

Our results have shown that 1% L-methionine 

supplementation in the drinking water caused a significant 

decrease in the body weight of young adult male Wistar rats 

compared to control and a similar trend in the body weight of 

young adult female Wistar rats in comparison to control 

(Table 1). Also, there was a trend towards a reduction in the 

body weight in the middle-aged male rats compared to 

control and a significant reduction in the middle-aged female 

rats compared to control (Table 2). This could be correlated 

with an increase in the rate of methionine metabolism due to 

excessive dietary methionine. It has been found that the 

amount of methionine required from the diet is less than 1% 

and excess amounts of methionine can be toxic [29]. Another 

study reported that excessive levels of methionine may 

convert into S-methyl-L-cysteine which is a toxic compound 

and leads to growth reduction [30]. These findings were 

similar to that obtained by Herrmann et al. [31] who found 

that supplementation with 2.4% methionine, 1% Hcy and 2% 

Hcy in female Wistar rats reduced body weight significantly. 

In addition, findings from other studies indicated that 1.6 

gm/kg L-methionine feeding led to significantly slower 

growth rate of experimental rats compared to control [27]. 

However, El Aty et al. [32] found a significant increase in 

rats’ body weights at tested concentrations (1%, 2% and 4%) 

of DL-methionine and also another study by Hegedus et al. 

[33] indicated that body weight increases at high dietary 

protein diet. The disagreement between the findings may 

possibly be due to various factors. For example, animal strain, 

feeding period, isomeric forms of methionine, examined 

concentration of methionine and mode of treatment, injection 

(subcutaneous or intraperitoneal (IP)) or supplementation. 

This is the first study to investigate the effects of 

methionine supplementation in female rats. Our results 

indicated that the serum Hcy values of control groups are in 

agreement with those reported by Durand et al. [12] and 

Meng et al. for the male rat [34]. Serum Hcy values in the 

methionine groups are in agreement with that found by Meng 

et al. for the male rat [34]. We also report increased serum 

concentrations of Hcy in 1% L-methionine fed rats compared 

to control, which while not statistically significant for young 

adult and middle-aged (female) rats (Figure 1) became 

significant in young adult and middle-aged (male) rats 

(Figure 2). Dietary methionine plays an important role in the 

generation of Hcy through the demethylation pathway. This 

is a recognised method for inducing Hhcy [12]. 

 

Figure 1. Serum Hcy concentration (µM) versus serum GSH concentration 

(µM) in female rats fed with 1% L-methionine in comparison to control. Data 

shown are the means (SD). 

Our results are in agreement with de Rezende & D’Almeida 

[35] who found that 0.5% methionine supplementation in 

water increased plasma homocysteine concentration after 2 

and 6 months and also that 1% methionine supplementation in 

water, increased plasma homocysteine concentration after 2, 4 

and 6 months in male C57BL/6 mice. Results from other 

studies have also indicated that methionine or Hcy 

supplementation significantly raised plasma total Hcy levels, 

which accelerates plaque growth and boosts plaque fibrosis in 

apoE-/- mice [36] and also influences myocardial brain 

natriuretic peptide (BNP) concentrations in rats [31]. A study 

by Nygård et al. [37] revealed that human plasma Hcy levels 

are higher in men than in women and increases with age. Our 

results also indicated that males have higher serum Hcy levels 
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than females, although the difference was not significant in the 

rat. We did not observe any differences in Hcy levels with age. 

The mechanism of sex differences in Hcy concentrations may 

be due to alterations in rates of Hcy remethylation [38]. A 

small increase in serum GSH concentrations in 1% 

L-methionine fed rats of young adult and middle-aged female 

rats, although they were not statistically significant (Figure 1). 

This finding suggested that methionine loading improves GSH 

synthesis, which is in agreement with Bianchi et al. [39] who 

found that in human cirrhosis methionine flux is reduced 

through the transmethylation/transsulfuration pathway, which 

in turn reduces GSH synthesis. Mosharov et al. [40] who 

reported that Hcy dependent transsulfuration pathway is vital 

in sustaining the intracellular GSH pool. In males, there were 

no changes in serum GSH concentrations in 1% L-methionine 

fed rats of young adult and middle-aged male rats compared to 

controls (Figure 2). Given the significant increase in serum 

Hcy concentrations, changes in redox balance and impaired 

antioxidant defence mechanisms may be involved in this group. 

Indeed, Vyas et al. [41] found that GSH concentrations can 

significantly decrease during oxidative stress (increased free 

radical generation) in osteoarthritis patients. Moreover, another 

finding by Pastore et al. [42] demonstrated that in patients with 

non-alcoholic fatty liver diseases an increase in oxidative stress 

can be associated with rising plasma Hcy and cysteine levels 

and depletion of GSH levels. Changes in GSH levels can be 

critical in many cases such as inherited or acquired defects in 

the transporters, enzymes, transcription factors that are 

essential in its homeostasis, signalling molecules, or exposure 

to reactive chemicals or metabolic intermediates [43]. 

 

Figure 2. Serum Hcy concentration (µM) versus serum GSH concentration 

(µM) in male Wistar rats fed with 1% L-methionine in comparison to control. 

Data shown are the means (SD). 

5. Conclusion 

The results presented here show that L-methionine 

supplementation affects methionine-homocysteine 

metabolism cycle resulting in increased serum Hcy and 

serum GSH levels. Male rats have higher serum Hcy levels 

than females. The positive interactions between serum Hcy 

and serum GSH concentrations propose a possible common or 

analogous controlling mechanism in females. 
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